
Developer's Guide and Technical Reference
Version 11.0.2180.1635

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketTools™ and SocketWrench™ are trademarks of Catalyst Development Corporation.

The SocketTools .NET Edition is a collection of managed code classes that simplify the task of developing
TCP/IP networking applications in Visual Studio .NET using any of the available programming languages
such as Visual Basic and C#. The .NET Edition is ideal for the developer who requires the flexibility, ease of
use and rapid development features of a component without the complexities of working with the native
socket class or in-depth knowledge of how the various Internet protocols are implemented. The
SocketTools .NET Edition consists of fourteen core networking classes which can be used to develop
applications that meet a wide range of needs. SocketTools covers it all, including uploading and
downloading files, sending and retrieving email, remote command execution, terminal emulation, and
much more.

The SocketTools .NET Edition includes support for the industry standard Transport Security Layer (TLS) and
Secure Shell (SSH) protocols which are used to ensure that data exchanged between the local system and
a server is secure and encrypted. The .NET Edition implements the major secure protocols such as HTTPS,
FTPS, SFTP, SMTPS, POP3S, IMAPS and more. Your data is protected with TLS 1.2 using 256-bit encryption
and full support for client certificates. SocketTools also includes an FTP and HTTP server component, as
well as a general purpose TCP server component that can be used to create custom server applications.
There's no need for you to understand the details of certificate management, data encryption or how the
security protocols work. All it takes is a few lines of code to enable the security features, and SocketTools
handles the rest.

For developers who have used the ActiveX version of SocketTools, you'll immediately find yourself in
familiar territory. The SocketTools .NET class interface has properties, methods and events that are very
similar to the control that you've used in languages like Visual Basic 6.0. It is important to keep in mind
that SocketTools .NET is a managed code class, not a wrapper around the ActiveX control, so there will be
some inherent differences. However, whenever possible the class interface was designed to make the
transition from the ActiveX control as easy as possible.

The following are just some of the features in the SocketTools 11 .NET Edition:

Support for Windows 11, Visual Studio 2022 and .NET 8.0

Managed code class written in C# that can be used with any .NET language

An interface that is very similar to the components in the SocketTools ActiveX Edition

Support for both synchronous and asynchronous network connections

Includes components that can be used to create custom client and server applications

Provides cloud-based application storage and geographical IP location services

Support for the TLS 1.2 protocol and later with 256-bit AES encryption

Support for both implicit and explicit TLS connections

Support for the SSH protocol and integrated support for SFTP as part of the FTP class

Support for standard and secure proxy servers using FTP and HTTP

Support for using client and server certificates in PKCS #12 format

Thread-safe implementation with full support for multithreaded applications

An extensive Developer's Guide and online Technical Reference

Easy redistribution for any number of applications and end users

Developer's Guide
To help you get started using SocketTools, the Developer's Guide covers a variety of programming topics

Introduction

related to SocketTools, as well an overview of each of the controls included in the product. Even if you
have experience working with previous versions of SocketTools, we recommend that you review the
Developer's Guide. If you are using a language other than Visual Basic, you'll also find some very helpful
information about how to make the most of SocketTools in other programming languages such as Visual
C#.NET and Visual C++.

Technical Reference
The Technical Reference provides extensive documentation on all of the functions in each of the
SocketTools controls. It's here that you'll find information on the various properties, methods and events
provided by the component. If it is your first time using a particular class, we recommend that you first
read the overview of that class in the Developer's Guide.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The SocketTools .NET Edition License Agreement provides you with a single developer license and the
right to redistribute the class libraries (assemblies) included with this product without any additional
royalties or runtime licensing fees.

Evaluation Licenses
When you install SocketTools, you are given the option of entering a serial number or proceeding with the
installation without a serial number. If you install SocketTools without a serial number, an evaluation
development license will be created which is valid for a period of thirty (30) days from the date of
installation. The product is fully functional during this evaluation period; however the SocketTools
components may not be redistributed to third-parties. After the evaluation period has ended, you must
either purchase a development license or remove SocketTools from your computer system.

Runtime Licensing
When you install SocketTools with a serial number, a runtime license key will be automatically generated
for you and stored in a file named SocketToolsLicense.cs in the Include folder where you've installed the
product. There are similarly named files for other languages, such as SocketToolsLicense.vb. These files
define the SocketTools runtime licensing key which must be passed to the Initialize method in the classes
that you are using. More information about that utility is provided below.

The runtime license key is a null terminated string that is unique to your licensed copy of SocketTools. The
runtime license key is not the same as your serial number and should only be embedded in your compiled
application. If you provide source code for your product, you cannot include the runtime key with the
source code. The same runtime license key should be used for all of the .NET assemblies.

If you install SocketTools with an evaluation license, then the runtime license key will be defined as an
empty string. This will allow the assemblies to function on a system with a valid evaluation license, but they
will not function on any other system. You must purchase a license and generate a runtime license key
before redistributing an application which uses one or more of the SocketTools assemblies.

License Manager
Included with your copy of SocketTools is a License Manager utility. This program enables you to see what
components have been installed and registered on your system, as well as display information about your
SocketTools license. If you need to create a new runtime license key, you can use this utility to do so.
Select License | Header File from the menu and choose the type of file that you wish to create. For more
information about how the License Manager can be used, please refer to the online help file that is
included with the utility.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Licensing Information

If you install SocketTools without registering a serial number, the product will be installed with an
evaluation license that is valid for a period of thirty (30) days. During this trial period, the SocketTools
controls are fully functional and can be used on the development system where the product was installed.
If you need to extend the evaluation period, please contact the Catalyst Development sales office by email
at sales@sockettools.com or by telephone at +1 760-228-9653, Monday through Friday during normal
business hours.

Redistribution Restrictions
When using an evaluation copy of SocketTools, you cannot redistribute the controls to another system. If
you build an application using an evaluation license, it will function correctly on the development system
but will fail with an error on any system that does not have a license. Once you have purchased a
development license, you should recompile your application before redistributing it to an end-user. If you
need to test your application on another system during the evaluation period, you must install an
evaluation copy of SocketTools on that system.

Runtime Licensing
When you purchase a development license, a runtime license key will be generated for you which will be
included in your applications. Normally this runtime key is managed automatically when the control is
placed on a form or referenced in a project. However, there are situations in which the key must be
explicitly passed to the control's Initialize method. In all cases, if the product is installed as an evaluation
copy, the runtime license key will be defined as an empty string. If you have previously installed an
evaluation copy of SocketTools and then purchased a license, you can create the runtime license key using
the License Manager utility.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Product Evaluation

This section will help you upgrade an application written using a previous version of the SocketTools .NET
Edition. In most cases, the modifications required will be minimal and may only require updating your
project references and recompiling the program. However, it is recommended that you review this entire
guide so that you understand what changes were made and how those changes can be implemented in
your software.

Supported Platforms
SocketTools 11 is supported on Windows 7, Windows Server 2008 R2 and later versions. Earlier versions of
the operating system, including Windows XP and Windows Vista are no longer supported by Microsoft
and cannot be used with SocketTools. We recommend using the lasted release of either Windows 10 or
Windows 11.

Developers who are redistributing applications which target Windows 11 or Windows Server 2022 should
upgrade to ensure compatibility with the platform and current development tools. Secure connections
require TLS 1.2 or later and most services will no longer accept connections from a client using SSL 3.0 or
TLS 1.0.

Development Tools
The SocketTools .NET components may be used with Visual Studio 2010 and later versions. If you are
developing using Visual Studio 2010, use the .NET 4.0 assemblies. For Visual Studio 2012 and later
versions, you can use the .NET 4.5 assemblies. If you are targeting a later version of the Framework, such
as .NET 4.7.2 or .NET 4.8, you should reference the .NET 4.5 assemblies, which are compatible with those
versions.

If you have updated your application to use .NET 6.0 with Visual Studio 2022, you should reference the
.NET 6.0 assemblies. SocketTools 11 also includes assemblies for .NET 7.0, however this version has a
shorter release cycle and we recommend most projects use .NET 6.0 which is a Long Term Service release.
The .NET 8.0 Framework is currently under development and Microsoft is expected to release it in
November, 2023.

If you are developing on Windows 7 or Windows 8.1, it is required you use Visual Studio 2010 or a later
version. Attempting to use earlier versions of Visual Studio may require that you use those development
tools with elevated privileges and they are no longer supported. For Windows 10 and Windows 11, we
recommend using Visual Studio 2019 or a later version.

Upgrading Projects
If you are upgrading from earlier versions, applications will be source code compatible with the
SocketTools 11 .NET classes. In most cases, all you will need to do is install the current version, update
your project references and recompile your application. While the assembly modules retain the same
name, the platform specific 32-bit and 64-bit interop libraries have changed to
SocketTools11.Interop.dll. This allows applications created using SocketTools 11 to co-exist with
applications created using earlier versions of SocketTools.

If you are upgrading from SocketTools 8.0 and earlier versions, the path to the common assembly folder
has changed. Earlier versions of SocketTools did not provide assemblies which target .NET 4.5 or later
versions of the .NET Framework. The SocketTools 11 assemblies are now installed in the folder
C:\Program Files (x86)\Common Files\SocketTools\11.0\Assemblies for each version of the .NET
Framework which is supported.

Your runtime license key has changed for SocketTools 11, which will require you to define the new key in
your application when calling the class Initialize method. As with previous versions of SocketTools, you

SocketTools Upgrade Information

can use the License Manager utility to generate a file which contains the runtime key you should use. The
SocketTools 10 and earlier runtime license keys are not valid for the version 11 classes and an error will be
returned if an invalid runtime key is specified.

With SocketTools 11, secure connections will use TLS 1.2 or later by default. The .NET components will not
support connections to servers which use older, less secure versions of TLS or any version of SSL. They will
also no longer use weaker cipher suites that incorporate insecure algorithms, such as RC4 or MD5. For
applications that require secure connections, it is recommended you use the current build of Windows 10
or Windows 11 with all security updates applied.

It is possible to force the class to use earlier versions of TLS for backwards compatibility with older servers.
This is done by explicitly setting the SecureProtocol property to specify the protocol version required.
However, this is not generally recommended because using an older version of TLS (or any version of SSL)
may cause servers to immediately reject the connection attempt.

Most of the networking classes have an option to force the library to establish an IPv6 network connection.
By default, the classes will still give preference to using IPv4 for backwards compatibility. Note that using
options which only establish connections using IPv6 may prevent applications from working correctly on
older versions of Windows.

Interop Libraries
The platform specific interop libraries have been updated for SocketTools 11 and must be installed when
deploying your application. For more information, refer to the Redistribution section.

File Name Description

SocketTools11.Interop.dll The SocketTools runtime library. This library is
shared by all of the SocketTools and SocketTools
class libraries. This library should not be referenced
directly in the project, but must be included in the
application installation package. It is
recommended you install this file in the
appropriate Windows system folder.

SocketTools11.TraceLog.dll A debugging library used to generate log files
which record the low-level networking functions
called and the data exchanged. This library only
needs to be distributed if the debugging features
of the class are used. This library should not be
referenced directly in the project, but should be
included in the application installation package. It
is recommended that you install this file in the
appropriate Windows system folder.

The SocketTools license permits the use of the .NET assemblies to build application software and
redistribute that software to end-users. There are no restrictions on the number of products in which the
classes may be used. However, if it has been installed with an evaluation license, any products built using
SocketTools cannot be redistributed to another system until a licensed copy of the toolkit has been
purchased.

Supported Platforms
SocketTools .NET is supported on Windows 32-bit and 64-bit desktop and server platforms. The minimum
required desktop platform is Windows 7 with Service Pack 1 (SP1) installed. The minimum required server
platform is Windows Server 2008 R2 with Service Pack 1 (SP1) installed. It is recommended that the current
service pack be installed for the operating system, along with the latest Windows updates available from
Microsoft. Some features may require Windows 10 or later versions of the platform. When this is the case,
it will be noted in the documentation.

Windows XP and Windows Vista are no longer supported. SocketTools is designed for Windows 7 as the
minimum operating system version and may not work correctly on earlier versions of Windows. Although
Windows 7 is no longer supported by Microsoft, and Windows 8 has limited support, SocketTools
components will continue to function on those platforms.

SocketTools .NET includes assemblies which target .NET 4.0 through .NET 8.0. Older versions of the .NET
Framework, including .NET 2.0 and .NET 3.5 are no longer supported. At this time, .NET 6.0 is the current
long-term service release of the .NET Framework and is recommended for new projects. The .NET 8.0
Framework is currently under development and Microsoft is expected to release it in November, 2023.

Supported Development Tools
SocketTools .NET includes assemblies that can be used with Visual Studio with support for .NET
Framework version 4.0 through version 8.0. Other .NET development tools such as Embarcadero RAD
Studio and SharpDevelop are also supported. It is recommended that you install all service packs and
updates that are available. Development is only supported on Windows platforms and is not currently
supported on the Mono implementation of the Common Language Runtime.

Component Files
For those applications created using SocketTools .NET, the appropriate class libraries (assemblies) must be
distributed along with the application. The following component files can be included with your
application:

Assembly File Name Description

SocketTools.DnsClient.dll The Domain Name Services component which
provides domain name services for the application.
This assembly is added as a reference in the
project.

SocketTools.FileEncoder.dll The File Encoding and Decoding component
which provides functions to encode, compress and
encrypt files. This assembly is added as a reference
in the project.

SocketTools.FileTransfer.dll The FileTransfer assembly which provides a
common interface to the File Transfer Protocol
and Hypertext Transfer Protocol. This assembly
should be added as a reference in the project.

SocketTools.FtpClient.dll The File Transfer Protocol client component which

Component Redistribution

enables an application to upload and download
files, as well as manage files on the server. This
assembly is added as a reference in the project.

SocketTools.FtpServer.dll The File Transfer Protocol server component which
enables an application to accept connections from
standard FTP clients which can transfer and
manage files on the system. This assembly is
added as a reference in the project.

SocketTools.HttpClient.dll The Hypertext Transfer Protocol client component
which enables an application to transfer files and
query a web server. This assembly is added as a
reference in the project.

SocketTools.HttpServer.dll The Hypertext Transfer Protocol server component
which enables an application to accept
connections from HTTP clients, such as web
browsers. This assembly is added as a reference in
the project.

SocketTools.IcmpClient.dll The Internet Control Message Protocol component
which provides ping and traceroute functionality
for an application. This assembly is added as a
reference in the project.

SocketTools.ImapClient.dll The Internet Message Access Protocol component
which enables an application to retrieve mail
messages from a server and manage one or more
mailboxes remotely. This assembly is added as a
reference in the project.

SocketTools.InternetDialer.dll The Remote Access Services component which
enables an application to establish a dial-up
networking connection using PPP or SLIP. This
assembly is added as a reference in the project.

SocketTools.InternetMail.dll The InternetMail assembly which provides a client
interface to the Post Office Protocol, Internet
Message Access Protocol and Simple Mail Transfer
Protocol. This assembly should be added as a
reference in the project.

SocketTools.InternetServer.dll The Internet Server component which provides the
framework for implementing an event-driven
multithreaded server application. This assembly is
added as a reference in the project.

SocketTools.MailMessage.dll The Mail Message component which enables an
application to create, store and parse email
messages. This assembly is added as a reference in
the project.

SocketTools.NetworkTime.dll The Network Time Services component which
enables an application to query a time server to
determine the current time. This assembly is
added as a reference in the project.

SocketTools.NewsFeed.dll The Syndicated News Feed component which
enables an application to load and parse a news
feed, either from the local system or a server. This
assembly is added as a reference in the project.

SocketTools.NntpClient.dll The Network News Transfer Protocol component
which enables an application to download and
process messages from a news server. This
assembly is added as a reference in the project.

SocketTools.PopClient.dll The Post Office Protocol component which
enables an application to retrieve messages from a
mail server. This assembly is added as a reference
in the project.

SocketTools.RshClient.dll The Remote Command Shell component which
enables an application to execute commands on a
server, returning the output of the command to
the program. This assembly is added as a
reference in the project.

SocketTools.SmtpClient.dll The Simple Mail Transfer Protocol component
which enables an application to submit an email
message for delivery to a mail server. This
assembly is added as a reference in the project.

SocketTools.SocketWrench.dll The SocketWrench (Windows Sockets) component
which provides a general purpose networking
interface, allowing applications to connect to other
systems and exchange data using the TCP/IP
protocol. This assembly is added as a reference in
the project.

SocketTools.SshClient.dll The Secure Shell component which enables an
application to establish a secure, encrypted
connection with a server providing either an
interactive terminal session or the ability to
execute commands remotely. This assembly is
added as a reference in the project.

SocketTools.TelnetClient.dll The Telnet Protocol component which enables an
application to connect to a server, providing an
interactive terminal session. This assembly is added
as a reference in the project.

SocketTools.Terminal.dll The Terminal Emulation component which
provides VT-100 and VT-220 terminal emulation
services for an application, typically used for
interactive sessions with a TELNET or SSH server.
This control is added as a visual component to the
application.

SocketTools.TextMessage.dll The TextMessage component which enables an
application to send SMS text messages through an
SMTP gateway service. This assembly is added as a
reference in the project.

SocketTools.WebLocation.dll The WebLocation component provides
information about the physical location of the
current computer system based on its external IP
address. This assembly is added as a reference in
the project.

SocketTools.WebStorage.dll The WebStorage component provides private
cloud storage for uploading and downloading
shared data files which are available to your
application. This is primarily intended for use by

developers to store configuration information and
other data generated by the application. This
assembly is added as a reference in the project.

SocketTools.WhoisClient.dll The Whois Protocol component which enables an
application to query a server for registration
information about a specific domain name. This
assembly is added as a reference in the project.

SocketTools11.Interop.dll The SocketTools runtime library. This library is
shared by all of the SocketTools and SocketTools
class libraries. This library should not be referenced
directly in the project, but must be included in the
application installation package. It is
recommended you install this file in the
appropriate Windows system folder.

SocketTools11.TraceLog.dll A debugging library used to generate log files
which record the low-level networking functions
called and the data exchanged. This library only
needs to be distributed if the debugging features
of the class are used. This library should not be
referenced directly in the project, but should be
included in the application installation package. It
is recommended that you install this file in the
appropriate Windows system folder.

Version Information
The SocketTools components have embedded information which provides version information to an
installation utility. This information, called the version resource, specifies the assembly's version number
among other things. If you are using a third-party or in-house installation program, it is extremely
important that the program knows how to use this information. You should never overwrite a newer
(higher) version of the SocketTools assembly with an older (lower) version or build number.

Installation Directory
It is recommended that you install the SocketTools assemblies in the same directory as the application
executable on the target system. It is not recommended that you install the assemblies in the Global
Assembly Cache (GAC) or in the Windows system folder. The assemblies are built to target both the x86
and x64 platforms and can be used on either type of system. The SocketTools11.Interop.dll runtime library
is platform specific and it is recommended that you install it in the Windows system folder. This is a shared
library that is used by all of the SocketTools assemblies and should not be referenced directly in your
project.

If you are deploying your application to a system running the 32-bit version of Windows, you should
install the 32-bit version of the SocketTools11.Interop.dll library in the \Windows\System32 folder. If you
are deploying your application to a system running the 64-bit version of Windows, you should install the
32-bit version of the runtime library in the \Windows\Syswow64 folder, and the 64-bit version of the
library in the \Windows\System32 folder. If you are using the Trace related properties in your application,
you should also include SocketTools11.TraceLog.dll library in your installation package and install it in the
same folder as the runtime library.

The installer should always perform version checking to ensure that it is not overwriting a newer version of
the runtime library with an older version. If your installer package creates a 32-bit executable and you're
deploying a 64-bit application, the installer must be capable of detecting that it is running on a 64-bit
system and can disable filesystem redirection to ensure that the 64-bit libraries are installed in the correct
location. Consult the documentation for your installer to determine if it is 64-bit compatible.

Windows Install Packages
To help simplify deployment, SocketTools includes MSI (Windows Installer) packages you can use to install
the SocketTools .NET interop libraries on end-user systems. These packages are found in the Redist folder
where you've installed SocketTools.

Package Name Description

cstools11_interop_x86.msi SocketTools 11 .NET redistributable libraries for 32-bit applications. This
installer is what developers should use if they are targeting the x86 platform
and want their software to run on both 32-bit and 64-bit versions of
Windows.

cstools11_interop_x64.msi SocketTools 11 .NET redistributable libraries for 64-bit applications. This
installer should only be used if 64-bit development tools were used to build
the application, and can only be installed on 64-bit versions of Windows.

If you’re redistributing a 32-bit application, then all you need is the x86 installer package. If you’re
redistributing a 64-bit application, then you need the x64 installer package. If your application is built to
target both platforms (Any CPU), then you will need both x86 and x64 packages. The installer packages
will make sure the interop libraries are installed in the correct shared Windows folders and will perform the
appropriate version checking.

If you have your own installer for your software, then you can redistribute those MSI packages with your
installation and use the msiexec command to perform the installation. For example, this would install and
register the 32-bit .NET interop libraries with no UI displayed:

msiexec /qn /I cstools11_interop_x86.msi

For the complete list of command line options for msiexec, refer to the Windows App Development
documentation.

Strong Name Signing
The SocketTools assemblies are given what is known as a "strong name", which means they have been
signed with a cryptographic public/private key pair which ensures that the assembly has not been
tampered with. However, if you are redistributing an updated version of the assembly, it requires that you
also recompile your application and include it in the distribution. Unlike standard Windows dynamic link
libraries, you cannot simply redistribute the assembly by itself because a strong-name signed assembly
requires that the signature of the assembly, which includes the version number, match exactly what the
application was built with. This is a feature in .NET designed to ensure that the application is using the
correct version of the assembly.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

https://learn.microsoft.com/en-us/windows/win32/msi/command-line-options
https://learn.microsoft.com/en-us/windows/win32/msi/command-line-options

 Technical Support

Catalyst Development is committed to providing quality technical support for our products and we offer
several different support options designed to meet the needs of our customers. Technical support by email
is available for installation, development and redistribution issues related to the purchased product. There
are also paid support options available for customers who require additional assistance.

Standard Support
Registered developers have access to a variety of free technical support resources and we always
encourage developers to review our online documentation and knowledge base to determine if the
question has already been answered.

Frequently Asked Questions
A collection of answers to the most frequently asked questions about a product. General questions
about features, functionality and platform compatibility are answered here. The product FAQ is
also recommended reading for any developer who is evaluating our software.

Knowledge Base
A searchable online database of solutions to hundreds of common technical questions and
problems. The articles provide detailed information, including background information,
workarounds and the availability of updates to resolve the problem. This is the first place that most
developers should check to determine if the question or problem that they're having has already
been addressed.

Online Documentation
A comprehensive collection of online help, tutorials and whitepapers for our products. Our online
help is useful to evaluators who are interested in learning about how our components work and
for developers who would like access to the most current reference material.

Release Notes
Information about the latest changes, improvements and corrections made to the current version
SocketTools. The release notes can reflect changes that affect all SocketTools editions, as well as
updates to a component in a specific edition. If you are upgrading from a previous release, it's
recommended that you review the release notes.

Priority Support
For developers who require additional support, Priority Support offers a guaranteed, priority response to
technical support issues on the same business day. Corrections which require a source code change and/or
documentation change to resolve a problem will be made available as a hotfix at no additional charge, and
whenever there is a new product update or hotfix, you will be automatically notified by email.

Premium Support
For developers who have critical support needs, an annual Premium Support agreement priority email
support and a guaranteed four hour response time during business hours. This support option also
includes all of the other benefits of priority support, including hotfixes, source code analysis and assistance
with example code. In addition, Premium Support also includes free upgrades if a new version of the
product is released while your support agreement is active, ensuring that you're always working with the
latest version.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

https://sockettools.com/faq/
https://sockettools.com/knowledgebase/
https://sockettools.com/documentation/
https://sockettools.com/release-notes/

 License Agreement

This License Agreement is a legal agreement between you, either as an individual or a single entity
("Developer"), and Catalyst Development Corporation ("Catalyst") for the software product identified as
"SocketTools .NET Edition" ("Software" or "Software Product"). The Software Product includes executable
programs, redistributable modules, controls, and dynamic link libraries ("Components" or "Software
Components"), electronic documentation, and may include associated media and printed materials.

Installing this Software Product on to a hard disk or any other storage device of a computer, or loading any
of the Components into the memory of any computer, constitutes use of the Software and shall
acknowledge your acceptance of the terms and conditions of this License Agreement and your agreement
to bound thereby.

1. GRANT OF LICENSE
Catalyst Development grants you as an individual, a personal, non-exclusive, non-transferable license to
install the Software Product using an authorized serial number. If you are an entity, Catalyst grants you the
right to appoint an individual within your organization to use and administer the Software Product subject
to the same restrictions enforced on individual users. You may not network the Software or otherwise use it
on more than one workstation or computer at the same time. Contact Catalyst for more information
regarding multi-developer site licensing.

You may install the Software Product on one or more workstations or computers expressly for the purposes
of evaluating the performance of the Software for a period of no more than thirty (30) days. If continued
use of the Software is desired after the evaluation period has expired, then the Software Product must be
purchased and/or registered with Catalyst Development for each computer or workstation. The Software
Product must be removed from all unregistered workstations or computers after the evaluation period has
expired.

2. COPYRIGHT
Except for the licenses granted by this agreement, all right, title, and interest in and to the Software Product
(including, but not limited to, all copyrights in any executable programs, modules, controls, libraries,
electronic documentation, text and example programs), any printed materials and copies of the Software
Product are owned by Catalyst Development. The Software Product is protected by copyright laws and
international treaty provisions. Therefore you must treat the Software Product like any other copyrighted
material except that you may (i) make one copy of the Software solely for backup or archival purposes, or
(ii) transfer the Software to a single hard disk, provided you keep the original solely for backup or archival
purposes. You may not copy any printed materials that may accompany the Software Product. All rights
not specifically granted in this Agreement, including Federal and International Copyrights, are reserved by
Catalyst Development.

3. REDISTRIBUTION
(a) In addition to the rights granted in section 1, you are granted the right to use and modify those
portions of the Software designated as "example code" for the sole purposes of designing, developing, and
testing your software product, and to reproduce and distribute the example code, along with any
modifications thereof, only in object code form, provided that you comply with section 3(c).

(b) In addition to the rights granted in section 1, you are granted a non-exclusive, royalty-free right to
reproduce and distribute the object code version of any portion of the Software Product, along with any
modifications thereof, in accordance with the above stated conditions.

(c) If you redistribute the sample code or redistributable components, you agree to: (i) distribute the
redistributables in object code only, in conjunction with and as a part of a software application product
developed by you which adds significant and primary functionality to the Software; (ii) not use Catalyst
Development's name, logo, or trademarks to market your software application product; (iii) include a valid

copyright notice on your software product ; (iv) indemnify, hold harmless, and defend Catalyst
Development from and against any claims or lawsuits, including attorney's fees, that arise or result from the
use or distribution of your software application product; (v) not permit further distribution of the
redistributables by your end user.

4. UPGRADES
If this copy of the Software is an upgrade from an earlier version of the Software, you must possess a valid
full license to a copy of an earlier version of the Software to install and/or use this upgrade copy. You may
continue to use each earlier version copy of the Software to which this upgrade copy relates on your
computer after you receive this upgrade copy, provided that, (i) the upgrade copy and the earlier version
copy are installed and/or used on the same computer only and the earlier version copy is not installed
and/or used on any other computer; (ii) you comply with the terms and conditions of the earlier version's
end user license agreement with respect to the installation and/or use of such earlier version copy; (iii) the
earlier version copy or any copies thereof on any computer are not transferred to another computer unless
all copies of this upgrade copy on such computer are also transferred to such other computer; and (iv) you
acknowledge and agree that any obligation Catalyst may have to support and/or offer support for the
earlier version of the Software may be ended upon availability of the upgrade.

5. LICENSE RESTRICTIONS
You may not rent, lease or transfer the Software. You may not reverse engineer, decompile or disassemble
the Software, except to the extent applicable law expressly prohibits the foregoing restriction. You may not
alter the contents of a hard drive or computer system to enable the use of the evaluation version of the
Software for an aggregate period in excess of the evaluation period for one license. Without prejudice to
any other rights, Catalyst Development may terminate this License Agreement if you fail to comply with the
terms and conditions of the agreement. In such event, you must destroy all copies of the Software Product.

6. CONFIDENTIALITY
(a) The Software contains information or material which is proprietary to Catalyst Development
("Confidential Information"), which is not generally known other than by Catalyst, and which you may
obtain knowledge of through, or as a result of the relationship established hereunder with Catalyst. Without
limiting the generality of the foregoing, Confidential Information includes, but is not limited to, the
following types of information, and other information of a similar nature (whether or not reduced to writing
or still in development): designs, concepts, ideas, inventions, specifications, techniques, discoveries, models,
data, object code, documentation, diagrams, flow charts, research, development, methodology, processes,
procedures, know-how, new product or new technology information, strategies and development plans
(including prospective trade names or trademarks).

(b) Such Confidential Information has been developed and obtained by Catalyst by the investment of
significant time, effort and expense, and provides Catalyst with a significant competitive advantage in its
business.

(c) You agree that you shall not make use of the Confidential Information for your own benefit or for the
benefit of any person or entity other than Catalyst, except for the expressed purposes described in this
section, in accordance with the provisions of this Agreement, and not for any other purpose.

(d) You agree to hold in confidence, and not to disclose or reveal to any person or entity, the Software,
other related documentation, your product Serial Number or any other Confidential Information
concerning the Software other than to such persons as Catalyst shall have specifically agreed in writing to
utilize the Software for the furtherance of the expressed purposes described in this section, in accordance
with the provisions of this Agreement, and not for any other purpose.

(e) You acknowledge the purpose of this section is to protect Catalyst Development's ability to limit the use
of the data and the Software generally to licensees, and to prevent use of Confidential Information
concerning the Software by other developers or vendors of software.

7. CONTINUATION OF SERVICE
Some features of the Software may require the use of remote servers under the control of Catalyst
Development to provide specific services. Catalyst makes no warranty as to the availability of these services
and reserves the right to discontinue these services at any time and without warning. These services may
only be accessed using the Application Programming Interfaces (API) provided by the Software Product
and access is limited to licensees and evaluation users of the Software.

We may suspend or terminate your access to these services without liability if (i) we reasonably believe that
the services are being used (or have been or will be used) in violation of the Agreement, (ii) we reasonably
believe that suspending or terminating your access is necessary to protect our network or our other
customers, or (iii) the suspension or termination is required by law. We will give you reasonable advance
notice of suspension or termination under this section and a chance to cure the grounds on which the
suspension or termination is based, unless we determine, in our reasonable commercial judgment, that an
immediate suspension or termination is necessary to protect Catalyst or its other customers from imminent
and significant operational or security risk.

8. LIMITED WARRANTY
If within thirty days of your purchase of this software product, you become dissatisfied with the Software for
any reason, you may return the software to Catalyst Development (or your dealer, if you did not purchase
it directly from Catalyst) for a refund of your purchase price. To return the Software, you must contact
Catalyst Development and obtain a Return Material Authorization (RMA) number. Catalyst will not accept
returns of opened or installed software without an RMA number. Returns may be subject to the deduction
from your purchase price of a restocking fee and all shipping costs.

CATALYST PROVIDES NO REMEDIES OR WARRANTIES, WHETHER EXPRESS OR IMPLIED, FOR ANY
SAMPLE APPLICATION CODE, TRIAL VERSION AND THE NOT FOR RESALE VERSION OF THE SOFTWARE.
ANY SAMPLE APPLICATION CODE, TRIAL VERSION AND THE NOT FOR RESALE VERSION OF THE
SOFTWARE ARE PROVIDED "AS IS".

CATALYST DISCLAIMS ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WITH RESPECT TO THE SOFTWARE, THE ACCOMPANYING WRITTEN MATERIALS, AND ANY
ACCOMPANYING HARDWARE.

9. LIMITATION OF LIABILITY
IN NO EVENT SHALL CATALYST OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING, WITH LIMITATION, INCIDENTAL, CONSEQUENTIAL, SPECIAL, OR EXEMPLARY DAMAGES OR
LOST PROFITS, BUSINESS INTERRUPTION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OR
INABILITY OF THIS CATALYST PRODUCT, EVEN IF CATALYST HAS BEEN ADVISED OF SUCH DAMAGES.

APART FROM THE FOREGOING LIMITED WARRANTY, THE SOFTWARE PROGRAMS ARE PROVIDED "AS-
IS", WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. THE ENTIRE RISK AS TO THE
PERFORMANCE OF THE PROGRAMS IS WITH THE PURCHASER. CATALYST DOES NOT WARRANT THAT
THE OPERATION OF THE PROGRAMS WILL BE UNINTERRUPTED OR ERROR-FREE. CATALYST ASSUMES
NO RESPONSIBILITY OR LIABILITY OF ANY KIND FOR ERRORS IN THE PROGRAMS OR DOCUMENTATION,
OF/FOR THE CONSEQUENCES OF ANY SUCH ERRORS. THE LAWS OF THE STATE OF CALIFORNIA
GOVERN THIS AGREEMENT.

10. GOVERNMENT-RESTRICTED RIGHTS
United States Government Restricted Rights. The Software and related documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to the restrictions set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted Rights at
48 CFR 52.227-19, as applicable. Manufacturer for such purposes is Catalyst Development Corporation,

56925 Yucca Trail #254, Yucca Valley, CA 92284

11. EXPORT CONTROLS
You agree to comply with all relevant regulations, including but not limited to those, of the United States
Department of Commerce and with the United States Export Administration Act to insure that the Software
is not exported in violation of United States law. You acknowledge that the Software is subject to export
regulations and agree that you will not export, re-export, import or transfer the software in violation of any
United States or other applicable laws, whether directly or indirectly, and you will not assist or facilitate
others in doing so. You acknowledge that you have the responsibility to obtain any export classifications
and licenses as may be required to comply with such laws.

12. PROHIBITED DESTINATIONS
The exportation, re-exportation, sale or supply of Catalyst products, software components or
documentation, directly or indirectly, from the United States or by a United States citizen wherever located,
to Cuba, Iran, North Korea, Sudan, Syria, or any other country to which the United States has embargoed
goods, is strictly prohibited without prior authorization by the United States Government. You represent
and warrant that neither the United States Bureau of Export Administration nor any other federal agency
has suspended, revoked or denied your export privileges. Catalyst products, software components or
documentation may not be exported or re-exported to anyone on the United States Treasury Department's
list of Specially Designated Nationals or the United States Department of Commerce Denied Person's List
or Entity List.

13. GOVERNING LAW
This License is governed by the laws of the State of California, without reference to conflict of laws
principles. Any controversy or claim arising out of or relating to this contract, or the breach thereof, shall be
settled by arbitration administered by the American Arbitration Association (“AAA”) under its Commercial
Arbitration Rules, and judgment on the award rendered by the arbitrator(s) may be entered in any court
having jurisdiction thereof. The arbitrator shall be a retired judge or attorney with at least 15 years
commercial law experience and shall be selected either by mutual agreement of the parties or by AAA’s
selection process. The parties shall be entitled to take discovery in accordance with the provisions of the
California Code of Civil Procedure, including but not limited to CCP §1283.05. The arbitration shall be held
in San Bernardino, California and in rendering the award the arbitrator must apply the substantive law of
the State of California.

14. GENERAL PROVISIONS
This License Agreement contains the complete agreement between the parties with respect to the subject
matter hereof, and supersedes all prior or contemporaneous agreements or understandings, whether oral
or written. You agree that any varying or additional terms contained in any purchase order or other written
notification or document issued by you in relation to the Software licensed hereunder shall be of no effect.
The failure or delay of Catalyst to exercise any of its rights under this Agreement or upon any breach of this
Agreement shall not be deemed a waiver of those rights or of the breach.

If any provision of this agreement shall be held by a court of competent jurisdiction to be contrary to law,
that provision will be enforced to the maximum extent permissible, and the remaining provisions of this
agreement will remain in full force and effect.

SocketTools and other trademarks contained in the Software are trademarks or registered trademarks of
Catalyst Development Corporation in the United States and/or other countries. Third party trademarks,
trade names, product names and logos may be the trademarks or registered trademarks of their respective
owners. You may not remove or alter any trademark, trade names, product names, logo, copyright or
other proprietary notices, legends, symbols or labels in the Software.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Catalyst Development Corporation™, SocketTools™ and SocketWrench™ are trademarks of Catalyst
Development Corporation. Microsoft™, Windows™, Visual Basic™ and Visual Studio™ are trademarks or
registered trademarks of Microsoft Corporation.

Portions Copyright © 1993, 1994 The Regents of the University of California.
Portions Copyright © 1989 Massachusetts Institute of Technology.
Portions Copyright © 1995 Tatu Ylonen.
Portions Copyright © 1999, 2000 Neil Provos and Markus Friedl.
Portions Copyright © 1997, 2003 Simon Tatham.
Portions Copyright © 1995, 2005 Jean-loup Gailly and Mark Adler
Portions Copyright © 1991, 1992 RSA Data Security, Inc.

Information in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of Catalyst Development Corporation.

The software described in this document is furnished under a license agreement. The software may be
used only in accordance with the terms of the agreement. It is against the law to copy the software except
as specifically allowed in the license agreement. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal use,
without the express written permission of Catalyst Development Corporation.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Copyright Information

The SocketTools .NET components can be used with any Visual Studio .NET programming language.
SocketTools includes assemblies which can target .NET 4.0 through .NET 8.0. The current long-term
service release is .NET 6.0 and is recommended for new projects. The .NET 8.0 Framework is currently
under development and is expected to release in November, 2023.

Features of the SocketTools .NET Edition include:

The SocketTools classes provide a simple interface that is easy to use and understand.
There are no complicated methods or data structures to use, and most methods are
overloaded to provide reasonable defaults appropriate for most applications. Most
complex operations can be performed with only a few lines of code.

There are no external dependencies on third party libraries or components. The
SocketTools classes are managed code classes and are not "wrappers" around ActiveX
controls or COM libraries.

The class interfaces were designed to be as similar as possible to the COM version of the
components, reducing the learning curve for developers who are already familiar with
SocketTools and reducing the amount of time required to port an application to the .NET
platform.

A comprehensive design which supports both high-level operations as well as lower-level
methods at the protocol level. For example, the File Transfer Protocol component has
methods such as PutFile and GetFile which allow an application to easily upload and
download files in a single method call. It also includes lower-level methods like OpenFile
to open a file on the server and access it in a fashion similar to traditional file I/O
operations.

Support for both synchronous (blocking) and asynchronous (non-blocking) operation
depending on the needs of the application. Asynchronous operation is supported by an
event-driven model where the application is notified of networking events by events
generated by the component. Event notification can be enabled, disabled and resumed
completely under the control of the application, giving developers complete freedom in
controlling their behavior of their software. Synchronous operation is also fully supported,
enabling developers to easily write programs using a procedural programming style
without the inherent complexity of an event-driven model.

A thread-safe implementation that allows the classes to be easily used in a multithreaded
application. SocketTools handles any internal synchronization required, ensuring that
multiple, simultaneous operations can be performed safely and efficiently without
extensive coding on the part of the developer.

The SocketTools .NET Edition enables applications to take advantage of security features,
including support for TLS 1.2 and later with AES 256-bit encryption without requiring any
knowledge of data encryption or certificate validation. The components use the Windows
CryptoAPI to provide security services, which means that there are no third-party security
libraries that must be installed by your users. Taking advantage of the security features in
the SocketTools .NET Edition is as simple as setting a few properties before connecting to
the server. The protocol negotiation, data encryption and decryption is handled
transparently by the control. From the perspective of the application developer, it is just as
if it were a standard connection to the server.

The SocketTools .NET Edition includes everything professional software developers need to create
complex programs, enabling developers to focus on their core application technology rather than the
details of how a particular application protocol is implemented or understanding the specifics of network

Features Overview

programming.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketTools is a large collection of components that can be used to create a variety of applications, so
deciding what protocols and controls you'll need to use will be the first step. SocketTools covers several
general categories, and there is some cross-over between the components in terms of functionality. We'll
cover the most common programming needs and discuss what protocols should be used. Note that this
section doesn't cover all of the controls in SocketTools, and more specific information for each component
is available within the technical reference documentation.

One thing you'll discover as you start to use SocketTools is that the interface was intentionally designed to
be consistent between many of the controls. For example, both the File Transfer Protocol and Hypertext
Transfer Protocol controls can be used to upload and download files, and the properties, methods and
events for both of those controls are very similar. Once you've become comfortable working with one of
the controls, you'll find it very easy to use the other, related controls.

File Transfers
File Transfer Protocol

Hypertext Transfer Protocol

One of the most common requirements for an application is the ability to upload and download files,
either over the Internet or between systems on a local intranet. There are two core protocols which are
used for file transfers, the File Transfer Protocol (FTP) and the Hypertext Transfer Protocol (HTTP). The
decision as to which protocol to use largely depends on whether or not the program must also perform
any type of file management on the server. Because many of the methods in the FTP and HTTP
components are similar, you may wish to use both and simply give your users an option as to which
protocol they prefer to use.

If your program needs to upload files or manage the files on the server, we recommend that you use FTP.
In addition to uploading and downloading files, FTP can be used to rename or delete files, create
directories, list the files in a directory and perform a variety of other functions. On the other hand, if you
primarily need to just download files, HTTP can be a better choice. The protocol is simpler and you're less
likely to encounter some of the issues that can arise when using FTP from behind a firewall.

It is also an option to use FTP to upload and manage files and HTTP to download files within the same
program. The important thing to keep in mind is that if you want to use HTTP and need to upload files,
you must make sure that the server has been configured for it. Most web servers do not support the
ability to upload files by default; it requires the administrator to specifically enable that functionality.

World Wide Web
Hypertext Transfer Protocol

If you need to access documents or execute scripts on a web server, you'll want to use the Hypertext
Transfer Protocol (HTTP) control. You can use the control to download files and post data to scripts. The
control also supports the ability to upload files, either using the PUT command or by using the POST
command, which is the same method used when selecting a file to upload using a form. The control can
also be used to execute custom commands, allowing your application to take advantage of features like
WebDAV, a distributed authoring extension to HTTP.

Electronic Mail
Domain Name Services Protocol

Internet Message Access Protocol

Getting Started

Mail Message Class

Post Office Protocol

Simple Mail Transfer Protocol

There are a number of SocketTools components which can be used by an application that needs to send
email messages or retrieve them from a user's mailbox. The email related controls can be broken into
three groups, those that deal primarily with managing and retrieving messages for a user, those which are
used to send messages and those which can be used for either purpose.

The two principal protocols used to manage a user's email are the Post Office Protocol (POP3) and the
Internet Message Access Protocol (IMAP). POP3 is the protocol that the majority of Internet Service
Providers (ISP) use to give their customers access to their messages. It is primarily designed to enable an
application to download the messages from the mail server and store them on the local system. Once all
of the messages have been downloaded, they are deleted from the server. The user's mailbox is
essentially treated as a temporary storage area.

On the other hand, IMAP is designed to allow the application to manage the messages on the server. You
can create new mailboxes, move messages between mailboxes and search for messages. Because IMAP
can be used to access specific parts of a message, it's not necessary to download the entire message if
you just want to read a specific part of it. In terms of the SocketTools controls, it's useful to think of the
properties, methods and events in the IMAP control as a superset of those in the POP3 control. You'll find
that methods used for accessing messages are very similar, but the IMAP component contains additional
methods for managing mailboxes and performing operations that are specific to that protocol, such as the
ability to search for messages.

To send an email message to someone, the protocol that you'll use is the Simple Mail Transfer Protocol
(SMTP). The SocketTools control supports the standard implementation of this protocol, along with many
of the extensions that have been added since its original design. Extended SMTP (ESMTP) provides
features such as authentication, delivery status notification, secure connections using SSL/TLS and so on.
Another component that you may use is the Domain Name Services (DNS) control, which your application
can use to determine what servers are responsible for accepting mail for a particular user.

Common to both sending and receiving email messages is the need to be able to create and process
those messages. An email message has a specific structure which is defined by a number of standards,
collectively called the Multipurpose Internet Mail Extensions (MIME). The SocketTools Mail Message control
can be used to create messages in the format, as well as parse existing messages so that you application
can access the specific information that it needs. For example, you can use this component to attach files
to a message as well as extract a specific file attachment from a message and store it on the local system.

Terminal Sessions
Rlogin Protocol

Telnet Protocol

Terminal Emulation

If you need to establish an interactive terminal session with a server, there are two protocols that you can
use. The most common is the Telnet Protocol; however, there is also the Rlogin protocol which is part of
the Remote Command control. Either of these protocols are typically used in conjunction with the
Terminal Emulation control, which provides ANSI and DEC VT-220 terminal emulation functionality. Used
together, the user can login and interact with the server in the same way that they would use a console or
character based terminal.

Newsgroups
File Encoding Class

Mail Message Class

Network News Transfer Protocol

If you need to access newsgroups, the Network News Transfer Protocol will enable you to connect, list,
retrieve and post articles. Because news articles have a format that is very similar to email messages, the
Mail Message control can be used to parse articles that you've downloaded or create new articles to be
posted. If you need to attach a file to the article that you're posting, the File Encoding control can be used
to encode the file using the yEnc encoding algorithm, which has become the de facto standard on
USENET.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

This section of the developer's guide will cover the core networking protocols along with the general
concepts related to Internet programming. Although it is not necessary to understand the lower level
details of network programming in order to use SocketTools, it is useful to be familiar with the basic
concepts and terminology.

Windows Sockets

Networking Protocols

Application Protocols

Domain Names

Service Ports

Client-Server Applications

Client Sessions

Secure Networking

Digital Certificates

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

General Concepts

The Windows Sockets application program interface (API) specification was created by a group of
companies, including Microsoft, in an effort to standardize the TCP/IP suite of protocols for the Windows
operating system. Prior to Windows Sockets, each vendor developed their own proprietary libraries, and
although they all had similar functionality, the differences were significant enough to cause problems for
the software developers that used them. The biggest limitation was that, upon choosing to develop
against a specific vendor's library, the developer was "locked" into that particular implementation. A
program written against one vendor's product would not work with another's. Windows Sockets was
offered as a solution, leaving developers and their end-users free to choose any vendor's implementation
with the assurance that the product will continue to work.

There are two general approaches that you can take when creating a program that uses Windows
Sockets. One is to code directly against the API, which requires learning how to make direct API calls to
the system and how the Interop features of the .NET framework function. The other is to use a component
(class library) like SocketTools which provides a higher-level interface by setting properties, calling
methods and responding to events. This can provide a more natural programming interface, and it allows
you to avoid much of the error-prone drudgery commonly associated with sockets programming. By
simply referencing SocketTools in a project, setting some properties, calling a few methods and
responding to events, you can quickly and easily write an Internet-enabled application.

SocketTools .NET provides a comprehensive interface to the networking subsystem that is powerful and
flexible enough to build virtually any kind of application, yet doesn't have a steep learning curve for those
developers who aren't experienced network programmers. In general, we believe that you'll be able to use
SocketTools to write software for the Internet faster and easier than the native socket class that's part of
the .NET framework.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Windows Sockets

Throughout the Developer's Guide, you will see the word "protocols" mentioned. There are two general
types of protocols that will be discussed. The first type of protocol will be referred to as networking
protocols. They are lower level protocols which define how data is exchanged between two systems. The
two networking protocols that will be discussed are the User Datagram Protocol (UDP) and the
Transmission Control Protocol (TCP).

There are also application protocols, which use the networking protocols to communicate. Application
protocols deal with a specific type of functionality. For example, the File Transfer Protocol (FTP) is used to
upload and download files, while the Simple Mail Transfer Protocol (SMTP) is used to send email
messages. Conceptually, you can think of the networking protocols as defining the rules for how programs
can communicate with one another over the Internet. The application protocols operate at a higher level,
defining the rules for how a specific kind of task can be carried out, such as transferring a file from one
computer to another.

Transmission Control Protocol

User Datagram Protocol

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Networking Protocols

When two computers wish to exchange information over a network, there are several components that
must be in place before the data can actually be sent and received. Of course, the physical hardware must
exist, which is typically either a network interface card (NIC) or a serial communications port for dial-up
networking connections. Beyond this physical connection, however, computers also need to use a
protocol which defines the parameters of the communication between them. In short, a protocol defines
the "rules of the road" that each computer must follow so that all of the systems in the network can
exchange data. One of the most popular protocols in use today is TCP/IP, which stands for Transmission
Control Protocol/Internet Protocol.

By convention, TCP/IP is used to refer to a suite of protocols, all based on the Internet Protocol (IP). Unlike
a single local network, where every system is directly connected to each other, an internet is a collection of
networks, combined into a single, virtual network. The Internet Protocol provides the means by which any
system on any network can communicate with another as easily as if they were on the same physical
network. Each system, commonly referred to as a host, is assigned a numeric value which can be used to
identify it over the network. These numeric values are known as IP addresses, and are usually represented
as a string value that contains a series of numbers.

There are two versions of TCP/IP and two different IP address formats based on which version of the
protocol is being used. For Internet Protocol v4 (IPv4), addresses are 32 bits wide and are represented by
a sequence of four 8-bit numbers separated by periods. This is called dot-notation and looks something
like 192.168.19.64. This is the address format that many developers are familiar with because IPv4
continues to be the most commonly used version of the protocol. Internet Protocol v6 (IPv6) is the next
generation of IP and it supports a much larger address space as well as a number of other features. IPv6
addresses are 128 bits wide and represented by a sequence of hexadecimal values separated by colons.
As expected, this format is much longer than the simple dot-notation used by IPv4 address. A typical IPv6
address will look something like fd7c:2f6a:4f4f:ba34::a32, although there are certain shorthand notations
that can be used. SocketTools supports both IPv4 and IPv6, and can automatically determine which
version of the protocol should be used based on the address. Because IPv4 is still widely used, if given a
choice between using IPv4 or IPv6, the SocketTools components will choose IPv4 for backwards
compatibility whenever possible. However, an application can choose to exclusively use IPv6 if required.

When a system sends data over the network using the Internet Protocol, it is sent in discrete units called
datagrams, also commonly referred to as packets. A datagram consists of a header followed by
application-defined data. The header contains the addressing information which is used to deliver the
datagram to its destination, much like an envelope is used to address and contain postal mail. And like
postal mail, there is no guarantee that a datagram will actually arrive at its destination. In fact, datagrams
may be lost, duplicated or delivered out of order during their travels over the network. Needless to say,
this kind of unreliability can cause a lot of problems for software developers. What's really needed is a
reliable, straightforward way to exchange data without having to worry about lost packets or jumbled
data.

To fill this need, the Transmission Control Protocol (TCP) was developed. Built on top of IP, TCP offers a
reliable, full-duplex byte stream which may be read and written to in a fashion similar to reading and
writing a file. The advantages to this are obvious: the application programmer doesn't need to write code
to handle dropped or out-of-order datagrams, and instead can focus on the application itself. And
because the data is presented as a stream of bytes, existing code can be easily adopted and modified to
use TCP.

TCP is known as a connection-oriented protocol. In other words, before two programs can begin to
exchange data they must establish a "connection" with each other. This is done with a three-way
handshake in which both sides exchange packets and establish the initial packet sequence numbers (the
sequence number is important because, as mentioned above, datagrams can arrive out of order; this

Transmission Control Protocol

number is used to ensure that data is received in the order that it was sent). When establishing a
connection, one program must assume the role of the client, and the other the server. The client is
responsible for initiating the connection, while the server's responsibility is to wait, listen and respond to
incoming connections. Once the connection has been established, both sides may send and receive data
until the connection is closed.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Unlike TCP, the User Datagram Protocol (UDP) does not present data as a stream of bytes, nor does it
require that you establish a connection with another program in order to exchange information. Data is
exchanged in discrete units called datagrams, which are similar to IP datagrams. In fact, the only features
that UDP offers over raw IP datagrams are port numbers and an optional checksum.

UDP is sometimes referred to as an unreliable protocol because when a program sends a UDP datagram
over the network, there is no way for it to know that it actually arrived at its destination. This means that
the sender and receiver must typically implement their own application protocol on top of UDP. Much of
the work that TCP does transparently (such as generating checksums, acknowledging the receipt of
packets, retransmitting lost packets and so on) must be performed by the application itself.

With the limitations of UDP, you might wonder why it's used at all. UDP has the advantage over TCP in
two critical areas: speed and packet overhead. Because TCP is a reliable protocol, it goes through great
lengths to ensure that data arrives at its destination intact, and as a result it exchanges a fairly high
number of packets over the network. UDP doesn't have this overhead, and is considerably faster than TCP.
In those situations where speed is paramount, or the number of packets sent over the network must be
kept to a minimum, UDP is an appropriate protocol to use.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

User Datagram Protocol

The Internet application protocols are defined in standards documents called RFCs (Request For
Comments) which are maintained by the Internet Engineering Task Force. The following protocols
standards are implemented by the SocketTools components:

Document Description

RFC 792 Internet Control Message Protocol

RFC 822 Standard for the Format of ARPA Internet Text
Messages

RFC 854 Telnet Protocol Specification

RFC 868 Time Protocol

RFC 954 Nicname/Whois Protocol

RFC 959 File Transfer Protocol (FTP)

RFC 977 Network News Transfer Protocol

RFC 1034 Domain Name Services

RFC 1055 Serial Line IP (SLIP)

RFC 1282 Rlogin

RFC 1288 Finger User Information Protocol

RFC 1579 Firewall-Friendly FTP

RFC 1661 The Point-to-Point Protocol (PPP)

RFC 1738 Uniform Resource Locators

RFC 1869 SMTP Service Extensions

RFC 1939 Post Office Protocol Version 3

RFC 1945 Hypertext Transfer Protocol 1.0

RFC 1951 Deflate Compressed Data Format Specification

RFC 2045 Multipurpose Internet Mail Extensions (Part One)

RFC 2046 Multipurpose Internet Mail Extensions (Part Two)

RFC 2047 Multipurpose Internet Mail Extensions (Part Three)

RFC 2048 Multipurpose Internet Mail Extensions (Part Four)

RFC 2228 FTP Security Extensions

RFC 2616 Hypertext Transfer Protocol 1.1

RFC 2821 Simple Mail Transfer Protocol (SMTP)

RFC 2980 Common NNTP Extensions

RFC 3501 Internet Message Access Protocol Version 4

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Application Protocols

http://www.ietf.org/rfc/rfc792.txt
http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc854.txt
http://www.ietf.org/rfc/rfc868.txt
http://www.ietf.org/rfc/rfc954.txt
http://www.ietf.org/rfc/rfc959.txt
http://www.ietf.org/rfc/rfc977.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1055.txt
http://www.ietf.org/rfc/rfc1282.txt
http://www.ietf.org/rfc/rfc1288.txt
http://www.ietf.org/rfc/rfc1579.txt
http://www.ietf.org/rfc/rfc1661.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1869.txt
http://www.ietf.org/rfc/rfc1939.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2048.txt
http://www.ietf.org/rfc/rfc2228.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2821.txt
http://www.ietf.org/rfc/rfc2980.txt
http://www.ietf.org/rfc/rfc3501.txt

An application must have several pieces of information to exchange data with a program running on
another system. The first is the Internet Protocol (IP) address of the computer system on which the other
program is running. Although this address is internally represented by a numeric value (either 32 or 127
bits wide), it is typically identified by a logical name called a host name or fully qualified domain name.
Host names are divided into several parts separated by periods, called domains. The structure is
hierarchical, with the top-level domains defining the type of organization that network belongs to, and
sub-domains further identifying the specific network. Everyone who has used a web browser is familiar
with host names such as www.microsoft.com.

In this figure, the top-level domains are "gov" (government agencies), "com" (commercial organizations),
"edu" (educational institutions) and "net" (Internet service providers). The fully qualified domain name is
specified by naming the host and each parent sub-domain above it, separating them with periods. For
example, the fully qualified domain name for the "jupiter" host would be "jupiter.sockettools.com". In other
words, the system "jupiter" is part of the "catalyst" domain (a company's local network) which in turn is
part of the "com" domain (a domain used by all commercial enterprises).

To use a host name instead of an IP address to identify a specific system or network, there must be some
correlation between the two. This is accomplished by one of two means: a local host table or a name
server. A host table is a text file that lists the IP address of a host, followed by the names by which it is
known. A name server is a system which can be presented with a host name and will return that host's IP
address. This approach is advantageous because the host information for the entire network is maintained
in one centralized location, rather than being scattered over every system on the network.

The standard protocol used to convert a host name into an IP address is called the Domain Name Service
(DNS) protocol. All of the SocketTools networking libraries have the ability to automatically convert
between host names and IP addresses, and in most cases they can be used interchangeably. For example,
those methods which require that you specify the name of a server to connect to, you can use either its
host name or its IP address. In addition, SocketTools has a control that specifically supports the Domain
Name Service protocol, enabling your application to send specialized queries to the name server. Later in
the Developer's Guide there will be information about how DNS can be used in a number of different
types of applications.

Domain Name System

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

In addition to the IP address of the server, an application also needs to know how to address the specific
program that it wishes to communicate with. This is accomplished by specifying a service port, a number
between 1 and 65535 that uniquely identifies an application running on the system. A port can be referred
to by its number, or by a name that is associated with that number. Like hostnames, service names are
usually matched to port numbers through a local file, commonly called services. This file lists the logical
service name, followed by the port number and protocol used by the server.

A number of standard service names are used by Internet-based applications and these are referred to as
Well Known Services (WKS). These services are defined by a standards document and include common
application protocols used for transferring files, accessing documents on a webserver or sending and
receiving email messages. In most cases, when connecting to a service using the SocketTools libraries,
they will default to the appropriate port number for that server. For example, the File Transfer Protocol
control has default port values for standard and secure connections. Specifying a different port number is
only necessary if you know that the server has been configured to use a non-standard port number.

It is important to remember that a service name or port number is a way to address an application
running on a server. Because a particular service name is used, it doesn't guarantee that the service is
available, just as dialing a telephone number doesn't guarantee that there is someone at home to answer
the call.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Service Ports

Programs written to use TCP are developed using the client-server model. As mentioned previously, when
two programs wish to use TCP to exchange data, one of the programs must assume the role of the client,
while the other must assume the role of the server. The client application initiates what is called an active
open. It creates a socket and actively attempts to connect to a server program. On the other hand, the
server application creates a socket and passively listens for incoming connections from clients, performing
what is called a passive open. When the client initiates a connection, the server is notified that some
process is attempting to connect with it. By accepting the connection, the server completes what is called
a virtual circuit, a logical communications pathway between the two programs. It's important to note that
the act of accepting a connection creates a new socket; the original socket remains unchanged so that it
can continue to be used to listen for additional connections. When the server no longer wishes to listen
for connections, it closes the original passive socket.

To review, there are five significant steps that a program which uses TCP must take to establish and
complete a connection. The server side would follow these steps:

1. Create a socket.

2. Listen for incoming connections from clients.

3. Accept the client connection.

4. Send and receive information.

5. Close the socket when finished, terminating the conversation.

In the case of the client, these steps are followed:

1. Create a socket.

2. Specify the address and service port of the server program.

3. Establish the connection with the server.

4. Send and receive information.

5. Close the socket when finished, terminating the conversation.

6. Only steps two and three are different, depending on if it's a client or server application.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Client-Server Applications

One of the first issues that you'll encounter when developing your applications is the difference between
blocking and non-blocking client sessions. Whenever you perform some network operation, it may not be
able to complete immediately and return control back to your program. For example, a read on a socket
cannot complete until some data has been sent by the server. If there is no data waiting to be read, one
of two things can happen: the function can wait until some data has been written on the socket, or it can
return immediately with an error that indicates that there is no data to be read.

The first case is called a synchronous or blocking session. In other words, the program is "blocked" until
the request for data has been satisfied. When the server does write some data on the socket, the read
operation will complete and execution of the program will resume. The second case is called an
asynchronous or non-blocking session, and requires that the application recognize the error condition
and handle the situation appropriately. Programs that use non-blocking sockets typically use one of two
methods when sending and receiving data. The first method, called polling, is when the program
periodically attempts to read or write data from the socket (typically using a timer). The second, and
preferred method, is to use what is called asynchronous notification. This means that the program is
notified whenever a socket event takes place, and in turn can respond to that event. For example, if the
remote program writes some data to the socket, an event is generated so that program knows it can read
the data from the socket at that point.

With Visual Studio .NET, it is recommended that most applications using blocking (synchronous) sessions.
However, it should be noted that blocking sockets can introduce some special problems in single-
threaded applications. The blocking function will allow the application to continue processing messages
from the operating system. Because messages are being processed, this means that the program can be
re-entered at a different point with the blocked operation suspended on the program's stack. For
example, consider a program that attempts to read some data from the socket when a button is pressed.
Because no data has been written yet, it blocks and the program begins processing system messages. The
user then presses a different button, which causes code to be executed, which in turn attempts to read
data from the socket, and so on.

To resolve the general problems with blocking sockets, the Windows Sockets standard states that there
may only be one outstanding blocked call per thread of execution. This means that applications that are
re-entered will encounter errors whenever they try to take some action while a blocking function is already
in progress. It is recommended that worker threads be created to manage each client session, with each
thread owning a specific instance of the class being used. This resolves the potential conflict between
multiple blocking sessions in the same thread, and will improve the performance of the application overall.

The only time that non-blocking (asynchronous) sessions are recommended are with single-threaded
applications with a user interface that the user must interact with as the network operation is being
performed. It should be noted that there is additional overhead involved with asynchronous sessions
which can negatively impact the overall performance of the application. When possible, a multithreaded
solution using worker threads to handle the client session in the background is preferred.

In summary, there are three general approaches that can be taken when building an application with the
control in regard to blocking or non-blocking sockets:

Use a blocking (synchronous) session. In this mode, the program will not resume
execution until the socket operation has completed. This is the recommended approach,
offering better performance and simplified debugging.

Use a non-blocking (asynchronous) session, which allows your application to respond to
events. For example, when the remote system writes data to the socket, an OnRead event
is generated for the control. This approach should only be used with single-threaded
applications with a user interface. There is additional overhead for processing network
messages and debugging can be more complex.

Client Sessions

Use a non-blocking (asynchronous) session and poll the socket for data using properties
such as IsReadable and IsWritable. This approach incurs additional overhead and it is
recommended that you create worker threads to handle a blocking client session rather
than poll for data.

If you decide to use a non-blocking session in your application, it's important to keep in mind that you
must check the return value from every read and write operation, since it is possible that you may not be
able to send or receive all of the specified data. Frequently, developers encounter problems when they
write a program that assumes a given number of bytes can always be written to, or read from, the socket.
In many cases, the program works as expected when developed and tested on a local area network, but
fails unpredictably when the program is released to a user that has a slower network connection (such as a
serial dial-up connection to the Internet). By always checking the return values of these operations, you
insure that your program will work correctly, regardless of the speed or configuration of the network.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Security and privacy is a concern for everyone who uses the Internet, and the ability to provide secure
transactions over the Internet has become one of the key requirements for many business applications.
SocketTools .NET has the ability to establish secure, encrypted connections with servers using one of
several standard security protocols. Although most of the technical issues such as data encryption are
handled internally by the component itself, a general understanding of the standard security protocols is
useful when designing your own applications.

When you establish a connection to a server over the Internet (for example, a web server), the data that
you exchange is typically routed over dozens of computer systems until it reaches its destination. Any one
of these systems may monitor and log the data that it forwards, and there is no way for either the sender
or receiver of that data to know if this has been done. Exchanging information over the Internet could be
likened to talking with someone in a public restaurant. Anyone can choose to listen to what you're saying,
and unless they introduce themselves, you have no idea who they are or if they've even heard what you
said.

To ensure that private information can be securely exchanged over the Internet, two basic requirements
must be met: there must be a way to send that information so that only the sender and the receiver can
understand what is being exchanged, and there must be a way for them to determine that they each are
in fact who they claim to be. The solution to the first problem is to use encryption, where a key is used to
encrypt and decrypt the data using a mathematical formula. The second problem is addressed by using
digital certificates. These certificates are issued by a certificate authority (CA), which is a trusted third-party
organization who verifies the individual or company which is issued a certificate are who they claim to be.
These two concepts, encryption and digital certificates, are combined to provide the means to send and
receive secure information over the Internet.

The Secure Sockets Layer (SSL) protocol was originally developed by Netscape as a way to exchange
information securely over the Internet, and is no longer widely used. Improvements to SSL have resulted in
the Transport Layer Security (TLS) protocol, and it has become the the standard for secure
communications over the Internet. Both of these protocols are designed to allow a private exchange of
encrypted data between the sender and receiver, making it unreadable by an intermediate system. Using
the restaurant analogy, it would be as if two people were speaking in a language that only they could
understand. Although someone sitting at the next table could listen in on the conversation, they wouldn't
have any idea what was actually being said.

A secure connection, for example between a web browser and a server, begins with what is called the
handshake phase where the client and server identify themselves. When the client first connects with the
server it sends a block of data to the server and the server responds with its digital certificate, along with
its public key and information about what type of encryption it would like to use. Next, the client generates
a master key and sends this key to the server, which authenticates it. Once the client and server have
completed this exchange, keys are generated which are used to encrypt and decrypt the data that is
exchanged. With the handshake completed, a secure connection between the client and server is
established. SocketTools handles the handshake phase of the secure connection automatically and does
not require any additional programming. If a secure connection cannot be established, an error is
returned and the network connection is closed.

After the handshake phase has completed, the client may choose to examine the digital certificate that has
been returned by the server. The information contained in the certificate includes the date that it was
issued, the date that it expires, information about the organization who issued the certificate (called the
issuer) and to whom the certificate was issued (called the subject of the certificate). The client may also

Secure Networking

validate the status of the certificate, determining if it was issued by a trusted certificate authority and was
returned by the same company or individual it was issued to. There may be certain cases where the client
determines that there's a problem with the certificate (for example, if the certificate's common name does
not match the domain name of the server), but chooses to continue communicating with the server. Note
that the connection with the server will still be secure in this case. In other cases, for example if the
certificate has expired, the client may choose to terminate the connection and warn the user.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

With secure connections, digital certificates are used to exchange public keys for data encryption and to
provide identification information. This information typically includes the organization that was issued the
certificate, its physical location and so on. The certificate itself is used to validate that the public key
actually belongs to the entity it was issued to. The certificate also includes information about the
Certification Authority (CA) who issued the certificate. The CA is responsible for validating the information
provided by that organization, and then digitally signing the certificate. This establishes a relationship
between the two so that when others validate the certificate, they know that it has been issued by a
trusted third-party. For example, let's say that a company wants to implement a secure site so people can
order products online. They would provide information about their company (organizational contacts,
financial information and so on) to a trusted third party organization such as Verisign or Thawte. That
organization would then verify that the information they provided was complete and correct, and then
would issue a signed certificate to them, which they install on their server. When a user connects to their
server and checks the certificate, they see that it was issued by a trusted Certification Authority. In essence,
the user is saying that because they trust the Certificate Authority, and the Certificate Authority trusts the
company to whom the certificate was issued, they will trust the company as well.

To establish this relationship between the Certification Authority and the organization a certificate is issued
to, there needs to be a root certificate which has been signed by the same trusted organization. This
serves as the beginning of the certification path that is used to validate signed certificates. Using the above
example, on the user's system there is a root certificate for Verisign, signed by Verisign. Root certificates
are maintained in the local system's certificate store which is essentially a database of digital certificates.
This database is structured so that different types of certificates can be organized in one central location
on the system, and a standard interface is provided to enumerate and validate these certificates.
Certificates are associated with a store name, allowing them to be easily categorized. For example, root
certificates are stored under the name "Root", while a user's personal certificates (along with their private
keys) are stored under the name "My".

When the Windows operating system is installed, there is a certificate store that contains the root
certificates for the major Certification Authorities. However, there are situations where additional
certificates may need to be added to the system. To facilitate this, there is a tool called CertMgr.exe which
allows a user to install certificates, as well as export or remove certificates from the certificate store. When
managing your system's certificate store, you should take the same care that you do when making
changes to the system registry. Inadvertently removing a certificate could result in errors when attempting

Digital Certificates

to access secure systems.

In general, the one situation where certificate management becomes important is when you want to
develop your own secure server. This is because your server needs to have a signed certificate to send to
the client in order to establish the secure connection. For general-purpose commercial applications, this
generally means you would need to obtain a certificate that has been signed by a Certification Authority
such as Verisign or Thawte. This certificate would then be installed in the certificate store on the server.
However, for development purposes it may be inconvenient to purchase a certificate. There also may be
situations in which an organization wishes to function as its own Certification Authority and issue
certificates themselves. This allows the organization to control how certificates are managed and can be
ideal for secure applications that are designed for the corporate intranet. A utility for creating self-signed
root certificates and server certificates is included with SocketTools.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The SocketTools .NET Edition provides a comprehensive collection of managed code classes for
performing a variety of Internet related programming tasks. Although the number of properties, methods
and events may appear daunting, once you begin using SocketTools in your own applications you'll find
that the various controls are designed to work together in a cohesive fashion. After you've familiarized
yourself with one control, the others will become much simpler to use.

Throughout the Developer's Guide there are some general concepts and terminology used that are
essential to understanding how SocketTools works. Each of these concepts is explored in detail, however a
general, broad overview can also be useful when you are just getting started.

Protocols
A protocol, in terms of how the word is used in SocketTools, refers to the rules for how programs
communicate with one another over a network. There are low level networking protocols such as TCP and
UDP, as well as high level application protocols like FTP and HTTP. It can be helpful to think of a protocol
as a sort of language; for two programs to communicate with each other, they must agree upon a
protocol and understand how it is implemented.

Connections
The process of establishing a connection enables one program to communicate with another. Connection
requests are made by client applications, and accepted by server applications. When the server accepts
the connection request, the connection is completed. When you use the Connect method to successfully
establish a connection to a server, a client session is created. SocketTools uses a one-to-one relationship
between an instance of a control and a client session. By creating multiple instances of a control, an
application can create multiple client/server sessions if necessary.

Sessions
A session refers to an active connection between a client and server program. This term is typically used
interchangeably with connection; however in some cases a single session may involve multiple network
connections. For example, the File Transfer Protocol control establishes one connection, called the
command channel, when the client initially connects to the server. However, when a file is being uploaded
or downloaded, a second connection called the data channel is created just for that transfer. When the
transfer completes, the second connection is terminated while the original command channel connection
remains active. Even though there are multiple connections being made, SocketTools considers it to be a
single client session. An active session is referenced by the instance of the control that was used to create
the session. When the session is no longer needed, the control's Disconnect method will terminate the
connection to the server and release the resources allocated for that session. After that point, the session
is no longer valid and subsequent function calls using the control cannot be made until another
connection is established.

Authentication
Many servers require that clients authenticate themselves by providing user names and passwords.
Different application protocols implement several different types of authentication, and some protocols
may support more than one authentication method. SocketTools provides one of two general types of
authentication methods, depending on the protocol. For protocols which require the client to authenticate
itself, the controls will provide a Login method. For protocols where authentication is optional, the controls
will provide an Authenticate method. Refer to the technical reference for the specific protocol to
determine if authentication is required.

SocketTools Development

Events
Developers who use programming languages such as Visual Basic will find the concept of events and
event handling to be very familiar. In general terms, the SocketTools documentation uses "event" to refer
to a mechanism where the control notifies the application that an operation has completed, some action
has taken place or a change in status has occurred. One example of an event is a connection event, which
is generated whenever an asynchronous network connection is completed by the client. Another example
is a progress event, which is generated periodically by the control to inform the client of its progress as it
sends or receives data. To determine what events are available in a specific control, refer to the
documentation. More specific information about event handling is provided later in this guide.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The SocketTools .NET Edition is designed to be flexible enough to address the needs of developers who
have very basic needs, as well as those who have more complex requirements. As a result, the properties
and methods for a control can be broken down into two general categories: a high level interface to
perform common tasks, and a lower level interface which provides more control at the expense of being
somewhat more complicated and requiring more coding. For example, consider the Hypertext Transfer
Protocol (HTTP) control which has a variety of high level methods such as GetFile, PostData and so on.
Using these methods, your application can perform the most common tasks for that protocol with a
minimum of coding. You don't need to even understand the basics of how the protocol works, or what
the control is doing. The high level methods allow you to program against the control as though it is a
"black box", where you can provide the input and process the output without concerning yourself with the
details of what's going on behind the scenes.

However, in some cases it's necessary for an application to have more direct control over how the control
operates or to take advantage of features that aren't explicitly supported by one of the higher level
methods. As an example, the HTTP control also has methods like Command, which enable you to send
custom commands to a web server. Normally, for operations like retrieving a file or posting data to a
script, this isn't necessary. But if your application needs to use WebDAV, a set of extensions to the HTTP
protocol to support distributed web authoring, then the lower level methods like Command enable you to
do this.

If you are generally new to Internet programming or are just getting started with SocketTools, we
recommend that you begin familiarizing yourself with the higher level methods using a basic synchronous
(blocking) connection in a single-threaded application. Once you become more familiar with how the
control works, then you can move on to more complex applications which leverage the lower level
methods, taking advantage of asynchronous networking connections and so on.

One of the common pitfalls that developers can encounter with a large toolkit like SocketTools is the
inclination to over-design the application from the start, and then become frustrated because they don't
yet have a clear picture of how all the pieces fit together. Start out with a basic design and then as you
become more familiar with how the SocketTools controls work, expand on it.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Application Design

Applications which use the SocketTools classes will tend to have a similar structure, regardless of the
specific protocol or programming language. While the details vary based on the control being used, the
implementation can be broken down into several general steps:

Initializing the class instance

Connecting to the server

Authenticating the client

Performing one or more operations

Disconnecting from the server

Uninitializing the class instance

Initialization prepares an instance of the class to be used by your program, and is the first step that must
be performed before you can use any other methods. Next, a connection is established with the server
using the information provided by your program. For example, most of the connection methods require
that you provide a host name, port number, a timeout period for synchronous operations and any
additional options.

If the protocol requires that you authenticate the client in order to use the service, your application needs
to provide this information. Once the client has been authenticated, it can then perform one or more
operations, such as downloading a file, sending an email message and so on.

After you have finished, you disconnect from the server. Finally, before your program terminates, you
uninitialize the class instance which causes it to perform any necessary housekeeping prior to releasing
any system resources which were allocated on behalf of your program.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Program Structure

When you begin developing your application using SocketTools .NET, the first thing that must happen is
the class instance must be initialized. The initialization method serves two purposes. It loads the
networking libraries required to establish a connection and it validates the runtime license key that you
provide. The runtime license key is a string of characters which identifies your license to use and
redistribute SocketTools. It is unique to your product serial number and must be used when redistributing
your application to an end-user.

Creating an instance of the class with your runtime license key can be accomplished in one of two ways,
depending on personal preferences and the design of your application. The simplest approach, and one
familiar to developers who have used the SocketTools ActiveX control, is to explicitly call the Initialize
method in your code. The other more advanced approach is to define the RuntimeLicense attribute for
the assembly that is referencing the class. This attribute is set in the AssemblyInfo.vb or AssemblyInfo.cs
module that is part of the project. For more information on specific usage, refer to the Technical
Reference.

Developers who are evaluating SocketTools will not have a runtime license key and must pass an empty
string to the Initialize method. This will enable that instance of the class to load on the development
system during the evaluation period, but will prevent component from being redistributed to an end-user
until a license has been purchased.

If you install the product with a serial number, the runtime license key will be automatically created for you
during the installation process. If you have installed an evaluation copy of SocketTools and then purchased
a license, the license key can be created using the License Manager utility that was included with the
product. Simply select the License | Header File menu option and select the programming language that
you are using.

The runtime license key is normally stored in the Include folder where you installed SocketTools and is
defined in a file named SocketToolsLicense which can be included with your application. For example, C#
programmers would use the SocketToolsLicense.cs header file while Visual Basic programmers would use
the SocketToolsLicense.vb module. The Visual Basic module would define the runtime license key as:

'
' SocketTools 11 Build 2174
' Copyright 2024 Catalyst Development Corporation
' All rights reserved
'
' This file is licensed to you pursuant to the terms of the
' product license agreement included with the original software
' and is protected by copyright law and international treaties.
'
Public Const SocketToolsLicenseKey As String = ""

This could either be included with your Visual Basic.NET application or you could simply copy the string
into your application. The class could then be initialized like this:

'
' Initialize the control using the specified runtime license key;
' if the key is not specified, the development license will be used
'
If Socket.Initialize(SocketToolsLicenseKey) = False Then
 MsgBox("Unable to initialize SocketTools component")
End If

A return value of true indicates that the class was initialized successfully. A return value of false indicates

Class Initialization

that the class could not be initialized with the specified runtime license key. The LastError property will
contain the error code that indicates the exact cause of the error.

An application is only required to call the Initialize method once, but it must be called for each instance of
the class that is created. It is safe to call the initialization method more than once, but for each time that it
is called, you must call the Uninitialize method for that class before your program terminates. In other
words, if you called Initialize at the beginning of your program, you must call Uninitialize before your
program ends. The Uninitialize method performs any necessary housekeeping operations, such as
returning memory allocated for the class back to the operating system. If there are any open connections
at the time that the Uninitialize method is called, they will be aborted. After the class has been
uninitialized, you must call the Initialize method again before setting any properties or calling any
methods in that instance of the class.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The SocketTools .NET Edition supports the ability to create secure connections using the standard SSL and
TLS protocols. In most cases, it is as simple as setting the Secure property to true or specifying an
additional option when the Connect method is called. In some cases, certain Internet application
protocols have additional requirements in terms of how the secure connection is established . Secure
connections may either be implicit or explicit, depending on the protocol. An implicit secure connection is
one where the client and server begin negotiating the security options as soon as the connection is
established. In most cases, a server which accepts secure implicit connections listens on a port number
that is different from the default port it uses for standard, non-secure connections. An example of this is
the Hypertext Transfer Protocol (HTTP) which accepts standard connections on port 80 and secure
connections on port 443. When a client connects to port 443, the server automatically assumes that the
client wants a secure connection.

On the other hand, an explicit connection requires that the client explicitly specify to the server that it
wants a secure connection. Typically this is done by the client sending a command to the server that
causes the server to begin negotiating with the client to establish a secure session. An example of this is
the File Transfer Protocol (FTP), where the client can use the AUTH command to tell the server that it
wants a secure connection. Servers may also support both explicit and implicit secure connections, based
on which port the client connects to. SocketTools supports both implicit and explicit secure connections. If
the Secure property is set to true prior to calling the Connect method, then an implicit secure connection
is established. Setting the Secure property to true after a connection has been established will cause
SocketTools to begin negotiating a secure connection at that time.

In addition to establishing a secure connection, you may also be required to provide additional
authentication information to the server in form a client certificate. For example, a server may require that
the client provide a certificate in addition to or instead of a username and password. To support this, your
application must specify the security credentials for the client prior to establishing a connection. For more
information, refer to the CertificateStore and CertificateName properties in the Technical Reference.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Secure Connections

Each of the SocketTools networking classes provides methods for exchanging data between your
application and the server. At the lowest level, this is done by calling the Write method for sending data
and the Read method for receiving data. In most cases, these methods exchange data as a stream of
bytes without any regard for the actual content. It is important to note that if the data being read or
written is binary, it is recommended that applications pass byte arrays, not strings, to the Read and Write
methods if possible.

When working at this very low level, it is important to understand how data is exchanged over the
network. Many developers are inclined to think of the data that is sent or received in terms of discrete
blocks, or packets. The expectation is that if they send a certain number of bytes of data in a single write,
the server will receive that number of bytes in a single read. However, this is not how TCP works, and by
extension, not how the SocketTools libraries work with regards to this kind of low level network I/O. The
Transmission Control Protocol (TCP) is called a stream-oriented protocol because data is exchanged
between the client and server as a stream of bytes. While TCP will guarantee that the data will arrive intact,
with the bytes received in the same order that they were written, there is no guarantee that the amount of
data received in a single read operation on the socket will match the amount of data written by the server.

For example, consider a server that sends data to a client in four separate operations, each containing
1024 bytes of data. While it is convenient to think of these as discrete blocks of data, TCP considers it to
be a stream of 4096 bytes. The client may receive that data in a single read on the socket, returning all
4096 bytes. Alternatively, it may read the socket, and only receive the first 1460 bytes; subsequent reads
may return another 1460 bytes, followed by the remaining 1176 bytes. Applications which make
assumptions about the amount of data they can read or write in a single operation may work in some
environments, such as on a local network, but fail on slower connections.

A general rule to use when designing an application using TCP is to consider how the program would
handle the situation where reading n bytes of data only returns a single byte. If the application can
correctly handle this kind of extreme case, then it should function correctly even under adverse network
conditions.

In some situations it may be desirable to design the application to exchange information as discrete
messages or blocks of data. While this isn't directly supported by TCP, it can be implemented on top of
the data stream. There are several methods that can be used to accomplish this, depending on the
requirements of the application:

1. Exchange the data as fixed length structures. This is the simplest approach, and has very
little or no overhead. The client and server can either use predefined values, or negotiate
the size of the data structures when the connection is established.

2. Prefix variable-length data structures with the number of bytes being sent. The length
value could be expressed either as a native integer value, or as a fixed-length string that is
converted to a numeric value by the application. This allows the receiver to read this fixed
length value, and then use that value to determine how many additional bytes must be
read to obtain the complete message or data structure.

3. Prefix the data with a unique byte or byte sequence that would normally not be found in
the data stream. This would be followed by the data itself, with a complete message
received when another unique byte sequence is encountered. Alternatively, a unique byte
sequence could be used to terminate a message. This is the approach that many Internet
application protocols use, such as FTP, SMTP and POP3. Commands are sent as one or
more printable characters, terminated with a carriage-return (CR) and linefeed (LF) byte
sequence that tells the server that a complete command has been received.

4. A combination of the above methods, using unique byte sequences, the message length

Network Input/Output

and even additional information such as a CRC-32 checksum or MD5 hash to validate the
integrity of the data. This would effectively create an "envelope" around the data being
exchanged, and additional checks could be made to ensure that the data has been
received and processed correctly.

Regardless of the method used, for best performance it is recommended that the application buffer the
data received and then process the data out of that buffer. When using asynchronous (non-blocking)
connections, the application should read all of the data available on the socket, typically in a loop which
adds the data to the buffer and exiting the loop when there is no more data available at that time.

It is important to keep in mind that all of this is only required if you decide to use the lower level methods
in the SocketTools controls. The higher level methods automatically handle the lower level network I/O for
you. For example, the GetData method in the File Transfer Protocol control will retrieve a file from the
server and return the entire contents to your application in a single method call. When using the high level
methods, the details of how the data is read and processed is handled by the control and no additional
coding is required on your part.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Event notification provides a mechanism for SocketTools to inform the application of a change in the
status of the current session. Events are generally divided into two general categories, asynchronous
network events and status events.

Asynchronous network events occur when a non-blocking connection is established and a network event
occurs, such as a connection completing or data arriving from the server. Status events are used to
indicate a change in status, such as a blocking operation being canceled or the progress of an operation
such as reading a stream of bytes from the socket and storing it in a file. Note that asynchronous network
events require that the Blocking property be set to false. The following events can be generated when
SocketTools is in non-blocking mode:

OnConnect
This event is generated whenever a connection to a server has completed. Unlike a blocking
connection, when the component is in non-blocking mode, a successful call to the Connect
method does not indicate that you are actually connected to the host. Instead, it means that
the connection process has been started. Your application will not actually be connected until
the OnConnect event fires.

OnDisconnect
This event is generated whenever the server closes its socket and terminates the connection
with your application. Note that this event will not fire when you disconnect from the host by
calling the Disconnect method; it only fires when the server closes its connection to you. It is
also important to keep in mind that although the server has disconnected from you, there still
may be data buffered on your local system, waiting to be read. If you are performing any
low-level network I/O, your program should continue to call the Read method until it returns
a value of zero, indicating that all of the available data has been read.

OnRead
This event is generated whenever the server sends data to your application. Once this event
has fired, it will not be triggered again until you read at least one byte of data that has been
sent to you. It is recommended that you attempt to read and buffer all of the data that is
available to be read in the socket. When the Read method returns a value less than or equal
to zero, you should exit the event handler.

OnWrite
This event is generated whenever there is enough memory available in the local send buffers
to accommodate some data. It is generated immediately after a connection has completed,
which tells your application that it may begin sending data to the server. It will also be
generated if a call to the Write method fails with the error that it would cause the thread to
block. In this case, when the socket is able to accept more data, the OnWrite event will fire.

An important consideration when it comes to event handling is that all asynchronous network events are
level triggered. This means that once an event is fired, it will not be fired again until some action is taken
by the application to handle the event. This is most commonly found with OnRead events, which are
generated when the server sends data to your application, signaling to you that there is data available to
be read. Even though the server may continue sending you more data, another OnRead event will not be
generated until you read at least one byte of the data that has been sent to you. This is done to prevent
the application from being flooded with event notifications. However, failure to handle an event can cause
event notification to appear to stall. It is recommended that you do not do excessive processing in an

Event Handling

event handler that would cause the thread to block or enter a message loop. This can have a significant
negative effect on performance and can lead to unexpected behavior on the part of your application.
Instead, it's recommended that you buffer the data that you receive and then process that data after
exiting the event handler.

Status related events are different because they do not depend on the value of the Blocking property,
and are not directly related to asynchronous network operations. The most typical status event is the
OnProgress event, which is used to provide information to the application about the status of a blocking
operation, such as downloading a file from the server using the GetFile method. The possible status
events are:

OnCancel
This event is used by the class to indicate that a blocking network operation has been
canceled by a call to the Cancel method. It is important to note that when the Cancel
method is called, the blocking socket operation will not immediately fail. An internal flag is set
which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other blocking function. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before
making any further function calls. The OnCancel event handler should only be used for
notification purposes or updating the internal state of the application. It is not recommended
that you perform any network operations inside this event handler.

OnError
This event is used by the class to indicate an error has occurred. This event is only generated
when a method is called, never as the result of setting a property value. The OnError event
handler should only be used for notification purposes or updating the internal state of the
application. It is not recommended that you perform any network operations inside this event
handler.

OnProgress
This event is used by the class to inform the application of the progress of a blocking
operation, such as a file transfer. Note that in some cases, the class may not be able to
determine the total amount of data to be transferred, which would prevent a percentage
from being calculated. In this case, because the server is unable to specify the total size of the
resource, the class will not be able to calculate a percentage. Instead, it will simply inform the
program of the amount of data copied to the local host up to that point.

OnTimeout
This event is used by the class to indicate a blocking operation has timed-out. A timeout
period is specified by setting the Timeout property to a value greater than zero. The
OnTimeout event handler should only be used for notification purposes or updating the
internal state of the application. It is not recommended that you perform any network
operations inside this event handler.

Status events are typically used to update a user interface. For example, the OnProgress event may be
used to update a ProgressBar control, or a warning message may be displayed if an OnError event
occurs.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Error conditions can occur in one of two general circumstances, either when setting a property in the
control or when calling a method. If the error occurs when setting a property, an exception will be
generated which must be caught and handled by the application. Failure to do this will typically result in
the program displaying an error message and then terminating. For example, in Visual Basic.NET, the
Try..Catch statements can be used to establish an error handler.

Methods are a bit different in that errors can be handled in one of two ways. By default, when a method is
called it will return a value that indicates success or failure. For those methods that return boolean values,
a value of true indicates success and a value of false indicates failure. For methods that return numeric
values, such as the Read and Write methods, a return value of zero or greater indicates success, and a
return value of -1 indicates failure.

If you prefer to handle exceptions, rather than check return values for each method call, SocketTools has a
property called ThrowError. If this property is set to true, when a method fails it will throw an exception
that must be caught by the application. In that case, if an error occurs without there being an exception
handler in place, the application will typically terminate. The ErrorCode property of the exception class will
specify the error that generated the exception. Refer to the Technical Reference for more information
about the exception class specific to the class library being used.

To determine the error code for the last error generated by that instance of the class, use the LastError
property. To display a description of the error to the user, the LastErrorString property will can be used.
This returns a string that describes the error which corresponds to the value of the LastError property. It is
permitted to set the LastError property to a value of zero in order to clear the last error code. It is
important to note that the last error code only has meaning if the previous method call indicates the
operation has failed. If the previous operation was successful, the value of the last error code will be
undefined and should not be used.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Error Handling

The SocketTools .NET class includes a built-in facility for generating debugging output in the form of a log
file that provides information about the internal functions that it is using and the data that is being
exchanged between the client and server. This is commonly referred to in the documentation as
generating a trace log or enabling function logging.

To provide logging functionality for your application, you must redistribute the
SocketTools11.TraceLog.dll library along with the the class library. This library is what performs the
actual logging and must be placed in the same folder where your application is installed. Note that you
cannot add this library as a reference to your project. It is used internally by SocketTools and cannot be
used directly by your program.

To create a trace log, your application must set the TraceFile property to the name of a file, the
TraceFlags property to the level of logging desired and then set the Trace property to true. The default
level of logging, zero, specifies that general information about the function calls being made will be
logged. The most detailed logging is provided by specifying a level of four. In that case, all data
exchanged between your application and the server is logged. This provides the most information,
however it also generates the largest log files. To disable logging, set the Trace property to false.

There are two important things that you need to consider when enabling trace logging. The first is that the
log file is always appended to, never overwritten by the control. This means that the files can grow to be
very large, particularly with trace that includes all of the data sent and received by your application. You
can use the standard file I/O functions in your language to manage the log file or even write your own
data out to the file. Each time the file is written to, SocketTools will open the file, append the logging data
and then close the file; it will never keep the file open between operations. This is important because if
your application terminates abnormally, it ensures all of the logging data has been written and there are
no open file handles being held by that instance of the class. However, this does incur additional overhead
and can impact the performance of your application. When possible, it is recommended that you enable
logging around the code that you feel may be part of the problem you're trying to resolve, and then
disable logging when it is no longer required. Simply enabling logging at the beginning of your
application can result in unnecessarily large log files.

If your application uses multiple instances of the class, it is only necessary to enable logging in one of
them. Once enabled, all network operations in the current thread will be logged, regardless of which
instance has enabled logging.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Debugging Facilities

The SocketTools .NET Edition includes components that implement fourteen standard Internet application
protocols, as well as components which provide support for general TCP/IP networking services, encoding
and compressing files, processing email messages and ANSI terminal emulation. The following classes are
included in the SocketTools .NET Edition:

SocketTools.DnsClient Class
The Domain Name Service (DNS) protocol is what applications use to resolve domain names into Internet
addresses, as well as provide other information about a domain, such as the name of the mail servers
which are responsible for receiving email for users in that domain. This class enables an application to
query one or more nameservers directly, without depending on the configuration of the client system.

SocketTools.FileEncoder Class
The File Encoding class provides methods for encoding and decoding binary files, typically attachments to
email messages. The process of encoding converts the contents of a binary file to printable text. Decoding
reverses the process, converting a previously encoded text file back into a binary file. The class supports a
number of different encoding methods, including support for the base64, uucode, quoted-printable and
yEnc algorithms. The class can also be used to compress and expand data in a user-supplied buffer or in a
file.

SocketTools.FtpClient Class
The File Transfer Protocol (FTP) class provides methods for uploading and downloading files from a server,
as well as a variety of remote file management methods. In addition to file transfers, an application can
create, rename and delete files and directories, list files and search for files using wildcards. The class
provides both high level methods, such as the ability to transfer multiple files in a single method call, as
well as access to lower level remote file I/O methods.

SocketTools.FtpServer Class
The File Transfer Server class provides an interface for implementing an embedded, lightweight server that
can be used to exchange files with a client using the standard File Transfer Protocol. The server can accept
connections from any third-party application or a program developed using the SocketTools.FtpClient
class. The server supports active and passive mode file transfers, has compatibility options for NAT router
and firewall support, and provides support for secure file transfers using explicit SSL/TLS sessions. Secure
connections require that a valid SSL certificate be installed on the system.

SocketTools.HttpClient Class
The Hypertext Transfer Protocol (HTTP) class provides an interface for accessing documents and other
types of files on a server. In some ways it is similar to the File Transfer Protocol in that it can be used to
upload and download files; however, the protocol has expanded to also support remote file management,
script execution and distributed authoring over the World Wide Web. The SocketTools Hypertext Transfer
Protocol class implements version 0.9, 1.0 and 1.1 of the protocol, including features such as support for
proxy servers, persistent connections, user-defined header fields and chunked data.

SocketTools.HttpServer Class
The Hypertext Transfer Server class provides an interface for implementing an embedded, lightweight
server that can be used to provide access to documents and other resources using the Hypertext Transfer
Protocol. The server can accept connections from any standard web browser, third-party applications or
programs developed using the SocketTools.HttpClient class. The server includes support for CGI scripting,
virtual hosting, client authentication and the creation of virtual directories and files. The server also
supports secure connections using SSL/TLS. Secure connections require that a valid SSL certificate be
installed on the system.

SocketTools.IcmpClient Class
The Internet Control Message Protocol (ICMP) is commonly used to determine if a server is reachable and

SocketTools Class Overview

how packets of data are routed to that system. Users are most familiar with this protocol as it is
implemented in the ping and tracert command line utilities. The ping command is used to check if a
system is reachable and the amount of time that it takes for a packet of data to make a round trip from
the local system, to the server and then back again. The tracert command is used to trace the route that a
packet of data takes from the local system to the server, and can be used to identify potential problems
with overall throughput and latency. The class can be used to build in this type of functionality in your own
applications, giving you the ability to send and receive ICMP echo datagrams in order to perform your
own analysis.

SocketTools.ImapClient Class
The Internet Message Access Protocol (IMAP) is an application protocol which is used to access a user's
email messages which are stored on a mail server. However, unlike the Post Office Protocol (POP) where
messages are downloaded and processed on the local system, the messages on an IMAP server are
retained on the server and processed remotely. This is ideal for users who need access to a centralized
store of messages or have limited bandwidth. For example, traveling salesmen who have notebook
computers or mobile users on a wireless network would be ideal candidates for using IMAP. The
SocketTools IMAP class implements the current standard for this protocol, and provides methods to
retrieve messages, or just certain parts of a message, create and manage mailboxes, search for specific
messages based on certain criteria and so on. The interface is designed as a superset of the Post Office
Protocol interface, so developers who are used to working with the POP3 class will find the IMAP class
very easy to integrate into an existing application.

SocketTools.InternetServer Class
The Internet Server ActiveX control provides a simplified interface for creating event-driven, multithreaded
server applications using the TCP/IP protocol. The control interface is similar to the SocketWrench ActiveX
control, however it is designed specifically to make it easier to implement a server application without
requiring the need to manage multiple socket controls. In addition, the Internet Server control supports
secure communications using the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols.

SocketTools.MailMessage Class
The Mail Message class provides an interface for composing and processing email messages and
newsgroup articles which are structured according to the Multipurpose Internet Mail Extensions (MIME)
standard. Using this class, an application can easily create complex messages which include multiple
alternative content types, such as plain text and styled HTML text, file attachments and customized
headers. It is not required that the developer understand the complex MIME standard; a single method
call can be used to create multipart message, complete with a styled HTML text body and support for
international character sets. The Mail Message class can be easily integrated with the other mail related
protocol libraries, making it extremely easy to create and process MIME formatted messages.

SocketTools.NntpClient Class
The Network News Transfer Protocol (NNTP) is used with servers that provide news services. This is similar
in functionality to bulletin boards or message boards, where topics are organized hierarchically into
groups, called newsgroups. Users can browse and search for messages, called news articles, which have
been posted by other users. On many servers, they can also post their own articles which can be read by
others. The largest collection of public newsgroups available is called USENET, a world-wide distributed
discussion system. In addition, there are a large number of smaller news servers. For example, Microsoft
operates a news server which functions as a forum for technical questions and announcements. The class
provides a comprehensive interface for accessing newsgroups, retrieving articles and posting new articles.
In combination with the Mail Message class to process the news articles, SocketTools can be used to
integrate newsgroup access with an existing email application, or you can implement your own full-
featured newsgroup client.

SocketTools.NetworkTime Class
The NetworkTime class provides an interface for synchronizing the local system's time and date with that
of a server. The class enables developers to query a server for the current time and then update the

system clock if desired.

SocketTools.PopClient Class
The Post Office Protocol (POP) provides access to a user's new email messages on a mail server. Methods
are provided for listing available messages and then retrieving those messages, storing them either in files
or in memory. Once a user's messages have been downloaded to the local system, they are typically
removed from the server. This is the most popular email protocol used by Internet Service Providers (ISPs)
and the class provides a complete interface for managing a user's mailbox. This class is typically used in
conjunction with the Mail Message class, which is used to process the messages that are retrieved from
the server.

SocketTools.InternetDialer Class
The Remote Access Services (RAS) class enables an application to connect to an Internet Service Provider
(ISP) using a standard Dial-Up Networking connection. Using this class, the application can discover what
dial-up devices are available, what dial-up networking entries, known as "connectoids", are available on
the local system and allows the program to manage those connections. Existing connections can be
monitored, new connections created and a single class can be used to manage multiple dial-up
connections if the system has more than one modem. While Windows can be configured to simply
autodial a service provider whenever a network connection is needed, this component gives your
application complete control over the process of connecting to a service provider, monitoring that
connection and then terminating that connection if needed.

SocketTools.RshClient Class
The Remote Command protocol is used to execute a command on a server and return the output of that
command to the client. The class provides an interface to this protocol, enabling applications to remotely
execute a command and process the output. This is most commonly used with UNIX based servers,
although there are implementations of remote command servers for the Windows operating system. The
class supports both the rcmd and rshell remote execution protocols and provides methods which can be
used to search the data stream for specific sequences of characters. This makes it extremely easy to write
Windows applications which serve as light-weight client interfaces to commands being executed on a
UNIX server or another Windows system. The class can also be used to establish a remote terminal session
using the rlogin protocol, which is similar to how the Telnet protocol methods.

SocketTools.SshClient Class
The Secure Shell (SSH) protocol is used to establish a secure connection with a server which provides a
virtual terminal session for a user. Its functionality is similar to how character based consoles and serial
terminals work, enabling a user to login to the server, execute commands and interact with applications
running on the server. The SSH control provides an interface for establishing the connection and handling
the standard I/O functions needed by the program. The control also provides methods that enable a
program to easily scan the data stream for specific sequences of characters, making it very simple to write
light-weight client interfaces to applications running on the server.

SocketTools.SmtpClient Class
The Simple Mail Transfer Protocol (SMTP) enables applications to deliver email messages to one or more
recipients. The class provides an interface for addressing and delivering messages, and extended features
such as user authentication and delivery status notification. Unlike Microsoft's Messaging API (MAPI) or
Collaboration Data Objects (CDO), there is no requirement to have certain third-party email applications
installed or specific types of servers installed on the local system. The class can be used to deliver mail
through a wide variety of systems, from standard UNIX based mail servers to Windows systems running
Exchange or Lotus Notes and Domino. Using this class, messages can be delivered directly to the
recipient, or they can be routed through a relay server, such as an Internet Service Provider's mail system.
The Mail Message class can be integrated with this class in order to provide an extremely simple, yet
flexible interface for composing and delivering mail messages.

SocketTools.SocketWrench Class
The SocketWrench class provides a higher-level interface to the Windows Sockets API, designed to be

suitable for programming languages other than C and C++. In addition, SocketWrench supports secure
communications using the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols.

SocketTools.TelnetClient Class
The Telnet protocol is used to establish a connection with a server which provides a virtual terminal
session for a user. Its functionality is similar to how character based consoles and serial terminals work,
enabling a user to login to the server, execute commands and interact with applications running on the
server. The class provides an interface for establishing the connection, negotiating certain options (such as
whether characters will be echoed back to the client) and handling the standard I/O functions needed by
the program. The class also provides methods that enable a program to easily scan the data stream for
specific sequences of characters, making it very simple to write light-weight client interfaces to applications
running on the server. This class can be combined with the Terminal Emulation control to provide
complete terminal emulation services for a standard ANSI or DEC-VT220 terminal.

SocketTools.Terminal Class
The Terminal Emulation control provides a comprehensive interface for emulating an ANSI or DEC-VT220
character terminal, with full support for all standard escape and control sequences, color mapping and
other advanced features. The class methods provide both a high level interface for parsing escape
sequences and updating a display, as well as lower level primitives for directly managing the virtual
display, such as controlling the individual display cells, moving the cursor position and specifying display
attributes. This control can be used in conjunction with the Remote Command or Telnet Protocol class to
provide terminal emulation services for an application, or it can be used independently. For example, this
control could also be used to provide emulation services for a program that provides serial modem
connections to a server.

SocketTools.WebLocation Class
The WebLocation class provides your application with geographical information about the physical
location of the computer system based on its external IP address. This can enable developers to know
where their application is being used, and provide convenience functionality such as automatically
completing a form based on the location of the user.

SocketTools.WebStorage Class
The WebStorage class provides private cloud storage for uploading and downloading shared data files
which are available to your application. This is primarily intended for use by developers to store
configuration information and other data generated by the application. For example, you may want to
store certain application settings, and the next time a user or organization installs your software, those
settings can be downloaded and restore.

SocketTools.WhoisClient Class
The Whois protocol provides a mechanism for requesting information about an Internet domain name.
When a domain name is registered, the organization that registers the domain must provide certain
contact information along with technical information such as the primary name servers for that domain.
The Whois protocol enables an application to query a server which provides that registration information.
The class provides an interface for requesting that information and returning it to the program so that it
can be displayed or processed.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Domain Name Service (DNS) protocol is what applications use to resolve domain names into Internet
addresses, as well as provide other information about a domain, such as the name of the mail servers
which are responsible for receiving email for users in that domain. All of the SocketTools components
provide basic domain name resolution functionality, but the Domain Name Services class gives an
application direct control over what servers are queried, the amount of time spent waiting for a response
and the type of information that is returned.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Reset
Reset the internal state of the class and re-initialize the component to use the default nameserver
configuration for the local host. This can be useful if your application wishes to discard any settings made
by a user and return to using the local system configuration.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Host Tables
When resolving a host name or IP address, the class will first search the local system's host table, a file that
is used to map host names to addresses. The hosts file is found in C:\Windows\system32\drivers\etc\hosts.
Note that the file does not have an extension.

HostFile
Return the full path of the file that contains the default host table for the local system. This can be useful if
you wish to temporarily switch between the default host file and another host file specific to your
application.

Host Name Resolution
The class can be used to resolve host names into IP addresses, as well as perform reverse DNS lookups
converting IP addresses into the host names that are assigned to them. The class will search the local
system's host table first, and then perform a nameserver query if required.

HostAddress
A property which returns the IP address of the host name specified in the HostName property. Setting this
property to an IP address will cause the class to perform a reverse DNS lookup to attempt to determine
the name of the host that was assigned that address. If successful, the host name for the specified IP
address can be determined by reading the value of the HostName property.

HostName
A property which returns the name of the host associated with the IP address specified in the HostAddress
property. Setting this property to a host name will cause the class to perform a DNS lookup to determine
the IP address of that host. If successful, the IP address for the host can be determined by reading the
value of the HostAddress property.

Resolve
A method which resolves a host name into an IP address, returned as a string in dotted notation. The class
first checks the system's local host table, and if the name is not found there, it will perform a nameserver
query for the A (address) record for that host.

Domain Name Services

Query
Perform a general nameserver query for a specific record type. This method can be used to perform
queries for the common record types such as A and PTR records, as well as for other record types such as
TXT (text) records. Refer to the Technical Reference for more information about the specific types of
records that can be returned.

Mail Exchange Records
When a system needs to deliver a mail message to someone, it needs to determine what server is
responsible for accepting mail for that user. This is done by looking up the mail exchange (MX) record for
the domain. For example, if a message was addressed to joe@example.com, to determine the name of
the mail server that would accept mail for that recipient, you would perform an MX record query against
the domain example.com. A domain may have more than one mail server, in which case multiple MX
records will be returned.

MailExchange
A property array which returns the mail exchanges for the domain specified in the HostName property.
This is a zero-based array, with the maximum number of entries returned by the MailExchanges property

Advanced Properties

In addition to providing host name and IP address resolution, the class can be used to perform advanced
queries for other types of records.

HostInfo
Return additional information about the specified host name. If the name server has been configured to
provide host information for the domain, this method will return that data. Typically it is used to indicate
what hardware and operating system the host uses.

HostServices
Return information about the UDP and TCP based services that the host provides. If defined, this will
return a list of service names such as "ftp" and "http". Note that your application should not depend on
this information to be a definitive list of what services a server provides.

NameServer
A property array which can be used to return the current nameservers that are configured for the local
host, or the values can be changed to specify new nameservers. The maximum number of nameservers
that can be configured for each instance of the class is four.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

A common requirement for applications which use Internet protocols is the need to encode binary files, as
well as compress data to reduce the bandwidth and time required to send or receive the data. Encoding a
binary file converts the contents of the file into printable characters which can be safely transferred over
the Internet using protocols that only support a subset of 7-bit ASCII characters. This is commonly a
restriction for email, since many mail servers still are not capable of correctly processing messages which
contain control characters, 8-bit data or multi-byte character sequences found in International text. To
address this problem, the sender encodes and sends the data as part of a message; the recipient then
extracts and decodes the data, with the end result being the same as the original, without any potential
corruption by the mail servers which store and/or forward the message. The File Encoding class supports
several encoding and decoding methods, including standard base64 encoding, quoted-printable
encoding and uuencoding. For applications which access USENET newsgroup, the class also supports the
newer yEnc encoding method which has become a popular method for attaching binary files to a
message.

In addition to encoding and decoding files, the File Encoding class also can be used to compress files,
reducing their overall size. Two compression algorithms are supported, the standard deflate algorithm
which is commonly used in Zip files, and an algorithm based on the Burrows-Wheeler Transform (BWT)
which can offer improved compression over the deflate algorithm for some types of files. The developer
has control over the type of compression performed, as well as details such as the level of compression
which determines how much memory and CPU time is allocated to compress the data. Developers can
even create their own custom compression formats by creating an application-specific header block,
typically represented by a structure or user-defined type that can be used to provide information to the
program.

Note that if you are interested in using this class for purposes of attaching files to an email message, it is
not necessary that you use these methods. The Mail Message class has the ability to automatically encode
and decode file attachments without requiring that you use the methods in this control. However, the File
Encoding class is useful if you need the ability to encode and/or compress for other applications.

Encoding Types
There are several different encoding types available, with the default being the standard MIME encoding
called Base64. The following encoding methods are supported by the class:

Base64
Base64 encoding works by representing three bytes of data as four printable characters. Each of the three
bytes is converted into four six-bit numbers, and each six-bit number is converted to one of 64 printable
characters (which is where the encoding method gets its name). Base64 is the default encoding method
used by the control and is the standard encoding used for MIME formatted email messages as well as
many other applications.

Quoted-Printable
Quoted-printable encoding is primarily used in email messages, and is best used when the data being
encoded is text which consists primarily of printable characters. Only characters with the high-bit set or a
certain subset of printable characters are actually encoded by representing them as their hexadecimal
value. All other printable characters are passed through unmodified.

Uucode
One of the original encoding methods used for email, it gets its name from two UNIX command-line
utilities called uuencode and uudecode, which were used to encode and decode files. Like Base64,
uuencoding converts three bytes of data into four six-bit numbers, and then a value of 32 is added to
ensure that it is printable. Uuencoding also adds some additional characters which are used to ensure the
integrity of the encoded data. This encoding method is still used when posting files to USENET

File Encoding

newsgroups, but has largely been replaced by Base64 when attaching files to email messages.

yEnc
yEnc is a relatively new encoding method that was created specifically for binary newsgroups on USENET.
Because USENET doesn't have the same limitations as email systems in terms of what kind of characters
can be safely used, yEnc only encodes null characters and certain control characters; the remaining 8-bit
data is passed through as is which can significantly reduce the overall size of the encoded data. yEnc also
uses checksums to ensure the integrity of the data and is designed so that a large file can be split across
multiple messages and then recreated.

Data Encoding
Encoding a binary file converts the contents of the file into printable characters which can be safely
transferred over the Internet using protocols that only support a subset of 7-bit ASCII characters. This is
commonly a restriction for email, since many mail servers still are not capable of correctly processing
messages which contain control characters, 8-bit data or multi-byte character sequences found in
International text. To address this problem, the sender encodes and sends the data as part of a message;
the recipient then extracts and decodes the data, with the end result being the same as the original,
without any potential corruption by the mail servers which store and/or forward the message.

EncodeFile
This method encodes a file using the specified encoding method, storing the encoded data in a new file.
An option also allows you to automatically compress the data prior to encoding it in order to reduce the
overall size of the encoded file.

DecodeFile
This method decodes a previously encoded file using the specified encoding method, restoring the
original contents. If the encoded data was compressed, this method can also be used to automatically
expand the data after it has been decoded.

Data Compression
In addition to encoding and decoding data, the control can be used to compress data in order to reduce
its size. The compression methods may be used separately, or may be used as part of the process of
encoding a file.

CompressFile
This method reduces the size of a file using the standard Deflate algorithm. This is the same algorithm that
is commonly used in Zip archives. Note however, that this does not create a Zip file, it simply uses the
same compression method.

ExpandFile
This method restores the original contents of a file that was previously compressed using the
CompressFile method. Note that this method is not designed to extract files from a Zip archive or expand
data compressed using a different algorithm.

Note that there are advanced options for compressing files, such as the ability to specify the compression
type and level. Please refer to the Technical Reference for more information.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The File Transfer Protocol (FTP) is the most common application protocol used to upload and download
files. In addition to basic file transfer capabilities, FTP also supports common file and directory
management functions on the server, such as renaming and deleting files or creating new directories. The
SocketTools .NET Edition also supports secure file transfers using SSH (SFTP) and SSL/TLS (FTPS) by simply
specifying an option when establishing the connection.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Connect
Connect to the server, using either a host name or IP address. The method has several options related to
security as well as the general operation of the class. One important option is FtpOptions.optionPassive,
which instructs the class to use passive mode file transfers. If the local system is behind a firewall or a route
which uses Network Address Translation (NAT), it is often necessary to use this option. It is also possible to
enable passive mode transfers by simply setting the Passive property prior to calling this method.

Login
Authenticate the client session, providing the server with a user name, password and optionally an
account name. It is also possible to use an anonymous (unauthenticated) session by providing empty
strings as the username and password. If the UserName and Password properties are set prior to
connecting, the user will automatically be logged in. This method is only necessary if the application needs
to access the server using different user accounts during the same session.

Disconnect
Disconnect from the server and release the memory allocated for that client session. After this method is
called, the client session is no longer valid.

Reset
Reset the internal state of the component. This can be useful if your application wishes to discard any
settings made by a user and return that instance of the class to its default state.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

File Transfers
The class provides several methods which can be used to transfer files between the local and server. This
group of methods are high level, meaning that it is not necessary to actually write the code to read and/or
write the file data. The class automatically handles the lower level file I/O and notifies your application of
the status of the transfer by periodically generating progress events.

GetData
This method transfers a file from the server to the local system, storing the file data in memory. This can
be useful if your application needs to perform some operation based on the contents of the file, but does
not need to store the file locally. The file data can returned in a string or byte array.

GetFile
This method transfers a file from the server and stores it in a file on the local system. This method is similar
to how the GET command works for the command-line FTP client in Windows.

GetMultipleFiles

File Transfer Protocol

This method transfers multiple files from the server and stores them in a directory on the local system. A
wildcard may be specified so that only files which a certain name or those that match a particular file
extension are downloaded. This method is similar to how the MGET command works for the command-
line FTP client in Windows.

PutData
This method creates a file on the server containing the data that you provide. This can be useful if your
application wants to upload dynamically created content without having to create a temporary file on the
local system. The data may be specified either as a string, or as the contents of a byte array.

PutFile
This method uploads a file from the local system to the server. This method is similar to how the PUT
command works for the command-line FTP client in Windows.

PutMultipleFiles
This method transfers multiple files from the local system to a directory on the server. A wildcard may be
specified so that only files with a certain name or those that match a particular file extension are uploaded.
This method is similar to how the MPUT command works for the command-line FTP client in Windows.

File Management
In addition to performing file transfers, the File Transfer Protocol class can also perform many of the same
kinds of file management methods on the server as you would on the local system.

DeleteFile
Delete a file from the server. This operation requires that the current user have the appropriate
permissions to delete the file.

GetFileStatus
Return status information about the file in the form of a structure. This typically specifies the ownership,
access permissions, size and modification time for the file. It is similar to opening a directory on the server
and reading information about the file, but with less overhead.

GetFileSize
Return the size of a file on the server without actually downloading the contents of the file.

GetFileTime
Return the modification time for the specified file on the server. This can be used by you application to
determine if the file has been changed since the time that you last uploaded or downloaded the contents.

RenameFile
Change the name of a file or move a file to a different directory. This operation requires that the current
user have the appropriate permissions to rename the file. If the file is being moved to another directory,
the user must have permission to access that directory.

SetFileTime
Update the modification time for a file on the server. This method requires that the current user have the
appropriate permissions to change the last modification timestamp for the file. Note that this is not
supported on all servers and in some cases may be restricted to specific accounts.

GetFilePermissions
Return the access permissions for a file on the server. This can be used to determine if a file can be read,
modified and/or deleted by the current user. For users who are familiar with UNIX file permissions, it is the
same type which is used by the class.

SetFilePermissions
Change the access permissions for a file. This method is supported on most UNIX based servers, as well as
any other server that supports the site-specific CHMOD command.

Directory Management

The class also provides a set of methods which can be used to access and manage directories or folders,
including the ability to list and search for files, create new directories and remove empty directories from
the server.

ChangeDirectory
Change the current working directory on the server. This is similar to how the CD command is used from
the command-line to change the current directory in Windows. If a path is not specified in the file name,
the current working directory is where files will be uploaded to and downloaded from.

MakeDirectory
Create a new directory on the server. This requires that the current user have the appropriate access
permissions in order to create the directory.

OpenDirectory
Open the specified directory on the server. This is the first step in returning a list of files in the directory.
After the directory has been opened, information about the files it contains can be returned to the
application. The directory path may also include wildcards to only return information about a certain
subset of files based on the file name or extension.

GetFirstFile and GetNextFile
Return information about the next file in the directory that has been opened. This method is called
repeatedly until it indicates that all of the files have been returned.

RemoveDirectory
Remove an empty directory from the server. This operation requires that the current user have the
appropriate permissions to delete the directory. For safety, it is required that the directory does not
contain any files or subdirectories or the operation will fail.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The File Transfer Server class provides an interface for implementing an embedded, lightweight server that
can be used to exchange files with a client using the standard File Transfer Protocol. The server can accept
connections from any third-party application or a program developed using SocketTools. The application
specifies an initial server configuration by setting the relevant properties and can implement event
handlers to monitor the activities of the clients that have connected to the server. The class automatically
handles the standard FTP commands and requires minimal coding on the part of the application that is
hosting the control. However, the application may also use event mechanism to filter specific commands
or to extend the protocol by providing custom implementations of existing commands or add entirely new
commands.

An important consideration when using this class is that events are raised in the context of the thread that
manages the client session. The .NET Framework does not allow one thread to modify a control that was
created in the main user interface thread, which means that you cannot update user interface controls
directly from within the event handlers. If you want to change any property values or call methods in a
control, you need to create a delegate and marshal the call to the user interface thread to using the
control's Invoke method.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Start
This method starts the server, creating the background thread and listening for incoming client
connections on the specified port number. You can specify the local address, port number, backlog queue
size and the maximum number of clients that can establish a connection with the server.

Restart
This method will terminate all active client connections, close the listening socket and re-create a new
listening socket bound to the same address and port number.

Suspend
This method instructs the server to temporarily suspend accepting new client connections. Existing
connections are unaffected, and any incoming client connections are rejected until the server is resumed.
It is not recommended that you leave a server in a suspended state for an extended period of time.

Resume
This function instructs the server to resume accepting client connections after it was suspended. Any
pending client connections are accepted after the server has resumed normal operation.

Throttle
This method is used to control the maximum number of clients that may connect to the server, the
maximum number of clients that can connect from a single IP address and the rate at which the server will
accept client connections. By default, there are no limits on the number of active client sessions and
connections are accepted immediately. This method can be useful in preventing denial-of-service attacks
where the the attacker attempts to flood the server with connection attempts.

Stop
This method will terminate all active client connections, close the listening socket and terminate the
background thread that manages the server. Any incoming client connections will be refused, and all
resources allocated for the server will be released.

Uninitialize

File Transfer Server

Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Events
The application is informed of all client activity through event notifications. These events will tell your
program when a client has connected, issued a command, uploaded or downloaded a file or disconnects
from the server. Through the event mechanism it's also possible to implement your own custom
commands.

OnConnect
This event occurs when the client first establishes a connection with the server. At this point, the client is in
an unauthenticated state and may only issue a limited subset of commands before it submits user
credentials for authentication. This event provides your application with the unique client ID that identifies
the session and the remote IP address that the client has connected from.

OnAuthenticate
This event occurs when the client has submitted user credentials for authentication. The class supports
several mechanisms for user authentication, including automatic local user authentication, the creation of
one or more virtual users or custom authentication by implementing an event handler for this event. It is
not necessary to implement a handler for this event if you choose to create virtual user accounts for your
server instance because the server will automatically handle authentication for those users.

OnCommand
This event occurs for each command sent by the client, prior to the command being processed by the
server. This event can be used by your application to monitor the commands that are being issued, or
may create an event handler that filters certain commands or implements support for custom commands
by processing the command in your own code.

OnResult
This event occurs after each command has been processed by the server. This event can be used by your
application to monitor those commands which were successful and those which failed. For example, your
application could use this event to track the actions of a client and terminate the session if the client is
issuing a large number of commands that fail.

OnDownload
This notification event occurs after a file has been successfully downloaded by a client. It can be used for
logging and monitoring purposes or to update your user interface with relevant information about the
current client activity.

OnUpload
This notification event occurs after a file has been successfully uploaded by a client.

OnDisconnect
This event occurs after a client has disconnected from the server and the thread that manages the client
session has released all of the resources allocated for that client.

Local Host Information
Several properties are provided to return information about the local host, including its fully qualified
domain name and the IP addresses that are configured on the system.

ServerName
Return the fully qualified domain name of the local host, if it has been configured. If the system has not
been configured with a domain name, then the machine name is returned instead.

ExternalAddress
Return the IP address assigned to the router that connects the local host to the Internet. This is typically
used by an application executing on a system in a local network that uses a router which performs

Network Address Translation (NAT).

AdapterAddress
This property array returns the IP addresses that are associated with the local network or remote dial-up
network adapters configured on the system. The AdapterCount property can be used to determine the
number of adapters that are available.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Hypertext Transfer Protocol (HTTP) is the most prevalent application protocol used on the Internet
today. It was originally used for document retrieval, and has grown into a complex protocol which
supports file uploading, script execution, file management and distributed web authoring through
extensions such as WebDAV. The SocketTools Hypertext Transfer Protocol control implements version 0.9,
1.0 and 1.1 of the protocol, including features such as support for proxy servers, persistent connections,
user-defined header fields and chunked data.

File Transfers
Similar to the interface used with the File Transfer Protocol control, you can use HTTP to upload and
download files. In addition to the standard method for downloading files, the control supports two
methods for uploading files, using either the PUT or the POST command. When downloading a file from
the server, you can either store the contents in a local file, or you can copy the data into a memory buffer
that you allocate. Similarly, when uploading files, you can either specify a local file to upload, or you can
provide a memory buffer that contains the file data to send to the server. High level methods such as
PutFile and GetFile can be used to transfer files in a single method call. There are also methods such as
OpenFile and CreateFile which provide lower level file I/O interfaces.

Script Execution
Another common use for HTTP is to execute scripts on the web server. The application can pass additional
data to the script, which is similar in concept to how arguments are passed to a command that is entered
from the command prompt. This uses the standard POST command, and the resulting output from the
script is returned back to the application where it can be displayed or processed. An application can use
the Command method to execute the script and then process the output in code, or can use the higher
level method PostData which will execute the script and return the output from that script in a single
method call.

Uniform Resource Locators
Anyone who has used a web browser is familiar with the Uniform Resource Locator (URL); it is the value
that is entered as the address of a website. URLs have a specific format which provides information about
the server, the port number and the name of the resource that is being accessed:

http://[username : [password] @] hostname [:port] / resource [? parameters]

The first part of the URL identifies the protocol, also known as the scheme, which will be used. With web
servers, this will be either http or https for secure connections. If a username and password is required for
authentication, then this will be included in the URL before the name of the server. Next, there is the name
of the server to connect to, optionally followed by a port number. If no port number is given, then the
default port for the protocol will be used. This is followed by the resource, which is usually a path to a file
or script on the server. Parameters to the resource may also be specified, called the query string, which
are typically used as arguments to a script that is executed on the server.

Understanding how a URL is constructed will help in understanding how the different methods in the
control work together. For example, the server name and port number portion of the URL are the values
passed to the Connect method to establish the connection. The user name and password values are
assigned to the UserName and Password properties to authenticate the client session. And the resource
name is passed to the GetData or GetFile methods to transfer it to the local system.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Hypertext Transfer Protocol

Connect
Connect to the server, using either a host name or IP address. This method creates the client session and
must be called before your application attempts to request a resource from the server.

Disconnect
Disconnect from the server and release the memory allocated for that client session. After this method is
called, the client session is no longer valid.

Reset
Reset the internal state of the component. This can be useful if your application wishes to discard any
settings made by a user and return that instance of the class to its default state.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

File Transfers
Using an interface similar to the File Transfer Protocol control, this control provides several methods which
can be used to transfer files between the local and server. This group of methods is high level, meaning
that it is not necessary to actually write the code to read and/or write the file data. The control
automatically handles the lower level file I/O and notifies your application of the status of the transfer by
periodically generating progress events.

GetData
This method transfers a file from the server to the local system, storing the file data in memory. This can
be useful if your application needs to perform some operation based on the contents of the file, but does
not need to store the file locally.

GetFile
This method transfers a file from the server and stores it in a file on the local system.

PutData
This method creates a file on the server containing the data that you provide. This can be useful if your
application wants to upload dynamically created content without having to create a temporary file on the
local system.

PutFile
This method uploads a file from the local system to the server using the PUT command. Not all servers
support this command, and some may require that the client authenticate prior to calling this method.

PostFile
This method uploads a file from the local system to the server using the POST command. This enables
your application to upload a file in the same way that a user would when using a form in a web browser.

File Management
The control can also perform some basic file management methods as well as send custom commands to
the server. Some web servers also provide more advanced document management methods using
WebDAV, an extension to HTTP for distributed document authoring.

GetFileSize
Return the size of a file on the server without actually downloading the contents of the file. It is important
to note that most servers will only return file size information for actual documents stored on the server,
not for dynamically created content generated by scripts or web pages which use server-side includes.

GetFileTime
Return the modification time for the specified file on the server. This can be used by your application to
determine if the file has been changed since the time that you last uploaded or downloaded the contents.

DeleteFile
Remove a file from the server. This operation requires that the current user have the appropriate
permissions to delete the file. Not all servers support the use of this command, and it would typically
require that the client authenticate prior to calling this method.

Command
This method enables the client to send any command directly to the server. This is commonly used to
issue custom commands to servers that are configured to use extensions to the standard protocol.

Script Execution
The control also provides methods to execute scripts on the web server and return the output from those
scripts back to your application. Your program can pass additional data to the script, typically either as a
query string or as form data, which is similar in concept to how arguments are passed to a command that
is entered from the command prompt.

GetData
In addition to being used to simply return the contents of a file, this method can also be used to execute a
script on the server and return the output of that script to your program. Arguments to the script can be
specified by passing them as a query string. For example, consider the following resource name:

/cgi-bin/test.cgi?data1=value1&data2=value2

This would specify that the script /cgi-bin/test.cgi will be executed, and two arguments will be passed to
that script: data1=value and data2=value2. The ampersand is used to separate the arguments, and they
are grouped as pairs of values separated by an equal sign. Note that the actual format and value of the
query string depends on how the script is written.

PostData
An alternative method of providing information to a script is to post data to the script. Instead of the data
being part of the resource name itself, posted data is sent separately and is provided as input to the script.
This is the same method that is typically used when a user clicks the Submit button on a web-based form.
This method requires the name of the script and the address of a buffer that contains the data that will be
posted. The resulting output from the script is returned to the caller in the same way that the GetData
method works.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Hypertext Transfer Server class provides an interface for implementing an embedded, lightweight
server that can be used to provide access to documents and other resources using the Hypertext Transfer
Protocol. The application specifies an initial server configuration and then responds to events that are
generated when the client sends a request to the server. An application may implement only minimal
handlers for most events, in which case the default actions are performed for most standard HTTP
commands. However, an application may also use the event mechanism to filter specific commands or to
extend the protocol by providing custom implementations of existing commands or add entirely new
commands.

An important consideration when using this class is that events are raised in the context of the thread that
manages the client session. The .NET Framework does not allow one thread to modify a control that was
created in the main user interface thread, which means that you cannot update user interface controls
directly from within the event handlers. If you want to change any property values or call methods in a
control, you need to create a delegate and marshal the call to the user interface thread to using the
control's Invoke method.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Start
This method starts the server, creating the background thread and listening for incoming client
connections on the specified port number. You can specify the local address, port number, backlog queue
size and the maximum number of clients that can establish a connection with the server.

Restart
This method will terminate all active client connections, close the listening socket and re-create a new
listening socket bound to the same address and port number.

Suspend
This method instructs the server to temporarily suspend accepting new client connections. Existing
connections are unaffected, and any incoming client connections are rejected until the server is resumed.
It is not recommended that you leave a server in a suspended state for an extended period of time.

Resume
This function instructs the server to resume accepting client connections after it was suspended. Any
pending client connections are accepted after the server has resumed normal operation.

Throttle
This method is used to control the maximum number of clients that may connect to the server, the
maximum number of clients that can connect from a single IP address and the rate at which the server will
accept client connections. By default, there are no limits on the number of active client sessions and
connections are accepted immediately. This method can be useful in preventing denial-of-service attacks
where the the attacker attempts to flood the server with connection attempts.

Stop
This method will terminate all active client connections, close the listening socket and terminate the
background thread that manages the server. Any incoming client connections will be refused, and all
resources allocated for the server will be released.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.

Hypertext Transfer Server

This method is automatically invoked when the class instance is disposed or goes out of scope.

Events
The application is informed of all client activity through event notifications. These events will tell your
program when a client has connected, issued a command, uploaded or downloaded a file or disconnects
from the server. Through the event mechanism it's also possible to implement your own custom
commands.

OnConnect
This event occurs when the client first establishes a connection with the server. This event provides your
application with the unique client ID that identifies the session and the remote IP address that the client
has connected from.

OnAuthenticate
This event occurs when the client has submitted user credentials for authentication. The class supports
several mechanisms for user authentication, including automatic local user authentication, the creation of
one or more virtual users or custom authentication by implementing an event handler for this event. It is
not necessary to implement a handler for this event if you choose to create virtual user accounts for your
server instance because the server will automatically handle authentication for those users.

OnCommand
This event occurs for each command sent by the client, prior to the command being processed by the
server. This event can be used by your application to monitor the commands that are being issued, or
may create an event handler that filters certain commands or implements support for custom commands
by processing the command in your own code.

OnResult
This event occurs after each command has been processed by the server. This event can be used by your
application to monitor those commands which were successful and those which failed. For example, your
application could use this event to track the actions of a client and terminate the session if the client is
issuing a large number of commands that fail.

OnDownload
This notification event occurs after a file has been successfully downloaded by a client. It can be used for
logging and monitoring purposes or to update your user interface with relevant information about the
current client activity.

OnUpload
This notification event occurs after a file has been successfully uploaded by a client.

OnDisconnect
This event occurs after a client has disconnected from the server and the thread that manages the client
session has released all of the resources allocated for that client.

Local Host Information
Several properties are provided to return information about the local host, including its fully qualified
domain name and the IP addresses that are configured on the system.

ServerName
Return the fully qualified domain name of the local host, if it has been configured. If the system has not
been configured with a domain name, then the machine name is returned instead.

ExternalAddress
Return the IP address assigned to the router that connects the local host to the Internet. This is typically
used by an application executing on a system in a local network that uses a router which performs
Network Address Translation (NAT).

AdapterAddress

This property array returns the IP addresses that are associated with the local network or remote dial-up
network adapters configured on the system. The AdapterCount property can be used to determine the
number of adapters that are available.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Internet Control Message Protocol (ICMP) class enables your application to send and receive ICMP
echo datagrams. These are a special type of IP datagram which can be used to determine if a server is
reachable, as well as determine the amount of time it takes for data to be exchanged with the local
system. The ICMP class can also be used to trace the route that data takes from the local system to a
server, which can be useful in determining why a connection to a particular system may be experiencing
higher latency than normal.

Overview
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Reset
Reset the internal state of the component. This can be useful if your application wishes to discard any
settings made by a user and return that instance of the class to its default state.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Ping and TraceRoute
To determine if a server is reachable, your application can send ICMP echo datagrams. You can also map
the route between the local system and the server by sending a series of echo datagrams to each
intermediate host. This is what the ping.exe and tracert.exe command line utilities do, and you can
emulate that functionality in your own applications.

Echo
This is the simplest method you can use to send ICMP echo datagrams. Specify the server, the size of the
ICMP datagram you want to send and the number of times you want to send it. The method will return if
the operation was successful along with information such as the average number of milliseconds it took
for the datagram to be returned by the server.

TraceRoute
This method will map the route that data packets take from your local system to a server. Whenever you
send data over the Internet, that data is routed from one computer system to another until it reaches its
destination. This method returns statistical information about each system that the data is routed through,
and the latency between that system and the local host. For each intermediate host in the route to the
destination server, the OnTrace event will fire.

OnTrace
This event is generated when the TraceRoute method is called. The event will fire for each intermediate
host in the route from the local system and the server.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Internet Control Message Protocol

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FingerClient.Initialize_overloads.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FingerClient.Reset.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FingerClient.Uninitialize.html

The Remote Access Services (RAS) InternetDialer class enables an application to connect to an Internet
Service Provider (ISP) using a standard Dial-Up Networking connection. Using this class, the application
can discover what dial-up devices are available, what dial-up networking entries, known as "connectoids",
are available on the local system and allows the program to manage those connections. Existing
connections can be monitored, new connections created and a single instance of the class can be used to
manage multiple dial-up connections if the system has more than one modem. While Windows can be
configured to simply autodial a service provider whenever a network connection is needed, this
component gives your application complete control over the process of connecting to a service provider,
monitoring that connection and then terminating that connection if needed.

Initialization
Initialize
Initialize an instance of the class, validating the development license. This method must be called before
any properties are changed or any other methods in this class are called by the application.

Connect
Establish a connection to the dial-up networking server. Once the connection has been established, the
class will authenticate the session and the local system will have a network connection to the service
provider.

Disconnect
Disconnect from the server and release any resources that have been allocated for the dial-up networking
session. After this method is called, the session is no longer valid.

Uninitialize
Release any resources that have been allocated for the class instance. This method is automatically
invoked when the class instance is disposed or goes out of scope.

Connection Properties
The class properties are used to set or return information about the current dial-up networking
connection. To load a dial-up networking connection, called a connectoid or phonebook entry, use the
LoadEntry method. There are a large number of properties, however the most significant of those
properties are as follows:

DeviceName
This property specifies the name of the device that is used to establish the dial-up networking connection.
In most cases this is the name of an analog modem using a serial communications port, connected to a
standard telephone line. If your application needs to enumerate the available dial-up networking devices,
refer to the DeviceCount, DeviceEntry and DeviceType properties.

DynamicAddress
This property determines if the dial-up networking connection uses a dynamically assigned IP address
returned by the server, or a specific IP address configured on the local host. In most cases, this property
should be set to True, unless otherwise specified by your service provider.

DynamicNameservers
This property determines if the dial-up networking connection uses dynamically assigned nameservers,
used to resolve domain names into IP addresses. In most cases, this property should be set to True. If your
service provider requires that you explicitly specify the nameservers to use, then set this property to False
and set the NameServer property array to the address of the nameserver(s) to use.

EntryName
This property specifies the name of the connectoid for the current dial-up networking connection. If no

Remote Access Services

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.DynamicNameservers.html

connection is active and no connectoid has been loaded, then this property will return an empty string.

InternetAddress
This property returns the IP address assigned to the current dial-up networking session, if a connection
has been established. It can also be used to explicitly specify an IP address if the DynamicAddress property
is set to False.

NameServer
This is a property array which specifies the IP addresses of the nameservers that are to be used for the
current dial-up networking session. If a connection has been established, this property array will return the
addresses of those nameservers that have been assigned to you. If the DynamicNameserver property is
set to False, this property array can also be used to explicitly specify the nameservers to be used by the
dial-up networking connection.

Password
This property specifies the password used to authenticate the dial-up networking connection.

PhoneNumber
This property specifies the telephone number for the dial-up networking connection. You should also
check the value of the CountryCode property, which will tell your application if area code dialing rules are
being used. If the CountryCode property is set to zero, then no area code dialing rules are in effect and
the telephone number is dialed as-is. Otherwise you should check the value of the AreaCode property if
you need to determine the area code being used for the connection.

UserName
This property specifies the username used to authenticate the dial-up networking connection

Managing Connectoids
A connectoid contains the information needed to establish a connection, and is represented as the icon in
the Network Connections for the local system. Connectoids are referenced by name and typically are
named after the service provider, such as "EarthLink" or "Verizon". In addition to simply connecting to a
dial-up networking server, the class also enables your application to create, edit and delete these
connectoids. Note that in the class documentation, connectoids are also referred to as "entry names" or
"phonebook entries".

CreateEntry
This method displays a dialog box that allows the user to specify the information needed to create a new
connectoid. This is similar to the dialog that is displayed whenever the user chooses to create a new Dial-
Up Networking connection. Note that if you want to create a connectoid without showing a dialog to the
user, use the SaveEntry method instead.

DeleteEntry
This method deletes an existing dial-up networking connection. Exercise caution when using this method;
once a connectoid has been deleted, there is no way to recover it.

LoadEntry
This method loads an existing connectoid, and updates the properties to reflect the connectoid's settings.
Changing one or more of those properties and then calling the SaveEntry method is how you can modify
an existing connectoid.

RenameEntry
This method renames an existing connectoid.

SaveEntry
This method modifies or creates a new connectoid based on the current properties of the class instance. If
the connectoid already exists, it is modified, otherwise a new connectoid is created. Unlike the CreateEntry
method, this method will not display any dialogs, so it is the responsibility of the application to provide a
user interface if needed.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Internet Message Access Protocol (IMAP) is an application protocol which is used to access a user's
email messages which are stored on a mail server. However, unlike the Post Office Protocol (POP) where
messages are downloaded and processed on the local system, the messages on an IMAP server are
retained on the server and processed remotely. This is ideal for users who need access to a centralized
store of messages or have limited bandwidth. The SocketTools IMAP class implements the current
standard for this protocol, and provides methods to retrieve messages, create and manage mailboxes,
and search for specific messages based on some user-defined search criteria.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Connect
Establish a connection to the IMAP server. Once the connection has been established, the other methods
in the class may be used to access the messages on the server.

Disconnect
Disconnect from the server and release the memory allocated for that client session. After this method is
called, the client session is no longer valid.

Reset
Reset the internal state of the component. This can be useful if your application wishes to discard any
settings made by a user and return that instance of the class to its default state.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Managing Mailboxes
One of the primary differences between the IMAP and POP3 protocol is that IMAP is designed to manage
messages on the mail server, rather than downloading all of the messages and storing them on the local
system. To support this, IMAP allows the client to maintain multiple mailboxes on the server, which are
similar in concept to message folders used by mail client software. A mailbox can contain messages, and
in some cases a mailbox can contain other mailboxes, forming a hierarchy of mailboxes and messages,
similar to directories and files in a filesystem. A special mailbox named INBOX contains new messages for
the user, and additional mailboxes can be created, renamed and deleted as needed. The following are the
most important methods for managing mailboxes:

CheckMailbox
Check the mailbox for any new messages which may have arrived. Because messages are managed on
the server, it is possible for new mail to arrive during the client session.

CreateMailbox
Create a new mailbox on the server with the specified name.

DeleteMailbox
Delete a mailbox from the server. Most servers will only permit a mailbox to be deleted if it does not
contain any mailboxes itself. Unlike deleting a message, which can be undeleted, deleting a mailbox is
permanent.

ExamineMailbox
Once the session has been established and authenticated, a mailbox should be selected. This enables the

Internet Message Access Protocol

client to manage the messages in that mailbox. This method selects the specified mailbox in read-only
mode so that messages can be read, but not modified. To select the mailbox in read-write mode, use the
SelectMailbox method.

RenameMailbox
Renames an existing mailbox. One of the interesting uses of this method is the ability to rename the
special INBOX mailbox. Instead of actually renaming it, it moves all of the messages to the new mailbox
and empties the INBOX.

SelectMailbox
Once the session has been established and authenticated, a mailbox should be selected. Selecting a
mailbox enables the client to manage the messages in that mailbox. This method selects the specified
mailbox in read-write mode so that changes can be made to the mailbox.

UnselectMailbox
This method unselects the currently selected mailbox, and allows the caller to specify if messages marked
for deletion should be expunged (removed) from the mailbox or reset back to an undeleted state.

Managing Messages
There are methods in the IMAP class for managing messages which enables the application to create,
delete and move messages. To use these methods, a mailbox must be selected, either by setting the
MailboxName property or calling the SelectMailbox method. Methods which modify the mailbox require
that it be opened in read-write mode. Messages are identified by a number, starting with one for the first
message in the mailbox.

CopyMessage
Copy a message to a specific mailbox.

DeleteMessage
Mark the specified message for deletion. Unlike the POP3 protocol, when a message is deleted on an
IMAP server it can still be accessed. The message will not actually be removed from the mailbox unless the
mailbox is expunged, unselected or the client disconnects from the server.

UndeleteMessage
Remove the deletion flag from the specified message.

Viewing Messages
One of the more powerful features of the IMAP protocol is the ability to precisely select what kinds of
message data you wish to retrieve from the server. It is possible to retrieve only specific headers, or
specific sections of a multipart message. Because IMAP understands MIME formatted messages, it is
possible to only retrieve the textual portion of a message without having to download any attachments
that may have come with it.

GetHeader
This method returns the value for a specified header field in the message. Using this method, it is not
necessary to download and parse the message header.

GetHeaders
This method retrieves the complete headers for the specified message and stores it in a string or byte
array provided by the caller.

GetMessage
The GetMessage method retrieves the specified message and stores it in a string or byte array provided
by the caller; you can specify the type of message data that you want, a specific part of a multipart
message and the amount of data that you want. For example, it is possible to request that only the first
1500 bytes of the body of the 3rd part of a multipart message should be returned.

OpenMessage

The OpenMessage method is a lower level method which opens a message for reading from the server.
The application would then call Read to read the contents of the message, followed by CloseMessage
when all the message data has been read. Also see the GetMessage method, which will return the
contents of a message into a string or byte array.

Downloading Messages
In some cases, it may be preferable to download a complete message from the server to the local system.
This can be easily done with a single method call.

StoreMessage
This method downloads a complete message and stores it as a text file on the local system.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Internet Server class provides an interface which is similar to the SocketWrench control, but is
specifically designed to simplify the development of a server application. The class provides a collection of
methods which can be used to easily create an event-driven server application. The server runs on a
separate thread in the background, automatically managing the individual client sessions as servers
connect and disconnect from the server. Events are used to notify the application when the client
establishes a connection with the server, sends data to the server or disconnects. Methods such as Read
and Write are used to exchange data with the clients.

An important consideration when using the Internet Server class is that events are raised in the context of
the thread that manages the client session. The .NET Framework does not allow one thread to modify a
control that was created in the main user interface thread, which means that you cannot update user
interface controls directly from within the event handlers. If you want to change any property values or call
methods in a control, you need to create a delegate and marshal the call to the user interface thread to
using the control's Invoke method.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Start
This method starts the server, creating the background thread and listening for incoming client
connections on the specified port number. You can specify the local address, port number, backlog queue
size and the maximum number of clients that can establish a connection with the server.

Restart
This method will terminate all active client connections, close the listening socket and re-create a new
listening socket bound to the same address and port number.

Suspend
This method instructs the server to temporarily suspend accepting new client connections. Existing
connections are unaffected, and any incoming client connections are queued until the server is resumed. It
is not recommended that you leave a server in a suspended state for an extended period of time. Once
the connection backlog queue has filled, any subsequent client connections will be automatically rejected.

Resume
This function instructs the server to resume accepting client connections after it was suspended. Any
pending client connections are accepted after the server has resumed normal operation.

Throttle
This method is used to control the maximum number of clients that may connect to the server, the
maximum number of clients that can connect from a single IP address and the rate at which the server will
accept client connections. By default, there are no limits on the number of active client sessions and
connections are accepted immediately. This method can be useful in preventing denial-of-service attacks
where the the attacker attempts to flood the server with connection attempts.

Lock
This method enables the application to lock the server so that only the current thread may interact with
the server and the client sessions. This will cause all other client threads to go to sleep, waiting for the
server to be unlocked. This should only be used when the server application needs to ensure that no other
client threads are performing a network operation. If the server is left in a locked state for an extended
period of time, it will cause the server to become non-responsive. If the application has started multiple

Internet Server

servers, only one server can be locked at any one time.

Unlock
This method unlocks a server that has been previously locked. The threads which manage the client
sessions will awaken and resume normal execution.

Stop
This method will terminate all active client connections, close the listening socket and terminate the
background thread that manages the server. Any incoming client connections will be refused, and all
resources allocated for the server will be released.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Input and Output
When a TCP connection is established, data is sent and received as a stream of bytes. The following
methods can be used to send and receive data over the socket:

Read
This method reads data from the client and copy it to the string buffer or byte array provided by the
caller. If the client closes its connection, this method will return zero after all the data has been read. If the
method is successful, it will return the actual number of bytes read. This method should always be used
when reading binary data from the client into a byte array.

ReadLine
Read a line of text from the client, up to an end-of-line character sequence or when the client closes the
connection. This method is useful when the client and server are exchanging textual data, as is common
with most command/response application protocols.

Write
This method sends data to the client. If the method succeeds, the return value is the number of bytes
actually written. This method should always be used when sending binary data to the client.

WriteLine
Write a line of text to the socket, terminating it with an end-of-line character sequence. This method is
useful when the client and server are exchanging textual data, as is common with most
command/response application protocols.

Broadcast
Broadcasts data to each of the clients that are connected to the server. This can be useful when the
application needs to send the same data to each active client session, such as broadcasting a shutdown
message when the server is about to be terminated.

IsReadable
This property is used to determine if there is data available to be read from the socket. If the property
returns a value of True, the Read method will return without causing the application to block. If the
property returns False, there is no data available to read from the socket.

IsWritable
This property is used to determine if data can be written to the socket. In most cases this will return True,
unless the internal socket buffers are full.

Local Host Information
Several properties are provided to return information about the local host, including its fully qualified
domain name and the IP addresses that are configured on the system.

ServerName
Return the fully qualified domain name of the local host, if it has been configured. If the system has not

been configured with a domain name, then the machine name is returned instead.

ExternalAddress
Return the IP address assigned to the router that connects the local host to the Internet. This is typically
used by an application executing on a system in a local network that uses a router which performs
Network Address Translation (NAT).

AdapterAddress
This property array returns the IP addresses that are associated with the local network or remote dial-up
network adapters configured on the system. The AdapterCount property can be used to determine the
number of adapters that are available.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Mail Message class can be used to create and process messages in the format defined by the
Multipurpose Internet Mail Extensions (MIME) standard. When a message is parsed, it is broken into parts,
each consisting of two sections. The first part is called the header section and it describes the format of
the data and how it should be represented to the user. The second section is the data itself. A typical mail
message without file attachments has one part, with the body of the message being the data. Messages
with attachments have multiple parts, each with a header describing the type of data. The class can be
then used to extract the data from a multipart message and save it to a file on the local system, delete the
part from the message, or add additional parts to the message, such as attaching a file.

The class can also be used to create new multipart messages with alternative content, such a message
with both plain text and styled HTML text. Once a message has been created, files can be attached to the
message and the application can make any other changes that are needed. The class provides complete
access to all headers and content in a multipart message, including the ability to create your own custom
headers and make modifications to specific sections.

Initialization
Initialize
Initialize an instance of the class, validating the development license. This method must be called before
any properties are changed or any other methods in this class are called by the application.

ComposeMessage
Compose a new message using the specified header field values and content. Using this method, you can
create a message with the From, To, Cc and Subject headers already defined, along with any text for the
message. You can also optionally provide both plain and styled HTML text versions of the message and
the method will automatically create a multipart message.

ClearMessage
Releases the memory allocated for the current message, including any file attachments, and creates a new,
empty message.

Uninitialize
Release any resources that have been allocated for the class instance. This method is automatically
invoked when the class instance is disposed or goes out of scope.

Message Headers
Each message has one or more headers fields which provide information about the contents of the
message. For example, the "From" header field specifies the email address of the person who sent the
message. There are a fairly large number of header fields defined by the MIME standard, and applications
can also create their own custom headers if they wish. The class gives the application complete access to
the header fields in a message. Headers can be examined, modified, created or removed from the
message as needed.

GetHeader
This method copies the value of a header field into a string buffer that you provide. To return the value of
the common header fields such as "From", "To" and "Subject", you should specify a message part of zero
by setting the MessagePart property.

GetFirstHeader
This method returns the value of the first header defined in the current message part, copying it into the
string buffer that you provide. This is used in conjunction with the GetNextHeader method to enumerate
all of the headers that have been defined.

GetNextHeader

Mail Message

This method returns the value of the next header defined in the current message part. It should be called
in a loop until it returns a value of zero (False) which indicates that the last message header has been
returned.

SetHeader
Set a message header field to the specified value in the current message part. If the value is an empty
string, the message header will be deleted from the message.

DeleteHeader
Delete the specified message header from the current message part.

Message Contents
The content or body of a message contains the text that will be read or processed by the recipient. It may
be a simple, plain text message or it may be more complex, such as a combination of plain and styled
HTML text or the data for a file attachment. The class provides complete access to the contents of the
message, enabling the application to modify, extract, replace or delete specific sections of the message.

Message
This property returns the current message, including the headers and all message parts, as a string.
Setting this property will cause the current message to be cleared and replaced by the new value. The
string contents must follow the standard specifications for a message. If the property is set to an empty
string, the current message is cleared.

Text
This property returns the body of the current message part. Setting this property replaces the entire
message body with the new text.

Multipart Messages
Most typical messages contain a single part, which consists of the message headers followed by the
contents of the message. However, when files are attached to a message or alternative content types such
as HTML are used, a more complex multipart message is required. With a multipart message, the contents
of the message are split into logical sections with each section containing a specific part of the message.
For example, when a file is attached to a message, one part of the message contains the text to be read
by the recipient and another part contains the data for the file.

The first of a multipart message is called part 0, and contains the main header block. This is what defines
the headers that you are most familiar with, such as "From", "To" and "Subject". The body of this message
part is typically a plain text message that indicates that this is a multipart message. This is done for the
benefit of older mail clients that cannot parse MIME messages correctly. Next part, part 1, typically
contains the actual body of the message that would be displayed by the mail client. Additional parts may
contain file attachments and other information. In the case of a multipart message that contains both plain
and styled HTML text versions of a message, part 1 is typically the plain text version of the message while
part 2 contains the HTML version. The mail client can then make a decision based on its own configuration
as to which version of the message it displays.

Part
This property returns the current message part index. All messages have at least one part, which consists
of one or more header fields, followed by the body of the message. The default part, part 0, refers to the
main message header and body. If the message contains multiple parts (as with a message that contains
one or more attached files), this property can be set to refer to that specific part of the message.

PartCount
This property returns the number of parts in the current message. All messages have at least one part,
referenced as part 0. Multipart messages will consist of additional parts which may be accessed by setting
the Part property.

CreatePart

Create a new, empty message part. If the message was not originally a multipart message, it will be
restructured into one. Otherwise, the new part is simply added to the end of the message. This method
will cause the current message part to change to the new part that was just created.

DeletePart
Delete the message part from the message. If the message part is in the middle of the message, it will
cause the subsequent parts of the message to be reordered. You should not delete part zero to delete a
message; use the DeleteMessage method instead.

Importing and Exporting Messages
The class can be used to import existing messages from a text file and export messages to a text file. Once
the message has been parsed, the application can examine or modify specific parts of the message. The
following methods are provided to import and export the contents of a message:

ImportMessage
The simplest method of importing a message, this method reads the contents of the specified file and
imports it into the current message. Note that the current message contents will be overwritten with the
imported message.

ExportMessage
This method exports the current message to a file. When using this method, only certain headers are
exported and they may be reordered. To force all headers to be included in the message or to preserve
the order of the headers, set the Options property.

File Attachments
In addition to simple text messages, one or more files can be attached to a message. The process of
attaching a file involves creating a multipart message, encoding the contents of the file and then including
that encoded data in the message. The following methods are provided to manage files attached to the
message, as well as attach files to an existing message:

Attachment
A property which returns the name of a file attachment in the current message part. This property serves
two purposes, to determine if the current message part contains a file attachment, and if so, what file
name should be used when extracting that attachment.

AttachFile
This method attaches the contents of the file to the message. The file will be attached using the specified
encoding algorithm and will become the current message part. If the message is not a multipart message,
it will be converted to one; if it already is a multipart message, the attachment will be added to the end of
the message.

AttachData
This method works in similar fashion to AttachFile, except that instead of the contents of a file, the data in
a memory buffer will be attached to the message. If the message is not a multipart message, it will be
converted to one; if it already is a multipart message, the attachment will be added to the end of the
message.

AttachImage
This method attaches an inline image file to the message. It is similar to the AttachFile method, except that
the image is designed to be referenced as an embedded graphic in an HTML message. This method will
automatically set the correct header values for an inline image attachment, and enables the developer to
specify a content ID which is used in the HTML message.

ExtractFile
Extract the file attachment in the current message part, storing the contents in a file. The attachment will
automatically be decoded if necessary. This method also recognizes uuencoded attachments that are
embedded directly in the body of the message, rather than using the standard MIME format.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.MailMessage.AttachImage_overloads.html

Mail Addresses
The Mail Message class also has methods which are designed to make it easier to work with email
addresses. Addresses are typically in the format of "user@domain.com" however additional information
can be included with the address, such as the user's name or other comments that aren't part of the
address itself. The class can parse these addresses for you, returning them in a format that is suitable for
use with other protocols such as the SMTP class.

ParseAddress
Parse an email address that may include an address without a domain name or comments in the address,
such as the user's name. For example, the From header field may return an address like "Joe Smith
<joe@example.com>"; this method would parse the address and return "joe@example.com", the actual
address for the user.

Recipient
It is common for certain headers to contain multiple addresses separated by a comma. These addresses
may also include comments such as the user's name. This property array returns a list of valid addresses
defined in the current message. For example, the To header field may contain "Tom Jones
<tom@example.com>, Jerry Lewis <jerry@example.com>"; this property array would return
"tom@example.com" and "jerry@example.com" as the two addresses listed. The total number of
addresses that are available is returned by the Recipients property.

Message Storage
The Mail Message class has a collection of methods which makes it simple for an application to store a
group of messages together in a single file, search for and retrieve specific message. The collection of
messages is referred to as a "message store" and messages may either be stored in a plaintext format or
in a compressed binary format.

OpenStore
This method is used to open an existing message store or creates a new storage file. If a storage file has
been opened previously, it will be closed and the new storage file will be opened. The storage files may
either be plaintext, or stored in a compressed format. It also supports opening storage files in the UNIX
mbox format.

StoreSize
This property returns the total number of messages that currently in the message store, including deleted
messages. Each message is referred to by an integer which is its index into the storage file.

StoreIndex
This property specifies the current message index into the storage file. Messages are identified by an
integer value that starts at one for the first message and increments for each additional message in the
storage file. If no message store has been opened, this property will return a value of zero. Changing the
value of this property changes the current message index for the message store.

FindMessage
An application can search the message store for messages that match any header value. Searches can be
complete or partial, and may be case-sensitive or case-insensitive. For example, this method can be used
to enumerate all of the messages in the storage file that were sent by a specific user or match a specific
subject.

ReadStore
This method reads a message from the storage file and replaces the current message. If the application
modifies the message, it can replace the message in the storage file or discard the changes.

WriteStore
This method writes the current message to the message store. Note that the message store must be
opened for write access, and the message will always be appended to the storage file. The StoreIndex

property is updated with the index value for the new message.

DeleteMessage
This method flags a message for deletion from the message store. Once a message has been flagged for
deletion, it may no longer be accessed by the application. When the storage file is closed, the contents of
the deleted message will be removed from the file.

ReplaceMessage
This method replaces an existing message in the storage file, overwriting it with the current message.
Unlike many of the other methods which do not permit the application to reference a deleted message,
this method can be used to replace a previously deleted message.

CloseStore
The message store must be closed when the application has finished accessing it. This method updates
the storage file with any changes, purges all deleted messages and closes the storage file. If the storage
file is locked for exclusive access, this method will release that lock, allowing another process to open the
file

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Network News Transfer Protocol (NNTP) class enables applications to access a news server, list the
available newsgroups, retrieve articles and post new articles. It is common for this class to be used in
conjunction with the Mail Message class to construct the articles, since a news article uses the same
general format as an email message.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Connect
Establish a connection to the server. Once the connection has been established, the other methods in the
class may be used to access the messages on the server.

Disconnect
Disconnect from the server and release the memory allocated for that client session. After this method is
called, the client session is no longer valid.

Reset
Reset the internal state of the component. This can be useful if your application wishes to discard any
settings made by a user and return that instance of the class to its default state.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Newsgroups
News articles are posted in hierarchical groups, similar to how files are stored in folders. Each level in the
newsgroup hierarchy is separated by a period, so newsgroup names look like microsoft.public.vc. This is
Microsoft's newsgroup for articles about Visual C++ programming. Additional subgroups are used to
further narrow the topic; for example, there's the microsoft.public.vc.3rdparty newsgroup for third party
tools and components for Visual C++, and the microsoft.public.vc.atl newsgroup which discusses issues
related to the Active Template Library. The NNTP class provides the following methods for accessing
newsgroups on the server:

GetFirstGroup
This method returns the first available newsgroup on the server. This method is used in conjunction with
the GetNextGroup method to enumerate all of the available newsgroups. An overloaded implementation
of this method also enables you to specify a date value, where only those newsgroups created on or after
that date are returned. This is useful for updating a locally stored list of newsgroups without downloading
the complete list of newsgroups each time the client connects to the server.

GetNextGroup
This method returns the next available newsgroup on the server and is used in conjunction with the
GetFirstGroup method.

SelectGroup
This method is used to select a newsgroup as the current group. Once selected, the application has access
to the articles in that newsgroup.

News Articles
News articles are the messages posted to one or more newsgroups. Articles are referenced by their article

Network News Transfer Protocol

number, which is a value assigned by the news server. These articles have a structure that is the same as
an email message, with some slightly different headers. Because of this, you can use the Mail Message
interface to parse articles that you retrieve, as well as create new articles to post to the server. The
following methods are used to access and create news articles:

GetFirstArticle
This method returns information about the first available article in the currently selected newsgroup. This
method is used in conjunction with the GetNextArticle method to enumerate all of the available articles in
a newsgroup. An overloaded implementation of this method also enables you to specify a starting and
ending article number, which enables you to only list those articles within a specific range.

GetNextArticle
This method returns the next available article and is used in conjunction with the GetFirstArticle method.

GetArticle
Retrieve an article from the server, storing the contents in a string buffer or byte array. This can be used to
process the contents of an article without the overhead of storing it in a file on the local system.

StoreArticle
Retrieve an article from the server and store it in a file on the local system.

PostArticle
This method posts an article to one or more newsgroups on the server. A newsgroup article is similar to
an email message, and the MIME interface may be used to create the article headers and body. One
important difference is that the message must contain a header named "Newsgroups" with the value set
to the newsgroup or newsgroups that the article should be posted to; multiple newsgroups should be
separated by commas. If this header is not defined, the posting will be rejected by the server and the
method will return an error. You should also be aware that some servers limit the number of newsgroups
that a message can be posted to. When an article is posted to more than one newsgroup at a time, this is
called cross-posting. Current convention says that an article should not be cross-posted to more than five
newsgroups at a time. Also keep in mind that multiposting (posting the same article to different
newsgroups separately) is generally discouraged and should never be done on USENET.

Attaching Files
It is possible to attach files to newsgroup articles; however it should only be done if it is considered
appropriate for the group. Many newsgroups have their own acceptable use policies which determine
whether or not file attachments, particularly large binary files, are acceptable. If the newsgroup accepts
attachments, you can use one of several methods for posting files. It is recommended that you use the File
Encoding interface to handle the actual encoding of the data.

Uuencode
A uuencoded file attachment is included directly in the body of the message. Because the MIME interface
creates a multipart message even when uuencoding is specified, the File Encoding interface should be
used to encode the data and then it should be included in the main body of the message.

Base64
A Base64 file attachment has the same structure as what is used by email messages. This requires that a
multipart message be created, with the encoded data attached as a part of the message. You can use the
MIME class to create this kind of message. Note that not all third-party newsreaders correctly handle
multipart messages.

yEnc
The newest encoding method used on USENET is called yEnc. Similar to uuencoded attachments, the file
data is part of the body of the message. The File Encoding class should be used to encode the data and
then it should be included in the main body of the message. More information about yEnc encoding can
be found at www.yenc.org

http://www.yenc.org/

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Time protocol control enables an application to retrieve the current time from a server, and optionally
synchronize the local system time using that value. The first step that your application must take is to
initialize the control. After the control has been initialized, the application can request the current time
from a system and update the local system clock if necessary.

Overview
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

GetTime
Return the current time from a server. The time and date retrieved from the server will be returned as a
string formatted according to the user's current locale. If the date could not be retrieved, an empty string
will be returned.

SetTime
Update the local system time with the value returned by GetTime. This method requires that the current
user have the appropriate permissions to modify the system time or the method will fail.

Reset
Reset the internal state of the component. This can be useful if your application wishes to discard any
settings made by a user and return that instance of the class to its default state.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Time Conversion
The class also provides a method which can be used to convert between the local date and time and UTC
date and time for the value returned by the server.

ConvertTime
This method enables the application to easily convert between the network time value (which is expressed
as a long integer specifying the number of seconds elapsed since midnight, January 1, 1900) and the
System.DateTime class.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Network Time Protocol

The Post Office Protocol (POP3) class enables an application to retrieve a user's mail messages and store
them on the local system. The control provides support for all of the standard functionality such as listing
and downloading messages, as well as extended features such as the ability to retrieve only the headers
for a message or just specific header values. The class also has methods for changing the user's password
and sending messages if they are supported by the server.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Connect
Establish a connection to the server. Once the connection has been established, the other methods in the
class may be used to access the messages on the server.

Disconnect
Disconnect from the server and release the memory allocated for that client session. After this method is
called, the client session is no longer valid.

Reset
Reset the internal state of the component. This can be useful if your application wishes to discard any
settings made by a user and return that instance of the class to its default state.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Managing Messages
There are methods in the POP3 control for managing messages which enables the application to list,
delete and retrieve messages stored on the server. Messages are identified by a number, starting with one
for the first message in the mailbox. The most typical operation for a POP3 client is to retrieve each
message, store it on the local system and then delete the message from the server. Any processing that is
done on the message would then be done on the local copy.

Message
This property sets or returns the message number for the currently selected mailbox. Message numbers
range from 1 through the number of messages available on the server, as returned by the MessageCount
property.

MessageCount, LastMessage
A property which returns the number of messages available for retrieval. There are two values the
application should use. One is the number of currently available messages and the other is the last valid
message number. As messages are deleted from the server, the total number of available messages will
decrease; however, the last available message number will remain constant.

MessageSize
This property returns the size of the message in bytes. One thing to be aware of when using this method
is that some servers will only return approximate message sizes. In addition, because of the difference
between the end-of-line characters on UNIX and Windows systems, the size reported by the server may
not be the actual size of the message when stored on the local system. Therefore, the application should
not depend on this value as an absolute. For example, it should not use this value to determine the
maximum number of bytes to read from the server; instead, it should read until the server indicates that

Post Office Protocol

the end of the message has been reached.

GetMessage
This method is used to retrieve a message from the server and copy it into a local string or byte array
buffer. This method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled.

StoreMessage
This method downloads a complete message and stores it as a text file on the local system.

DeleteMessage
Mark the message for deletion. When the connection with the server is closed, the message will be
removed from the user's inbox. An important difference between the POP3 and IMAP protocols is that
when a message is marked as deleted on a POP3 server, that message can no longer be accessed. An
attempt to retrieve a message after it has been marked for deletion will result in an error. The only way to
undelete a message once it has been deleted is to terminate the connection with the server by calling the
Reset method instead of calling the Disconnect method.

Message Headers
The class also includes methods which enable the application to access the headers for a message. This
can be useful if the program doesn't want to incur the overhead of downloading the entire message
contents.

GetHeader
This method returns the value for a specified header field in the message. Using this method, it is not
necessary to download and parse the message header.

GetHeaders
This method retrieves the complete headers for the specified message and stores it in a string or byte
array provided by the caller.

MessageUID
This property returns the unique ID (UID) that the server has associated with the message. The UID can be
used by an application to track whether or not it has previously viewed the message. Unlike the message
number, which can change between client sessions, the message UID is guaranteed to be the same value
across sessions until the message is deleted.

Downloading Messages
In some cases, it may be preferable to download a complete message from the server to the local system.
This can be easily done with a single method call.

StoreMessage
This method downloads a complete message and stores it as a text file on the local system.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Remote Command protocol enables an application to execute commands on a server, with the
output of the command returned to the client. The SocketTools control actually implements three related
protocols: rexec, rshell and rlogin. The choice of protocols is determined by the port that is selected when
a connection is established.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Reset
Reset the internal state of the component. This can be useful if your application wishes to discard any
settings made by a user and return that instance of the class to its default state.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Executing Commands
When executing commands remotely, there are two similar protocols that can be used. The rexec
protocol enables a client application to execute a command on a server. Output from the command is
returned to the client and the connection is closed when the command terminates. The client connects on
port 512 and must provide a user name and password to authenticate the session.

The rshell protocol is similar to rexec in that it enables a client to execute a command on a server. Output
from the command is returned to the client and the connection is closed when the command terminates.
The client connects on port 514 and must provide a user name. The primary difference between the rexec
and rshell protocols is that rshell does not require a password. Instead, it uses what is called "host
equivalence" to determine if the client is permitted to execute commands as that user. On a UNIX based
operating system, host equivalence is controlled by the /etc/hosts.equiv and the .rhosts file in the user's
home directory. These files list the host names and user names which are permitted to execute commands
using the rshell protocol. Consult your operating system manual pages for more information about how to
configure host equivalence.

An important consideration when deciding whether to use rexec or rshell is how the server is configured
and the type of command being executed. If there is no entry for the local host in the server's host
equivalence tables, then the rexec command should be used instead of rshell.

When using rexec or rshell, it is important to keep in mind that although the command is executed with
the privileges of the specified user, that user is not actually logged in. The user's login script is not
executed and the program will not inherit the user's normal environment as it would during an interactive
session. If you are connecting to a UNIX system, you should not attempt to execute programs which try to
put standard input into raw mode; an example of this would be the vi editor. If you are connecting to a
Windows system, you should not execute a program which uses a graphical interface. Only programs
which read standard input and write to standard output are suitable for use with rexec or rshell.

Execute
Execute the specified command on the server. The rshell or rexec protocol is selected based on the port
number that is specified. Output from the command will be returned to the client to be read. When the
command terminates, the connection to the server will be closed.

Read

Remote Command Protocol

Read the output generated by the command. Your application would typically call this method in a loop
until all of the data has been read or an error occurs.

Search
Search for a specific sequence of characters in the output returned by the server. The method returns
when the sequence is encountered or when a timeout occurs. The data captured up to the point where
the character sequence was matched is returned to the caller for processing.

Remote Login
The rlogin protocol is similar to Telnet in that it provides an interactive terminal session. The connection is
closed when the user logs out or the shell process on the server is terminated. The client connects on port
513 and must provide a user name and terminal type. If there is an entry in the host equivalence tables for
the user and local host, then the client will be automatically logged in and provided with a shell prompt. If
there is no host equivalence, the client will be prompted for a password. The terminal emulation control
can be used to provide ANSI or DEC VT-220 emulation services if needed.

Login
Establish an interactive login session which is similar to how the Telnet protocol works. If there is no host
equivalence with the local host, you will be prompted for a password. Output from the session will be
returned to the client, and when the client logs out the connection will be closed.

Read
Reads any output that has been generated by the program executing on the server. Once a connection
has been established, users are typically given a command line prompt where they can enter commands
to be executed on the server. If the server closes the connection, the Read method will indicate that with
an error result and the client can disconnect from the server at that point.

Search
Search for a specific sequence of characters in the output returned by the server. The method returns
when the sequence is encountered or when a timeout occurs. The data captured up to the point where
the character sequence was matched is returned to the caller for processing.

Write
Send data to the server which will be received as input to the program. In most cases, the server will
automatically echo back any characters written as data to be read by the client.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Secure Shell (SSH) protocol enables an application to establish a secure, interactive terminal session
with a server, or execute commands remotely on the server, with the output of the command returned to
the client. The SocketTools .NET class supports both version 1.0 and 2.0 of the protocol.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Connect
Establish a connection to the server. Once the connection has been established, the other methods in the
class may be used to exchange data with the server.

Disconnect
Disconnect from the server and release the memory allocated for that client session. After this method is
called, the client session is no longer valid.

Reset
Reset the internal state of the component. This can be useful if your application wishes to discard any
settings made by a user and return that instance of the class to its default state.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Input and Output
Once connected to the server, any output generated by the command shell or a program executed on
the server will be sent as data for the client to read. Any input to the program is sent by the client and
received and processed by the server. The following methods are used:

Read
Reads any output that has been generated by the program executing on the server. If the server closes
the connection, this method will return zero after all the data has been read. If the method is successful, it
will return the actual number of bytes read.

ReadLine
The ReadLine method reads data from the server up to the specified number of bytes or until an end-of-
line character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
function is specifically designed to return a single line of text data in a string variable.

Peek
The Peek method can be used to examine the data that is available to be read from the internal receive
buffer. If there is no data in the receive buffer at that time, a value of zero is returned. The Peek method
will never cause the client to block, and so may be safely used with asynchronous connections.

Write
Send data to the server which will be received as input to the program. If the method succeeds, the return
value is the number of bytes actually written. This method should always be used when sending binary
data to the server.

WriteLine
The WriteLine method sends a line of text to the server and terminates the line with a carriage-return and
linefeed control character sequence. Unlike the Write method which writes arbitrary bytes of data to the

Secure Shell Protocol

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.Peek_overloads.html

socket, this method is specifically designed to write a single line of text data from a string.

Command Processing
The SSH protocol can be used to connect to a server, log in and execute one or more commands, process
the output from those commands and display it to an end-user using a graphical interface. The user never
sees or interacts with the actual terminal session. The class interface provides methods which can simplify
this kind of application, reducing the amount of code needed to process the data stream returned by the
server.

Execute
This method executes a command on a server and copies the output to a user-specified buffer, with the
exit code for the remote program as the method's return value. This is a convenience method that
enables you to execute a remote command in a single call, without having to write the code to establish
the connection and read the output.

Search
This method is used to search for a specific character or sequence of characters in the data stream
returned by the server. The control will accumulate all of the data received up to the point where the
character sequence is encountered. This can be used to capture all of the output from a command, or
search for specific results returned by the command as it executes on the server.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Simple Mail Transfer Protocol (SMTP) class enables applications to deliver email messages to one or
more recipients. The class provides an interface for addressing and delivering messages, and extended
features such as user authentication and delivery status notification. This class is typically used in
conjunction with the MailMessage class to create the messages, and the Domain Name Service class to
determine what servers are responsible for accepting mail for a specific user.

Mail Exchanges
When a message is delivered to a user, the application must determine what mail server is responsible for
accepting messages for that user. This can be accomplished using the Domain Name Services (DNS)
protocol, a protocol that is most commonly used to resolve host names such as www.microsoft.com into
Internet addresses. This is typically accomplished by sending a request to a nameserver, a computer
system that provides domain name services. In addition to resolving host names, nameservers can also
provide information about those servers which are responsible for accepting mail for a given domain.
There can be multiple servers which process mail for a domain with each server assigned a priority as part
of their mail exchange (MX) record. If there is no mail exchange record for a domain, then the domain
name itself is used.

To deliver a message directly to the recipient, you must examine the recipient address and request the list
of mail exchanges for that user's domain. Using the DNS class, this is done by reading the MailExchange
property array. If the recipient address is joe@example.com, you would want to enumerate the mail
exchanges for the example.com domain. This will give you the name of the servers that will accept mail for
users in that domain. For example, the property may return the host name mail.example.com as the name
of the server which will accept mail for users in the example.com domain. Note that it is possible that one
or more of the mail exchanges for a domain may not be in the recipient domain itself. In other words, it is
possible that smtp.othercorp.net could be returned as a mail exchange for example.com. This is frequently
the case when another organization is forwarding mail for that domain.

Therefore, there are four general steps that you must take when delivering mail directly to the recipient:

1. Parse the address of each recipient in the message. If you are using the MailMessage
class, the Recipient and Recipients properties can be helpful in extracting all of the
recipient addresses. Everything after the atsign (@) in the address is the domain portion of
that address.

2. Perform an MX record lookup using the DNS class by setting the HostName property to
the domain name and reading the values returned in the MailExchange property array.
This property will return the name of the servers responsible for accepting mail for that
user. If there are more than one server, they will be returned in order of their relative
priority, with the highest priority server having a lower index value. This means that you
should attempt to connect to those servers in the order that they are returned by the
property, starting with an index value of zero.

3. Attempt to connect to the first server returned by the MailExchange property array. The
connection should be on the default port, and you should not attempt to use any
authentication. If the server accepts the connection, then use the SendMessage method to
deliver the message. If the connection is rejected or the message is not accepted, attempt
to connect to the next mail exchange server until all servers have been tried.

4. If no mail exchange servers were returned by the MailMessage class MailExchange
property, or you could not connect to any of them, attempt to connect to the domain
specified in the address using the default port. If the connection succeeds, then deliver the
message. If you cannot connect or the message is not accepted, then report to the user

Simple Mail Transfer Protocol

that the message could not be delivered.

One last important consideration is that many Internet Service Providers now block outbound connections
on port 25 to any mail servers other than their own. If you are unable to establish any connections, either
with the error that the connection was refused or it consistently times out, contact your ISP to determine if
port 25 is being blocked as an anti-spam measure. If this is the case, it will be required that you relay all
messages through their mail servers.

Relay Servers
In some situations it may not be possible to send mail directly to the server that accepts mail for a given
domain. The two most common situations are corporate networks which have centralized servers that are
responsible for delivering and forwarding messages, or an Internet Service Provider (ISP) which specifically
blocks access to all mail servers other than their own. This is usually done as either a security measure or
as a means to inhibit users from sending unsolicited commercial email messages. If the standard SMTP
port is being blocked, then any connection attempts will either fail immediately with an error that the
server is unreachable, or the connections will simply time-out. In either case, a relay server must be
specified in order to send email messages.

A relay server is a system which will accept messages addressed to users who may be in a different
domain, and will relay those messages to the appropriate server that does accept mail for the domain.
Using a relay server is generally easier than sending messages directly to the recipient. In order to send a
message through a relay, you need to perform the following steps:

1. Connect to the relay server as you would normally.

2. Authenticate the client to the server. This may or may not be required, depending on how
the server is configured. Some servers may be configured to only require authentication if
you are connecting from an IP address that is not recognized as part of that system's
network, for example, if you are connecting using a different Internet Service Provider.
Others may always require authentication. Check with the server administrator if necessary
to determine if and when authentication is required.

3. Use the SendMessage method to deliver the message to the recipients through the relay
server. If there are multiple recipients, you can use the MailMessage class to enumerate
the recipient addresses and then pass them to the SendMessage method.

It is important to note that using a mail server as a relay without the permission of the organization or
individual who owns that server may violate Acceptable Use Policies and/or Terms of Service agreements
with your service provider. Systems which relay messages from anyone, regardless of whether the
message is coming from a recognized domain, are called open relays. Because open relays are often used
to send unsolicited email, many administrators block mail that comes from one. It is recommended that
users check with their network administrators or Internet service providers to determine if access to
external mail servers is restricted and what is the acceptable use policy for relaying messages through their
mail servers.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Connect
Connect to the server, using either a host name or IP address. This method creates the client session and
must be called before your application attempts to request a resource from the server.

Authenticate
Authenticate yourself to the server using a username and password. This method should be called

immediately after the connection has been established to the server. This is typically required if you are
attempting to use the mail server as a relay, asking it to forward the message on to the server that actually
accepts email for the recipient. Many Internet Service Providers (ISPs) require that users authenticate prior
to sending mail through their servers. You may need to contact the server administrator to determine if
authentication is required.

Disconnect
Disconnect from the server and release the memory allocated for that client session. After this method is
called, the client session is no longer valid.

Reset
Reset the internal state of the component. This can be useful if your application wishes to discard any
settings made by a user and return that instance of the class to its default state.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Message Delivery
There are two general methods that can be used to deliver messages through the mail server. In most
cases, it can be done with a single method call. However, there are some circumstances where it would be
more appropriate to perform the transaction in stages. The SMTP class supports both methods.

SendMessage
This is the simplest method for sending an email message through the server. You provide the sender and
recipient addresses, along with the message contents and the method will submit the message to the
server for delivery.

CreateMessage
This method begins a transaction in which a message is dynamically composed, addressed and delivered
in stages. You provide the sender address and message size to this method, and after it returns you begin
the next stage, which is addressing the message.

AddRecipient
This method adds a recipient address to the recipient list for the message. This should be called once for
each recipient, as well as for any recipients who are to receive "blind copies" of the message. A blind copy
is when the message is sent to a recipient, but that recipient's address is not listed in any of the headers of
the message; the other recipients will be unaware that the message was delivered to him. Most servers
have a limit of approximately 100 recipients per message. It is possible that this method will return an
error for a specific recipient address; the address may be malformed or it may not be acceptable for some
other reason. This does not mean that the message will be rejected in its entirety, only that the specified
recipient is not acceptable.

AppendMessage
This method should be called after all of the recipients have been added. It is used to send the contents of
the message to the server. It is also possible to use the lower level Write method to send data directly to
the server, however AppendMessage is generally easier to use and can write data from memory, the
system clipboard or from a file on disk.

CloseMessage
This method is called after the entire message has been sent to the server. This terminates the transaction
and the message is submitted for delivery. Note that it is possible for the server to accept the message up
to this point and then reject it at this final step due to some restriction, such as the message being too
large.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The SocketWrench class provides a simplified interface to the Windows Sockets API. It was designed to be
easier to use, and to provide properties and methods which eliminate much of the redundant coding
common to network programming. SocketWrench also supports creating client and server applications
which use the SSL and TLS security protocols without any dependencies on third-party security libraries.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Connect
Connect to the server, using either a host name or IP address. When an application calls this method, it
will be acting as a client. This method creates the socket and must be called before your application
attempts to exchange data with a server. For an asynchronous session, set the Blocking property to False.

Listen
Begin listening for incoming client connections. When an application calls this method, it will be acting as a
server. Once the Listen method returns, the socket is created and that socket handle is used by the Accept
method accept an incoming client connection. For an asynchronous session, set the Blocking property to
False.

Accept
Accept a connection from a client. This method should only be called if the application has previously
called the Listen method. If there is no client waiting to connect at the time this method is called, it will
block until a client connects or the timeout period is reached.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Input and Output
When a TCP connection is established, data is sent and received as a stream of bytes. The following
methods can be used to send and receive data over the socket:

Read
A low-level method used to read data from the socket and copy it to the string buffer or byte array
provided by the caller. If the server closes the connection, this method will return zero after all the data
has been read. If the method is successful, it will return the actual number of bytes read. This method
should always be used when reading binary data from the server into a byte array.

ReadLine
Read a line of text from the socket, up to an end-of-line character sequence or when the server closes the
connection. This method is useful when the client and server are exchanging textual data, as is common
with most command/response application protocols.

ReadStream
A high-level method used to read a stream of bytes and copy it to a string buffer or byte array provided
by the caller. This method can be used to read an arbitrarily large amount of data in a single call.

Write
A low-level method used to write data to the socket. If the method succeeds, the return value is the
number of bytes actually written. This method should always be used when sending binary data to the
remote host.

Windows Sockets (SocketWrench)

WriteLine
Write a line of text to the socket, terminating it with an end-of-line character sequence. This method is
useful when the client and server are exchanging textual data, as is common with most
command/response application protocols.

WriteStream
A high-level method used to write a stream of bytes to the socket. This method can be used to write an
arbitrarily large amount of data to the socket in a single call.

IsReadable
This property is used to determine if there is data available to be read from the socket. If the property
returns a value of True, the Read method will return without causing the application to block. If the
property returns False, there is no data available to read from the socket.

IsWritable
This property is used to determine if data can be written to the socket. In most cases this will return True,
unless the internal socket buffers are full.

Host Name Resolution
The class can be used to resolve host names into IP addresses, as well as perform reverse DNS lookups
converting IP addresses into the host names that are assigned to them. The class will search the local
system's host table first, and then perform a nameserver query if required.

HostAddress
This property can be used to set the IP address for a server that you wish to communicate with. If the
address is valid and matches an entry in the host table, the HostName property will be changed to match
the address.

HostName
This property should be set to the name of the server that you wish to communicate with. If the name is
found in the host table, the HostAddress property is updated to reflect the IP address of the host. Note
that it is legal to assign an IP address to this property, but it is not legal to assign a host name to the
HostAddress property.

Local Host Information
Several methods are provided to return information about the local host, including its fully qualified
domain name, local IP address and the physical MAC address of the primary network adapter.

LocalName
Return the fully qualified domain name of the local host, if it has been configured. If the system has not
been configured with a domain name, then the machine name is returned instead.

LocalAddress
Return the IP address of the local host. If a connection has been established, then the IP address of the
network adapter that was used to establish the connection will be returned. This can be particularly useful
for multihomed systems that have more than one adapter and the application needs to know which
adapter is being used for the connection.

ExternalAddress
Return the IP address assigned to the router that connects the local host to the Internet. This is typically
used by an application executing on a system in a local network that uses a router which performs
Network Address Translation (NAT).

PhysicalAddress
Return the physical MAC address for the primary network adapter on the local system.

AdapterAddress
This property array returns the IP addresses that are associated with the local network or remote dial-up

network adapters configured on the system. The AdapterCount property can be used to determine the
number of adapters that are available.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Telnet Protocol control enables an application to connect to a Telnet server, which provides an
interactive terminal session similar to how character based consoles and terminals work. The user can
login, enter commands and interact with applications programmatically or in conjunction with the terminal
emulation control.

Initialization
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Connect
Establish a connection to the server. Once the connection has been established, the other methods in the
class may be used to exchange data with the server.

Disconnect
Disconnect from the server and release the memory allocated for that client session. After this method is
called, the client session is no longer valid.

Reset
Reset the internal state of the component. This can be useful if your application wishes to discard any
settings made by a user and return that instance of the class to its default state.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Input and Output
Once connected to the Telnet server, any output generated by a program on the server will be sent as
data for the client to read. Any input to the program is sent by the client and received and processed by
the server. The following methods are used:

Read
Reads any output that has been generated by the program executing on the server. When the client first
connects, the server typically executes a login program that requests the users authenticate themselves by
entering a user name and password. Once the user has logged in, they are usually given a command line
prompt where they can enter commands to be executed on the server. If the server closes the connection,
the Read method will indicate that with an error result and the client can disconnect from the server at
that point.

Write
Send data to the Telnet server which will be received as input to the program. If the local echo option is
enabled, then the client is also responsible for writing the input data to the display device, if there is one. If
local echo is not enabled, the server will automatically echo back any characters written as data to be read
by the client.

Local Echo
Telnet supports a mode of operation where the it is the responsibility of the client to echo any data sent to
the server. This is controlled by the LocalEcho property.

LocalEcho
If this property is set to True, it is the responsibility of the client to echo any data that it is sending to the
server. For example, if the character "A" is sent to the server, the application must also send the character

Telnet Protocol

"A" to whatever interface the user is interacting with, such as a terminal emulation window. The default
mode is for this option to be disabled, which means that the server will echo back any data that is sent to
it.

Command Processing
The Telnet protocol can be used to connect to a server, log in and execute one or more commands,
process the output from those commands and display it to an end-user using a graphical interface. The
user never sees or interacts with the actual terminal session. The Telnet interface provides methods which
can simplify this kind of application, reducing the amount of code needed to process the data stream
returned by the server.

Login
This method is used to automatically log a user in, using the specific user name and password. This
method is specifically designed for UNIX based servers or Windows servers which emulate the same basic
login sequence.

Search
This method is used to search for a specific character or sequence of characters in the data stream
returned by the server. The control will accumulate all of the data received up to the point where the
character sequence is encountered. This can be used to capture all of the output from a command, or
search for specific results returned by the command as it executes on the server.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Terminal Emulation control provides a virtual terminal interface for emulating an ANSI or DEC VT-220
compatible character-based terminal. It can be used in conjunction with the Telnet interface or the
Remote Command interface to display the output of commands executed on a server. It can also be used
independently of any other networking control, such as providing emulation services for a serial
connection.

Display Management
The control provides a number of properties and methods to manage and update the virtual display. The
most commonly used methods are:

BackColor
This property can be used to change the background color displayed by the virtual terminal.

ColorMap
This property array can be used to change the default colors which are used when escape sequences are
used to change the foreground or background color of a character cell. In most cases the default color
map will be appropriate, but applications can change the RGB values associated with an entry in the color
map if needed. For example, the default value for the color gray is at position 8 in the color map index
with an RGB value of 192,192,192. If you wanted to use a darker color, you could change the RGB value to
128,128,128

Emulation
This property specifies the type of emulation that will be performed by the control. The control is capable
of emulating an ANSI console, a DEC VT-100 and DEC VT-220/320 terminal.

Font
This property sets the font which is used by the control to draw text on the display window. It is
recommended that you only used fixed-width fonts such as Terminal or Courier New.

ForeColor
This property can be used to change the foreground color displayed by the virtual terminal.

Write
This is the most commonly used method of writing to the display. This method will automatically parse the
data being written for escape sequences and update the display appropriately.

Refresh
Refresh the virtual display, updating the current cursor position and caret. The control will periodically
refresh the display automatically based on its own internal state, but the application can call this if it wishes
to force the display to refresh at that time.

Reset
This method can be used to reset the display window, the font being used and the size of the display.
Note that resetting the display causes the contents of the display to be cleared.

Cursor Control
There are a number of properties and methods which enable an application to have direct control over
cursor positioning, clearing the display and so on. In most cases these methods are called automatically by
the control as the result of processing the escape sequences found in the data being written to the
display. However, an application can choose to manage the display itself. One important thing to keep in
mind is that the X,Y positions used by these properties and methods refer to the cursor position in the
virtual display and correspond to columns and rows, not pixels.

There is also a slight difference in terminology that you should be aware of when reading the technical
reference documentation. In Windows, the term "cursor" is typically used to refer to the mouse pointer,

Terminal Emulation

while "caret" is used to refer to the blinking marker that is displayed at the current position in the display.
In the documentation for the emulator, the term "cursor" is used in the same way that it is used for
character based terminals, as the marker for the current position in the display. Therefore, in terms of the
control, you can think of the cursor and the caret as being synonymous.

CursorX
This property returns the current position of the cursor in the display, or can be used to change the
current position. The current position is given in columns and indicates where the next text character will
be displayed.

CursorY
This property returns the current position of the cursor in the display, or can be used to change the
current position. The current position is given in rows and indicates where the next text character will be
displayed.

Clear
This method clears the contents of the display. You can clear from the start of the display to the current
cursor position, from the current position to the end of the display or the entire display.

DelLine
This method deletes the line at the current cursor position, shifting the remaining lines in the display up.

InsLine
This method inserts a blank line at the current cursor position, shifting the following lines down.

ScrollDown
This method scrolls the display down by one line.

ScrollUp
This method scrolls the display up by one line.

Function Key Mapping
Another aspect of terminal emulation is how function keys and other special keys are handled by the
application. The emulation control can be used to convert Windows virtual key codes into the escape
sequences that are generated by character based terminals.

KeyMap
This property array allows the application to define character sequences that should be mapped to special
keys. When a special key is pressed in the emulation window and there is an entry for it in the key map,
the KeyMapped event is fired. For example, if the user presses the F1 key on the keyboard, the control will
translate that key code into the three characters escape sequence ESC O P (the ASCII codes 27, 79, 80).
That sequence of characters should be sent to the server, which will recognize it as the F1 function key
being pressed. It is important to note that the different emulation types have different key mappings.
Therefore, the server must be set to recognize the same type of terminal that you are emulating. If you
have the emulation set as VT-220 but the server thinks that you are emulating a VT-100, it will not
recognize some of the escape sequences correctly.

KeyMapped
This event is generated when the user presses a special key while the emulation window has focus, and
that key is mapped to a string using the KeyMap property array. Typically an application will use this event
to send the mapped key escape sequence to a server, such as a Telnet server.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The SocketTools.WebLocation class enables an application to obtain geographical information about the
physical location of the computer system based on its external IP address. This can allow developers to
know where their application is being used, and provide convenience functionality such as automatically
completing a form based on the location of the user.

The connection to the location service is always secure and does not require you subscribe to any third-
party services. The accuracy of this information can vary depending on the location, with the most detailed
information being available for North America. The country and time zone information for all locations is
generally accurate. However, as the location information becomes more precise, details such as city
names, postal codes and specific geographic locations (e.g.: longitude and latitude) may have reduced
accuracy.

Software which is designed to protect the privacy of users, such as those which route all Internet traffic
through proxy servers or VPNs, can significantly impact the accuracy of this information. In this case, the
data returned in this structure may reflect the location of the network or proxy server, and not the location
of the person using your application. It is recommended you always request permission from the user
before acquiring their location, have them confirm the location is correct and provide a mechanism for
them to update the information.

Methods
To obtain the location of the local computer system, use the following methods:

Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Update
This method causes the class to update its various properties with information about the current location.
The location service is queried to obtain current information about the physical location of the computer
system based on its external IP address. The location data is cached and additional queries are only
performed if it detects the external IP address for the local system has changed.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Properties
The following properties provide information about the current location of the local computer:

Property Description

ASNumber An integer which is used to uniquely identify a global network (autonomous
system) which is connected to the Internet. This value can be used to determine
the ownership of a particular network.

CityName A string which identifies the city at this location. These names will always be in
English, regardless of the current system locale. If the city name cannot be
determined, this member may contain an empty string.

Coordinates A string which specifies the location expressed using the Universal Transverse
Mercator (UTM) coordinate system with the WGS-84 ellipsoid. These coordinates
are commonly used with the Global Positioning System (GPS).

CountryAlpha A string which contains the ISO 3166-1 alpha-2 code assigned to the country. For
example, the alpha-2 code for the United States is "US".

Web Location Class

CountryCode An integer value which identifies the country using the standard UN country code.
For example, the numeric country code for the United States is 840.

CountryName A string which contains the full name of the country in which the external IP
address is located, such as "United States". These names will always be in English,
regardless of the current system locale.

IPAddress A string which contains the external IP address for the local system. If the system
has been assigned multiple IP addresses, it reflects the address of the interface
used to establish the connection with the location server.

Latitude A real number which specifies the latitude of the location in decimal format. A
positive value indicates a location which is north of the equator, while a negative
value is a location which is south of the equator.

LocalTime The current date and time at the location, adjusted for its time zone and whether
or not it's in daylight savings time.

LocationId A string which contains contains a string of hexadecimal characters which uniquely
identifies the location for this computer system. This value is used internally by the
location service, and may also be used by the application for its own purposes.

Longitude A real number which specifies the longitude of the location in decimal format. A
positive value indicates a location which is east of the prime meridian, while a
negative value is a location which is west of the prime meridian.

Organization A string which identifies the organization associated with the local system's
external IP address. For residential end-users this is typically the name of their
Internet Service provider, however it may also identify a private company.

PostalCode A string which contains the postal code associated with the location. In the United
States, this is a 5-digit numeric code. Local delivery portions of a postal code (such
as the ZIP+4 code in the United States) are not included.

RegionCode An integer which identifies the geographical region. This value corresponds to
standard UN M49 region codes.

RegionName A string which identifies a broad geographical area, such as "North America" or
"Southeast Asia".

Subdivision A string which identifies a geopolitical subdivision within a country. In the United
States, this will contain the full name of the state or commonwealth. In Canada, this
will contain the name of the province or territory.

SubdivisionCode A string which is either a two- or three-letter code which identifies a geopolitical
subdivision within the country. These codes are defined by the ISO 3166-2
standard. For example, the code for the state of California in the United States is
"CA".

Timezone A string which specifies the full time zone name. These names are defined by the
Internet Assigned Numbers Authority (IANA) and have values like
"America/Los_Angeles" and "Europe/London".

TzOffset A integer which specifies the number of seconds east or west of the prime
meridian (UTC). A positive value indicates a time zone which is east of the prime
meridian and a negative value indicates a time zone which is west of the prime
meridian.

TzShortName A string which specifies the abbreviated time zone code. If daylight savings time is
used within the time zone, then this value can change based on whether or not
daylight savings is in effect. If a short time zone code cannot be determined, a
value such as "UTC+9" may be returned, indicating the number of hours ahead or
behind UTC.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The SocketTools.WebStorage class provides private cloud storage for uploading and downloading shared
data files which are available to your application. This is primarily intended for use by developers to store
configuration information and other data generated by the application. For example, you may want to
store certain application settings, and the next time a user or organization installs your software, those
settings can be downloaded and restored.

The connection to the storage service is always secure, using TLS 1.2 and AES-256 bit encryption. There
are no third-party services you need to subscribe to, and there are no additional usernames or passwords
for you to manage. Access to the service is associated with an account which is created when you
purchase a development license, and the security tokens are bound to the runtime license key used when
initializing the API. You also have the option to compress and encrypt your data you store using the
FileEncoder class.

Terminology
When you get started with the WebStorage class, you'll notice there is some different terminology which is
used. This will provide an overview of that terminology, and compare it to common terms used with
traditional protocols like FTP. When accessing an FTP server, you generally deal with directories, files,
names and types (generally whether the file is binary or text). The storage control has similar concepts,
but uses somewhat different terminology.

Application Identifiers

An application identifier (AppId) is a null terminated string which uniquely identifies your application. This
string, used in conjunction with your runtime license key, is used to generate an access token. This token is
used to access the storage container which contains the data which you've stored.

It is recommended you use a standard format for the AppId which consists of your company name,
application name and optionally a version number. Some examples of an AppId string would be:

MyCompany.MyApplication

MyCompany.MyApplication.1

It is important to note with these two example IDs, although they are similar, they reference two different
applications. Objects stored using the first ID will not be accessible using the second ID. If you want to
store objects which should be shared between all versions of the application, it is recommended you use
the first form, without the version number. If you want to store objects which should only be accessible to
a specific version of your application, then it is recommended you use the second form which includes the
version number.

The AppId must only consist of ASCII letters, numbers, the period and underscore character. Whitespace
characters and non-ASCII Unicode characters are not permitted. The maximum length of the string is 63
characters. It is not required for your application to create a unique AppId. Each storage account has a
default internal AppId named SocketTools.Storage.Default. This AppId is used if a NULL pointer or
an empty string is specified.

Containers

Storage containers are somewhat analogous to directories or folders in a file system, however they are
general purpose and designed to allow you to control how your application accesses the data that's been
stored. There are four container types which are defined by the control, and you can think of them as
types of boxes or file cabinets which you store your data in.

It is important to keep in mind these containers are available to all users of your application, your program
controls who has access to any particular data file. Your users will not be able to "browse" any of the

Web Storage Class

containers unless you specifically provide that capability by implementing it in your own code. There is no
public access to any of the data which you upload, and our service does not use an open API accessible
by third parties.

The storage containers are identified using the WebStorage.Container enumeration:

Container.storageGlobal
The global storage container which is available to all users of your application. Any data
stored in this container is available to everyone who uses your software. Unless you have a
specific need to limit access to the data to a specific user or group of users, this is the
recommended container you use to store data.

Container.storageDomain
The domain storage container is limited to users in the same local domain, defined either by
the name of the domain or workgroup assigned to the computer system. This can provide a
kind of organization wide storage, but it does depend on the domain being unique. For
example, if you are using domain storage for your application, and you have multiple
customers who have systems part of the default "Workgroup" domain, they would all share
the same container. If the domain or workgroup name changes, then data stored in the
container would no longer be available.

Container.storageMachine
The local machine storage container is associated with the physical computer system your
application is running on. The machine is identified by unique characteristics of the system,
including the boot volume GUID. Data stored in this container can only be accessed from the
application running on that particular system. If the operating system is reinstalled, the
machine ID will change and data stored in this container would no longer be available.

Container.storageUser
The current user storage container is associated with the current user who is using your
application. The user identifier is based on the Windows Security Identifier (SID) assigned to
the account when it's created. If the user account is deleted, the data stored in this container
will no longer be available to the application. Another user on the same computer system
would not be able to access the data in this container.

If you decide to use anything other than global storage, the data your application stores can be orphaned
if the system configuration or user account changes. It's recommended you store critical application data
and general configuration information using Container.storageGlobal and use other non-global
storage containers for configuration information which is unique to that system and/or user which is not
critical and can be easily recreated. If you're concerned about protecting the data you upload to global
storage, you can encrypt it prior to storing it.

Objects

Storage objects are similar to files in a file system. They are discrete blocks of data, associated with a label
(name), have attributes and are associated with a particular content type. However, an object does not
need to be an actual file on the local system. For example, you could store an object which is a string, a
pointer to a structure, or any block of memory. You could also just store a complete file as an object.
Unlike files, you cannot perform partial reads of an object or "seek" into certain parts of a stored object. Of
course, you can download an object, either in memory or to a local file, and perform whatever operations
you require on the data.

Labels

Object labels are similar to file names, and are a way to identify a stored object instead of using its internal
object ID. However, there are some important differences. The most significant difference being labels are
case-sensitive, unlike Windows file names. An object with the label "AppConfig" is considered to be

different than one with the label "appconfig". Labels can contain Unicode characters, but they cannot
contain control characters.

You can also use forward slashes or backslash characters in the label, but it's important to note objects are
not stored in a hierarchical structure. Your application can store objects using a folder-like structure, but
it's not something which is enforced by the API.

Media Type

Each object your application stores is associated with a media type (also called a content type) which
identifies the object's data. This uses the standard MIME media type designations, such as "text/plain" or
"application/octet-stream". Your application can explicitly specify the media type you want to associate
with the object, or you can have the API choose for you, based on the contents of the object and using
the label as a hint for what it may contain. For example, if you create an object with the label
"AppConfig.xml" and it contains text, then the API will select "text/xml" as the default media type.

Initialization
The first step your application must take is to initialize the control and then open a storage container. The
following methods are available for use by your application:

Initialize
nitialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Open
Opens a storage container for your application. Subsequent operations, such as storing, retrieving and
copying objects will be performed within this container.

Close
Close the storage container and release the resources allocated for the session.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Data Storage
The control provides methods to upload and download to the storage container. You can store the
contents of local files, or you can create objects from memory using strings or byte arrays.

GetData
Download object data and store it in a string or byte array provided by the caller.

GetFile
Download object data and store it in a file on the local system.

PutData
Upload object data in a string or byte array and store it as an object in the current container. This function
would typically be used to store binary data, including compressed or encrypted text.

PutFile
Upload the the contents of a local file and store it as an object in the current container.

Data Management
The data management methods allow you to obtain information about stored objects and perform typical
operations such as copying, renaming and deleting objects from the container.

FindFirst
Enables your application to search for and enumerate objects in a container based on their label and/or

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.Open_overload.1.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.Getdata_overloads.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.PutFile.html

their media type. This method is used in conjunction with the FindNext method to list all matching objects
in a container.

CompareData
Compares the contents of a string or byte array with the data stored in an object. This method can be
used to determine if the contents of the buffer have changed since the data was previously stored using
the PutData method.

CompareFile
Compares the contents of a local file with the data in a stored object. This method can be used to
determine if the contents of a file have changed since it was previously stored using the PutFile method.

Copy
Copies the contents of a stored object to a new container, or duplicating the object within the same
container using a different label.

Move
Moves the contents of a stored object to a new container.

Rename
Changes the label associated with a stored object. The new label for the object cannot already exist in the
same container. If you want to change the label to one already assigned to an existing object, the object
must first be deleted.

Delete
Removes the stored object from the container. This operation is immediate and permanent. Deleted
objects cannot be recovered by the application at a later time.

DeleteAll
Deletes all objects which are stored in the current open container. This method resets the container back
to its initial state, deleting all object metadata from the database and removing all stored data. This
operation is immediate and the objects stored in the container are permanently deleted. They cannot be
recovered by your application.

Other Methods
Several additional methods are available, allowing your application register and de-register custom
application identifiers and validate object labels.

RegisterId
Register a new application identifier (AppId) to be used to access a storage container. It is not required
you create a unique application ID, but it can be helpful to distinguish stored content between different
versions of your applications.

UnregisterId
Unregister an application identifier which was previously registered by your application. You should be
extremely careful when using this function because it permanently delete all stored objects created using
the AppId value. Internally it revokes the access token granted to your application and causes the server to
expunge all objects in the container associated with the token.

ValidateId
A method which can be used to validate an application identifier, ensuring it is valid and has been
registered.

ValidateLabel
A method which can be used to validate an object label to ensure it does not contain any invalid
characters. This would be primarily used by applications which allow a user to specify the label names for
the objects being stored.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.PutFile.html

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The Whois protocol class provides an interface for requesting information about an Internet domain
name. When a domain name is registered, the organization that registers the domain must provide
certain contact information along with technical information such as the primary name servers for that
domain. The Whois protocol enables an application to query a server that provides that registration
information. The Whois class provides an interface for requesting that information and returning it to the
program so it can be displayed or processed.

Overview
Initialize
Initialize an instance of the class, loading the networking library and validating the development license.
This method must be called before any properties are changed or any other methods in this class are
called by the application.

Connect
Connect to the server, using either a host name or IP address. Once the connection has been established,
the other methods in the class may be used to retrieve information from the server.

Search
This method submits a search keyword to the server. The keyword may specify a domain name, a user
handle or a user mailbox, depending on the search type. Note that not all servers support all search types.
For example, many servers no longer support searching for user information based on email addresses.

Read
Read the data returned by the server, storing it in a string variable or byte array that is specified by the
caller. This will contain the information about the domain specified when the Search method was called.
Note that the data returned will typically be text, however it may not follow the same end-of-line
conventions as Windows. For example, if the server is a UNIX or Linux system, the end-of-line may be
indicated by a single linefeed, rather than a carriage-return/linefeed pair. Your application will have to
account for this if the data is being displayed as-is to a user.

Disconnect
Disconnect from the server and release the memory allocated for that client session. After this method is
called, the client session is no longer valid.

Reset
Reset the internal state of the component. This can be useful if your application wishes to discard any
settings made by a user and return that instance of the class to its default state.

Uninitialize
Unload the networking library and release any resources that have been allocated for the class instance.
This method is automatically invoked when the class instance is disposed or goes out of scope.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Whois Protocol

Classes

Class Description

DnsClient The DnsClient class resolves domain names into Internet addresses and
return information about a remote host, such as the servers that are
responsible for accepting mail for the domain.

FileEncoder The FileEncoder class encodes and decodes files using standard
algorithms such as base64, uuencode and quoted-printable. The class
can also be used to compress and expand files, as well as encrypt or
decrypt file data using AES encryption.

FtpClient The FtpClient class implements the File Transfer Protocol (FTP) o transfer
files between the local system and a remote server. This class supports
both high level operations, such as uploading or downloading files, as
well as a collection of lower-level file I/O functions. In addition to file
transfers, an application can create, rename and delete files and
directories, search for files using wildcards and perform other common
file management functions. Secure file transfers are supported using TLS
1.2 and SSH 2.0.

FtpServer The FtpServer class implements an embedded, lightweight server that can
be used to exchange files with a client using the standard File Transfer
Protocol. The server can accept connections from any third-party
application or a program developed using the SocketTools.FtpClient class.
Secure file transfers are supported using TLS 1.2.

HttpClient The HttpClient class implements the Hypertext Transfer Protocol (HTTP), a
lightweight, stateless application protocol used to access resources on
web servers, as well as send data to those servers for processing. The
class provides direct, low-level access to the server and the commands
that are used to retrieve resources (i.e.: documents, images, etc.). The
class also provides a simple interface for downloading resources to the
local host, similar to how the SocketTools.FtpClient class can be used to
download files. This class supports secure connections using TLS 1.2 and
authentication using OAuth 2.0 bearer tokens.

HttpServer The HttpServer class implements an embedded, lightweight server that
can be used to provide access to documents and other resources using
the Hypertext Transfer Protocol (HTTP). The server can accept
connections from any standard web browser, third-party applications or
programs developed using the SocketTools.HttpClient class. Secure
connections are supported using TLS 1.2.

IcmpClient The IcmpClient class implements the Internet Control Message Protocol
(ICMP) which can be used to determine if a remote host is reachable and
how packets of data are routed to that system. This class can be used to
check if a system is reachable and the amount of time that it takes for a
packet of data to make a round trip from the local system, to the remote
host and then back again. It can also trace the route that a packet of data
takes from the local system to the remote host, and can be used to
identify potential problems with overall throughput and latency.

SocketTools Namespace

ImapClient The ImapClient class implements the Internet Message Access Protocol
(IMAP) is an application protocol which is used to access a user's email
messages which are stored on a mail server. This class implements the
current standard for this protocol, and provides functions to retrieve
messages, or just certain parts of a message, create and manage
mailboxes, search for specific messages based on certain criteria and so
on. This class is typically used in conjunction with the
SocketTools.MailMessage class which is used to process the messages
that are retrieved from the server. This class supports secure connections
using TLS 1.2 and authentication using OAuth 2.0 bearer tokens.

InternetDialer The InternetDialer class provides a way for client applications to connect
to the Internet using Microsoft Windows Remote Access Services (RAS).
To use this class, the dial-up networking software must be installed on the
local system. For access to the Internet, the TCP/IP protocol must be
installed and configured. The class may configured to use either the SLIP
or PPP protocols, depending on the requirements of the service provider.
Refer to your system documentation for information about installing and
configuring dial-up networking on your system.

InternetServer The InternetServer class provides a simplified interface for creating event-
driven, multithreaded server applications using the TCP/IP protocol. The
interface is similar to the SocketTools.SocketWrench class, however it is
designed specifically to make it easier to implement a server application
without requiring the need to manage multiple socket classes. In addition,
the class supports secure connections using TLS 1.2.

MailMessage The MailMessage class provides an interface for composing and
processing email messages and newsgroup articles which are structured
according to the Multipurpose Internet Mail Extensions (MIME) standard.
Using this class, an application can easily create complex messages which
include multiple alternative content types, such as plain text and styled
HTML text, file attachments and customized headers. This class is typically
used in conjunction with the SocketTools.ImapClient and
SocketTools.PopClient classes.

NetworkTime The NetworkTime class provides an interface for synchronizing the local
system's time and date with that of a server. The time values returned are
in in Coordinated Universal Time and be adjusted for the local host's time
zone. The class enables developers to query a server for the current time
and then update the system clock if desired.

NewsFeed The NewsFeed class provides an interface parsing Really Simple
Syndication (RSS) feeds. A news feed is published in XML format, which
contains one or more items that includes summary text, hyperlinks to
source content and additional metadata that is used to describe the item.
News feeds can be used for a variety of purposes, including providing
updates for weblogs, news headlines, video and audio content. News
feeds can be accessed remotely from a web server, or locally as an XML
formatted text file.

NntpClient The NntpClient class implements the Network News Transfer Protocol
(NNTP) which is used to download and post news articles. This is similar
in functionality to bulletin boards or message boards, where topics are
organized hierarchically into groups, called newsgroups. The largest

collection of public newsgroups available is called USENET, a world-wide
distributed discussion system. Secure connections are supported using
TLS 1.2.

PopClient The PopClient class provides access to a user's new email messages on a
mail server. Methods are provided for listing available messages and then
retrieving those messages, storing them either in files or in memory.
Once a user's messages have been downloaded to the local system, they
are typically removed from the server. This class is typically used in
conjunction with the SocketTools.MailMessage class which is used to
process the messages that are retrieved from the server. This class
supports secure connections using TLS 1.2 and authentication using
OAuth 2.0 bearer tokens.

RshClient The RshClient class is used to execute a command on a server and return
the output of that command to the client. This is most commonly used
with UNIX based servers, although there are implementations of remote
command servers for the Windows operating system. The class supports
both the rcmd and rshell remote execution protocols. This class should
not be used when connecting to a server over the Internet because the
user credentials are not encrypted. For secure remote command
execution and interactive terminal sessions, it is recommended you use
the SocketTools.SshClient class.

SmtpClient The SmtpClient class enables applications to deliver email messages to
one or more recipients. The class provides an interface for addressing
and delivering messages, and extended features such as user
authentication and delivery status notification. There is no requirement to
have certain third-party email applications installed or specific types of
servers installed on the local system. This class supports secure
connections using TLS 1.2 and authentication using OAuth 2.0 bearer
tokens.

SocketWrench The SocketWrench class is a general purpose networking class used to
develop Internet and intranet applications using the TCP/IP protocol.
With SocketWrench, you can create both client and server applications, as
well as send and receive UDP datagrams. SocketWrench also supports
secure connections using the Transport Layer Security (TLS) protocols.
Enabling the security features of the class is done by setting a single
property and does not require another .NET class to implement the
encryption.

SshClient The SshClient class is used to establish a secure connection with a server
which provides a virtual terminal session for a user. Its functionality is
similar to how character based consoles and serial terminals work,
enabling a user to login to the server, execute commands and interact
with applications running on the server. It also includes methods that
enable a program to easily scan the data stream for specific sequences of
characters, making it easy to create light-weight client interfaces to
applications running on the server. File transfers using SFTP are
implemented using the SocketTools.FtpClient class.

TelnetClient The TelnetClient class is used to establish a connection with a server
which provides a virtual terminal session for a user. Its functionality is
similar to how character based consoles and serial terminals work,

enabling a user to login to the server, execute commands and interact
with applications running on the server. This class supports secure
connections using TLS 1.2.

Terminal The Terminal class is a Windows Forms control which provides a
comprehensive interface for emulating an ANSI or DEC-VT220 terminal,
with full support for all standard escape and control sequences, color
mapping and other advanced features. The class provides both a high
level interface for parsing escape sequences and updating a display, as
well as lower level primitives for directly managing the virtual display,
such as controlling the individual display cells, moving the cursor position
and specifying display attributes.

TextMessage The TextMessage class enables your application to send Short Message
Service (SMS) messages using a service provider gateway. It submits
messages to a wireless device on their network using standard email
protocols. The clas provides methods that can be used to determine the
provider associated with a specific telephone number and send a text
message to the device using the provider's mail gateway. It does not
require a third-party service to submit text messages, however it cannot
be used to receive text messages.

WebLocation The WebLocation class returns information about the location associated
with the with the external IP address of the local system. The accuracy of
this information can vary depending on the location, with the most
detailed information being available for North America. The country and
time zone information for all locations is generally accurate. However, as
the location information becomes more precise, details such as city
names, postal codes and specific geographic locations (e.g.: longitude
and latitude) may have reduced accuracy.

WebStorage The WebStorage class enables an application to securely store and
manage private application data on a server. This class uses SocketTools
Web Services and will only function if there is an active Internet
connection and the local system is capable of establishing a secure
connection to our servers.

WhoisClient The WhoisClient class provides an interface for requesting registration
information for an Internet domain name. When a domain name is
registered, the organization that registers the domain must provide
certain contact information along with technical information such as the
primary name servers for that domain. The class provides an interface for
requesting that information and returning it to the program so that it can
be displayed or processed.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Implements the Domain Name Services protocol.

For a list of all members of this type, see DnsClient Members.

System.Object
 SocketTools.DnsClient

[Visual Basic]
Public Class DnsClient
 Implements IDisposable

[C#]
public class DnsClient : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The DnsClient class implements the Domain Name Services (DNS) protocol, which is used to resolve
domain names into Internet addresses as well as provide other information about a domain. All of the
SocketTools .NET classes provide basic domain name resolution functionality, but the DnsClient class gives
an application direct control over what servers are queried, the amount of time spent waiting for a
response and the type of information that is returned.

Requirements
Namespace: SocketTools

Assembly: SocketTools.DnsClient (in SocketTools.DnsClient.dll)

See Also
DnsClient Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient Class

DnsClient overview

Public Static (Shared) Fields

dnsPortDefault A constant value which specifies the default port
number.

dnsRetries A constant value which specifies the default
number of retries.

dnsTimeout A constant value which specifies the default
timeout period.

Public Instance Constructors

 DnsClient Constructor Initializes a new instance of the DnsClient class.

Public Instance Fields

HostAlias Returns the aliases for a given host name.

MailExchange Returns the mail exchange servers for a given
domain.

NameServer Change or return the Internet address for a
nameserver

Public Instance Properties

Handle Returns the internal handle that is used by the
class library.

HostAddress Set or return the Internet address for the remote
host.

HostAliases Return the number of aliases for the specified host
name.

HostFile Set or return the name of an alternate host file.

HostInfo Returns information about the host operating
system.

HostName Set or return the name of the remote host.

HostProtocol Set the protocol to return service information for
the specified host.

HostServices Return the well-known services available for the
specified host.

IsInitialized Determine if the component has been initialized.

LastError Set or return the last error that occurred.

LastErrorString Return a description of the last error that occurred.

LocalAddress Return the Internet address for the local system.

LocalDomain Set or return the domain name for the local

DnsClient Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.dnsPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.dnsRetries.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.dnsTimeout.html

system.

LocalName Return the host name for the local system.

MailExchanges Return the number of mail exchange records for
the specified host.

Options Gets and sets a value which specifies one or more
client options.

RemotePort Set or return the port number used to establish a
connection.

RemoteService Set or return the name of the service associated
with the remote port.

Retry Set the number of times the control attempts to
resolve a hostname.

ServerAddress Return the address of the nameserver that
resolved the query.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Enable or disable exceptions being raised when a
method fails.

Timeout Set or return the amount of time until a blocking
operation fails.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Specify the socket function trace output file.

TraceFlags Set or return the network function tracing flags.

Version Gets a value which returns the current version of
the DnsClient class library.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Cancel Cancels the current blocking network operation.

Dispose Overloaded. Releases all resources used by
DnsClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initializes the component with the
specified runtime license key.

MatchHost Overloaded. Match a host name against one more

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.Options.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.RemoteService.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.AttachThread.html

strings that may contain wildcards.

Query Perform a general nameserver query for a specific
type of record.

Reset Reset the internal state of the component.

Resolve Resolve a hostname to an Internet address.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the component and unload the
networking library.

Public Instance Events

OnCancel Occurs when a blocking network operation is
canceled using the Cancel method.

OnError Occurs when a method fails.

OnTimeout Occurs when a blocking network operation
exceeds the timeout period specified by the
Timeout property.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the DnsClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the client session and
unloading the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the DnsClient class.

[Visual Basic]
Public Sub New()

[C#]
public DnsClient();

Example
The following example demonstrates creating an instance of the DnsClient class object and resolving a
hostname into an Internet address using the Resolve method.

Dim dnsClient As SocketTools.DnsClient
Dim strHostName As String
Dim strHostAddress As String

dnsClient = New SocketTools.DnsClient
strHostName = TextBox1.Text.Trim()

If dnsClient.Resolve(strHostName, strHostAddress) Then
 StatusBar1.Text = "The Internet address for " + strHostName + " is " +
strHostAddress
Else
 StatusBar1.Text = "The Internet address for " + strHostName + " could not be
resolved"
End If

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient Constructor

The fields of the DnsClient class are listed below. For a complete list of DnsClient class members, see the
DnsClient Members topic.

Public Static (Shared) Fields

dnsPortDefault A constant value which specifies the default port
number.

dnsRetries A constant value which specifies the default
number of retries.

dnsTimeout A constant value which specifies the default
timeout period.

Public Instance Fields

HostAlias Returns the aliases for a given host name.

MailExchange Returns the mail exchange servers for a given
domain.

NameServer Change or return the Internet address for a
nameserver

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient Fields

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.dnsPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.dnsRetries.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.dnsTimeout.html

Returns the aliases for a given host name.

[Visual Basic]
Public ReadOnly HostAlias As HostAliasArray

[C#]
public readonly HostAliasArray HostAlias;

Remarks
The HostAlias array returns the aliases assigned to the host specified by the HostAddress or HostName
properties. If the host address or name can be resolved, the first element in the HostAlias array always
refers to the host's fully qualified domain name.

The end of the alias list is indicated when the property returns an empty string. The array is zero based,
meaning that the first index value is zero.

Example

Dim nIndex As Integer

ListBox1.Items.Clear()
dnsClient.HostName = strHostName

For nIndex = 0 To dnsClient.HostAliases - 1
 ListBox1.Items.Add(dnsClient.HostAlias(nIndex))
Next

See Also
DnsClient Class | SocketTools Namespace | HostAliasArray Class | HostAliases Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.HostAlias Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.HostAliasArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.HostAliasArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.HostAliasArray.html

Returns the mail exchange servers for a given domain.

[Visual Basic]
Public ReadOnly MailExchange As MailExchangeArray

[C#]
public readonly MailExchangeArray MailExchange;

Remarks
The MailExchange array returns the host name of the systems designated as the mail exchanges for the
current domain. The mail exchange hosts are returned sorted in priority order, with the higher priority mail
servers being listed first. The array is zero based, which means that the first index value is zero. The
HostName property must be set to the domain name that you want to obtain the mail exchange records
for.

This array is commonly used to determine which system is responsible for forwarding mail within a
domain. For example, if a mail message is addressed to the user someone@example.com, you can
determine the name of the server or servers responsible for accepting mail for that user by setting the
value of the HostName property to example.com and then checking the MailExchange array. Note
that it is possible that a domain will not have any mail exchange (MX) records, in which case you should
attempt to to connect directly to a mail server running on the host specified in the domain name portion
of the address.

Example
The following example populates a ListBox control with the host names of those servers responsible for
accepting email for the specified domain:

Dim nIndex As Integer

ListBox1.Items.Clear()
dnsClient.HostName = strHostName

For nIndex = 0 To dnsClient.MailExchanges - 1
 ListBox1.Items.Add(dnsClient.MailExchange(nIndex))
Next

See Also
DnsClient Class | SocketTools Namespace | MailExchangeArray Class | MailExchanges Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.MailExchange Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.MailExchangeArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.MailExchangeArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.MailExchangeArray.html

Change or return the Internet address for a nameserver

[Visual Basic]
Public ReadOnly NameServer As NameServerArray

[C#]
public readonly NameServerArray NameServer;

Remarks
The NameServer array is used to specify one or more nameservers used to resolve hostnames and
addresses. The address value must be an IP address in dot notation.

The index specifies which nameserver to set or return a value for. There may be up to four nameservers
defined for any single instance of the component.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.NameServer Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.NameServerArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.NameServerArray.html

The properties of the DnsClient class are listed below. For a complete list of DnsClient class members,
see the DnsClient Members topic.

Public Instance Properties

Handle Returns the internal handle that is used by the
class library.

HostAddress Set or return the Internet address for the remote
host.

HostAliases Return the number of aliases for the specified host
name.

HostFile Set or return the name of an alternate host file.

HostInfo Returns information about the host operating
system.

HostName Set or return the name of the remote host.

HostProtocol Set the protocol to return service information for
the specified host.

HostServices Return the well-known services available for the
specified host.

IsInitialized Determine if the component has been initialized.

LastError Set or return the last error that occurred.

LastErrorString Return a description of the last error that occurred.

LocalAddress Return the Internet address for the local system.

LocalDomain Set or return the domain name for the local
system.

LocalName Return the host name for the local system.

MailExchanges Return the number of mail exchange records for
the specified host.

Options Gets and sets a value which specifies one or more
client options.

RemotePort Set or return the port number used to establish a
connection.

RemoteService Set or return the name of the service associated
with the remote port.

Retry Set the number of times the control attempts to
resolve a hostname.

ServerAddress Return the address of the nameserver that
resolved the query.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

DnsClient Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.Options.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.RemoteService.html

ThrowError Enable or disable exceptions being raised when a
method fails.

Timeout Set or return the amount of time until a blocking
operation fails.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Specify the socket function trace output file.

TraceFlags Set or return the network function tracing flags.

Version Gets a value which returns the current version of
the DnsClient class library.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Returns the internal handle that is used by the class library.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value that specifies the client session handle. A return value of -1 indicates that no handle has
been allocated for the class library.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Handle Property

Set or return the Internet address for the remote host.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string value which specifies the Internet address in dot notation.

Remarks
Setting the HostAddress property causes the control to submit a reverse query to the nameservers that
you have specified. If a reverse entry is found for the IP address, the HostName property is changed to
that host name.

Note that reverse domain name records (PTR records) may not be defined for a system and the
application must not depend on this information being available.

See Also
DnsClient Class | SocketTools Namespace | HostName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.HostAddress Property

Return the number of aliases for the specified host name.

[Visual Basic]
Public ReadOnly Property HostAliases As Integer

[C#]
public int HostAliases {get;}

Property Value
An integer value which specifies the number of host aliases.

Remarks
The HostAliases property returns the number of aliases for the host specified by the HostName property.
If the specified host name cannot be resolved, this property will return a value of zero.

This property is typically used in conjunction with the HostAlias array.

Example

Dim nIndex As Integer

ListBox1.Items.Clear()
dnsClient.HostName = strHostName

For nIndex = 0 To dnsClient.HostAliases - 1
 ListBox1.Items.Add(dnsClient.HostAlias(nIndex))
Next

See Also
DnsClient Class | SocketTools Namespace | HostAlias Field

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.HostAliases Property

Set or return the name of an alternate host file.

[Visual Basic]
Public Property HostFile As String

[C#]
public string HostFile {get; set;}

Property Value
A string which specifies a file name.

Remarks
The HostFile property is used to specify the name of an alternate file for resolving hostnames and IP
addresses. The host file is used as a database that maps an IP address to one or more hostnames, and is
used when setting the HostName or HostAddress properties and establishing a connection with a
remote host. The file is a plain text file, with each line in the file specifying a record, and each field
separated by spaces or tabs. The format of the file must be as follows:

 address hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This would be
entered as:

 127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are ignored
up to the end of the line. Blank lines are ignored, as are any lines which do not follow the required format.

Setting this property loads the file into memory allocated for the current thread. If the contents of the file
have changed after the method has been called, those changes will not be reflected when resolving
hostnames or addresses. To reload the host file from disk, set the property again with the same file name.
To remove the alternate host file from memory, specify an empty string as the file name.

If a host file has been specified, it is processed before the default host file when resolving a hostname into
an IP address, or an IP address into a hostname. If the host name or address is not found, or no host file
has been specified, a nameserver lookup is performed.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.HostFile Property

Returns information about the host operating system.

[Visual Basic]
Public ReadOnly Property HostInfo As String

[C#]
public string HostInfo {get;}

Property Value
A string which specifies the host operating system.

Remarks
The HostInfo property returns a string that includes the machine type and operating system for the host.
This information corresponds to it's HINFO record in the database.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.HostInfo Property

Set or return the name of the remote host.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies the host name.

Remarks
The HostName property should be set to the name of the remote system that you wish to obtain
information on. Setting this property causes a query to be submitted to the nameservers that you have
specified. If the host name can be resolved, the HostAddress property is set to the IP address of the host,
in dot-notation.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.HostName Property

Set the protocol to return service information for the specified host.

[Visual Basic]
Public Property HostProtocol As ProtocolType

[C#]
public DnsClient.ProtocolType HostProtocol {get; set;}

Property Value
A ProtocolType enumeration type.

Remarks
The HostProtocol property determines the protocol for which service information is returned.

See Also
DnsClient Class | SocketTools Namespace | ProtocolType Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.HostProtocol Property

Return the well-known services available for the specified host.

[Visual Basic]
Public ReadOnly Property HostServices As String

[C#]
public string HostServices {get;}

Property Value
A string that specifies the available services.

Remarks
The HostServices property returns a string that contains a list of well-known services for the specified
host. This corresponds to the WKS entry in the nameserver's database. The services returned depend on
the protocol specified in the HostProtocol property.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.HostServices Property

Determine if the component has been initialized.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
A boolean value which specifies if the component has been initialized.

Remarks
The IsInitialized property will return true if the object has been successfully initialized by the caller.

When an instance of the object is created, the class constructor will attempt to initialize itself using the
runtime license key specified using the RuntimeLicense attribute. If no runtime license key has been
specified, then the caller must explicitly initialize the object using the Initialize method.

See Also
DnsClient Class | SocketTools Namespace | Initialize Method | RuntimeLicense Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.IsInitialized Property

Set or return the last error that occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public DnsClient.ErrorCode LastError {get; set;}

Property Value
An ErrorCode enumeration type.

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a value is
assigned to this property, it must either be zero to clear the error or a valid error code for the control.

See Also
DnsClient Class | SocketTools Namespace | ErrorCode Enumeration | LastErrorString Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.LastError Property

Return a description of the last error that occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error.

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be used to
display a meaningful error message to a user, rather than just the numeric value returned by the LastError
property.

See Also
DnsClient Class | SocketTools Namespace | LastError Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.LastErrorString Property

Return the Internet address for the local system.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local system's Internet address in dot notation.

See Also
DnsClient Class | SocketTools Namespace | HostAddress Property | LocalName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.LocalAddress Property

Set or return the domain name for the local system.

[Visual Basic]
Public Property LocalDomain As String

[C#]
public string LocalDomain {get; set;}

Property Value
A string that specifies the local domain name.

Remarks
The LocalDomain property is used to set the domain name for the local host. The local domain name is
used when the name assigned to HostName property does not specify a domain (in other words, does
not have a dot in the name). In that case, the value of the LocalDomain property is appended to the
hostname.

If a domain name has been specified for the local system, the LocalDomain property is set to that value
by default.

See Also
DnsClient Class | SocketTools Namespace | HostAddress Property | HostName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.LocalDomain Property

Return the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the name of the local host. The name that is returned depends on the
configuration of the TCP/IP software.

See Also
DnsClient Class | SocketTools Namespace | HostName Property | LocalAddress Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.LocalName Property

Return the number of mail exchange records for the specified host.

[Visual Basic]
Public ReadOnly Property MailExchanges As Integer

[C#]
public int MailExchanges {get;}

Property Value
An integer value. A value of zero specifies that there are no mail exchange records for the host.

Remarks
The MailExchanges property returns the number of mail exchange (MX) records for the current host
specified by the HostName property. This property can be used in conjunction with the MailExchange
array to enumerate the servers responsible for accepting mail for a given domain.

Example
The following example populates a ListBox control with the host names of those servers responsible for
accepting email for the specified domain:

Dim nIndex As Integer

ListBox1.Items.Clear()
dnsClient.HostName = strHostName

For nIndex = 0 To dnsClient.MailExchanges - 1
 ListBox1.Items.Add(dnsClient.MailExchange(nIndex))
Next

See Also
DnsClient Class | SocketTools Namespace | MailExchange Field

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.MailExchanges Property

Set or return the port number used to establish a connection.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies the remote port number.

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the remote server. If the port number specifies a well-known port, the RemoteService
property will be updated with that name.

The valid range for port numbers is 1 through 65535, inclusive. Specifying a port number outside of this
range can cause an exception to be thrown. In most cases, it is recommended that you specify the default
port number for the protocol.

See Also
DnsClient Class | SocketTools Namespace | RemoteService Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.RemotePort Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.RemoteService.html

Set the number of times the control attempts to resolve a hostname.

[Visual Basic]
Public Property Retry As Integer

[C#]
public int Retry {get; set;}

Property Value
An integer value.

Remarks
The Retry property specifies the number of times, per nameserver, that the control attempts to resolve a
hostname or address. If attempts to query a nameserver fail, the control waits a period of time and then
resubmits the query. As the number of retries increase, the longer the period of time the control waits to
receive a response before attempting the query using another nameserver.

The default number of retries is four, with a minimum value of one and a maximum value of eight.

See Also
DnsClient Class | SocketTools Namespace | Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Retry Property

Return the address of the nameserver that resolved the query.

[Visual Basic]
Public ReadOnly Property ServerAddress As String

[C#]
public string ServerAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The ServerAddress property returns the Internet address of the nameserver that resolved the previous
query.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.ServerAddress Property

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public DnsClient.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

See Also
DnsClient Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.AttachThread.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.ThreadModelAttribute.html

Enable or disable exceptions being raised when a method fails.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Remarks
Error handling for method calls can be done in either of two different styles, according to the value of this
property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the LastError property. It is the
responsibility of the application to interpret the error code and act accordingly.

If the ThrowError property is set to true, then errors that occur when calling a method will cause an
exception to be raised. The application must handle the exception using the error handling facilities in the
language being used. For example, in Visual Basic, the Try..Catch..End Try statements can be used.

Note that if an error occurs while a property value is being accessed, an exception will always be raised
regardless of the value of this property.

Example
The following examples demonstrate the difference between handling errors when calling the Resolve
method. In the first example, the ThrowError property is set to False, which means that the Resolve
method will return True or False, depending on whether it succeeds or fails. If it returns False, the
LastError and LastErrorString properties can be used to determine the error.

In the second example, the ThrowError property is set to True, which causes the Resolve method to
throw an exception if an error occurs. This is handled by the Try..Catch..End Try block, and the
DnsClientException class provides information about the error.

dnsClient.ThrowError = False

If dnsClient.Resolve(strHostName, strHostAddress) = False Then
 MsgBox(dnsClient.LastErrorString, MsgBoxStyle.Exclamation)
 Exit Sub
End If

dnsClient.ThrowError = True

Try
 dnsClient.Resolve(strHostName, strHostAddress)
Catch ex As SocketTools.DnsClientException
 MsgBox(ex.Message, MsgBoxStyle.Exclamation)
End Try

See Also
DnsClient Class | SocketTools Namespace | DnsClientException Class | LastError Property | LastErrorString
Property

DnsClient.ThrowError Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Set or return the amount of time until a blocking operation fails.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies the timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and the
method returns to the caller.

Note that the Timeout property also determines the amount of time the component will spend
attempting to connect to a remote host. If a connection is not established within the given time period,
the connection attempt will fail.

See Also
DnsClient Class | SocketTools Namespace | Retry Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
A boolean value.

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls. When
enabled, each function call is logged to a file, including the function parameters, return value and error
code if applicable. This facility can be enabled and disabled at run time, and the trace log file can be
specified by setting the TraceFile property. All function calls that are being logged are appended to the
trace file, if it exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the networking components, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given object, all of the function calls made by
the process using any of the SocketTools components will be logged. For example, if you have an
application using both the FTP and POP3 components, and you set the Trace property to True on the FTP
component, function calls made by both the FTP and POP3 components will be logged. Additionally,
enabling a trace is cumulative, and tracing is not stopped until it is disabled for all components used by
the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the trace file is fairly large. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

Note that only those function calls made by the SocketTools networking components will be logged. Calls
made directly to the Windows Sockets API, or calls made by other components, will not be logged.

See Also
DnsClient Class | SocketTools Namespace | TraceFile Property | TraceFlags Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Trace Property

Specify the socket function trace output file.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies a file name.

Remarks
TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then
the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the controls being used.
If multiple controls have tracing enabled, the TraceFile property should be set to the same value for each
control. Since trace files can grow very quickly, even with modest applications, it is recommended that you
delete the file when it is no longer needed.

The trace logfile has the following format:

 TestApp 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27)
returned 0
TestApp 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1
[10035]
TestApp 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column is the local
time in hours, minutes and seconds. The third column is the elapsed time in milliseconds since the
previous function call. The fourth column identifies if the trace record is reporting information, a warning,
or an error. What follows is the name of the function being called, the arguments passed to the function
and the function's return value. If a warning or error is reported, the error code is appended to the record
(the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

If the specified logfile cannot be created, or the user does not have permission to modify an existing file,
the error is silently ignored and no trace output will be generated.

DnsClient.TraceFile Property

See Also
DnsClient Class | SocketTools Namespace | Trace Property | TraceFlags Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Set or return the network function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public DnsClient.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration type.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
components being used. If multiple components have tracing enabled, the TraceFlags property should be
set to the same value for each component. Changing the trace flags for any one instance of the
component will affect the logging performed for all components used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For example, if
data is being written through the control and an error indicating that the operation would block is
returned, only a warning is logged since the application simply needs to attempt to write the data at a
later time

See Also
DnsClient Class | SocketTools Namespace | Trace Property | TraceFile Property | TraceOptions
Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.TraceFlags Property

Gets a value which returns the current version of the DnsClient class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the DnsClient class
library. This value can be used by an application for validation and debugging purposes.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Version Property

The methods of the DnsClient class are listed below. For a complete list of DnsClient class members, see
the DnsClient Members topic.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Cancel Cancels the current blocking network operation.

Dispose Overloaded. Releases all resources used by
DnsClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initializes the component with the
specified runtime license key.

MatchHost Overloaded. Match a host name against one more
strings that may contain wildcards.

Query Perform a general nameserver query for a specific
type of record.

Reset Reset the internal state of the component.

Resolve Resolve a hostname to an Internet address.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the component and unload the
networking library.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the DnsClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the client session and
unloading the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.DnsClient.AttachThread.html

Cancels the current blocking network operation.

[Visual Basic]
Public Function Cancel() As Boolean

[C#]
public bool Cancel();

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
When the Cancel method is called, the blocked method may not immediately return. An internal flag is
set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other operation. It must allow the calling stack to
unwind, returning control back to the blocking method before calling any other methods.

Note that if the ThrowError property is set to True, calling the Cancel method will cause the blocked
method to raise an exception which must be handled by the application.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Cancel Method

Releases all resources used by DnsClient.

Overload List
Releases all resources used by DnsClient.

public void Dispose();

Releases the unmanaged resources allocated by the DnsClient class and optionally releases the managed
resources.

protected virtual void Dispose(bool);

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Dispose Method

Releases all resources used by DnsClient.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
DnsClient Class | SocketTools Namespace | DnsClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Dispose Method ()

Releases the unmanaged resources allocated by the DnsClient class and optionally releases the managed
resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the DnsClient class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
DnsClient Class | SocketTools Namespace | DnsClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the client session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Finalize Method

Initializes the component with the default runtime license key.

Overload List
Initializes the component with the default runtime license key.

public bool Initialize();

Initializes the component with the specified runtime license key.

public bool Initialize(string);

See Also
DnsClient Class | SocketTools Namespace | RuntimeLicenseAttribute Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Initialize Method

Initializes the component with the default runtime license key.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the component was initialized successfully with the default runtime
license key. A return value of False indicates that the license key is not valid.

Remarks
The Initialize method is used to explicitly initialize the component with the runtime license key that has
been specified using the RuntimeLicense attribute. Normally it is not necessary to call this method because
the component will automatically be initialized when the class constructor is called. This method should
only be called if the Uninitialize method was previously called.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use SocketTools components.

See Also
DnsClient Class | SocketTools Namespace | DnsClient.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Initialize Method ()

Initializes the component with the specified runtime license key.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Parameters
licenseKey

A string which specifies the runtime license key.

Return Value
A boolean value which specifies if the component was initialized successfully with the runtime license key.
A return value of False indicates that the license key is not valid.

Remarks
The Initialize method is used to explicitly initialize the component with a runtime license key, if one has not
been specified using the RuntimeLicense attribute.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use SocketTools components.

See Also
DnsClient Class | SocketTools Namespace | DnsClient.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Initialize Method (String)

Match a host name against one more strings that may contain wildcards.

Overload List
Match a host name against one more strings that may contain wildcards.

public bool MatchHost(string,string);

Match a host name against one more strings that may contain wildcards.

public bool MatchHost(string,string,bool);

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.MatchHost Method

Match a host name against one more strings that may contain wildcards.

[Visual Basic]
Overloads Public Function MatchHost(_
 ByVal hostName As String, _
 ByVal hostMask As String _
) As Boolean

[C#]
public bool MatchHost(
 string hostName,
 string hostMask
);

Parameters
hostName

A string which specifies the host name or Internet address to match against the host mask string.

hostMask
A string which specifies one or more values to match against the host name. The asterisk character can
be used to match any number of characters in the host name, and the question mark can be used to
match any single character. Multiple values may be specified by separating them with a semicolon.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
The MatchHost method provides a convenient way for an application to determine if a given host name
matches one or more mask strings which may contain wildcard characters. For example, the host name
could be "www.microsoft.com" and the host mask string could be "*.microsoft.com". In this example, the
function would return True, indicating the host name matched the mask. However, if the mask string was
"*.net" then the function would return False, indicating that there was no match. Multiple mask values can
be combined by separating them with a semicolon; for example, the mask "*.com;*.org" would match any
host name in either the .com or .org top-level domains.

See Also
DnsClient Class | SocketTools Namespace | DnsClient.MatchHost Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.MatchHost Method (String, String)

Match a host name against one more strings that may contain wildcards.

[Visual Basic]
Overloads Public Function MatchHost(_
 ByVal hostName As String, _
 ByVal hostMask As String, _
 ByVal resolve As Boolean _
) As Boolean

[C#]
public bool MatchHost(
 string hostName,
 string hostMask,
 bool resolve
);

Parameters
hostName

A string which specifies the host name or Internet address to match against the host mask string.

hostMask
A string which specifies one or more values to match against the host name. The asterisk character can
be used to match any number of characters in the host name, and the question mark can be used to
match any single character. Multiple values may be specified by separating them with a semicolon.

resolve
A boolean value which determines if the host name or address should be resolved when matching the
host against the mask string. If this parameter is True, two checks against the host mask string will be
performed; once for the host name specified and once for its IP address. If this parameter is False, then
the match is made only against the host name string provided.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
The MatchHost method provides a convenient way for an application to determine if a given host name
matches one or more mask strings which may contain wildcard characters. For example, the host name
could be "www.microsoft.com" and the host mask string could be "*.microsoft.com". In this example, the
function would return True, indicating the host name matched the mask. However, if the mask string was
"*.net" then the function would return False, indicating that there was no match. Multiple mask values can
be combined by separating them with a semicolon; for example, the mask "*.com;*.org" would match any
host name in either the .com or .org top-level domains.

See Also
DnsClient Class | SocketTools Namespace | DnsClient.MatchHost Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.MatchHost Method (String, String, Boolean)

Perform a general nameserver query for a specific type of record.

[Visual Basic]
Public Function Query(_
 ByVal hostName As String, _
 ByVal recordType As RecordType, _
 ByRef recordData As String _
) As Boolean

[C#]
public bool Query(
 string hostName,
 RecordType recordType,
 ref string recordData
);

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
The Query method performs a general nameserver query for a given record based on the name and
type. This method will not use a local host file when performing host name or address queries.

To resolve a hostname into an Internet address, it is recommended that you use the Resolve method.

Example
The following example queries a nameserver for the TXT record for the specified remote host. If a record
is found, its value will be displayed in a message box.

Dim strRecord As String

If dnsClient.Query(TextBox1.Text, RecordType.dnsRecordTXT, strRecord) Then
 MsgBox(strRecord, MsgBoxStyle.Information)
End If

See Also
DnsClient Class | SocketTools Namespace | HostAddress Property | HostName Property | Resolve Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Query Method

Reset the internal state of the component.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method resets the internal state of the component and restores property values to their
defaults.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Reset Method

Resolve a hostname to an Internet address.

[Visual Basic]
Public Function Resolve(_
 ByVal hostName As String, _
 ByRef hostAddress As String _
) As Boolean

[C#]
public bool Resolve(
 string hostName,
 ref string hostAddress
);

Parameters
hostName

A string which specifies the hostname to resolve.

hostAddress
A string which will contain the Internet address for the specified hostname when the method returns. If
the hostname cannot be resolved, this parameter will be set to an empty string.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
The Resolve method is used to convert a host name into an Internet address. Note that unlike the Query
method, this method will use the local host file when resolving the host name.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Resolve Method

Uninitialize the component and unload the networking library.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method explicitly releases resources allocated by the component. Normally it is not
required that the application call this method since it is automatically called by the class destructor. This
method should only be used if the Initialize method was explicitly called.

See Also
DnsClient Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.Uninitialize Method

The events of the DnsClient class are listed below. For a complete list of DnsClient class members, see
the DnsClient Members topic.

Public Instance Events

OnCancel Occurs when a blocking network operation is
canceled using the Cancel method.

OnError Occurs when a method fails.

OnTimeout Occurs when a blocking network operation
exceeds the timeout period specified by the
Timeout property.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient Events

Occurs when a blocking network operation is canceled using the Cancel method.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The event handler receives an argument of type EventArgs.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.OnCancel Event

Occurs when a method fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type DnsClient.ErrorEventArgs containing data related to this
event. The following DnsClient.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Returns a description of the last error that
occurred.

Error Returns the value of the last error that has
occurred.

Remarks
The event handler receives an argument of type ErrorEventArgs containing data related to this event. The
following ErrorEventArgs properties provide information specific to this event.

Property Description

Error Returns the value of the last error that has occurred

Description Returns a description of the last error that occurred

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see DnsClient.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.DnsClient.ErrorEventArgs

[Visual Basic]
Public Class DnsClient.ErrorEventArgs
 Inherits EventArgs

[C#]
public class DnsClient.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.DnsClient (in SocketTools.DnsClient.dll)

See Also
DnsClient.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.ErrorEventArgs Class

DnsClient.ErrorEventArgs overview

Public Instance Constructors

 DnsClient.ErrorEventArgs Constructor Initializes a new instance of the
DnsClient.ErrorEventArgs class.

Public Instance Properties

Description Returns a description of the last error that
occurred.

Error Returns the value of the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
DnsClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.ErrorEventArgs Members

Initializes a new instance of the DnsClient.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public DnsClient.ErrorEventArgs();

See Also
DnsClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.ErrorEventArgs Constructor

The properties of the DnsClient.ErrorEventArgs class are listed below. For a complete list of
DnsClient.ErrorEventArgs class members, see the DnsClient.ErrorEventArgs Members topic.

Public Instance Properties

Description Returns a description of the last error that
occurred.

Error Returns the value of the last error that has
occurred.

See Also
DnsClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.ErrorEventArgs Properties

Returns a description of the last error that occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
String which describes the error.

See Also
DnsClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.ErrorEventArgs.Description Property

Returns the value of the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public DnsClient.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
DnsClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.ErrorEventArgs.Error Property

Occurs when a blocking network operation exceeds the timeout period specified by the Timeout property.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The event handler receives an argument of type EventArgs.

See Also
DnsClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.OnTimeout Event

Specifies the error codes returned by the DnsClient class.

[Visual Basic]
Public Enum DnsClient.ErrorCode

[C#]
public enum DnsClient.ErrorCode

Remarks
The DnsClient class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

DnsClient.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.DnsClient (in SocketTools.DnsClient.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Provides constant values for the HostProtocol property.

[Visual Basic]
Public Enum DnsClient.ProtocolType

[C#]
public enum DnsClient.ProtocolType

Members

Member Name Description

protocolTCP Transmission control protocol.

protocolUDP User datagram protocol.

protocolDefault The default protocol; the same value as
ProtocolType.protocolTCP.

Requirements
Namespace: SocketTools

Assembly: SocketTools.DnsClient (in SocketTools.DnsClient.dll)

See Also
SocketTools Namespace | HostProtocol Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.ProtocolType Enumeration

Provides constant values for record queries

[Visual Basic]
Public Enum DnsClient.RecordType

[C#]
public enum DnsClient.RecordType

Remarks
The dnsRecordAddress record type is used to resolve a host name into an Internet address, and is the
most common type of nameserver query that is performed. This is the type of query that is used when
you set the HostName property and then read the HostAddress property to obtain its address.

The dnsRecordPTR record type is used to resolve an Internet address into a host name, and is also
referred to as a reverse DNS lookup. This is the same type of query that is performed when you set the
HostAddress property and then read the HostName property to determine the host name.

Members

Member Name Description

recordNone No record type.

recordAddress Host address record.

recordNS Authoritative nameserver record.

recordCNAME Canonical name (alias) record.

recordSOA Start of Authority record.

recordWKS Well known services record.

recordPTR Domain name.

recordHINFO Host information record.

recordMINFO Mailbox information record.

recordMX Mail exchange host record.

recordTXT Text resource record.

recordRP Responsible Person (RP) resource record.

recordX25 X.25 resource record.

recordISDN ISDN resource record.

recordRT Route Through (RT) resource record.

recordAAAA IPv6 address record.

recordLOC Location resource record.

recordUINFO User information.

recordUID User ID record.

recordGID Group ID record.

DnsClient.RecordType Enumeration

Requirements
Namespace: SocketTools

Assembly: SocketTools.DnsClient (in SocketTools.DnsClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the DnsClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum DnsClient.TraceOptions

[C#]
[Flags]
public enum DnsClient.TraceOptions

Remarks
The DnsClient class uses the TraceOptions enumeration to specify what kind of debugging information is
written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.DnsClient (in SocketTools.DnsClient.dll)

See Also
SocketTools Namespace

DnsClient.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub DnsClient.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void DnsClient.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
The event handler receives an argument of type ErrorEventArgs containing data related to this event. The
following ErrorEventArgs properties provide information specific to this event.

Property Description

Error Returns the value of the last error that has occurred

Description Returns a description of the last error that occurred

Requirements
Namespace: SocketTools

Assembly: SocketTools.DnsClient (in SocketTools.DnsClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.OnErrorEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see DnsClient.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.DnsClient.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class DnsClient.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class DnsClient.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use SocketTools components.

Example

<Assembly: SocketTools.DnsClient.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.DnsClient.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.DnsClient (in SocketTools.DnsClient.dll)

See Also
DnsClient.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.RuntimeLicenseAttribute Class

DnsClient.RuntimeLicenseAttribute overview

Public Instance Constructors

 DnsClient.RuntimeLicenseAttribute Constructor Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
DnsClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public DnsClient.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use SocketTools components.

See Also
DnsClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.RuntimeLicenseAttribute Constructor

The properties of the DnsClient.RuntimeLicenseAttribute class are listed below. For a complete list of
DnsClient.RuntimeLicenseAttribute class members, see the DnsClient.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
DnsClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
DnsClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClient.RuntimeLicenseAttribute.LicenseKey Property

This exception is thrown when a networking error occurs.

For a list of all members of this type, see DnsClientException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.DnsClientException

[Visual Basic]
Public Class DnsClientException
 Inherits ApplicationException

[C#]
public class DnsClientException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
This exception can be thrown when a property is set that results in a networking error, or as the result of
calling a method that fails when the ThrowError property has been set to True.

Requirements
Namespace: SocketTools

Assembly: SocketTools.DnsClient (in SocketTools.DnsClient.dll)

See Also
DnsClientException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClientException Class

DnsClientException overview

Public Instance Constructors

 DnsClientException Overloaded. Initializes a new instance of the
DnsClientException class.

Public Instance Properties

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Returns a message that describes the current
exception.

Number Return the last error that occurred.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

DnsClientException Members

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
DnsClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the DnsClientException class without a message.

Overload List
Initializes a new instance of the DnsClientException class without a message.

public DnsClientException();

Initializes a new instance of the DnsClientException class with the specific error code value.

public DnsClientException(ErrorCode);

Initializes a new instance of the DnsClientException class with the specific error code value.

public DnsClientException(int);

Initializes a new instance of the DnsClientException class with a message.

public DnsClientException(string);

Initializes a new instance of the DnsClientException class with a message and a reference to the inner
exception that is the cause of this exception.

public DnsClientException(string,Exception);

See Also
DnsClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClientException Constructor

Initializes a new instance of the DnsClientException class without a message.

[Visual Basic]
Overloads Public Sub New()

[C#]
public DnsClientException();

See Also
DnsClientException Class | SocketTools Namespace | DnsClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClientException Constructor ()

Initializes a new instance of the DnsClientException class with a message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public DnsClientException(
 string message
);

Parameters
message

The message to display with this exception.

See Also
DnsClientException Class | SocketTools Namespace | DnsClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClientException Constructor (String)

Initializes a new instance of the DnsClientException class with a message and a reference to the inner
exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal inner As Exception _
)

[C#]
public DnsClientException(
 string message,
 Exception inner
);

Parameters
message

The message to display with this exception.

inner
The exception that is the cause of the current exception. If the inner parameter is not a null reference
(Nothing in Visual Basic), the current exception is raised in a catch block that handles the inner
exception.

See Also
DnsClientException Class | SocketTools Namespace | DnsClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClientException Constructor (String, Exception)

Initializes a new instance of the DnsClientException class with the specific error code value.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public DnsClientException(
 int code
);

Parameters
code

An integer value which specifies the error that caused the exception to be raised.

See Also
DnsClientException Class | SocketTools Namespace | DnsClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClientException Constructor (Int32)

Initializes a new instance of the DnsClientException class with the specific error code value.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As ErrorCode _
)

[C#]
public DnsClientException(
 ErrorCode code
);

Parameters
code

An ErrorCode enumeration which specifies the error that caused the exception to be raised.

See Also
DnsClientException Class | SocketTools Namespace | DnsClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClientException Constructor (ErrorCode)

The properties of the DnsClientException class are listed below. For a complete list of
DnsClientException class members, see the DnsClientException Members topic.

Public Instance Properties

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Returns a message that describes the current
exception.

Number Return the last error that occurred.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
DnsClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClientException Properties

Returns a message that describes the current exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string that explains the reason for the exception, or an empty string.

Remarks
The Message property returns a description of the last error that caused the exception. This can be used
to display a meaningful error message to a user, rather than just the numeric value returned by the
Number property.

See Also
DnsClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClientException.Message Property

Return the last error that occurred.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An ErrorCode enumeration type that specifies the error that caused the exception.

See Also
DnsClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClientException.Number Property

The methods of the DnsClientException class are listed below. For a complete list of
DnsClientException class members, see the DnsClientException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
DnsClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClientException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
ToString returns a representation of the current exception that is intended to be understood by humans.
Where the exception contains culture-sensitive data, the string representation returned by ToString is
required to take into account the current system culture. Although there are no exact requirements for the
format of the returned string, it should attempt to reflect the value of the object as perceived by the user.

The default implementation of ToString obtains the description of the error that caused the exception. If
there is no error message or if it is an empty string (""), then no error message is returned.

This method overrides Object.ToString.

See Also
DnsClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

DnsClientException.ToString Method

Encode and decode files using standard algorithms such as base64, uuencode and quoted-printable. The
class can also be used to compress and expand files, either separately or as part of the encoding process.

For a list of all members of this type, see FileEncoder Members.

System.Object
 SocketTools.FileEncoder

[Visual Basic]
Public Class FileEncoder
 Implements IDisposable

[C#]
public class FileEncoder : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The FileEncoding class provides methods for encoding and decoding binary files, typically attachments to
email messages. The process of encoding converts the contents of a binary file to printable 7-bit ASCII
text. Decoding reverses the process, converting a previously encoded text file back into a binary file.

There are two primary types of encoding used, uucode and base64. The uucode algorithm (so called
because the programs to perform the conversion were called uuencode and uudecode) is commonly
used on UNIX systems and is still widely used when attaching binary files to USENET newsgroup posts. The
base64 algorithm is most commonly used with email attachments, and is often referred to as MIME
encoding since this is the encoding method specified in the MIME standards document. The class also
supports a newer encoding format called yEnc, which has become popular for posting binary files to
Usenet newsgroups.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileEncoder (in SocketTools.FileEncoder.dll)

See Also
FileEncoder Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder Class

FileEncoder overview

Public Instance Constructors

 FileEncoder Constructor Initializes a new instance of the FileEncoder class.

Public Instance Properties

DecodedText Set the value of the current decoded text string, or
return the decoded value of an encoded string.

DecryptedText Gets and sets the value of the current decrypted
string.

EncodedText Set the value of the current encoded text string, or
return the encoded value of a plain text string.

Encoding Get or set the current encoding method.

EncryptedText Gets and sets the value of the current encrypted
string.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

Password Gets and sets the password used to encrypt and
decrypt data.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Version Gets a value which returns the current version of
the FileEncoder class library.

Public Instance Methods

CompressData Compresses the contents of the specified buffer.

CompressFile Overloaded. Compress the contents of the
specified file.

DecodeFile Overloaded. Decodes an encoded file, storing the
contents in the specified file.

DecryptData Overloaded. Decrypts the contents of a byte array.

DecryptFile Overloaded. Decrypts the contents of a file using
AES-256 encryption.

Dispose Overloaded. Releases all resources used by
FileEncoder.

FileEncoder Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.DecryptedText.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.EncryptedText.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.Password.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.Dispose_overload_1.html

EncodeFile Overloaded. Encodes a file, storing the contents as
printable text in the specified file.

EncryptData Overloaded. Encrypts the contents of a byte array.

EncryptFile Overloaded. Encrypts the contents of a file using
AES-256 encryption.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

ExpandData Expands the contents of the compressed buffer.

ExpandFile Overloaded. Expands the contents of a previously
compressed file.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initializes the component with the
specified runtime license key.

Reset Reset the internal state of the class back to its
defaults.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the component.

Public Instance Events

OnError Occurs when a method fails.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the FileEncoder class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the object.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.Reset.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.Dispose_overload_2.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.Finalize.html

Initializes a new instance of the FileEncoder class.

[Visual Basic]
Public Sub New()

[C#]
public FileEncoder();

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder Constructor

The properties of the FileEncoder class are listed below. For a complete list of FileEncoder class
members, see the FileEncoder Members topic.

Public Instance Properties

DecodedText Set the value of the current decoded text string, or
return the decoded value of an encoded string.

DecryptedText Gets and sets the value of the current decrypted
string.

EncodedText Set the value of the current encoded text string, or
return the encoded value of a plain text string.

Encoding Get or set the current encoding method.

EncryptedText Gets and sets the value of the current encrypted
string.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

Password Gets and sets the password used to encrypt and
decrypt data.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Version Gets a value which returns the current version of
the FileEncoder class library.

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.DecryptedText.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.EncryptedText.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.Password.html

Set the value of the current decoded text string, or return the decoded value of an encoded string.

[Visual Basic]
Public Property DecodedText As String

[C#]
public string DecodedText {get; set;}

Property Value
Returns a string which contains the decoded value of an encoded string.

Remarks
The DecodedText property is used to specify the unencoded value of a string, or return the decoded
value of a previously encoded string. If the property is set, the current plain (unencoded) text is changed
to that value and reading the EncodedText property will return the encoded string for this value. If the
property is read, it will return the decoded value of the EncodedText property.

The class will use the value of the Encoding property to determine how the text should be decoded. Note
that only base64 and quoted-printable encoding is supported when decoding a string using this property.
To decode the contents of a file, it is recommended that you use the DecodeFile method.

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.DecodedText Property

Set the value of the current encoded text string, or return the encoded value of a plain text string.

[Visual Basic]
Public Property EncodedText As String

[C#]
public string EncodedText {get; set;}

Property Value
Returns a string which contains the encoded value of a plain text string.

Remarks
The EncodedText property is used to specify the encoded value of a string, or return the encoded value
of a plain text (decoded) string. If the property is set, the current value will be changed to the encoded
value, and the DecodedText property will return the plain text value of the encoded string. If the property
is read, it will return the encoded value of the DecodedText property.

The class will use the value of the Encoding property to determine how the text should be encoded. Note
that only base64 and quoted-printable encoding is supported when encoding a string using this property.
To encode the contents of a file, it is recommended that you use the EncodeFile method.

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.EncodedText Property

Get or set the current encoding method.

[Visual Basic]
Public Property Encoding As EncodingType

[C#]
public FileEncoder.EncodingType Encoding {get; set;}

Property Value
Returns an EncodingType enumeration value which specifies the current encoding method.

Remarks
The Encoding property determines how the specified file will be encoded or decoded by the class. The
value of this property specifies the default encoding method for the DecodeFile and EncodeFile
methods. Unless needed for a specific purpose, it is strongly recommended that binary files be encoded
with the base64 algorithm for maximum compatibility.

The Encoding property also determines the encoding method that is used when the DecodedText and
EncodedText properties are used to decode and encode text strings.

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.Encoding Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.IsInitialized Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public FileEncoder.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Remarks
A string which describes the last error that has occurred. The LastErrorString property can be used to
obtain a description of the last error that occurred for the current instance of the class. It is important to
note that this value only has meaning if the previous method indicates that an error has actually occurred.

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.LastErrorString Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.ThrowError Property

Gets a value which returns the current version of the FileEncoder class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the FileEncoder
class library. This value can be used by an application for validation and debugging purposes.

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.Version Property

The methods of the FileEncoder class are listed below. For a complete list of FileEncoder class members,
see the FileEncoder Members topic.

Public Instance Methods

CompressData Compresses the contents of the specified buffer.

CompressFile Overloaded. Compress the contents of the
specified file.

DecodeFile Overloaded. Decodes an encoded file, storing the
contents in the specified file.

DecryptData Overloaded. Decrypts the contents of a byte array.

DecryptFile Overloaded. Decrypts the contents of a file using
AES-256 encryption.

Dispose Overloaded. Releases all resources used by
FileEncoder.

EncodeFile Overloaded. Encodes a file, storing the contents as
printable text in the specified file.

EncryptData Overloaded. Encrypts the contents of a byte array.

EncryptFile Overloaded. Encrypts the contents of a file using
AES-256 encryption.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

ExpandData Expands the contents of the compressed buffer.

ExpandFile Overloaded. Expands the contents of a previously
compressed file.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initializes the component with the
specified runtime license key.

Reset Reset the internal state of the class back to its
defaults.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the component.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the FileEncoder class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the

FileEncoder Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.Dispose_overload_1.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.Reset.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.Dispose_overload_2.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.Finalize.html

resources allocated for the object.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Compresses the contents of the specified buffer.

[Visual Basic]
Public Function CompressData(_
 ByVal inputBuffer As Byte(), _
 ByVal inputLength As Integer, _
 ByVal outputBuffer As Byte(), _
 ByRef outputLength As Integer _
) As Boolean

[C#]
public bool CompressData(
 byte[] inputBuffer,
 int inputLength,
 byte[] outputBuffer,
 ref int outputLength
);

Parameters
inputBuffer

A byte array which contains the data to be compressed.

inputLength
An integer value which specifies the number of bytes to be compressed.

outputBuffer
A byte array which will contain the compressed data.

outputLength
An integer value which specifies the maximum number of bytes that can be copied into the output
buffer.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

See Also
FileEncoder Class | SocketTools Namespace | CompressFile | ExpandData | ExpandFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.CompressData Method

Compress the contents of the specified file.

Overload List
Compress the contents of the specified file.

public bool CompressFile(string,string);

Compress the contents of the specified file.

public bool CompressFile(string,string,CompressionType);

Compress the contents of the specified file.

public bool CompressFile(string,string,CompressionType,CompressionLevel);

See Also
FileEncoder Class | SocketTools Namespace | CompressData | ExpandData | ExpandFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.CompressFile Method

Compress the contents of the specified file.

[Visual Basic]
Overloads Public Function CompressFile(_
 ByVal inputFile As String, _
 ByVal outputFile As String _
) As Boolean

[C#]
public bool CompressFile(
 string inputFile,
 string outputFile
);

Parameters
inputFile

The name of the file that will be compressed. The file must exist, and it must be a regular file that can
be opened for reading by the current process. An error will be returned if a character device, such as
the console, is specified as the file name.

outputFile
The name of the file that is to contain the compressed file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as the console, is specified as the
file name.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
It is permitted to specify an empty string as the output file name. In this case, the method will create a
temporary file in the directory specified by the TEMP environment variable. After the file has been
compressed, the OutputFile property will be set the name of the temporary file that has been created. It
is the responsibility of the application to delete this temporary file after it is no longer needed.

Note that the compressed file is not stored in an archive format that is recognized by third-party
applications such as PKZip or WinZip.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.CompressFile Overload List | CompressData |
ExpandData | ExpandFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.CompressFile Method (String, String)

Compress the contents of the specified file.

[Visual Basic]
Overloads Public Function CompressFile(_
 ByVal inputFile As String, _
 ByVal outputFile As String, _
 ByVal compressionType As CompressionType _
) As Boolean

[C#]
public bool CompressFile(
 string inputFile,
 string outputFile,
 CompressionType compressionType
);

Parameters
inputFile

The name of the file that will be compressed. The file must exist, and it must be a regular file that can
be opened for reading by the current process. An error will be returned if a character device, such as
the console, is specified as the file name.

outputFile
The name of the file that is to contain the compressed file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as the console, is specified as the
file name.

compressionType
One of the CompressionType enumeration values which determines the algorithm that will be used to
compress the data.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
It is permitted to specify an empty string as the output file name. In this case, the method will create a
temporary file in the directory specified by the TEMP environment variable. After the file has been
compressed, the OutputFile property will be set the name of the temporary file that has been created. It
is the responsibility of the application to delete this temporary file after it is no longer needed.

Note that the compressed file is not stored in an archive format that is recognized by third-party
applications such as PKZip or WinZip.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.CompressFile Overload List | CompressData |
ExpandData | ExpandFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.CompressFile Method (String, String, CompressionType)

Compress the contents of the specified file.

[Visual Basic]
Overloads Public Function CompressFile(_
 ByVal inputFile As String, _
 ByVal outputFile As String, _
 ByVal compressionType As CompressionType, _
 ByVal compressionLevel As CompressionLevel _
) As Boolean

[C#]
public bool CompressFile(
 string inputFile,
 string outputFile,
 CompressionType compressionType,
 CompressionLevel compressionLevel
);

Parameters
inputFile

The name of the file that will be compressed. The file must exist, and it must be a regular file that can
be opened for reading by the current process. An error will be returned if a character device, such as
the console, is specified as the file name.

outputFile
The name of the file that is to contain the compressed file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as the console, is specified as the
file name.

compressionType
One of the CompressionType enumeration values which determines the algorithm that will be used to
compress the data.

compressionLevel
One of the CompressionLevel enumeration values which specifies the compression level to use. A
value of zero specifies that the default compression level appropriate for the selected algorithm should
be used, balancing resource usage and the compression ratio of the data. A value of 1 specifies that
the compression should be performed using minimal memory resources, at the expense of the
compression ratio. The maximum value of 9 specifies that the algorithm should use more memory to
achieve the maximum compression ratio. It is recommended that most applications use the default
compression level.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
It is permitted to specify an empty string as the output file name. In this case, the method will create a
temporary file in the directory specified by the TEMP environment variable. After the file has been

FileEncoder.CompressFile Method (String, String, CompressionType,
CompressionLevel)

compressed, the OutputFile property will be set the name of the temporary file that has been created. It
is the responsibility of the application to delete this temporary file after it is no longer needed.

Note that the compressed file is not stored in an archive format that is recognized by third-party
applications such as PKZip or WinZip.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.CompressFile Overload List | CompressData |
ExpandData | ExpandFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Decodes an encoded file, storing the contents in the specified file.

Overload List
Decodes an encoded file, storing the contents in the specified file.

public bool DecodeFile(string,string);

Decodes an encoded file, storing the contents in the specified file.

public bool DecodeFile(string,string,EncodingType);

See Also
FileEncoder Class | SocketTools Namespace | DecryptFile | EncodeFile | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.DecodeFile Method

Decodes an encoded file, storing the contents in the specified file.

[Visual Basic]
Overloads Public Function DecodeFile(_
 ByVal inputFile As String, _
 ByVal outputFile As String _
) As Boolean

[C#]
public bool DecodeFile(
 string inputFile,
 string outputFile
);

Parameters
inputFile

A string which specifies the name of the file to be decoded. The file must exist, and it must be a
regular file that can be opened for reading by the current process. An error will be returned if a
character device, such as CON: is specified as the file name.

outputFile
The name of the file that is to contain the decoded file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as CON: is specified as the file
name.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.DecodeFile Overload List | DecryptFile |
EncodeFile | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.DecodeFile Method (String, String)

Decodes an encoded file, storing the contents in the specified file.

[Visual Basic]
Overloads Public Function DecodeFile(_
 ByVal inputFile As String, _
 ByVal outputFile As String, _
 ByVal encodingType As EncodingType _
) As Boolean

[C#]
public bool DecodeFile(
 string inputFile,
 string outputFile,
 EncodingType encodingType
);

Parameters
inputFile

A string which specifies the name of the file to be decoded. The file must exist, and it must be a
regular file that can be opened for reading by the current process. An error will be returned if a
character device, such as CON: is specified as the file name.

outputFile
The name of the file that is to contain the decoded file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as CON: is specified as the file
name.

encodingType
An EncodingType enumeration value which specifies the type of encoding that was used to encode
the data.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.DecodeFile Overload List | DecryptFile |
EncodeFile | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.DecodeFile Method (String, String, EncodingType)

Decrypts the contents of a byte array.

Overload List
Decrypts the contents of a byte array.

public bool DecryptData(byte[],int,byte[],ref int);

Decrypts the contents of a System.IO.MemoryStream object.

public bool DecryptData(MemoryStream,MemoryStream);

Decrypts the contents of a byte array.

public bool DecryptData(string,byte[],int,byte[],ref int);

Decrypts the contents of a System.IO.MemoryStream object.

public bool DecryptData(string,MemoryStream,MemoryStream);

Decrypts the contents of a string.

public bool DecryptData(string,string,ref string);

Decrypts the contents of a string.

public bool DecryptData(string,ref string);

See Also
FileEncoder Class | SocketTools Namespace | DecryptFile | EncryptData | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.DecryptData Method

Decrypts the contents of a byte array.

[Visual Basic]
Overloads Public Function DecryptData(_
 ByVal password As String, _
 ByVal inputBuffer As Byte(), _
 ByVal inputSize As Integer, _
 ByVal outputBuffer As Byte(), _
 ByRef outputSize As Integer _
) As Boolean

[C#]
public bool DecryptData(
 string password,
 byte[] inputBuffer,
 int inputSize,
 byte[] outputBuffer,
 ref int outputSize
);

Parameters
password

A string of characters that will be used to generate the decryption key. This parameter may be a zero-
length string, in which case a default internal hash value is used to decrypt the data. Password strings
that exceed 215 characters will be truncated.

inputBuffer
A byte array which contains the data to be decrypted.

inputSize
An integer value which specifies the number of bytes in the byte array which contains the encrypted
data.

outputBuffer
A byte array which will contain the decrypted data when the method returns.

outputSize
An integer value which specifies the maximum number of bytes that can be stored in the output byte
array. When the method returns, this parameter will contain the number of decrypted bytes in the
buffer.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will decrypt the contents of a byte array using a 256-bit AES (Advanced Encryption Standard)
algorithm and returns a copy of the decrypted data to the caller. The password (or passphrase) provided
by the caller is used to generate a SHA-256 hash value which is used as part of the decryption process.
The password value must be identical to the value used to encrypt the data using the EncryptData
method.

Due to how the SHA-256 hash is generated, this method cannot be used to decrypt data that was

FileEncoder.DecryptData Method (String, Byte[], Int32, Byte[], Int32)

encrypted using another third-party library. It can only be used to decrypt data that was previously
encrypted using EncryptData.

If you wish to decrypt the contents of a file, use the DecryptFile method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.DecryptData Overload List | DecryptFile |
EncryptData | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Decrypts the contents of a byte array.

[Visual Basic]
Overloads Public Function DecryptData(_
 ByVal inputBuffer As Byte(), _
 ByVal inputSize As Integer, _
 ByVal outputBuffer As Byte(), _
 ByRef outputSize As Integer _
) As Boolean

[C#]
public bool DecryptData(
 byte[] inputBuffer,
 int inputSize,
 byte[] outputBuffer,
 ref int outputSize
);

Parameters
inputBuffer

A byte array which contains the data to be decrypted.

inputSize
An integer value which specifies the number of bytes in the byte array which contains the encrypted
data.

outputBuffer
A byte array which will contain the decrypted data when the method returns.

outputSize
An integer value which specifies the maximum number of bytes that can be stored in the output byte
array. When the method returns, this parameter will contain the number of decrypted bytes in the
buffer.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will decrypt the contents of a byte array using a 256-bit AES (Advanced Encryption Standard)
algorithm and returns a copy of the decrypted data to the caller. The value of the Password property is
used to generate a SHA-256 hash value which is used as part of the decryption process. The password
value must be identical to the value used to encrypt the data using the EncryptData method.

Due to how the SHA-256 hash is generated, this method cannot be used to decrypt data that was
encrypted using another third-party library. It can only be used to decrypt data that was previously
encrypted using EncryptData.

If you wish to decrypt the contents of a file, use the DecryptFile method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the

FileEncoder.DecryptData Method (Byte[], Int32, Byte[], Int32)

required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.DecryptData Overload List | DecryptFile |
EncryptData | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Decrypts the contents of a System.IO.MemoryStream object.

[Visual Basic]
Overloads Public Function DecryptData(_
 ByVal password As String, _
 ByVal inputStream As MemoryStream, _
 ByVal outputStream As MemoryStream _
) As Boolean

[C#]
public bool DecryptData(
 string password,
 MemoryStream inputStream,
 MemoryStream outputStream
);

Parameters
password

A string of characters that will be used to generate the decryption key. This parameter may be a zero-
length string, in which case a default internal hash value is used to decrypt the data. Password strings
that exceed 215 characters will be truncated.

inputStream
A MemoryStream object which contains the data to be decrypted. The stream must be readable.

outputStream
A MemoryStream object which will contain the decrypted data when the method returns. The caller
must create a stream that is writable, and the contents of the stream will be replaced with the
decrypted data.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will decrypt the contents of a byte array using a 256-bit AES (Advanced Encryption Standard)
algorithm and returns a copy of the decrypted data to the caller. The password (or passphrase) provided
by the caller is used to generate a SHA-256 hash value which is used as part of the decryption process.
The password value must be identical to the value used to encrypt the data using the EncryptData
method.

Due to how the SHA-256 hash is generated, this method cannot be used to decrypt data that was
encrypted using another third-party library. It can only be used to decrypt data that was previously
encrypted using EncryptData.

If you wish to decrypt the contents of a file, use the DecryptFile method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

FileEncoder.DecryptData Method (String, MemoryStream,
MemoryStream)

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.DecryptData Overload List | DecryptFile |
EncryptData | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Decrypts the contents of a System.IO.MemoryStream object.

[Visual Basic]
Overloads Public Function DecryptData(_
 ByVal inputStream As MemoryStream, _
 ByVal outputStream As MemoryStream _
) As Boolean

[C#]
public bool DecryptData(
 MemoryStream inputStream,
 MemoryStream outputStream
);

Parameters
inputStream

A MemoryStream object which contains the data to be decrypted. The stream must be readable.

outputStream
A MemoryStream object which will contain the decrypted data when the method returns. The caller
must create a stream that is writable, and the contents of the stream will be replaced with the
decrypted data.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will decrypt the contents of a byte array using a 256-bit AES (Advanced Encryption Standard)
algorithm and returns a copy of the decrypted data to the caller. The value of the Password property is
used to generate a SHA-256 hash value which is used as part of the decryption process. The password
value must be identical to the value used to encrypt the data using the EncryptData method.

Due to how the SHA-256 hash is generated, this method cannot be used to decrypt data that was
encrypted using another third-party library. It can only be used to decrypt data that was previously
encrypted using EncryptData.

If you wish to decrypt the contents of a file, use the DecryptFile method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.DecryptData Overload List | DecryptFile |
EncryptData | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.DecryptData Method (MemoryStream, MemoryStream)

Decrypts the contents of a string.

[Visual Basic]
Overloads Public Function DecryptData(_
 ByVal password As String, _
 ByVal inputText As String, _
 ByRef outputText As String _
) As Boolean

[C#]
public bool DecryptData(
 string password,
 string inputText,
 ref string outputText
);

Parameters
password

A string of characters that will be used to generate the decryption key. This parameter may be a zero-
length string, in which case a default internal hash value is used to decrypt the data. Password strings
that exceed 215 characters will be truncated.

inputText
A string which contains the encoded data to be decrypted.

outputText
A string which will contain the decrypted text when the method returns.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will decrypt the contents of a string using a 256-bit AES (Advanced Encryption Standard)
algorithm and returns a copy of the decrypted text to the caller. The password (or passphrase) provided
by the caller is used to generate a SHA-256 hash value which is used as part of the decryption process.
The password value must be identical to the value used to encrypt the data using the EncryptData
method.

Due to how the SHA-256 hash is generated, this method cannot be used to decrypt text that was
encrypted using another third-party library. It can only be used to decrypt text that was previously
encrypted using EncryptData.

If you wish to decrypt the contents of a file, use the DecryptFile method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.DecryptData Overload List | DecryptFile |

FileEncoder.DecryptData Method (String, String, String)

EncryptFile | EncryptData

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Decrypts the contents of a string.

[Visual Basic]
Overloads Public Function DecryptData(_
 ByVal inputText As String, _
 ByRef outputText As String _
) As Boolean

[C#]
public bool DecryptData(
 string inputText,
 ref string outputText
);

Parameters
inputText

A string which contains the encoded data to be decrypted.

outputText
A string which will contain the decrypted text when the method returns.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will decrypt the contents of a string using a 256-bit AES (Advanced Encryption Standard)
algorithm and returns a copy of the decrypted text to the caller. The value of the Password property is
used to generate a SHA-256 hash value which is used as part of the decryption process. The password
value must be identical to the value used to encrypt the data using the EncryptData method.

Due to how the SHA-256 hash is generated, this method cannot be used to decrypt text that was
encrypted using another third-party library. It can only be used to decrypt text that was previously
encrypted using EncryptData.

If you wish to decrypt the contents of a file, use the DecryptFile method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.DecryptData Overload List | EncryptData |
EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.DecryptData Method (String, String)

Decrypts the contents of a file using AES-256 encryption.

Overload List
Decrypts the contents of a file using AES-256 encryption.

public bool DecryptFile(string,string);

Decrypts the contents of a file using AES-256 encryption.

public bool DecryptFile(string,string,string);

See Also
FileEncoder Class | SocketTools Namespace | DecryptData | EncryptData | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.DecryptFile Method

Decrypts the contents of a file using AES-256 encryption.

[Visual Basic]
Overloads Public Function DecryptFile(_
 ByVal password As String, _
 ByVal inputFile As String, _
 ByVal outputFile As String _
) As Boolean

[C#]
public bool DecryptFile(
 string password,
 string inputFile,
 string outputFile
);

Parameters
password

A string of characters that will be used to generate the decryption key. Passwords are case sensitive
and must match exactly when decrypting data that was previously encrypted using this method. This
parameter may be a zero-length string, in which case a default internal hash value is used. Password
strings that exceed 215 characters will be truncated.

inputFile
A string which specifies the name of the file to be decrypted. The file must exist, and it must be a
regular file that can be opened for reading by the current process. An error will be returned if a
character device, such as CON: is specified as the file name.

outputFile
The name of the file that is to contain the decrypted file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as CON: is specified as the file
name.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will decrypt the contents of a file using a 256-bit AES (Advanced Encryption Standard)
algorithm and stores the decrypted data in the specified output file. The password (or passphrase)
provided by the caller is used to generate a SHA-256 hash value which is used as part of the decryption
process. The password must be identical to the value used to encrypt the data using the EncryptFile
method.

Due to how the SHA-256 hash is generated, this method cannot be used to decrypt files that were
encrypted using another third-party library. It can only be used to decrypt data that was previously
encrypted using the EncryptFile method.

A temporary file is created during the decryption process and the output file is created or overwritten only
if the input file could be successfully encrypted. If the decryption fails, no output file will be created.

FileEncoder.DecryptFile Method (String, String, String)

If you wish to decrypt the contents of a memory buffer or string, use the DecryptData method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.DecryptFile Overload List | DecryptData |
EncryptData | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Decrypts the contents of a file using AES-256 encryption.

[Visual Basic]
Overloads Public Function DecryptFile(_
 ByVal inputFile As String, _
 ByVal outputFile As String _
) As Boolean

[C#]
public bool DecryptFile(
 string inputFile,
 string outputFile
);

Parameters
inputFile

A string which specifies the name of the file to be decrypted. The file must exist, and it must be a
regular file that can be opened for reading by the current process. An error will be returned if a
character device, such as CON: is specified as the file name.

outputFile
The name of the file that is to contain the decrypted file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as CON: is specified as the file
name.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will decrypt the contents of a file using a 256-bit AES (Advanced Encryption Standard)
algorithm and stores the decrypted data in the specified output file. The value of the Password property
is used to generate a SHA-256 hash value which is used as part of the decryption process. The password
must be identical to the value used to encrypt the data using the EncryptFile method.

Due to how the SHA-256 hash is generated, this method cannot be used to decrypt files that were
encrypted using another third-party library. It can only be used to decrypt data that was previously
encrypted using the EncryptFile method.

A temporary file is created during the decryption process and the output file is created or overwritten only
if the input file could be successfully encrypted. If the decryption fails, no output file will be created.

If you wish to decrypt the contents of a memory buffer or string, use the DecryptData method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.DecryptFile Overload List | DecryptData |

FileEncoder.DecryptFile Method (String, String)

EncryptData | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Encodes a file, storing the contents as printable text in the specified file.

Overload List
Encodes a file, storing the contents as printable text in the specified file.

public bool EncodeFile(string,string);

Encodes a file, storing the contents as printable text in the specified file.

public bool EncodeFile(string,string,EncodingType);

See Also
FileEncoder Class | SocketTools Namespace | DecodeFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.EncodeFile Method

Encodes a file, storing the contents as printable text in the specified file.

[Visual Basic]
Overloads Public Function EncodeFile(_
 ByVal inputFile As String, _
 ByVal outputFile As String _
) As Boolean

[C#]
public bool EncodeFile(
 string inputFile,
 string outputFile
);

Parameters
inputFile

A string which specifies the name of the file to be encoded. The file must exist, and it must be a
regular file that can be opened for reading by the current process. An error will be returned if a
character device, such as CON: is specified as the file name.

outputFile
The name of the file that is to contain the encoded file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as CON: is specified as the file
name.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.EncodeFile Overload List | DecodeFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.EncodeFile Method (String, String)

Encodes a file, storing the contents as printable text in the specified file.

[Visual Basic]
Overloads Public Function EncodeFile(_
 ByVal inputFile As String, _
 ByVal outputFile As String, _
 ByVal encodingType As EncodingType _
) As Boolean

[C#]
public bool EncodeFile(
 string inputFile,
 string outputFile,
 EncodingType encodingType
);

Parameters
inputFile

A string which specifies the name of the file to be encoded. The file must exist, and it must be a
regular file that can be opened for reading by the current process. An error will be returned if a
character device, such as CON: is specified as the file name.

outputFile
The name of the file that is to contain the encoded file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as CON: is specified as the file
name.

encodingType
An EncodingType enumeration value which specifies the type of encoding which should be used.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.EncodeFile Overload List | DecodeFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.EncodeFile Method (String, String, EncodingType)

Encrypts the contents of a byte array.

Overload List
Encrypts the contents of a byte array.

public bool EncryptData(byte[],int,byte[],ref int);

Encrypts the contents of a System.IO.MemoryStream object.

public bool EncryptData(MemoryStream,MemoryStream);

Encrypts the contents of a byte array.

public bool EncryptData(string,byte[],int,byte[],ref int);

Encrypts the contents of a System.IO.MemoryStream object.

public bool EncryptData(string,MemoryStream,MemoryStream);

Encrypts the contents of a string.

public bool EncryptData(string,string,ref string);

Encrypts the contents of a string.

public bool EncryptData(string,ref string);

See Also
FileEncoder Class | SocketTools Namespace | DecryptData | DecryptFile | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.EncryptData Method

Encrypts the contents of a byte array.

[Visual Basic]
Overloads Public Function EncryptData(_
 ByVal password As String, _
 ByVal inputBuffer As Byte(), _
 ByVal inputSize As Integer, _
 ByVal outputBuffer As Byte(), _
 ByRef outputSize As Integer _
) As Boolean

[C#]
public bool EncryptData(
 string password,
 byte[] inputBuffer,
 int inputSize,
 byte[] outputBuffer,
 ref int outputSize
);

Parameters
password

A string of characters that will be used to generate the encryption key. This parameter may be a zero-
length string, in which case a default internal hash value is used to encrypt the data. Password strings
that exceed 215 characters will be truncated.

inputBuffer
A byte array which contains the data to be encrypted.

inputSize
An integer value which specifies the number of bytes in the byte array which contains the unencrypted
data.

outputBuffer
A byte array which will contain the encrypted data when the method returns.

outputSize
An integer value which specifies the maximum number of bytes that can be stored in the output byte
array. When the method returns, this parameter will contain the number of encrypted bytes of data in
the buffer.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will encrypt the contents of a byte array using a 256-bit AES (Advanced Encryption Standard)
algorithm and returns a copy of the encrypted data to the caller. The password (or passphrase) provided
by the caller is used to generate a SHA-256 hash value which is used as part of the encryption process.

It is recommended that most applications specify a password value. If the password is a zero-length string,
a default internal hash value is used. This means that any other application which uses SocketTools will be
able to decrypt the data.

FileEncoder.EncryptData Method (String, Byte[], Int32, Byte[], Int32)

The amount of encrypted data returned by this method will always be somewhat larger than original
unencrypted data. If your application dynamically allocates a block of memory to store the encrypted
data, provide a maximum buffer size that is at least several hundred bytes larger than the unencrypted
data. If the output buffer provided is not large enough, the method will fail.

The encrypted data returned by this method can contain embedded null bytes. If you wish to encrypt
strings and store the encrypted values as printable text, use the version of this method which accepts
string parameters. It will perform the same 256-bit AES encryption, but return the encrypted data as a
base64 encoded string rather than binary data.

Due to how the SHA-256 hash is generated, the encrypted data cannot be decrypted using another third-
party library with the same password value. It can only be decrypted using the DecryptData method.

If you wish to encrypt the contents of a file, use the EncryptFile method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.EncryptData Overload List | DecryptData |
DecryptFile | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Encrypts the contents of a byte array.

[Visual Basic]
Overloads Public Function EncryptData(_
 ByVal inputBuffer As Byte(), _
 ByVal inputSize As Integer, _
 ByVal outputBuffer As Byte(), _
 ByRef outputSize As Integer _
) As Boolean

[C#]
public bool EncryptData(
 byte[] inputBuffer,
 int inputSize,
 byte[] outputBuffer,
 ref int outputSize
);

Parameters
inputBuffer

A byte array which contains the data to be encrypted.

inputSize
An integer value which specifies the number of bytes in the byte array which contains the unencrypted
data.

outputBuffer
A byte array which will contain the encrypted data when the method returns.

outputSize
An integer value which specifies the maximum number of bytes that can be stored in the output byte
array. When the method returns, this parameter will contain the number of encrypted bytes of data in
the buffer.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will encrypt the contents of a byte array using a 256-bit AES (Advanced Encryption Standard)
algorithm and returns a copy of the encrypted data to the caller. The value of the Password property is
used to generate a SHA-256 hash value which is used as part of the encryption process.

It is recommended that most applications specify a password value. If the password is a zero-length string,
a default internal hash value is used. This means that any other application which uses SocketTools will be
able to decrypt the data.

The amount of encrypted data returned by this method will always be somewhat larger than original
unencrypted data. If your application dynamically allocates a block of memory to store the encrypted
data, provide a maximum buffer size that is at least several hundred bytes larger than the unencrypted
data. If the output buffer provided is not large enough, the method will fail.

The encrypted data returned by this method can contain embedded null bytes. If you wish to encrypt

FileEncoder.EncryptData Method (Byte[], Int32, Byte[], Int32)

strings and store the encrypted values as printable text, use the version of this method which accepts
string parameters. It will perform the same 256-bit AES encryption, but return the encrypted data as a
base64 encoded string rather than binary data.

Due to how the SHA-256 hash is generated, the encrypted data cannot be decrypted using another third-
party library with the same password value. It can only be decrypted using the DecryptData method.

If you wish to encrypt the contents of a file, use the EncryptFile method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.EncryptData Overload List | DecryptData |
DecryptFile | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Encrypts the contents of a System.IO.MemoryStream object.

[Visual Basic]
Overloads Public Function EncryptData(_
 ByVal password As String, _
 ByVal inputStream As MemoryStream, _
 ByVal outputStream As MemoryStream _
) As Boolean

[C#]
public bool EncryptData(
 string password,
 MemoryStream inputStream,
 MemoryStream outputStream
);

Parameters
password

A string of characters that will be used to generate the encryption key. This parameter may be a zero-
length string, in which case a default internal hash value is used to encrypt the data. Password strings
that exceed 215 characters will be truncated.

inputStream
A MemoryStream object which contains the data to be encrypted. The stream must be readable.

outputStream
A MemoryStream object which will contain the encrypted data when the method returns. The caller
must create a stream that is writable, and the contents of the stream will be replaced with the
encrypted data.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will encrypt the contents of a MemoryStream object using a 256-bit AES (Advanced
Encryption Standard) algorithm and returns a copy of the encrypted data to the caller. The password (or
passphrase) provided by the caller is used to generate a SHA-256 hash value which is used as part of the
encryption process.

It is recommended that most applications specify a password value. If the password is a zero-length string,
a default internal hash value is used. This means that any other application which uses SocketTools will be
able to decrypt the data.

The amount of encrypted data returned by this method will always be somewhat larger than original
unencrypted data. If your application dynamically allocates a block of memory to store the encrypted
data, provide a maximum buffer size that is at least several hundred bytes larger than the unencrypted
data. If the output buffer provided is not large enough, the method will fail.

The encrypted data returned by this method can contain embedded null bytes. If you wish to encrypt
strings and store the encrypted values as printable text, use the version of this method which accepts

FileEncoder.EncryptData Method (String, MemoryStream,
MemoryStream)

string parameters. It will perform the same 256-bit AES encryption, but return the encrypted data as a
base64 encoded string rather than binary data.

Due to how the SHA-256 hash is generated, the encrypted data cannot be decrypted using another third-
party library with the same password value. It can only be decrypted using the DecryptData method.

If you wish to encrypt the contents of a file, use the EncryptFile method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.EncryptData Overload List | DecryptData |
DecryptFile | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Encrypts the contents of a System.IO.MemoryStream object.

[Visual Basic]
Overloads Public Function EncryptData(_
 ByVal inputStream As MemoryStream, _
 ByVal outputStream As MemoryStream _
) As Boolean

[C#]
public bool EncryptData(
 MemoryStream inputStream,
 MemoryStream outputStream
);

Parameters
inputStream

A MemoryStream object which contains the data to be encrypted. The stream must be readable.

outputStream
A MemoryStream object which will contain the encrypted data when the method returns. The caller
must create a stream that is writable, and the contents of the stream will be replaced with the
encrypted data.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will encrypt the contents of a MemoryStream object using a 256-bit AES (Advanced
Encryption Standard) algorithm and returns a copy of the encrypted data to the caller. The value of the
Password property is used to generate a SHA-256 hash value which is used as part of the encryption
process.

It is recommended that most applications specify a password value. If the password is a zero-length string,
a default internal hash value is used. This means that any other application which uses SocketTools will be
able to decrypt the data.

The amount of encrypted data returned by this method will always be somewhat larger than original
unencrypted data. If your application dynamically allocates a block of memory to store the encrypted
data, provide a maximum buffer size that is at least several hundred bytes larger than the unencrypted
data. If the output buffer provided is not large enough, the method will fail.

The encrypted data returned by this method can contain embedded null bytes. If you wish to encrypt
strings and store the encrypted values as printable text, use the version of this method which accepts
string parameters. It will perform the same 256-bit AES encryption, but return the encrypted data as a
base64 encoded string rather than binary data.

Due to how the SHA-256 hash is generated, the encrypted data cannot be decrypted using another third-
party library with the same password value. It can only be decrypted using the DecryptData method.

If you wish to encrypt the contents of a file, use the EncryptFile method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not

FileEncoder.EncryptData Method (MemoryStream, MemoryStream)

be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.EncryptData Overload List | DecryptData |
DecryptFile | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Encrypts the contents of a string.

[Visual Basic]
Overloads Public Function EncryptData(_
 ByVal password As String, _
 ByVal inputText As String, _
 ByRef outputText As String _
) As Boolean

[C#]
public bool EncryptData(
 string password,
 string inputText,
 ref string outputText
);

Parameters
password

A string of characters that will be used to generate the encryption key. This parameter may be a zero-
length string, in which case a default internal hash value is used to encrypt the data. Password strings
that exceed 215 characters will be truncated.

inputText
A string which contains the text to be encrypted.

outputText
A string which contains the base64 encoded encrypted text.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will encrypt a string using a 256-bit AES (Advanced Encryption Standard) algorithm and
returns a copy of the encrypted data as a base64 encoded string to the caller. The password (or
passphrase) provided by the caller is used to generate a SHA-256 hash value which is used as part of the
encryption process.

It is recommended that most applications specify a password value. If the password is a zero-length string,
a default internal hash value is used. This means that any other application which uses SocketTools will be
able to decrypt the text.

Due to how the SHA-256 hash is generated, the encrypted text cannot be decrypted using another third-
party library with the same password value. It can only be decrypted using the DecryptData method.

The plaintext string provided to this method cannot contain embedded nulls and and should not be used
to encrypt binary data. If you wish to encrypt binary data, use the version of this method which accepts
byte arrays. It will perform the same 256-bit AES encryption and return the encrypted data into a byte
array provided by the caller.

If you wish to encrypt the contents of a file, use the EncryptFile method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not

FileEncoder.EncryptData Method (String, String, String)

be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.EncryptData Overload List | DecryptData |
DecryptFile | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Encrypts the contents of a string.

[Visual Basic]
Overloads Public Function EncryptData(_
 ByVal inputText As String, _
 ByRef outputText As String _
) As Boolean

[C#]
public bool EncryptData(
 string inputText,
 ref string outputText
);

Parameters
inputText

A string which contains the text to be encrypted.

outputText
A string which contains the base64 encoded encrypted text.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will encrypt a string using a 256-bit AES (Advanced Encryption Standard) algorithm and
returns a copy of the encrypted data as a base64 encoded string to the caller. The value of the Password
property is used to generate a SHA-256 hash value which is used as part of the encryption process.

It is recommended that most applications specify a password value. If the password is a zero-length string,
a default internal hash value is used. This means that any other application which uses SocketTools will be
able to decrypt the text.

Due to how the SHA-256 hash is generated, the encrypted text cannot be decrypted using another third-
party library with the same password value. It can only be decrypted using the DecryptData method.

The plaintext string provided to this method cannot contain embedded nulls and and should not be used
to encrypt binary data. If you wish to encrypt binary data, use the version of this method which accepts
byte arrays. It will perform the same 256-bit AES encryption and return the encrypted data into a byte
array provided by the caller.

If you wish to encrypt the contents of a file, use the EncryptFile method.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.EncryptData Overload List | DecryptData |
DecryptFile | EncryptFile

FileEncoder.EncryptData Method (String, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Encrypts the contents of a file using AES-256 encryption.

Overload List
Encrypts the contents of a file using AES-256 encryption.

public bool EncryptFile(string,string);

Encrypts the contents of a file using AES-256 encryption.

public bool EncryptFile(string,string,string);

See Also
FileEncoder Class | SocketTools Namespace | DecryptData | DecryptFile | EncryptData

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.EncryptFile Method

Encrypts the contents of a file using AES-256 encryption.

[Visual Basic]
Overloads Public Function EncryptFile(_
 ByVal password As String, _
 ByVal inputFile As String, _
 ByVal outputFile As String _
) As Boolean

[C#]
public bool EncryptFile(
 string password,
 string inputFile,
 string outputFile
);

Parameters
password

A string of characters that will be used to generate the encryption key. Passwords are case sensitive
and must match exactly when decrypting data that was previously encrypted using this method. This
parameter may be a zero-length string, in which case a default internal hash value is used. Password
strings that exceed 215 characters will be truncated.

inputFile
A string which specifies the name of the file to be encrypted. The file must exist, and it must be a
regular file that can be opened for reading by the current process. An error will be returned if a
character device, such as CON: is specified as the file name.

outputFile
The name of the file that is to contain the encrypted file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as CON: is specified as the file
name.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will encrypt the contents of a file using a 256-bit AES (Advanced Encryption Standard)
algorithm and stores the encrypted data in the specified output file.

It is recommended that most applications specify as password value. If the password parameter is an
empty string, a default internal hash value will be used to create the encryption key. This means that any
other SocketTools application which uses this method will be able to decrypt the data.

Due to how the SHA-256 hash is generated, the encrypted data cannot be decrypted using another third-
party library with the same password value. It can only be decrypted using the DecryptFile method.

A temporary file is created during the encryption process and the output file is created or overwritten only
if the input file could be successfully encrypted. If the encryption fails, no output file will be created.

The input file contents will always be processed as a binary data stream. If you use this method to encrypt

FileEncoder.EncryptFile Method (String, String, String)

a text file, the output file will contain binary characters, not printable text. If you wish to transfer or store
the encrypted data as text, it should be encoded using the EncodeFile method after calling this method.

If your application is also using the CompressFile method to compress the data, it is recommended that
you call CompressFile before calling EncryptFile. You will typically achieve a better compression rate on
unencrypted data than than attempting to compress data which has been encrypted with this method.

If you wish to encrypt the contents of a memory buffer or string, use the EncryptData methods.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.EncryptFile Overload List | DecryptData |
DecryptFile | EncryptData

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Encrypts the contents of a file using AES-256 encryption.

[Visual Basic]
Overloads Public Function EncryptFile(_
 ByVal inputFile As String, _
 ByVal outputFile As String _
) As Boolean

[C#]
public bool EncryptFile(
 string inputFile,
 string outputFile
);

Parameters
inputFile

A string which specifies the name of the file to be encrypted. The file must exist, and it must be a
regular file that can be opened for reading by the current process. An error will be returned if a
character device, such as CON: is specified as the file name.

outputFile
The name of the file that is to contain the encrypted file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as CON: is specified as the file
name.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

Remarks
This method will encrypt the contents of a file using a 256-bit AES (Advanced Encryption Standard)
algorithm and stores the encrypted data in the specified output file. The value of the Password property
is used to generate the encryption key.

It is recommended that most applications specify as password value. If the value of the Password
property is an empty string, a default internal hash value will be used to create the encryption key. This
means that any other SocketTools application which uses this method will be able to decrypt the data.

Due to how the SHA-256 hash is generated, the encrypted data cannot be decrypted using another third-
party library with the same password value. It can only be decrypted using the DecryptFile method.

A temporary file is created during the encryption process and the output file is created or overwritten only
if the input file could be successfully encrypted. If the encryption fails, no output file will be created.

The input file contents will always be processed as a binary data stream. If you use this method to encrypt
a text file, the output file will contain binary characters, not printable text. If you wish to transfer or store
the encrypted data as text, it should be encoded using the EncodeFile method after calling this method.

If your application is also using the CompressFile method to compress the data, it is recommended that
you call CompressFile before calling EncryptFile. You will typically achieve a better compression rate on
unencrypted data than than attempting to compress data which has been encrypted with this method.

FileEncoder.EncryptFile Method (String, String)

If you wish to encrypt the contents of a memory buffer or string, use the EncryptData methods.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider may not
be available in some languages, countries or regions. The availability of this provider may also be
constrained by cryptography export restrictions imposed by the United States or other countries. If the
required cryptographic provider is not available, the method will fail.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.EncryptFile Overload List | DecryptData |
DecryptFile | EncryptData

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Expands the contents of the compressed buffer.

[Visual Basic]
Public Function ExpandData(_
 ByVal inputBuffer As Byte(), _
 ByVal inputLength As Integer, _
 ByVal outputBuffer As Byte(), _
 ByRef outputLength As Integer _
) As Boolean

[C#]
public bool ExpandData(
 byte[] inputBuffer,
 int inputLength,
 byte[] outputBuffer,
 ref int outputLength
);

Parameters
inputBuffer

A byte array which contains the compressed data to be expanded.

inputLength
An integer value which specifies the number of bytes in the input buffer.

outputBuffer
A byte array which will contain the expanded data.

outputLength
An integer value which specifies the maximum number of bytes that can be copied into the output
buffer.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

See Also
FileEncoder Class | SocketTools Namespace | CompressData | CompressFile | ExpandFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.ExpandData Method

Expands the contents of a previously compressed file.

Overload List
Expands the contents of a previously compressed file.

public bool ExpandFile(string,string);

Expands the contents of a previously compressed file.

public bool ExpandFile(string,string,CompressionType);

See Also
FileEncoder Class | SocketTools Namespace | CompressFile | EncodeFile | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.ExpandFile Method

Expands the contents of a previously compressed file.

[Visual Basic]
Overloads Public Function ExpandFile(_
 ByVal inputFile As String, _
 ByVal outputFile As String _
) As Boolean

[C#]
public bool ExpandFile(
 string inputFile,
 string outputFile
);

Parameters
inputFile

A string which specifies the name of the file to be compressed. The file must exist, and it must be a
regular file that can be opened for reading by the current process. An error will be returned if a
character device, such as CON: is specified as the file name.

outputFile
The name of the file that is to contain the expanded file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as CON: is specified as the file
name.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.ExpandFile Overload List | CompressFile |
EncodeFile | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.ExpandFile Method (String, String)

Expands the contents of a previously compressed file.

[Visual Basic]
Overloads Public Function ExpandFile(_
 ByVal inputFile As String, _
 ByVal outputFile As String, _
 ByVal compressionType As CompressionType _
) As Boolean

[C#]
public bool ExpandFile(
 string inputFile,
 string outputFile,
 CompressionType compressionType
);

Parameters
inputFile

A string which specifies the name of the file to be compressed. The file must exist, and it must be a
regular file that can be opened for reading by the current process. An error will be returned if a
character device, such as CON: is specified as the file name.

outputFile
The name of the file that is to contain the expanded file data. If the file exists, it must be a regular file
that can be opened for writing by the current process and will be overwritten. If the file does not exist,
it will be created. An error will be returned if a character device, such as CON: is specified as the file
name.

compressionType
A CompressionType enumeration value which specifies the type of compression that was used to
create the compressed data file.

Return Value
A boolean value which specifies if the method was successful or not. A return value of True indicates that
the method call completed successfully. A return value of False indicates that the method failed and the
application should check the value of the LastError property.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.ExpandFile Overload List | CompressFile |
EncodeFile | EncryptFile

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.ExpandFile Method (String, String, CompressionType)

Initializes the component with the default runtime license key.

Overload List
Initializes the component with the default runtime license key.

public bool Initialize();

Initializes the component with the specified runtime license key.

public bool Initialize(string);

See Also
FileEncoder Class | SocketTools Namespace | RuntimeLicenseAttribute Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.Initialize Method

Initializes the component with the default runtime license key.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the component was initialized successfully with the default runtime
license key. A return value of False indicates that the license key is not valid.

Remarks
The Initialize method is used to explicitly initialize the component with the runtime license key that has
been specified using the RuntimeLicense attribute. Normally it is not necessary to call this method because
the component will automatically be initialized when the class constructor is called. This method should
only be called if the Uninitialize method was previously called.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use SocketTools components.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.Initialize Method ()

Initializes the component with the specified runtime license key.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Parameters
licenseKey

A string which specifies the runtime license key.

Return Value
A boolean value which specifies if the component was initialized successfully with the runtime license key.
A return value of False indicates that the license key is not valid.

Remarks
The Initialize method is used to explicitly initialize the component with a runtime license key, if one has not
been specified using the RuntimeLicense attribute.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use SocketTools components.

See Also
FileEncoder Class | SocketTools Namespace | FileEncoder.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.Initialize Method (String)

Uninitialize the component.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method explicitly releases resources allocated by the component. Normally it is not
required that the application call this method since it is automatically called by the class destructor. This
method should only be used if the Initialize method was explicitly called.

See Also
FileEncoder Class | SocketTools Namespace | Initialize Method | Reset Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.Uninitialize Method

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileEncoder.Reset.html

The events of the FileEncoder class are listed below. For a complete list of FileEncoder class members,
see the FileEncoder Members topic.

Public Instance Events

OnError Occurs when a method fails.

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder Events

Occurs when a method fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type FileEncoder.ErrorEventArgs containing data related to this
event. The following FileEncoder.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Returns a description of the last error that
occurred.

Error Returns the value of the last error that has
occurred.

Remarks
The event handler receives an argument of type ErrorEventArgs containing data related to this event. The
following ErrorEventArgs properties provide information specific to this event.

Property Description

Error Returns the value of the last error that has occurred

Description Returns a description of the last error that occurred

See Also
FileEncoder Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see FileEncoder.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FileEncoder.ErrorEventArgs

[Visual Basic]
Public Class FileEncoder.ErrorEventArgs
 Inherits EventArgs

[C#]
public class FileEncoder.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileEncoder (in SocketTools.FileEncoder.dll)

See Also
FileEncoder.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.ErrorEventArgs Class

FileEncoder.ErrorEventArgs overview

Public Instance Constructors

 FileEncoder.ErrorEventArgs Constructor Initializes a new instance of the
FileEncoder.ErrorEventArgs class.

Public Instance Properties

Description Returns a description of the last error that
occurred.

Error Returns the value of the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileEncoder.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.ErrorEventArgs Members

Initializes a new instance of the FileEncoder.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FileEncoder.ErrorEventArgs();

See Also
FileEncoder.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.ErrorEventArgs Constructor

The properties of the FileEncoder.ErrorEventArgs class are listed below. For a complete list of
FileEncoder.ErrorEventArgs class members, see the FileEncoder.ErrorEventArgs Members topic.

Public Instance Properties

Description Returns a description of the last error that
occurred.

Error Returns the value of the last error that has
occurred.

See Also
FileEncoder.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.ErrorEventArgs Properties

Returns a description of the last error that occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the error.

See Also
FileEncoder.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.ErrorEventArgs.Description Property

Returns the value of the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public FileEncoder.ErrorCode Error {get;}

Property Value
An ErrorCode enumeration which specifies the error.

See Also
FileEncoder.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.ErrorEventArgs.Error Property

Provides constant values for the CompressFile and ExpandFile methods.

[Visual Basic]
Public Enum FileEncoder.CompressionLevel

[C#]
public enum FileEncoder.CompressionLevel

Members

Member Name Description

compressionLevelDefault The default compression level, which provides the
best balance between resource usage and
compression rate.

compressionLevelMinimum The minimum compression level. This level uses
the least amount of memory at the expense of a
lower compression rate. This compression level
requires a minimum of 8 megabytes of memory.

compressionLevel1 Compression level one. This is the minimum
compression level and requires a minimum of 8
megabytes memory.

compressionLevel2 Compression level two.

compressionLevel3 Compression level three.

compressionLevel4 Compression level four.

compressionLevel5 Compression level five.

compressionLevel6 Compression level six. This is the default
compression level, which provides the best
balance between resource usage and compression
rate.

compressionLevel7 Compression level seven.

compressionLevel8 Compression level eight.

compresisonLevel9 Compression level 9. This is the maximum
compression level and requires a minimum of 32
megabytes of memory.

compressionLevelMaximum The maximum compression level. This level uses
more memory to achieve a higher compression
rate. This compression level requires a minimum of
32 megabytes of memory.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileEncoder (in SocketTools.FileEncoder.dll)

See Also

FileEncoder.CompressionLevel Enumeration

SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Provides constant values for the CompressFile and ExpandFile methods.

[Visual Basic]
Public Enum FileEncoder.CompressionType

[C#]
public enum FileEncoder.CompressionType

Members

Member Name Description

compressionTypeUnknown The compression type is unknown or the data has
not been compressed.

compressionTypeDefault The default compression type. This is the same as
specifying compressionTypeDeflate.

compressionTypeDeflate A compression algorithm that combines LZ77
algorithm for creating common substrings and
Huffman coding to process the different
frequencies of byte sequences in the data stream.
Deflate is widely used by compression software.

compressionTypeBurrowsWheeler A compression algorithm that rearranges blocks of
data in sorted order and then uses Huffman
coding to process different frequencies of data
within the block. Burrows-Wheeler compression
provides a better compression ratio than the
Deflate algorithm, however it requires more
resources to perform the compression.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileEncoder (in SocketTools.FileEncoder.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.CompressionType Enumeration

Provides constant values for the DecodeFile and EncodeFile methods.

[Visual Basic]
Public Enum FileEncoder.EncodingType

[C#]
public enum FileEncoder.EncodingType

Remarks
The EncodingType enumeration is used to specify the default encoding method used by the DecodeFile
and EncodeFile methods.

Members

Member Name Description

encodingDefault Use the default encoding method. This is the same
specifying that the base64 algorithm should be
used for encoding and decoding files.

encodingBase64 Use the base64 algorithm for encoding and
decoding files. This is the standard method for
encoding files as outlined in the Multipurpose
Internet Mail Extensions (MIME) protocol. This is
the method used by most modern email client
software.

encodingQuotedPrintable This encoding method is typically used for text
messages that use characters beyond the standard
ASCII character set, in the range of 128-255. This
method, called quoted printable encoding, allows
text messages to pass through mail systems that
do not support characters with the high-bit set.
Note that this method should not be used to
encode binary files such as executable programs
because the resulting output can be very large. For
binary files, use the base64 algorithm instead.

encodingUucode Use the uuencode and uudecode algorithms for
encoding and decoding files. This is a common
encoding method used with UNIX systems and
older email client software.

encodingYencode Use the yEnc algorithm for encoding the file. This
is an encoding method that is commonly used
when posting files to Usenet newsgroups.

encodingCompressed This option specifies the data should be
compressed prior to being encoded when the
EncodeFile method is called. If the DecodeFile
method is called to decode a previously encoded
file that was created using this option, it will cause
the data to be expanded after it has been

FileEncoder.EncodingType Enumeration

decoded.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileEncoder (in SocketTools.FileEncoder.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Provides constant values for error codes.

[Visual Basic]
Public Enum FileEncoder.ErrorCode

[C#]
public enum FileEncoder.ErrorCode

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

FileEncoder.ErrorCode Enumeration

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorInvalidEncodingType Invalid encoding type specified.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileEncoder (in SocketTools.FileEncoder.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub FileEncoder.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void FileEncoder.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
The event handler receives an argument of type ErrorEventArgs containing data related to this event. The
following KeyPressEventArgs properties provide information specific to this event.

Property Description

Error Returns the value of the last error that has occurred

Description Returns a description of the last error that occurred

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileEncoder (in SocketTools.FileEncoder.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.OnErrorEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see FileEncoder.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.FileEncoder.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class FileEncoder.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class FileEncoder.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use SocketTools components.

Example

<Assembly: SocketTools.FileEncoder.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.FileEncoder.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileEncoder (in SocketTools.FileEncoder.dll)

See Also
FileEncoder.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.RuntimeLicenseAttribute Class

FileEncoder.RuntimeLicenseAttribute overview

Public Instance Constructors

 FileEncoder.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileEncoder.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public FileEncoder.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use SocketTools components.

See Also
FileEncoder.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.RuntimeLicenseAttribute Constructor

The properties of the FileEncoder.RuntimeLicenseAttribute class are listed below. For a complete list of
FileEncoder.RuntimeLicenseAttribute class members, see the FileEncoder.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
FileEncoder.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
FileEncoder.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoder.RuntimeLicenseAttribute.LicenseKey Property

This exception is thrown when an error occurs.

For a list of all members of this type, see FileEncoderException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.FileEncoderException

[Visual Basic]
Public Class FileEncoderException
 Inherits ApplicationException

[C#]
public class FileEncoderException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
This exception can be thrown when a property is set that results in an error, or as the result of calling a
method that fails when the ThrowError property has been set to True.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileEncoder (in SocketTools.FileEncoder.dll)

See Also
FileEncoderException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoderException Class

FileEncoderException overview

Public Instance Constructors

 FileEncoderException Overloaded. Initializes a new instance of the
FileEncoderException class.

Public Instance Properties

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Returns a message that describes the current
exception.

Number Return the last error that occurred.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

FileEncoderException Members

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileEncoderException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the FileEncoderException class without a message.

Overload List
Initializes a new instance of the FileEncoderException class without a message.

public FileEncoderException();

Initializes a new instance of the FileEncoderException class with the specific error code value.

public FileEncoderException(ErrorCode);

Initializes a new instance of the FileEncoderException class with the specific error code value.

public FileEncoderException(int);

Initializes a new instance of the FileEncoderException class with a message.

public FileEncoderException(string);

Initializes a new instance of the FileEncoderException class with a message and a reference to the inner
exception that is the cause of this exception.

public FileEncoderException(string,Exception);

See Also
FileEncoderException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoderException Constructor

Initializes a new instance of the FileEncoderException class without a message.

[Visual Basic]
Overloads Public Sub New()

[C#]
public FileEncoderException();

See Also
FileEncoderException Class | SocketTools Namespace | FileEncoderException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoderException Constructor ()

Initializes a new instance of the FileEncoderException class with a message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public FileEncoderException(
 string message
);

Parameters
message

The message to display with this exception.

See Also
FileEncoderException Class | SocketTools Namespace | FileEncoderException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoderException Constructor (String)

Initializes a new instance of the FileEncoderException class with a message and a reference to the inner
exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal inner As Exception _
)

[C#]
public FileEncoderException(
 string message,
 Exception inner
);

Parameters
message

The message to display with this exception.

inner
The exception that is the cause of the current exception. If the inner parameter is not a null reference
(Nothing in Visual Basic), the current exception is raised in a catch block that handles the inner
exception.

See Also
FileEncoderException Class | SocketTools Namespace | FileEncoderException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoderException Constructor (String, Exception)

Initializes a new instance of the FileEncoderException class with the specific error code value.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public FileEncoderException(
 int code
);

Parameters
code

An integer value which specifies the error that caused the exception to be raised.

See Also
FileEncoderException Class | SocketTools Namespace | FileEncoderException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoderException Constructor (Int32)

Initializes a new instance of the FileEncoderException class with the specific error code value.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As ErrorCode _
)

[C#]
public FileEncoderException(
 ErrorCode code
);

Parameters
code

An ErrorCode enumeration which specifies the error that caused the exception to be raised.

See Also
FileEncoderException Class | SocketTools Namespace | FileEncoderException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoderException Constructor (ErrorCode)

The properties of the FileEncoderException class are listed below. For a complete list of
FileEncoderException class members, see the FileEncoderException Members topic.

Public Instance Properties

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Returns a message that describes the current
exception.

Number Return the last error that occurred.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
FileEncoderException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoderException Properties

Returns a message that describes the current exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string that explains the reason for the exception, or an empty string.

Remarks
The Message property returns a description of the last error that caused the exception. This can be used
to display a meaningful error message to a user, rather than just the numeric value returned by the
Number property.

See Also
FileEncoderException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoderException.Message Property

Return the last error that occurred.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An ErrorCode enumeration type that specifies the error that caused the exception.

See Also
FileEncoderException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoderException.Number Property

The methods of the FileEncoderException class are listed below. For a complete list of
FileEncoderException class members, see the FileEncoderException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileEncoderException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoderException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
ToString returns a representation of the current exception that is intended to be understood by humans.
Where the exception contains culture-sensitive data, the string representation returned by ToString is
required to take into account the current system culture. Although there are no exact requirements for the
format of the returned string, it should attempt to reflect the value of the object as perceived by the user.

The default implementation of ToString obtains the description of the error that caused the exception. If
there is no error message or if it is an empty string (""), then no error message is returned.

This method overrides Object.ToString.

See Also
FileEncoderException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileEncoderException.ToString Method

Implements the File Transfer Protocol and Hypertext Transfer Protocol with a unified client interface.

For a list of all members of this type, see FileTransfer Members.

System.Object
 SocketTools.FileTransfer

[Visual Basic]
Public Class FileTransfer
 Implements IDisposable

[C#]
public class FileTransfer : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The FileTransfer class provides a comprehensive interface to the File Transfer Protocol which supports
both high level operations, such as uploading or downloading files, as well as a collection of lower-level
file I/O functions. In addition to file transfers, an application can create, rename and delete files and
directories, search for files using wildcards and perform other common file management functions. The
class library has three distinct groups of functionality:

File Transfer
Methods which enable an application to upload and download files, as well as send and
receive file data using memory buffers. This gives your program the flexibility of handling the
data either on disk or in memory, depending on the best needs of your application. If your
program needs to transfer more than one file at a time, there are also methods which will
automatically download or upload multiple files in a single method call.

File Management
In addition to transferring files, the class can be used to manage files on the server. Methods
are provided to delete, rename and move files between directories. For servers that support
specific protocol extensions, advanced features such as getting or setting a remote file's
modification time or access permissions are also supported. If a server supports site-specific
commands, such as the ability to submit a file as job on the server, the control supports this
by enabling you to send custom commands to the server and then process the information
that it returns.

Directory Management
The class can be used to manage directories as well as files on the server. The application can
open a directory and return a list of the files that it contains, as well as create new directories
and delete empty ones. The class understands a number of different directory listing formats,
including those typically used on UNIX and Linux based systems, Windows server platforms,
NetWare servers and VMS systems.

This class supports secure file transfers using TLS 1.2 and the SSH 2.0 protocol using SFTP.

Requirements
Namespace: SocketTools

FileTransfer Class

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransferMembers.html

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransferMembers.html

FileTransfer overview

Public Static (Shared) Fields

filePortFTP A constant value which specifies the default port
number for the File Transfer Protocol.

filePortFTPS A constant value which specifies the default port
number for a secure FTP connection using the SSL
or TLS protocols.

filePortHTTP A constant value which specifies the default port
number for the Hypertext Transfer protocol.

filePortHTTPS A constant value which specifies the default port
number for a secure HTTP connection using the
SSL or TLS protocols.

filePortSFTP A constant value which specifies the default port
number for a secure SSH connection using the
SSH1 or SSH2 protocols.

fileTimeout A constant value which specifies the default
timeout period.

Public Static (Shared) Methods

ErrorText Returns the description of an error code.

Public Instance Constructors

 FileTransfer Constructor Initializes a new instance of the FileTransfer class.

Public Instance Properties

Account Get or sets a value that specifies the account name
for the current user.

ActivePorts Gets and sets the port numbers used for active
mode file transfers.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the server.

FileTransfer Members

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.filePortFTP.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.filePortFTPS.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.filePortHTTP.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.filePortHTTPS.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.filePortSFTP.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.fileTimeout.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ErrorText.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Account.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ActivePorts.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateExpires.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateIssued.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateIssuer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateName.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateStatus.html

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

ChannelMode Set or return the security mode for the specified
communications channel.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

Compression Gets and sets a value that specifies if data
compression should be enabled.

DirectoryFormat Gets and sets a value which specifies the current
directory format type.

Encoding Gets and sets the character encoding that is used
when a file name is sent to the server.

Features Gets and sets the features that are currently
enabled for the current session.

FileType Gets and sets a value which specifies the type of
file that is being transferred.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
server has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

KeepAlive Gets and sets a Boolean value which specifies if
the client should attempt to keep the server
connection alive.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalFile Gets and sets the name of the file on the local

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateStore.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateSubject.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateUser.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ChannelMode.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CipherStrength.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Compression.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.DirectoryFormat.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Encoding.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Features.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.FileType.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Handle.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.HashStrength.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.IsBlocked.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.IsConnected.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.IsInitialized.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.KeepAlive.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.LastError.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.LastErrorString.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.LocalAddress.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.LocalFile.html

system.

Localize Gets and sets a value which specifies if time and
dates should be adjusted for the current timezone.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

Passive Gets and sets a value which specifies if passive
mode file transfers should be enabled.

Password Gets and sets the password used to authenticate
the client session.

Priority Gets and sets a value which specifies the priority of
file transfers.

ProtocolVersion Gets and sets a value which specifies the default
protocol version.

ProxyPassword Gets and sets the password used to authenticate
the connection to a proxy server.

ProxyPort Gets and sets a value that specifies the proxy
server port number.

ProxyServer Gets and sets the hostname or IP address of a
proxy server.

ProxyType Gets and sets the type of proxy server the client
will use to establish a connection.

ProxyUser Gets and sets the username used to authenticate
the connection to a proxy server.

RemoteFile Gets and sets a value which specifies a file name
on the server.

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Localize.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.LocalName.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.LocalPort.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Options.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Passive.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Password.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Priority.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ProtocolVersion.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ProxyPassword.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ProxyPort.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ProxyServer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ProxyType.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ProxyUser.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.RemoteFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ResultCode.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ResultString.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Secure.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.SecureCipher.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.SecureHash.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.SecureKeyExchange.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.SecureProtocol.html

ServerDirectory Gets and sets a value which specifies the current
working directory on the file server.

ServerName Gets and sets a value which specifies the host
name used to establish a connection.

ServerPort Gets and sets a value which specifies the remote
port number.

ServerType Gets and sets a value which specifies the type of
file server the client is connecting to.

System Gets a string value which identifies the server.

TaskCount Get the number of active background file transfers.

TaskId Get the task identifier for the last background file
transfer.

TaskList Get an array of active background task identifiers.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

TransferBytes Gets a value which specifies the number of bytes
transferred to or from the remote server.

TransferRate Gets a value which specifies the data transfer rate
in bytes per second.

TransferTime Gets a value which specifies the number of
seconds elapsed during a data transfer.

URL Gets and sets the current URL used to access a file
on the server.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the FileTransfer class library.

Public Instance Methods

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ServerDirectory.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ServerName.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ServerPort.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ServerType.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.System.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskCount.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskId.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskList.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ThreadModel.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ThrowError.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Timeout.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TimeZone.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Trace.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TraceFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TraceFlags.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TransferBytes.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TransferRate.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TransferTime.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.URL.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.UserName.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Version.html

AddFileType Associate a file name extension with a specific file
type.

AsyncGetFile Overloaded. Download a file from the server to
the local system in the background.

AsyncPutFile Overloaded. Upload a file from the local system to
the server in the background.

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

ChangeDirectory Change the current working directory on the
remote server.

CloseDirectory Close the directory that was previously opened
with the OpenDirectory method.

Command Overloaded. Send a custom command to the
server.

Connect Overloaded. Establish a connection with a file
server.

DeleteFile Delete a file on the remote server.

Disconnect Terminate the connection with the remote server.

Dispose Overloaded. Releases all resources used by
FileTransfer.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetData Overloaded. Transfers the contents of a file on the
server and stores it in byte array.

GetDirectory Return the current working directory.

GetFile Overloaded. Download a file from the server to
the local system.

GetFileList Overloaded. Returns an unparsed list of files in the
specified directory.

GetFilePermissions Overloaded. Return the access permissions for a
file on the remote system.

GetFileSize Overloaded. Returns the size of the specified file
on the remote server.

GetFileStatus

GetFileTime Overloaded. Returns the modification date and
time for specified file on the remote server.

GetFirstFile Overloaded. Get information about the first file in
a directory listing returned by the server.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.AddFileType.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.AsyncGetFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.AsyncPutFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.AttachThread.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Cancel.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ChangeDirectory.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CloseDirectory.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OpenDirectory_overload_1.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Command_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Connect_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.DeleteFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Disconnect.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Dispose_overload_1.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetData_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetDirectory.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFileList_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFilePermissions_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFileSize_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFileStatus.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFileTime_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFirstFile_overloads.html

GetMultipleFiles Download multiple files from the server to the
local system using a wildcard mask.

GetNextFile Overloaded. Get information about the next file in
a directory listing returned by the server.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
FileTransfer class.

Login Overloaded. Login to the remote server.

Logout Log the current user off the server.

MakeDirectory Create a new directory on the server.

OpenDirectory Overloaded. Open the specified directory on the
server.

PostFile Overloaded. Post the contents of the specified file
to a script executed on the remote server.

PutData Overloaded. Transfers data from a byte array and
stores it in a file on the remote server.

PutFile Overloaded. Upload a file from the local system to
the server.

PutMultipleFiles Upload multiple files from the local system to the
server using a wildcard mask.

RemoveDirectory Remove a directory on the server.

RenameFile Change the name of a file on the server.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SetFilePermissions Change the access permissions for a file on the
server.

SetFileTime Changes the modification date and time for a file
on the server.

TaskAbort Overloaded. Abort the specified asynchronous
task.

TaskDone Overloaded. Determine if an asynchronous task
has completed.

TaskResume Overloaded. Resume execution of an
asynchronous task.

TaskSuspend Overloaded. Suspend execution of an
asynchronous task.

TaskWait Overloaded. Wait for an asynchronous task to
complete.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetMultipleFiles.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetNextFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Initialize_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Login_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Logout.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.MakeDirectory.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OpenDirectory_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.PostFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.PutData_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.PutFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.PutMultipleFiles.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.RemoveDirectory.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.RenameFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Reset.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.SetFilePermissions.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.SetFileTime.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskAbort_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskDone_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskResume_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskSuspend_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskWait_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Uninitialize.html

VerifyFile Overloaded. Verify that the contents of a file on
the local system are the same as the specified file
on the server.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnCommand Occurs when the client sends a command to the
server and receives a reply indicating the result of
that command.

OnError Occurs when an network operation fails.

OnGetFile Occurs when a file download has been initiated.

OnProgress Occurs as a data stream is being read or written to
the server.

OnPutFile Occurs when a file upload is initiated.

OnTaskBegin Occurs when an asynchronous task begins
execution.

OnTaskEnd Occurs when an asynchronous task completes.

OnTaskRun Occurs while a background task is active.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the FileTransfer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.VerifyFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnCancel.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnCommand.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnError.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnGetFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnProgress.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnPutFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnTaskBegin.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnTaskEnd.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnTaskRun.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnTimeout.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Dispose_overload_2.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Finalize.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Initializes a new instance of the FileTransfer class.

[Visual Basic]
Public Sub New()

[C#]
public FileTransfer();

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer Constructor

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

The fields of the FileTransfer class are listed below. For a complete list of FileTransfer class members, see
the FileTransfer Members topic.

Public Static (Shared) Fields

filePortFTP A constant value which specifies the default port
number for the File Transfer Protocol.

filePortFTPS A constant value which specifies the default port
number for a secure FTP connection using the SSL
or TLS protocols.

filePortHTTP A constant value which specifies the default port
number for the Hypertext Transfer protocol.

filePortHTTPS A constant value which specifies the default port
number for a secure HTTP connection using the
SSL or TLS protocols.

filePortSFTP A constant value which specifies the default port
number for a secure SSH connection using the
SSH1 or SSH2 protocols.

fileTimeout A constant value which specifies the default
timeout period.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer Fields

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.filePortFTP.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.filePortFTPS.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.filePortHTTP.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.filePortHTTPS.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.filePortSFTP.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.fileTimeout.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

A constant value which specifies the default port number for the File Transfer Protocol.

[Visual Basic]
Public Const filePortFTP As Integer = 21

[C#]
public const int filePortFTP = 21;

Remarks
The default port number for the File Transfer Protocol is 21.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.filePortFTP Field

A constant value which specifies the default port number for a secure FTP connection using the SSL or TLS
protocols.

[Visual Basic]
Public Const filePortFTPS As Integer = 990

[C#]
public const int filePortFTPS = 990;

Remarks
The default port number for a secure connection using SSL or TLS is 990.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.filePortFTPS Field

A constant value which specifies the default port number for the Hypertext Transfer protocol.

[Visual Basic]
Public Const filePortHTTP As Integer = 80

[C#]
public const int filePortHTTP = 80;

Remarks
The default port number for the Hypertext Transfer Protocol is 80.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.filePortHTTP Field

A constant value which specifies the default port number for a secure HTTP connection using the SSL or
TLS protocols.

[Visual Basic]
Public Const filePortHTTPS As Integer = 443

[C#]
public const int filePortHTTPS = 443;

Remarks
The default port number for a secure connection using SSL or TLS is 443.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.filePortHTTPS Field

A constant value which specifies the default port number for a secure SSH connection using the SSH1 or
SSH2 protocols.

[Visual Basic]
Public Const filePortSFTP As Integer = 22

[C#]
public const int filePortSFTP = 22;

Remarks
The default port number for a secure connection using SSH is 22.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.filePortSFTP Field

A constant value which specifies the default timeout period.

[Visual Basic]
Public Const fileTimeout As Integer = 20

[C#]
public const int fileTimeout = 20;

Remarks
The default timeout period is 20 seconds for each blocking network operation. An error will occur if the
operation does not complete within the specified time period.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.fileTimeout Field

The properties of the FileTransfer class are listed below. For a complete list of FileTransfer class
members, see the FileTransfer Members topic.

Public Instance Properties

Account Get or sets a value that specifies the account name
for the current user.

ActivePorts Gets and sets the port numbers used for active
mode file transfers.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the server.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

ChannelMode Set or return the security mode for the specified
communications channel.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

Compression Gets and sets a value that specifies if data
compression should be enabled.

DirectoryFormat Gets and sets a value which specifies the current
directory format type.

Encoding Gets and sets the character encoding that is used
when a file name is sent to the server.

Features Gets and sets the features that are currently
enabled for the current session.

FileType Gets and sets a value which specifies the type of

FileTransfer Properties

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Account.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ActivePorts.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateExpires.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateIssued.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateIssuer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateName.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateStatus.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateStore.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateSubject.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CertificateUser.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ChannelMode.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CipherStrength.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Compression.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.DirectoryFormat.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Encoding.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Features.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.FileType.html

file that is being transferred.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
server has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

KeepAlive Gets and sets a Boolean value which specifies if
the client should attempt to keep the server
connection alive.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalFile Gets and sets the name of the file on the local
system.

Localize Gets and sets a value which specifies if time and
dates should be adjusted for the current timezone.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

Passive Gets and sets a value which specifies if passive
mode file transfers should be enabled.

Password Gets and sets the password used to authenticate
the client session.

Priority Gets and sets a value which specifies the priority of
file transfers.

ProtocolVersion Gets and sets a value which specifies the default
protocol version.

ProxyPassword Gets and sets the password used to authenticate
the connection to a proxy server.

ProxyPort Gets and sets a value that specifies the proxy
server port number.

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Handle.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.HashStrength.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.IsBlocked.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.IsConnected.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.IsInitialized.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.KeepAlive.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.LastError.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.LastErrorString.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.LocalAddress.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.LocalFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Localize.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.LocalName.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.LocalPort.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Options.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Passive.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Password.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Priority.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ProtocolVersion.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ProxyPassword.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ProxyPort.html

ProxyServer Gets and sets the hostname or IP address of a
proxy server.

ProxyType Gets and sets the type of proxy server the client
will use to establish a connection.

ProxyUser Gets and sets the username used to authenticate
the connection to a proxy server.

RemoteFile Gets and sets a value which specifies a file name
on the server.

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

ServerDirectory Gets and sets a value which specifies the current
working directory on the file server.

ServerName Gets and sets a value which specifies the host
name used to establish a connection.

ServerPort Gets and sets a value which specifies the remote
port number.

ServerType Gets and sets a value which specifies the type of
file server the client is connecting to.

System Gets a string value which identifies the server.

TaskCount Get the number of active background file transfers.

TaskId Get the task identifier for the last background file
transfer.

TaskList Get an array of active background task identifiers.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ProxyServer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ProxyType.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ProxyUser.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.RemoteFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ResultCode.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ResultString.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Secure.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.SecureCipher.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.SecureHash.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.SecureKeyExchange.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.SecureProtocol.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ServerDirectory.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ServerName.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ServerPort.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ServerType.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.System.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskCount.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskId.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskList.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ThreadModel.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ThrowError.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Timeout.html

TimeZone Gets and sets the current timezone offset in
seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

TransferBytes Gets a value which specifies the number of bytes
transferred to or from the remote server.

TransferRate Gets a value which specifies the data transfer rate
in bytes per second.

TransferTime Gets a value which specifies the number of
seconds elapsed during a data transfer.

URL Gets and sets the current URL used to access a file
on the server.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the FileTransfer class library.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TimeZone.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Trace.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TraceFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TraceFlags.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TransferBytes.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TransferRate.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TransferTime.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.URL.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.UserName.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Version.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Get or sets a value that specifies the account name for the current user.

[Visual Basic]
Public Property Account As String

[C#]
public string Account {get; set;}

Property Value
A string which specifies the account name for the current user.

Remarks
The Account property specifies the account name of the current user, if it is required by the server for
authentication. Not all servers require an account name, in which case this property is ignored.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Account Property

Gets and sets the port numbers used for active mode file transfers.

[Visual Basic]
Public Property ActivePorts As PortRange

[C#]
public FileTransfer.PortRange ActivePorts {get; set;}

Property Value
A PortRange structure which specifies the minimum and maximum port numbers used for active mode
file transfers.

Remarks
This property is used to change the default port numbers used for active mode file transfers. Active mode
is used when the Passive property is set to false. Instead of the client establishing an outbound
connection to the server for the file transfer, it listens for an inbound connection from the server back to
the client. In most cases, passive mode transfers are preferred because they mitigate potential
compatibility issues with firewalls and NAT routers.

If active mode transfers are required, the default port range used when listening for the server connection
is between 1024 and 5000. This is the standard range of ephemeral ports used by the Windows operating
system. However, under some circumstances that range of ports may be too small, or a firewall may be
configured to deny inbound connections on ephemeral ports. In that case, the ActivePorts property can
be used to specify a different range of port numbers.

While it is technically permissible to assign the low and high port numbers to the same value, effectively
specifying a single active port number, this is not recommended as it can cause the transfer to fail
unexpectedly if multiple file transfers are performed. A minimum range of at least 1000 ports is
recommended. For example, if you specify a low port value of 40000 then it is recommended that the
high port value be at least 41000. The maximum port value is 65535.

See Also
FileTransfer Class | SocketTools Namespace | PortRange Structure

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ActivePorts Property

Get a value that specifies the date that the security certificate expires.

[Visual Basic]
Public ReadOnly Property CertificateExpires As String

[C#]
public string CertificateExpires {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateExpires property returns a string that specifies the date and time that the security
certificate expires. This property will return an empty string if a secure connection has not been
established with the remote host.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CertificateExpires Property

Get a value that specifies the date that the security certificate was issued.

[Visual Basic]
Public ReadOnly Property CertificateIssued As String

[C#]
public string CertificateIssued {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateIssued property returns a string that specifies the date and time that the security certificate
was issued. This property will return an empty string if a secure connection has not been established with
the remote host.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CertificateIssued Property

Get a value that provides information about the organization that issued the certificate.

[Visual Basic]
Public ReadOnly Property CertificateIssuer As String

[C#]
public string CertificateIssuer {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateIssuer property returns a string that contains information about the organization that
issued the server certificate. The string value is a comma separated list of tagged name and value pairs. In
the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the server.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CertificateIssuer Property

Gets and sets a value that specifies the name of the client certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the certificate name.

Remarks
The CertificateName property is used to specify the name of a client certificate to use when establishing
a secure connection. It is only required that you set this property value if the server requires a client
certificate for authentication. If this property is not set, a client certificate will not be provided to the server.
If a certificate name is specified, the certificate must have a private key associated with it, otherwise the
connection attempt will fail because the control will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
FileTransfer Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CertificateName Property

Gets a value which indicates the status of the security certificate returned by the server.

[Visual Basic]
Public ReadOnly Property CertificateStatus As SecurityCertificate

[C#]
public FileTransfer.SecurityCertificate CertificateStatus {get;}

Property Value
A SecurityCertificate enumeration value which specifies the status of the certificate.

Remarks
The CertificateStatus property is used to determine the status of the security certificate returned by the
server when a secure connection has been established. This property value should be checked after the
connection to the server has completed, but prior to beginning a transaction.

Note that if the certificate cannot be validated, the secure connection will not be automatically terminated.
It is the responsibility of your application to determine the best course of action to take if the certificate is
invalid. Even if the security certificate cannot be validated, the data exchanged with the remote host will
still be encrypted.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CertificateStatus Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when establishing a secure connection. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and therefore it is
not necessary to set this property value because that is the default location that will be used to search for
the certificate. This property is only used if the CertificateName property is also set to a valid certificate
name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the property
should specify the full path to the file and must contain both the certificate and private key in PKCS #12

FileTransfer.CertificateStore Property

format. If the file is protected by a password, the CertificatePassword property must also be set to
specify the password.

See Also
FileTransfer Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.CertificatePassword.html

Gets a value that provides information about the organization that the server certificate was issued to.

[Visual Basic]
Public ReadOnly Property CertificateSubject As String

[C#]
public string CertificateSubject {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateSubject property returns a string that contains information about the organization that the
server certificate was issued to. The string value is a comma separated list of tagged name and value pairs.
In the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the server.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CertificateSubject Property

Set or return the security mode for the specified communications channel.

[Visual Basic]
Public Property ChannelMode As SecureChannel

[C#]
public FileTransfer.SecureChannel ChannelMode {get; set;}

Property Value
An FtpChannelMode enumeration value which specifies the current channel mode.

Remarks
The ChannelMode property is used to change the default mode for the specified channel, and is typically
used to control whether or not data is encrypted during a file transfer. If a standard, non-secure
connection has been established with the server, an error will be returned if you specify the
channelSecure mode for either channel.

If you have established a secure connection and then specify the channelClear mode for the command
channel, the client will send the CCC command to the server to indicate that commands should no longer
be encrypted. If the server does not support this command, an error will be returned and the channel
mode will remain unchanged. Once the command channel has been changed to clear mode, it cannot be
changed back to secure mode. You must disconnect and re-connect to the server if you want to resume
sending commands over an encrypted channel.

Changing the mode for the data channel requires that the server support the PROT command. If this
command is not supported by the server, an exception will be thrown which must be handled by the
application. You can only set a channel to secure mode if the Secure property is also set to true.

It is important to note that this property should only be used after a connection has been established with
the server. If you attempt to read the property or change a value prior to calling the Connect method, an
exception will be thrown.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ChannelMode Property

Gets a value that indicates the length of the key used by the encryption algorithm for a secure connection.

[Visual Basic]
Public ReadOnly Property CipherStrength As Integer

[C#]
public int CipherStrength {get;}

Property Value
An integer value which specifies the encryption key length if a secure connection has been established;
otherwise a value of 0 is returned.

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure data
stream. Common values returned by this property are 128 and 256. A key length of 40 or 56 bits is
considered insecure and subject to brute force attacks. 128-bit and 256-bit keys are considered secure. If
this property returns a value of 0, this means that a secure connection has not been established with the
server.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CipherStrength Property

Gets and sets a value that specifies if data compression should be enabled.

[Visual Basic]
Public Property Compression As Boolean

[C#]
public bool Compression {get; set;}

Property Value
Returns true if a data compression is enabled; otherwise returns false. The default value is false.

Remarks
The Compression property is used to indicate to the server whether or not it is acceptable to compress
the data that is returned to the client. If compression is enabled, the client will advertise that it will accept
compressed data and the server will decide whether a resource being requested can be compressed. If
the data is compressed, the control will automatically expand the data before returning it to the caller.

Enabling compression does not guarantee that the data returned by the server will actually be
compressed, it only informs the server that the client is willing to accept compressed data. Whether or not
a particular resource is compressed depends on the server configuration, and the server may decide to
only compress certain types of resources, such as text files. Disabling compression informs the server that
the client is not willing to accept compressed data; this is the default.

This property value is only meaningful when downloading files from an HTTP server that supports file
compression. It has no effect on file uploads or when transferring files using FTP.

See Also
FileTransfer Class | SocketTools Namespace | GetData Method | GetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Compression Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.GetData_overload_1.html

Gets and sets a value which specifies the current directory format type.

[Visual Basic]
Public Property DirectoryFormat As FtpDirectoryFormat

[C#]
public FileTransfer.FtpDirectoryFormat DirectoryFormat {get; set;}

Property Value
An FtpDirectoryFormat enumeration value which specifies the current directory format.

Remarks
This property should only be set if the client cannot automatically determine the directory format returned
by the server. The default directory format is determined both by the server's operating system and by
analyzing the format of the data returned by the server. If the class is unable to automatically determine
the format, it will attempt to parse the list of files as though it is a UNIX style listing.

If this property is set to the default value FtpDirectoryFormat.formatAuto and the class can determine
from the format of the file listing returned by the server, then the property will change value upon the first
call to the GetFirstFile method or the first time the OnFileList event is generated.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.DirectoryFormat Property

Gets and sets the features that are currently enabled for the current session.

[Visual Basic]
Public Property Features As FtpFeatures

[C#]
public FileTransfer.FtpFeatures Features {get; set;}

Property Value
An FtpFeatures enumeration which specifies the features that are available for the current client session.

Remarks
When a client connection is first established, all features are enabled by default. However, as the client
issues commands to the server, if the server reports that the command is unrecognized that feature will
automatically be disabled in the client.

For example, the first time an application calls the GetFileSize method to determine the size of a file, the
control will try to use the SIZE command. If the server reports that the SIZE command is not available, that
feature will be disabled and the control will not use the command again during the session unless it is
explicitly re-enabled. This is designed to prevent the control from repeatedly sending invalid commands to
a server, which may result in the server aborting the connection.

Setting the Features property enables those features which have been specified. More than one feature
may be enabled by combining the above constants using a bitwise Or operator. To test if a particular
feature has been enabled, use the bitwise And operator.

Because features are specific to the current session, once you disconnect from the server they are reset.
Even if you wish to reconnect to the same server, you must explicitly set the Features property again to
those features which you wish to enable. Setting the Features property when the control is not connected
to a server will cause the client session to only use those specified features for the next connection that is
established. Setting the Features property during an active connection will change the features available
for that session.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Features Property

Gets and sets a value which specifies the type of file that is being transferred.

[Visual Basic]
Public Property FileType As FileTransferType

[C#]
public FileTransfer.FileTransferType FileType {get; set;}

Property Value
An FtpFileType enumeration which specifies the type of file being uploaded or downloaded.

Remarks
The file type should be set before a file is uploaded or downloaded from the remote server. Once the file
type is set, it is in effect for all files that are subsequently transferred.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileType Property

Gets a value that specifies the client handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current client session and is typically used for
debugging or diagnostic purposes.

In SocketTools, handles are used to identify client sessions. A session begins when an instance of the class
is used to establish a connection with the server and ends when that connection is terminated. The client
handle is defined as an integer type and is used internally to reference the active session. When the
connection is terminated, the handle is released, along with any system resources that were allocated for
it. An unused handle is identified by the value -1.

It is important to note that the handles returned by this property are not socket handles and cannot be
used interchangeably with other objects or Windows API functions. The actual value of the handle is only
unique while the client session is active and handle values may be reused. An application should never
depend on the Handle property returning a specific value.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Handle Property

Gets a value which specifies the length of the message digest that was selected for a secure connection.

[Visual Basic]
Public ReadOnly Property HashStrength As Integer

[C#]
public int HashStrength {get;}

Property Value
An integer value which specifies the length of the message digest if a secure connection has been
established; otherwise a value of 0 is returned.

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that was
selected. Common values returned by this property are 128 and 160. If this property returns a value of 0,
this means that a secure connection has not been established with the server.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.HashStrength Property

Gets a value which indicates if the current thread is performing a blocking client operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next client operation will not fail. An application
should always check the return value from a client operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.IsBlocked Property

Gets a value which indicates if a connection to the server has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the server. It
cannot be used to detect abnormal conditions such as the server aborting the connection, the physical
network connection being lost or other critical errors.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.IsInitialized Property

Gets and sets a Boolean value which specifies if the client should attempt to keep the server connection
alive.

[Visual Basic]
Public Property KeepAlive As Boolean

[C#]
public bool KeepAlive {get; set;}

Property Value
A boolean value which specifies if the client should attempt to maintain the connection with the server
over a long period of time.

Remarks
If the KeepAlive property is set to true, the client will attempt to maintain an active connection to the
server over a long period of time. If this property is set to false, then no attempt will be made to hold the
command channel open.

It is important to note that enabling this option does not guarantee that the connection will be
maintained. The application must be written to account for situations where the connection to the server is
terminated if it is idle for a long period of time, regardless of the value of this property.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.KeepAlive Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As Integer

[C#]
public int LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.LastErrorString Property

Gets the local Internet address that the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local Internet address that the client is bound to when a
connection is established with a server. This property may return either an IPv4 or IPv6 formatted address,
depending on the type of connection that was established.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.LocalAddress Property

Gets and sets the name of the file on the local system.

[Visual Basic]
Public Property LocalFile As String

[C#]
public string LocalFile {get; set;}

Property Value
A string value which specifies the name of the local file.

Remarks
The LocalFile property is used to specify the local file name that will be used when uploading or
downloading files. This property is automatically updated whenever the GetFile or PutFile methods are
called, specifying the local file name.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.LocalFile Property

Gets and sets a value which specifies if time and dates should be adjusted for the current timezone.

[Visual Basic]
Public Property Localize As Boolean

[C#]
public bool Localize {get; set;}

Property Value
A boolean value which specifies if file time and dates should be adjusted for the local timezone. The
default value is false.

Remarks
The Localize property controls how remote file date and time values are localized when the GetFileTime
method is called. If the property is set to true the file date and time will be adjusted to the current
timezone. If the property is set to false the file date and time are returned as UTC (Coordinated Universal
Time) values.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Localize Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.LocalName Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As FileTransferOptions

[C#]
public FileTransfer.FileTransferOptions Options {get; set;}

Property Value
Returns one or more FileTransferOptions enumeration flags which specify the options for the client. The
default value for this property is optionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Options Property

Gets and sets a value which specifies if passive mode file transfers should be enabled.

[Visual Basic]
Public Property Passive As Boolean

[C#]
public bool Passive {get; set;}

Property Value
A boolean value which specifies if passive mode file transfers are enabled. If this value is set to true,
passive mode is enabled. If the value is set to false, then passive mode transfers are disabled. The default
value is true.

Remarks
When the client uploads or downloads a file and the Passive property is set to false, the server
establishes a second connection back to the client which is used to transfer the file data. However, if the
local system is behind a firewall or a NAT router, the server may not be able to create the data connection
and the transfer will fail. By setting this property to true, it forces the client to establish an outbound data
connection with the server. It is recommended that most applications use passive mode whenever
possible.

Setting this property to true is the same as specifying the optionPassive flag when establishing a
connection to the server.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Passive Property

Gets and sets the password used to authenticate the client session.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password.

Remarks
If a password is not specified when the Connect method is called, the value of this property will be used
as the default password when establishing a connection with the server.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Password Property

Gets and sets a value which specifies the priority of file transfers.

[Visual Basic]
Public Property Priority As FileTransferPriority

[C#]
public FileTransfer.FileTransferPriority Priority {get; set;}

Property Value
Returns a FileTransferPriority enumeration value which specify the current file transfer priority. The default
value for this property is priorityNormal.

Remarks
The Priority property can be used to control the processor usage, memory and network bandwidth
allocated for file transfers. The default priority balances resource utilization and transfer speed while
ensuring that a single-threaded application remains responsive to the user. Lower priorities reduce the
overall resource utilization at the expense of transfer speed. For example, if you create a worker thread to
download a file in the background and want to ensure that it has a minimal impact on the process, the
priorityBackground value can be used.

Higher priority values increase the memory allocated for the transfers and increases processor utilization
for the transfer. The priorityCritical priority maximizes transfer speed at the expense of system resources.
It is not recommended that you increase the file transfer priority unless you understand the implications of
doing so and have thoroughly tested your application. If the file transfer is being performed in the main UI
thread, increasing the priority may interfere with the normal processing of Windows messages and cause
the application to appear to become non-responsive. It is also important to note that when the priority is
set to priorityCritical, normal progress events will not be generated during the transfer.

See Also
FileTransfer Class | SocketTools Namespace | FileTransferPriority Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Priority Property

Gets and sets a value which specifies the default protocol version.

[Visual Basic]
Public Property ProtocolVersion As HttpVersion

[C#]
public FileTransfer.HttpVersion ProtocolVersion {get; set;}

Property Value
An HttpVersion enumeration which specifies the protocol version.

Remarks
The ProtocolVersion property sets or returns the current HTTP version number. It is used to determine
how requests are submitted to the server, as well as what header fields are required. The default value for
this property is HttpVersion.version10, and should be changed before any connection attempt is made
by the client.

Note that setting the property value to HttpVersion.version09 tells the client to use the preliminary
protocol specification which only supported a basic version of the GET command, and did not have any
provisions for features such as user authentication, virtual hosting, etc. Header fields are not supported in
this version of the protocol.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProtocolVersion Property

Gets and sets the password used to authenticate the connection to a proxy server.

[Visual Basic]
Public Property ProxyPassword As String

[C#]
public string ProxyPassword {get; set;}

Property Value
A string which specifies a password.

Remarks
The ProxyPassword property specifies the password used to authenticate the user to the proxy server. If
a password is not required by the server, this property is ignored.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProxyPassword Property

Gets and sets a value that specifies the proxy server port number.

[Visual Basic]
Public Property ProxyPort As Integer

[C#]
public int ProxyPort {get; set;}

Property Value
An integer value which specifies the proxy port number.

Remarks
The ProxyPort property is used to set the port number that the control will use to establish a connection
with the proxy server. A value of zero specifies that the client will connect to the proxy server using the
standard FTP service port.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProxyPort Property

Gets and sets the hostname or IP address of a proxy server.

[Visual Basic]
Public Property ProxyServer As String

[C#]
public string ProxyServer {get; set;}

Property Value
A string which specifies the hostname or IP address of the proxy server that will be used when establishing
a connection.

Remarks
The ProxyServer property should be set to the name of the proxy server that you want to connect to.
This property may be set to either a fully qualified domain name, or an IP address. This property is only
used if the ProxyType property specifies a proxy server type other than proxyNone.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProxyServer Property

Gets and sets the type of proxy server the client will use to establish a connection.

[Visual Basic]
Public Property ProxyType As FileTransferProxy

[C#]
public FileTransfer.FileTransferProxy ProxyType {get; set;}

Property Value
An FileTransferProxy enumeration which specifies the type of proxy that the client will connect through.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProxyType Property

Gets and sets the username used to authenticate the connection to a proxy server.

[Visual Basic]
Public Property ProxyUser As String

[C#]
public string ProxyUser {get; set;}

Property Value
A string which specifies the username.

Remarks
The ProxyUser property specifies the user that is logging in to the proxy server. If the proxy server does
not require the user to login, then this property is ignored.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProxyUser Property

Gets and sets a value which specifies a file name on the server.

[Visual Basic]
Public Property RemoteFile As String

[C#]
public string RemoteFile {get; set;}

Property Value
A string which specifies a file name.

Remarks
The RemoteFile property is used to specify the name of a file on the server. Note that this property
specifies the name of the file only, not a complete URL. To specify a complete URL, set the URL property
and the control will automatically set the RemoteFile property to the correct value.

In most cases, the remote file name should be specified using an absolute path that begins with a leading
slash character.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.RemoteFile Property

Gets a value which specifies the last result code returned by the server.

[Visual Basic]
Public ReadOnly Property ResultCode As Integer

[C#]
public int ResultCode {get;}

Property Value
An integer value which specifies the last result code returned by the server.

Remarks
Result codes are three-digit numeric values returned by the remote server and may be broken down into
the following ranges:

ResultCode Description

100-199 Positive preliminary result. This indicates that the
requested action is being initiated, and the client
should expect another reply from the server
before proceeding.

200-299 Positive completion result. This indicates that the
server has successfully completed the requested
action.

300-399 Positive intermediate result. This indicates that the
requested action cannot complete until additional
information is provided to the server.

400-499 Transient negative completion result. This indicates
that the requested action did not take place, but
the error condition is temporary and may be
attempted again.

500-599 Permanent negative completion result. This
indicates that the requested action did not take
place.

It is important to note that while some result codes have become standardized, not all servers respond to
commands using the same result codes. For example, one server may respond with a result code of 221
to indicate success, while another may respond with a value of 235. It is recommended that applications
check for ranges of values to determine if a command was successful, not a specific value.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ResultCode Property

Gets a string value which describes the result of the previous command.

[Visual Basic]
Public ReadOnly Property ResultString As String

[C#]
public string ResultString {get;}

Property Value
A string which describes the result of the previous command executed on the server.

Remarks
The ResultString property returns the result string from the last action taken by the client. This string is
generated by the remote server, and typically is used to describe the result code. For example, if an error
is indicated by the result code, the result string may describe the condition that caused the error.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ResultString Property

Gets and sets a value which specifies if a secure connection is established.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connection is established; otherwise returns false. The default value is false.

Remarks
The Secure property determines if a secure connection is established with the server. The default value for
this property is false, which specifies that a standard connection to the server is used. To establish a
secure connection, the application should set this property value to true prior to calling the Connect
method. Once the connection has been established, the client may exchange data with the server as with
standard connections.

It is strongly recommended that any application that sets this property true use error handling to trap an
errors that may occur. If the class is unable to initialize the security libraries, or otherwise cannot create a
secure session for the client, an exception may be generated when this property value is set to true.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Secure Property

Gets a value that specifies the encryption algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureCipher As SecureCipherAlgorithm

[C#]
public FileTransfer.SecureCipherAlgorithm SecureCipher {get;}

Property Value
A SecureCipherAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureCipher property returns a value which identifies the algorithm used to encrypt the data
stream. If a secure connection has not been established, this property will return a value of cipherNone.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SecureCipher Property

Gets a value that specifies the message digest algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureHash As SecureHashAlgorithm

[C#]
public FileTransfer.SecureHashAlgorithm SecureHash {get;}

Property Value
A SecureHashAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureHash property returns a value which identifies the message digest (hash) algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of hashNone.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SecureHash Property

Gets a value that specifies the key exchange algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureKeyExchange As SecureKeyAlgorithm

[C#]
public FileTransfer.SecureKeyAlgorithm SecureKeyExchange {get;}

Property Value
A SecureKeyAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureKeyExchange property returns a value which identifies the key exchange algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of keyExchangeNone.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SecureKeyExchange Property

Gets and sets a value which specifies the protocol used for a secure connection.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public FileTransfer.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when establishing a secure
connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when establishing a
secure connection with a server or accepting a secure connection from a client. By default, the class will
attempt to use either SSL v3 or TLS v1 to establish the connection, with the appropriate protocol
automatically selected based on the capabilities of the remote host. It is recommended that you only
change this property value if you fully understand the implications of doing so. Assigning a value to this
property will override the default protocol and force the class to attempt to use only the protocol
specified.

Multiple security protocols may be specified by combining them using a bitwise or operator. After a
connection has been established, this property will identify the protocol that was selected. Attempting to
set this property after a connection has been established will result in an exception being thrown. This
property should only be set after setting the Secure property to true and before calling the Accept or
Connect methods.

In some cases, a server may only accept a secure connection if the TLS v1 protocol is specified. If the
security protocol is not compatible with the server, then the connection will fail with an error indicating
that the control is unable to establish a security context for the session. In this case, try assigning the
property to protocolTLS1 and attempt the connection again.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SecureProtocol Property

Gets and sets a value which specifies the current working directory on the file server.

[Visual Basic]
Public Property ServerDirectory As String

[C#]
public string ServerDirectory {get; set;}

Property Value
A string value which specifies the current working directory on the file server. If there is no active
connection to a server, or the File Transfer Protocol has not been used to establish a connection, this
property will return an empty string.

Remarks
This property specifies the name of a directory on the file server. When a connection is first established to
an FTP server, this property will return the current working directory. Setting this property is equivalent to
using the ChangeDirectory method.

It is important to note that this property is only valid when connected to an FTP server. If you change the
value of this property, and the current working directory cannot be changed on the server, an exception
will be thrown which must be handled by the client application.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ServerDirectory Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property ServerName As String

[C#]
public string ServerName {get; set;}

Property Value
A string which specifies a server domain name.

Remarks
The ServerName property can be used to set the host name for a remote system that you wish to
communicate with.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ServerName Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property ServerPort As Integer

[C#]
public int ServerPort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The ServerPort property is used to set the port number that will be used to establish a connection with a
server.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ServerPort Property

Gets and sets a value which specifies the type of file server the client is connecting to.

[Visual Basic]
Public Property ServerType As FileServerType

[C#]
public FileTransfer.FileServerType ServerType {get; set;}

Property Value
Returns a FileServerType enumeration value which specifies the type of file server, either using the File
Transfer Protocol or the Hypertext Transfer Protocol.

Remarks
If this property value is specified as serverUnknown, the actual server type will either be determined by
the URL or the value of the ServerPort property, if the port number is recognized as a standard service
port. If the server type cannot be automatically identified, an error will be returned when the Connect
method is called.

If you are connecting using a non-standard port number, and are not specifying a URL for the remote file
name, you should always initialize this property value to the correct server type before attempting to
establish a connection.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ServerType Property

Gets a string value which identifies the server.

[Visual Basic]
Public ReadOnly Property System As String

[C#]
public string System {get;}

Property Value
A string which identifies the type of server the client has connected to.

Remarks
The System property returns information about the server operating system. This is a read-only property
that can be used by the application to identify the type of server that the client has connected to. Reading
this property will cause the SYST command to be sent to the server and will only return a useful value after
a connection has been established with the server.

By convention, the first whitespace separated token in the string identifies the general operating system
platform. For example, here are some strings commonly returned by various FTP servers:

Examples Description

UNIX Type: L8 A standard UNIX based server. This is the most
common value returned by servers, and this
indicates that the server supports UNIX file naming
and directory listing conventions. This string may
also include additional information such as the
specific variant of UNIX and its version. The L8
portion of the string is a convention that lets the
client know that a byte consists of 8 bits.

Windows_NT Version 5.0 A standard Windows based server, typically part of
Internet Information Services (ISS). The server will
use Windows file naming and directory listing
conventions. The version identifies the specific
release of Windows. For example, version 4.0
specifies Windows NT 4.0 and 5.0 specifies
Windows 2000.

VMS V7.1 AlphaServer A server running the VMS operating system. The
server will use the standard file naming and
directory listing conventions for that platform.
Note that it is possible that a VMS system may also
be configured to operate in a UNIX emulation
mode, in which case it will return UNIX instead of
VMS.

NetWare A server running the NetWare operating system.
The server will use the standard file naming and
directory listing conventions for that platform.
Note that it is possible that a NetWare system may
be configured to operate in a UNIX emulation

FileTransfer.System Property

mode, in which case it return UNIX instead of
NetWare.

WORLDGROUP Type: L8 A server running the WorldGroup software on the
Windows platform. This server supports UNIX file
naming and directory listing conventions.
WorldGroup is a collaborative workgroup, email
and file sharing service which includes an FTP
server.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Get the number of active background file transfers.

[Visual Basic]
Public ReadOnly Property TaskCount As Integer

[C#]
public int TaskCount {get;}

Property Value
An integer value that specifies the number of background file transfers that are currently in progress.

Remarks
The TaskCount property returns the number of background file transfers that are currently in progress.
One common use for this property is to create a timer that periodically checks this value when a series of
background transfers are started. When the property returns a value of zero, that indicates all of the
background transfers have completed. This property can also be used to enumerate the active
background tasks in conjunction with the TaskList property.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskCount Property

Get the task identifier for the last background file transfer.

[Visual Basic]
Public ReadOnly Property TaskId As Integer

[C#]
public int TaskId {get;}

Property Value
An integer value the uniquely identifies the current background task.

Remarks
The TaskId property returns the task ID associated with the current background task. This identifies the
last background file transfer that was initiated with a call to the AsyncGetFile or AsyncPutFile methods.
This property value will change with each subsequent background transfer that is performed. If this
property returns a value of zero, that indicates that no background tasks have been started for this
instance of the class.

To enumerate the active background tasks, use the TaskCount property and the TaskList array.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskId Property

Get an array of active background task identifiers.

[Visual Basic]
Public ReadOnly Property TaskList As ArrayList

[C#]
public System.Collections.ArrayList TaskList {get;}

Property Value
An ArrayList object that contains a list of integer values that uniquely identify the active background tasks
that have been started by this instance of the class.

Remarks
The TaskList property returns a read-only ArrayList object that is popularted with the task identifiers for
all active background tasks that have been created by this instance of the class. The current number of
active tasks can be determined using the TaskCount property.

As background tasks complete and additional tasks are started, the values stored in this array will change.
The application should never make any assumptions about the numeric values stored in the array or the
order they are returned. Task IDs should be considered opaque values that are unique to the process.
When a background task completes, its corresponding ID is removed from the list of active tasks and this
can potentially change the task ID values associated with each index into the array.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskList Property

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public FileTransfer.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
FileTransfer Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.ThreadingModel.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Timeout Property

Gets and sets the current timezone offset in seconds.

[Visual Basic]
Public Property TimeZone As Integer

[C#]
public int TimeZone {get; set;}

Property Value
An integer value which specifies the current timezone offset in seconds.

Remarks
The TimeZone property returns the current offset from UTC in seconds. Setting the property changes the
current timezone offset to the specified value. The value of this property is initially determined by the date
and time settings on the local system.

This property value is used in conjunction with the Localize property to control how date and time
localization is handled.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TimeZone Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public FileTransfer.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TraceFlags Property

Gets a value which specifies the number of bytes transferred to or from the remote server.

[Visual Basic]
Public ReadOnly Property TransferBytes As Long

[C#]
public long TransferBytes {get;}

Property Value
An integer value which specifies the number of bytes of data transferred to or from the server.

Remarks
The TransferBytes property returns the number of bytes that have been copied to or from the remote
FTP server. If this property is read while a transfer is ongoing, the property returns the number of bytes
that have been copied up to that point. If read after a transfer has completed, the total number of bytes
copied is returned. This property value is reset with every data transfer.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TransferBytes Property

Gets a value which specifies the number of seconds elapsed during a data transfer.

[Visual Basic]
Public ReadOnly Property TransferTime As Integer

[C#]
public int TransferTime {get;}

Property Value
An integer value which specifies the transfer time in seconds.

Remarks
The TransferTime returns the number of seconds that have elapsed since the data connection was
opened on the remote server. If the property is read while a transfer is ongoing, it returns the elapsed
time. If the property is read after the transfer is complete, it returns the total number of seconds it took to
transfer the data. This property value is reset with every data transfer.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TransferTime Property

Gets and sets the current URL used to access a file on the server.

[Visual Basic]
Public Property URL As String

[C#]
public string URL {get; set;}

Property Value
A string which specifies the current URL.

Remarks
The URL property returns the current Uniform Resource Locator string which is used by the control to
access a file on the server. URLs have a specific format which provides information about the server, port,
path and file name, as well as optional information such as a username and password for authentication:

ftp://[username : [password] @] hostname [:port] / [path/...]
filename [;type=id]

The first part of the URL is the protocol and in this case will always be "ftp", or "ftps" if a secure connection
is being used. If a username and password is required for authentication, then this will be included in the
URL before the name of the server; otherwise an anonymous FTP session is assumed. Next, there is the
name of the server to connect to, optionally followed by a port number. If no port number is given, then
the default port for the protocol will be used. This is followed by the path, and then the name of the file
on the server. An optional file type may be specified as well, with the type identifier being either "a" for
text files or "i" for binary files.

One important consideration when using FTP URLs is that the path is relative to the user's home directory
and should not be considered an absolute path from the root directory on the server. If no username and
password is provided, then an anonymous session is used and the path is relative to the public directory
used by the FTP server.

Here are some typical examples of URLs used to access files on an FTP server:

 ftp://www.example.com/pub/financial/jan2023.xlsx

In this example, the server is www.example.com, the path is "pub/financial" and the file name
is "jan2023.xlsx". The default port will be used to access the file, and no username and
password is provided for authentication so this file must be publicly available to anonymous
users.

 ftp://www.example.com:2121/employees/picnic.docx

In this example, the server is www.example.com, the path is "employees" and the file name is
"picnic.docx". However, the client should connect to an alternative port number, in this case
2121. This file must also be available to anonymous users because no username or password
has been specified.

ftps://executive:secret@www.example.com/corporate/projections/sales2024.xlsx

FileTransfer.URL Property

In this example, the server is www.example.com and, the path is "corporate/projections" and
the file name is "sales2024.xlsx". Because the protocol is ftps, a secure connection on port 990
will be established. The user name "executive" and password "secret" will be used to
authenticate the session.

When setting the URL property, the class will parse the string and automatically update the HostName,
RemotePort, UserName, Password, RemotePath and RemoteFile properties according to the values
specified in the URL. This enables an application to simply provide the URL and then call the Connect
method to establish the connection.

Note that if this property is assigned a value which cannot be parsed, an exception will be thrown that
indicates that the property value is invalid. If the user enters an invalid URL and there is no exception
handler, the unhandled exception will terminate the application.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets the username used to authenticate the client session.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username.

Remarks
If a username is not specified when the Connect method is called, the value of this property will be used
as the default username when establishing a connection with the server.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.UserName Property

Gets a value which returns the current version of the FileTransfer class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the FileTransfer
class library. This value can be used by an application for validation and debugging purposes.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Version Property

The methods of the FileTransfer class are listed below. For a complete list of FileTransfer class members,
see the FileTransfer Members topic.

Public Static (Shared) Methods

ErrorText Returns the description of an error code.

Public Instance Methods

AddFileType Associate a file name extension with a specific file
type.

AsyncGetFile Overloaded. Download a file from the server to
the local system in the background.

AsyncPutFile Overloaded. Upload a file from the local system to
the server in the background.

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

ChangeDirectory Change the current working directory on the
remote server.

CloseDirectory Close the directory that was previously opened
with the OpenDirectory method.

Command Overloaded. Send a custom command to the
server.

Connect Overloaded. Establish a connection with a file
server.

DeleteFile Delete a file on the remote server.

Disconnect Terminate the connection with the remote server.

Dispose Overloaded. Releases all resources used by
FileTransfer.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetData Overloaded. Transfers the contents of a file on the
server and stores it in byte array.

GetDirectory Return the current working directory.

GetFile Overloaded. Download a file from the server to
the local system.

GetFileList Overloaded. Returns an unparsed list of files in the
specified directory.

GetFilePermissions Overloaded. Return the access permissions for a
file on the remote system.

GetFileSize Overloaded. Returns the size of the specified file

FileTransfer Methods

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ErrorText.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.AddFileType.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.AsyncGetFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.AsyncPutFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.AttachThread.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Cancel.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ChangeDirectory.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.CloseDirectory.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OpenDirectory_overload_1.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Command_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Connect_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.DeleteFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Disconnect.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Dispose_overload_1.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetData_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetDirectory.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFileList_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFilePermissions_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFileSize_overloads.html

on the remote server.

GetFileStatus

GetFileTime Overloaded. Returns the modification date and
time for specified file on the remote server.

GetFirstFile Overloaded. Get information about the first file in
a directory listing returned by the server.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetMultipleFiles Download multiple files from the server to the
local system using a wildcard mask.

GetNextFile Overloaded. Get information about the next file in
a directory listing returned by the server.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
FileTransfer class.

Login Overloaded. Login to the remote server.

Logout Log the current user off the server.

MakeDirectory Create a new directory on the server.

OpenDirectory Overloaded. Open the specified directory on the
server.

PostFile Overloaded. Post the contents of the specified file
to a script executed on the remote server.

PutData Overloaded. Transfers data from a byte array and
stores it in a file on the remote server.

PutFile Overloaded. Upload a file from the local system to
the server.

PutMultipleFiles Upload multiple files from the local system to the
server using a wildcard mask.

RemoveDirectory Remove a directory on the server.

RenameFile Change the name of a file on the server.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SetFilePermissions Change the access permissions for a file on the
server.

SetFileTime Changes the modification date and time for a file
on the server.

TaskAbort Overloaded. Abort the specified asynchronous
task.

TaskDone Overloaded. Determine if an asynchronous task
has completed.

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFileStatus.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFileTime_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetFirstFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetMultipleFiles.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.GetNextFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Initialize_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Login_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Logout.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.MakeDirectory.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OpenDirectory_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.PostFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.PutData_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.PutFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.PutMultipleFiles.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.RemoveDirectory.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.RenameFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Reset.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.SetFilePermissions.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.SetFileTime.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskAbort_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskDone_overloads.html

TaskResume Overloaded. Resume execution of an
asynchronous task.

TaskSuspend Overloaded. Suspend execution of an
asynchronous task.

TaskWait Overloaded. Wait for an asynchronous task to
complete.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

VerifyFile Overloaded. Verify that the contents of a file on
the local system are the same as the specified file
on the server.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the FileTransfer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskResume_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskSuspend_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.TaskWait_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Uninitialize.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.VerifyFile_overloads.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Dispose_overload_2.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.Finalize.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Associate a file name extension with a specific file type.

[Visual Basic]
Public Function AddFileType(_
 ByVal fileExtension As String, _
 ByVal fileType As FileTransferType _
) As Boolean

[C#]
public bool AddFileType(
 string fileExtension,
 FileTransferType fileType
);

Parameters
fileExtension

A string value which specifies the file name extension.

fileType
A FileTransferType enumeration which specifies the type of file associated with the file extension.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method is used to associate specific file types with file name extensions. The class has an internal list
of standard text file extensions which it automatically recognizes. This method can be used to extend or
modify that list for the client session.

See Also
FileTransfer Class | SocketTools Namespace | FileTransferType Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.AddFileType Method

Download a file from the server to the local system in the background.

Overload List
Download a file from the server to the local system in the background.

public bool AsyncGetFile(string);

Download a file from the server to the local system in the background.

public bool AsyncGetFile(string,string);

Download a file from the server to the local system in the background.

public bool AsyncGetFile(string,string,long);

Download a file from the server to the local system in the background.

public bool AsyncGetFile(string,string,long,bool);

See Also
FileTransfer Class | SocketTools Namespace | AsyncPutFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.AsyncGetFile Method

Download a file from the server to the local system in the background.

[Visual Basic]
Overloads Public Function AsyncGetFile(_
 ByVal localFile As String _
) As Boolean

[C#]
public bool AsyncGetFile(
 string localFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local system. It is
similar to the GetFile method, however it retrieves the file using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other operations
while the file is being downloaded from the server. This method requires that you explicitly establish a
connection using the Connect method. All background tasks will duplicate the active connection and use
it establish a secondary connection with the server to perform the file transfer. If you wish to perform
multiple asynchronous file transfers from different servers, you must create a new instance of this class for
each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is downloaded,
the class will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to download more than one file in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP address.
The application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.AsyncGetFile Overload List | AsyncPutFile
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.AsyncGetFile Method (String)

Download a file from the server to the local system in the background.

[Visual Basic]
Overloads Public Function AsyncGetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool AsyncGetFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be transferred to the local system. The file pathing
and name conventions must be that of the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local system. It is
similar to the GetFile method, however it retrieves the file using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other operations
while the file is being downloaded from the server. This method requires that you explicitly establish a
connection using the Connect method. All background tasks will duplicate the active connection and use
it establish a secondary connection with the server to perform the file transfer. If you wish to perform
multiple asynchronous file transfers from different servers, you must create a new instance of this class for
each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is downloaded,
the class will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to download more than one file in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP address.
The application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

FileTransfer.AsyncGetFile Method (String, String)

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.AsyncGetFile Overload List | AsyncPutFile
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Download a file from the server to the local system in the background.

[Visual Basic]
Overloads Public Function AsyncGetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool AsyncGetFile(
 string localFile,
 string remoteFile,
 long offset
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be transferred to the local system. The file pathing
and name conventions must be that of the server.

offset
A integer value which specifies the offset where the file transfer should begin. A value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the command to restart file transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local system. It is
similar to the GetFile method, however it retrieves the file using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other operations
while the file is being downloaded from the server. This method requires that you explicitly establish a
connection using the Connect method. All background tasks will duplicate the active connection and use
it establish a secondary connection with the server to perform the file transfer. If you wish to perform
multiple asynchronous file transfers from different servers, you must create a new instance of this class for
each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is downloaded,
the class will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call

FileTransfer.AsyncGetFile Method (String, String, Int64)

the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to download more than one file in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP address.
The application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.AsyncGetFile Overload List | AsyncPutFile
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Download a file from the server to the local system in the background.

[Visual Basic]
Overloads Public Function AsyncGetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal offset As Long, _
 ByVal appendFile As Boolean _
) As Boolean

[C#]
public bool AsyncGetFile(
 string localFile,
 string remoteFile,
 long offset,
 bool appendFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be transferred to the local system. The file pathing
and name conventions must be that of the server.

offset
A integer value which specifies the offset where the file transfer should begin. A value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the command to restart file transfers.

appendFile
A boolean value which specifies if the contents of the remote file should be appended to the local file,
rather than overwriting it. A value of true specifies that the local file should be appended to. A value of
false specifies that the local file should be overwritten. This parameter is only used with the File
Transfer Protocol.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local system. It is
similar to the GetFile method, however it retrieves the file using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other operations
while the file is being downloaded from the server. This method requires that you explicitly establish a
connection using the Connect method. All background tasks will duplicate the active connection and use
it establish a secondary connection with the server to perform the file transfer. If you wish to perform
multiple asynchronous file transfers from different servers, you must create a new instance of this class for
each server.

FileTransfer.AsyncGetFile Method (String, String, Int64, Boolean)

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is downloaded,
the class will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to download more than one file in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP address.
The application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.AsyncGetFile Overload List | AsyncPutFile
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a file from the local system to the server in the background.

Overload List
Upload a file from the local system to the server in the background.

public bool AsyncPutFile(string);

Upload a file from the local system to the server in the background.

public bool AsyncPutFile(string,string);

Upload a file from the local system to the server in the background.

public bool AsyncPutFile(string,string,long);

Upload a file from the local system to the server in the background.

public bool AsyncPutFile(string,string,long,bool);

See Also
FileTransfer Class | SocketTools Namespace | AsyncGetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.AsyncPutFile Method

Upload a file from the local system to the server in the background.

[Visual Basic]
Overloads Public Function AsyncPutFile(_
 ByVal localFile As String _
) As Boolean

[C#]
public bool AsyncPutFile(
 string localFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is similar
to the PutFile method, however it retrieves the file using a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations while the
file is being uploaded to the server. This method requires that you explicitly establish a connection using
the Connect method. All background tasks will duplicate the active connection and use it establish a
secondary connection with the server to perform the file transfer. If you wish to perform multiple
asynchronous file transfers from different servers, you must create an instance of the control for each
server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is uploaded, the
control will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background; however, most
servers limit the number of simultaneous connections that can originate from a single IP address. The
application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.AsyncPutFile Overload List | AsyncGetFile
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.AsyncPutFile Method (String)

Upload a file from the local system to the server in the background.

[Visual Basic]
Overloads Public Function AsyncPutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool AsyncPutFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is similar
to the PutFile method, however it retrieves the file using a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations while the
file is being uploaded to the server. This method requires that you explicitly establish a connection using
the Connect method. All background tasks will duplicate the active connection and use it establish a
secondary connection with the server to perform the file transfer. If you wish to perform multiple
asynchronous file transfers from different servers, you must create an instance of the control for each
server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is uploaded, the
control will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background; however, most
servers limit the number of simultaneous connections that can originate from a single IP address. The
application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

FileTransfer.AsyncPutFile Method (String, String)

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.AsyncPutFile Overload List | AsyncGetFile
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a file from the local system to the server in the background.

[Visual Basic]
Overloads Public Function AsyncPutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool AsyncPutFile(
 string localFile,
 string remoteFile,
 long offset
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the server.

offset
A integer value which specifies the offset where the file transfer should begin. A value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the command to restart file transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is similar
to the PutFile method, however it retrieves the file using a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations while the
file is being uploaded to the server. This method requires that you explicitly establish a connection using
the Connect method. All background tasks will duplicate the active connection and use it establish a
secondary connection with the server to perform the file transfer. If you wish to perform multiple
asynchronous file transfers from different servers, you must create an instance of the control for each
server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is uploaded, the
control will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call

FileTransfer.AsyncPutFile Method (String, String, Int64)

the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background; however, most
servers limit the number of simultaneous connections that can originate from a single IP address. The
application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.AsyncPutFile Overload List | AsyncGetFile
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a file from the local system to the server in the background.

[Visual Basic]
Overloads Public Function AsyncPutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal offset As Long, _
 ByVal appendFile As Boolean _
) As Boolean

[C#]
public bool AsyncPutFile(
 string localFile,
 string remoteFile,
 long offset,
 bool appendFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the server.

offset
A integer value which specifies the offset where the file transfer should begin. A value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the command to restart file transfers.

appendFile
A boolean value which specifies if the contents of the remote file should be appended to the local file,
rather than overwriting it. A value of true specifies that the local file should be appended to. A value of
false specifies that the local file should be overwritten. This parameter is only used with the File
Transfer Protocol.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is similar
to the PutFile method, however it retrieves the file using a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations while the
file is being uploaded to the server. This method requires that you explicitly establish a connection using
the Connect method. All background tasks will duplicate the active connection and use it establish a
secondary connection with the server to perform the file transfer. If you wish to perform multiple
asynchronous file transfers from different servers, you must create an instance of the control for each
server.

FileTransfer.AsyncPutFile Method (String, String, Int64, Boolean)

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is uploaded, the
control will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background; however, most
servers limit the number of simultaneous connections that can originate from a single IP address. The
application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.AsyncPutFile Overload List | AsyncGetFile
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the client could be attached to the current thread. If this method returns
false, the client could not be attached to the thread and the application should check the value of the
LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.AttachThread Method

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Cancel Method

Change the current working directory on the remote server.

[Visual Basic]
Public Function ChangeDirectory(_
 ByVal pathName As String _
) As Boolean

[C#]
public bool ChangeDirectory(
 string pathName
);

Parameters
pathName

A string which specifies the directory on the remote server. The file pathing and name conventions
must be that of the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ChangeDirectory Method

Close the directory that was previously opened with the OpenDirectory method.

[Visual Basic]
Public Function CloseDirectory() As Boolean

[C#]
public bool CloseDirectory();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CloseDirectory Method

Send a custom command to the server.

Overload List
Send a custom command to the server.

public bool Command(string);

Send a custom command to the server.

public bool Command(string,string);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Command Method

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String _
) As Boolean

[C#]
public bool Command(
 string command
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the server and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Command Method (String)

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal parameters As String _
) As Boolean

[C#]
public bool Command(
 string command,
 string parameters
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

parameters
An string which specifies one or more parameters to be sent along with the command. If more than
one parameter is required, they must be separated by a single space character. Consult the protocol
standard and/or technical reference documentation for the server to determine what parameters
should be provided when issuing a specific command.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the server and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Command Method (String, String)

Establish a connection with a file server.

Overload List
Establish a connection with a file server.

public bool Connect();

Establish a connection with a file server.

public bool Connect(string);

Establish a connection with a file server.

public bool Connect(string,int);

Establish a connection with a file server.

public bool Connect(string,int,string,string);

Establish a connection with a file server.

public bool Connect(string,int,string,string,int);

Establish a connection with a file server.

public bool Connect(string,int,string,string,int,FileTransferOptions);

Establish a connection with a file server.

public bool Connect(string,int,string,string,string);

Establish a connection with a file server.

public bool Connect(string,int,string,string,string,int);

Establish a connection with a file server.

public bool Connect(string,int,string,string,string,int,FileTransferOptions);

Establish a connection with a file server.

public bool Connect(string,string,string);

See Also
FileTransfer Class | SocketTools Namespace | ServerName Property | ServerPort Property | ServerType
Property | URL Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Connect Method

Establish a connection with a file server.

[Visual Basic]
Overloads Public Function Connect() As Boolean

[C#]
public bool Connect();

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may transfer files between the local system and
the server. If this method returns false, the connection could not be established and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The Connect method is used to establish a connection with the server. It is the first method that must be
called prior to the application transferring files or issuing commands to the server. If a connection already
exists, the current connection will be closed and a new connection will be established.

It is permissible to specify a complete URL as the first argument to the method and the connection will be
established with the server using specified protocol. Passing a complete URL to the Connect method has
the same effect as setting the URL property and then calling the method with no arguments.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Connect Overload List | ServerName Property |
ServerPort Property | ServerType Property | URL Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Connect Method ()

Establish a connection with a file server.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String _
) As Boolean

[C#]
public bool Connect(
 string hostName
);

Parameters
hostName

A string which specifies the server to establish a connection with. This may specify a host name or an
Internet address in dot-notation.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may transfer files between the local system and
the server. If this method returns false, the connection could not be established and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The Connect method is used to establish a connection with the server. It is the first method that must be
called prior to the application transferring files or issuing commands to the server. If a connection already
exists, the current connection will be closed and a new connection will be established.

It is permissible to specify a complete URL as the first argument to the method and the connection will be
established with the server using specified protocol. Passing a complete URL to the Connect method has
the same effect as setting the URL property and then calling the method with no arguments.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Connect Overload List | ServerName Property |
ServerPort Property | ServerType Property | URL Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Connect Method (String)

Establish a connection with a file server.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the server to establish a connection with. This may specify a host name or an
Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may transfer files between the local system and
the server. If this method returns false, the connection could not be established and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The Connect method is used to establish a connection with the server. It is the first method that must be
called prior to the application transferring files or issuing commands to the server. If a connection already
exists, the current connection will be closed and a new connection will be established.

It is permissible to specify a complete URL as the first argument to the method and the connection will be
established with the server using specified protocol. Passing a complete URL to the Connect method has
the same effect as setting the URL property and then calling the method with no arguments.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Connect Overload List | ServerName Property |
ServerPort Property | ServerType Property | URL Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Connect Method (String, Int32)

Establish a connection with a file server.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the server to establish a connection with. This may specify a host name or an
Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may transfer files between the local system and
the server. If this method returns false, the connection could not be established and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The Connect method is used to establish a connection with the server. It is the first method that must be
called prior to the application transferring files or issuing commands to the server. If a connection already
exists, the current connection will be closed and a new connection will be established.

It is permissible to specify a complete URL as the first argument to the method and the connection will be
established with the server using specified protocol. Passing a complete URL to the Connect method has
the same effect as setting the URL property and then calling the method with no arguments.

See Also

FileTransfer.Connect Method (String, Int32, String, String)

FileTransfer Class | SocketTools Namespace | FileTransfer.Connect Overload List | ServerName Property |
ServerPort Property | ServerType Property | URL Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a file server.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout
);

Parameters
hostName

A string which specifies the server to establish a connection with. This may specify a host name or an
Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may transfer files between the local system and
the server. If this method returns false, the connection could not be established and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The Connect method is used to establish a connection with the server. It is the first method that must be
called prior to the application transferring files or issuing commands to the server. If a connection already
exists, the current connection will be closed and a new connection will be established.

It is permissible to specify a complete URL as the first argument to the method and the connection will be

FileTransfer.Connect Method (String, Int32, String, String, Int32)

established with the server using specified protocol. Passing a complete URL to the Connect method has
the same effect as setting the URL property and then calling the method with no arguments.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Connect Overload List | ServerName Property |
ServerPort Property | ServerType Property | URL Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a file server.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer, _
 ByVal options As FileTransferOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout,
 FileTransferOptions options
);

Parameters
hostName

A string which specifies the server to establish a connection with. This may specify a host name or an
Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller.

options
One or more of the FileTransferOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may transfer files between the local system and
the server. If this method returns false, the connection could not be established and the application
should check the value of the LastError property to determine the cause of the failure.

FileTransfer.Connect Method (String, Int32, String, String, Int32,
FileTransferOptions)

Remarks
The Connect method is used to establish a connection with the server. It is the first method that must be
called prior to the application transferring files or issuing commands to the server. If a connection already
exists, the current connection will be closed and a new connection will be established.

It is permissible to specify a complete URL as the first argument to the method and the connection will be
established with the server using specified protocol. Passing a complete URL to the Connect method has
the same effect as setting the URL property and then calling the method with no arguments.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Connect Overload List | ServerName Property |
ServerPort Property | ServerType Property | URL Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a file server.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal userAccount As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 string userAccount
);

Parameters
hostName

A string which specifies the server to establish a connection with. This may specify a host name or an
Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

userAccount
A string that specifies the account name to be used to authenticate the current client session. This
parameter may be an empty string if no account name is required for the specified user.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may transfer files between the local system and
the server. If this method returns false, the connection could not be established and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The Connect method is used to establish a connection with the server. It is the first method that must be
called prior to the application transferring files or issuing commands to the server. If a connection already
exists, the current connection will be closed and a new connection will be established.

It is permissible to specify a complete URL as the first argument to the method and the connection will be

FileTransfer.Connect Method (String, Int32, String, String, String)

established with the server using specified protocol. Passing a complete URL to the Connect method has
the same effect as setting the URL property and then calling the method with no arguments.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Connect Overload List | ServerName Property |
ServerPort Property | ServerType Property | URL Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a file server.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal userAccount As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 string userAccount,
 int timeout
);

Parameters
hostName

A string which specifies the server to establish a connection with. This may specify a host name or an
Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

userAccount
A string that specifies the account name to be used to authenticate the current client session. This
parameter may be an empty string if no account name is required for the specified user. Note that this
parameter is only used with the File Transfer Protocol.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may transfer files between the local system and
the server. If this method returns false, the connection could not be established and the application

FileTransfer.Connect Method (String, Int32, String, String, String,
Int32)

should check the value of the LastError property to determine the cause of the failure.

Remarks
The Connect method is used to establish a connection with the server. It is the first method that must be
called prior to the application transferring files or issuing commands to the server. If a connection already
exists, the current connection will be closed and a new connection will be established.

It is permissible to specify a complete URL as the first argument to the method and the connection will be
established with the server using specified protocol. Passing a complete URL to the Connect method has
the same effect as setting the URL property and then calling the method with no arguments.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Connect Overload List | ServerName Property |
ServerPort Property | ServerType Property | URL Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a file server.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal userAccount As String, _
 ByVal timeout As Integer, _
 ByVal options As FileTransferOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 string userAccount,
 int timeout,
 FileTransferOptions options
);

Parameters
hostName

A string which specifies the server to establish a connection with. This may specify a host name or an
Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

userAccount
A string that specifies the account name to be used to authenticate the current client session. This
parameter may be an empty string if no account name is required for the specified user. Note that this
parameter is only used with the File Transfer Protocol.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller.

options
One or more of the FileTransferOptions enumeration flags.

FileTransfer.Connect Method (String, Int32, String, String, String, Int32,
FileTransferOptions)

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may transfer files between the local system and
the server. If this method returns false, the connection could not be established and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The Connect method is used to establish a connection with the server. It is the first method that must be
called prior to the application transferring files or issuing commands to the server. If a connection already
exists, the current connection will be closed and a new connection will be established.

It is permissible to specify a complete URL as the first argument to the method and the connection will be
established with the server using specified protocol. Passing a complete URL to the Connect method has
the same effect as setting the URL property and then calling the method with no arguments.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Connect Overload List | ServerName Property |
ServerPort Property | ServerType Property | URL Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a file server.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the server to establish a connection with. This may specify a host name or an
Internet address in dot-notation.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may transfer files between the local system and
the server. If this method returns false, the connection could not be established and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The Connect method is used to establish a connection with the server. It is the first method that must be
called prior to the application transferring files or issuing commands to the server. If a connection already
exists, the current connection will be closed and a new connection will be established.

It is permissible to specify a complete URL as the first argument to the method and the connection will be
established with the server using specified protocol. Passing a complete URL to the Connect method has
the same effect as setting the URL property and then calling the method with no arguments.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Connect Overload List | ServerName Property |
ServerPort Property | ServerType Property | URL Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Connect Method (String, String, String)

Delete a file on the remote server.

[Visual Basic]
Public Function DeleteFile(_
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool DeleteFile(
 string remoteFile
);

Parameters
remoteFile

A string which specifies the name of the file on the remote server that is to be deleted. The file pathing
and name conventions must be that of the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The DeleteFile method deletes an existing file from the remote server. The user must have the
appropriate permission to delete the specified file.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.DeleteFile Method

Terminate the connection with the remote server.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and closes the handle allocated
by the class. Note that the handle is not immediately released when the connection is terminated and will
enter a wait state for two minutes. After the time wait period has elapsed, the handle will be released by
the operating system. This is a normal safety mechanism to handle any packets that may arrive after the
connection has been closed.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Disconnect Method

Releases all resources used by FileTransfer.

Overload List
Releases all resources used by FileTransfer.

public void Dispose();

Releases the unmanaged resources allocated by the FileTransfer class and optionally releases the
managed resources.

protected virtual void Dispose(bool);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Dispose Method

Releases all resources used by FileTransfer.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Dispose Method ()

Releases the unmanaged resources allocated by the FileTransfer class and optionally releases the
managed resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the FileTransfer class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Finalize Method

Return the current working directory.

[Visual Basic]
Public Function GetDirectory(_
 ByRef pathName As String _
) As Boolean

[C#]
public bool GetDirectory(
 ref string pathName
);

Parameters
pathName

A string passed by reference which will contain the current working directory on the server when the
method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetDirectory Method

Download a file from the server to the local system.

Overload List
Download a file from the server to the local system.

public bool GetFile();

Download a file from the server to the local system.

public bool GetFile(string);

Download a file from the server to the local system.

public bool GetFile(string,string);

Download a file from the server to the local system.

public bool GetFile(string,string,bool);

Download a file from the server to the local system.

public bool GetFile(string,string,long);

Download a file from the server to the local system.

public bool GetFile(string,string,long,bool);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFile Method

Download a file from the server to the local system.

[Visual Basic]
Overloads Public Function GetFile() As Boolean

[C#]
public bool GetFile();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method copies an existing file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFile Method ()

Download a file from the server to the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String _
) As Boolean

[C#]
public bool GetFile(
 string localFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method copies an existing file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFile Method (String)

Download a file from the server to the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool GetFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the remote system that will be transferred to the local system. The file
pathing and name conventions must be that of the remote host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method copies an existing file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFile Method (String, String)

Download a file from the server to the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal appendFile As Boolean _
) As Boolean

[C#]
public bool GetFile(
 string localFile,
 string remoteFile,
 bool appendFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the remote system that will be transferred to the local system. The file
pathing and name conventions must be that of the remote host.

appendFile
A boolean value which specifies if the contents of the remote file should be appended to the local file,
rather than overwriting it. A value of true specifies that the local file should be appended to. A value of
false specifies that the local file should be overwritten. This parameter is only used with the File
Transfer Protocol.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method copies an existing file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFile Method (String, String, Boolean)

Download a file from the server to the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool GetFile(
 string localFile,
 string remoteFile,
 long offset
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the remote system that will be transferred to the local system. The file
pathing and name conventions must be that of the remote host.

offset
A integer value which specifies the offset where the file transfer should begin. A value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the command to restart file transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method copies an existing file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFile Method (String, String, Int64)

Download a file from the server to the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal offset As Long, _
 ByVal appendFile As Boolean _
) As Boolean

[C#]
public bool GetFile(
 string localFile,
 string remoteFile,
 long offset,
 bool appendFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the remote system that will be transferred to the local system. The file
pathing and name conventions must be that of the remote host.

offset
A integer value which specifies the offset where the file transfer should begin. A value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the command to restart file transfers.

appendFile
A boolean value which specifies if the contents of the remote file should be appended to the local file,
rather than overwriting it. A value of true specifies that the local file should be appended to. A value of
false specifies that the local file should be overwritten. This parameter is only used with the File
Transfer Protocol.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method copies an existing file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFile Overload List

FileTransfer.GetFile Method (String, String, Int64, Boolean)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Return the access permissions for a file on the remote system.

Overload List
Return the access permissions for a file on the remote system.

public bool GetFilePermissions(ref FilePermissions);

Return the access permissions for a file on the remote system.

public bool GetFilePermissions(string,ref FilePermissions);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFilePermissions Method

Return the access permissions for a file on the remote system.

[Visual Basic]
Overloads Public Function GetFilePermissions(_
 ByRef filePerms As FilePermissions _
) As Boolean

[C#]
public bool GetFilePermissions(
 ref FilePermissions filePerms
);

Parameters
filePerms

An FilePermissions enumeration value which is passed by reference and set to the file permissions
when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFilePermissions method returns information about the access permissions for a specific file on
the server. This method uses the STAT command to retrieve information about the specified file. If the
server does not support the use of this command, an error will be returned. You can use the Features
property to determine what features are available and/or enabled on the server.

Note that on some systems, the STAT command will not return information on files that contain spaces or
tabs in the filename. In this case, the method will fail.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFilePermissions Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFilePermissions Method (FilePermissions)

Return the access permissions for a file on the remote system.

[Visual Basic]
Overloads Public Function GetFilePermissions(_
 ByVal remoteFile As String, _
 ByRef filePerms As FilePermissions _
) As Boolean

[C#]
public bool GetFilePermissions(
 string remoteFile,
 ref FilePermissions filePerms
);

Parameters
remoteFile

A string that specifies the name of the file that the access permissions are to be returned for. The
filename cannot contain any wildcard characters.

filePerms
An FilePermissions enumeration value which is passed by reference and set to the file permissions
when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFilePermissions method returns information about the access permissions for a specific file on
the server. This method uses the STAT command to retrieve information about the specified file. If the
server does not support the use of this command, an error will be returned. You can use the Features
property to determine what features are available and/or enabled on the server.

Note that on some systems, the STAT command will not return information on files that contain spaces or
tabs in the filename. In this case, the method will fail.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFilePermissions Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFilePermissions Method (String, FilePermissions)

Returns the size of the specified file on the remote server.

Overload List
Returns the size of the specified file on the remote server.

public bool GetFileSize(ref int);

Returns the size of the specified file on the remote server.

public bool GetFileSize(ref long);

Returns the size of the specified file on the remote server.

public bool GetFileSize(string,ref int);

Returns the size of the specified file on the remote server.

public bool GetFileSize(string,ref long);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileSize Method

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.GetFileSize_overload_4.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.GetFileSize_overload_3.html

Returns the size of the specified file on the remote server.

[Visual Basic]
Overloads Public Function GetFileSize(_
 ByVal remoteFile As String, _
 ByRef fileSize As Integer _
) As Boolean

[C#]
public bool GetFileSize(
 string remoteFile,
 ref int fileSize
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

fileSize
An integer value which is passed by reference and will specify the size of the file on the server when
the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method returns the size of the specified file in bytes. If an FTP connection has been established, the
server must support the SIZE command. If this command is not supported, the method will fail. You can
use the Features property to determine what features are available and/or enabled on the server.

Note that if the file on the server is a text file, it is possible that the value returned by this method will not
match the size of the file when it is downloaded to the local system. This is because different operating
systems use different sequences of characters to mark the end of a line of text, and when a file is
transferred in text mode, the end of line character sequence is automatically converted to a carriage
return-linefeed, which is the convention used by the Windows platform.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFileSize Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileSize Method (String, Int32)

Returns the size of the specified file on the remote server.

[Visual Basic]
Overloads Public Function GetFileSize(_
 ByVal remoteFile As String, _
 ByRef fileSize As Long _
) As Boolean

[C#]
public bool GetFileSize(
 string remoteFile,
 ref long fileSize
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

fileSize
An integer value which is passed by reference and will specify the size of the file on the server when
the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method returns the size of the specified file in bytes. If an FTP connection has been established, the
server must support the SIZE command. If this command is not supported, the method will fail. You can
use the Features property to determine what features are available and/or enabled on the server.

Note that if the file on the server is a text file, it is possible that the value returned by this method will not
match the size of the file when it is downloaded to the local system. This is because different operating
systems use different sequences of characters to mark the end of a line of text, and when a file is
transferred in text mode, the end of line character sequence is automatically converted to a carriage
return-linefeed, which is the convention used by the Windows platform.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFileSize Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileSize Method (String, Int64)

[Visual Basic]
Public Function GetFileStatus(_
 ByVal remoteFile As String, _
 ByRef fileInfo As FileInformation _
) As Boolean

[C#]
public bool GetFileStatus(
 string remoteFile,
 ref FileInformation fileInfo
);

Parameters
remoteFile

A string which specifies the name of the file that status information is to be returned for.

fileInfo
A FileInformation structure that is passed by reference. When the method returns, the members of this
structure will be populated with information about the file on the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFileStatus method returns information about the specified file. The filename must be specified
using the server file naming conventions, and cannot include wildcard characters. The primary difference
between using this method and using the OpenDirectory, GetFirstFile and GetNextFile methods to
obtain file information is that the file status information is returned on the command channel. This method
cannot be used while a file transfer is in progress or while a file listing is being returned by the server.

This method requires that the server return file status information in response to the STAT command.
Some servers, for example on VMS platforms, do not provide this information. On some systems, the
STAT command will not return information on files that contain spaces or tabs in the filename. In this case,
the method will return an empty structure.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileStatus Method

Returns the modification date and time for specified file on the remote server.

Overload List
Returns the modification date and time for specified file on the remote server.

public bool GetFileTime(string,ref DateTime);

Returns the modification date and time for specified file on the remote server.

public bool GetFileTime(string,ref DateTime,bool);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileTime Method

Returns the modification date and time for specified file on the remote server.

[Visual Basic]
Overloads Public Function GetFileTime(_
 ByVal remoteFile As String, _
 ByRef fileDate As Date _
) As Boolean

[C#]
public bool GetFileTime(
 string remoteFile,
 ref DateTime fileDate
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

fileDate
A System.DateTime structure which is passed by reference. When the method returns, this object will
be set to the date and time that the file was created or last modified.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the MTDM command to determine the modification time for the file. If the server does
not support this command, the method will attempt to use the STAT command to determine the file
modification time. You can use the Features property to determine what features are available and/or
enabled on the server.

The value of the Localize property determines if the date and time are adjusted for the local timezone.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFileTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileTime Method (String, DateTime)

Returns the modification date and time for specified file on the remote server.

[Visual Basic]
Overloads Public Function GetFileTime(_
 ByVal remoteFile As String, _
 ByRef fileDate As Date, _
 ByVal localDate As Boolean _
) As Boolean

[C#]
public bool GetFileTime(
 string remoteFile,
 ref DateTime fileDate,
 bool localDate
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

fileDate
A System.DateTime structure which is passed by reference. When the method returns, this object will
be set to the date and time that the file was created or last modified.

localDate
A boolean flag which specifies if the date and time for the file should adjusted for the local timezone.
A value of true specifies that the date and time should be adjusted for the local timezone. A value of
false specifies that the date and time should be returned as a UTC (Coordinated Universal Time) value.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the MTDM command to determine the modification time for the file. If the server does
not support this command, the method will attempt to use the STAT command to determine the file
modification time. You can use the Features property to determine what features are available and/or
enabled on the server.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFileTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileTime Method (String, DateTime, Boolean)

Get information about the first file in a directory listing returned by the server.

Overload List
Get information about the first file in a directory listing returned by the server.

public bool GetFirstFile(ref FileInformation);

Get the first file name in a directory listing returned by the server.

public bool GetFirstFile(ref string);

Get information about the first file in a directory listing returned by the server.

public bool GetFirstFile(ref string,ref bool);

Get information about the first file in a directory listing returned by the server.

public bool GetFirstFile(ref string,ref long,ref bool);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFirstFile Method

Get information about the first file in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetFirstFile(_
 ByRef fileInfo As FileInformation _
) As Boolean

[C#]
public bool GetFirstFile(
 ref FileInformation fileInfo
);

Parameters
fileInfo

A FileInformation structure that is passed by reference. When the method returns, the members of this
structure will be populated with information about the file on the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFirstFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFirstFile Method (FileInformation)

Get the first file name in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetFirstFile(_
 ByRef fileName As String _
) As Boolean

[C#]
public bool GetFirstFile(
 ref string fileName
);

Parameters
fileName

A string passed by reference which will contain a file name when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFirstFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFirstFile Method (String)

Get information about the first file in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetFirstFile(_
 ByRef fileName As String, _
 ByRef isDirectory As Boolean _
) As Boolean

[C#]
public bool GetFirstFile(
 ref string fileName,
 ref bool isDirectory
);

Parameters
fileName

A string passed by reference which will contain a file name when the method returns.

isDirectory
A boolean passed by reference which will specify if the file is a regular file or a directory. A value of
true indicates that the file is a directory. A value of false indicates that it is a regular file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFirstFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFirstFile Method (String, Boolean)

Get information about the first file in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetFirstFile(_
 ByRef fileName As String, _
 ByRef fileSize As Long, _
 ByRef isDirectory As Boolean _
) As Boolean

[C#]
public bool GetFirstFile(
 ref string fileName,
 ref long fileSize,
 ref bool isDirectory
);

Parameters
fileName

A string passed by reference which will contain a file name when the method returns.

fileSize
An integer passed by reference which will contain the size of the file when the method returns.

isDirectory
A boolean passed by reference which will specify if the file is a regular file or a directory. A value of
true indicates that the file is a directory. A value of false indicates that it is a regular file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetFirstFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFirstFile Method (String, Int64, Boolean)

Download multiple files from the server to the local system using a wildcard mask.

[Visual Basic]
Public Function GetMultipleFiles(_
 ByVal localPath As String, _
 ByVal remotePath As String, _
 ByVal fileMask As String _
) As Boolean

[C#]
public bool GetMultipleFiles(
 string localPath,
 string remotePath,
 string fileMask
);

Parameters
localPath

A string argument which specifies the name of the directory on the local system where the files will be
stored. If a file by the same name already exists, it will be overwritten

remotePath
A string argument which specifies the name of the directory on the remote system where the files will
be copied from. You must have permission to read the contents of the directory.

fileMask
An string argument which specifies the wildcard mask to be used when selecting what files should be
transferred. Typically, this argument is a wildcard mask that limits the files downloaded from the server
to those which match a specific extension.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMultipleFiles method copies multiple files from the remote system to the local system. If the local
file already exists, it is overwritten. This method will cause the current thread to block until all of the files
have been transferred, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetMultipleFiles Method

Get information about the next file in a directory listing returned by the server.

Overload List
Get information about the next file in a directory listing returned by the server.

public bool GetNextFile(ref FileInformation);

Get the next file name in a directory listing returned by the server.

public bool GetNextFile(ref string);

Get information about the next file in a directory listing returned by the server.

public bool GetNextFile(ref string,ref bool);

Get information about the next file in a directory listing returned by the server.

public bool GetNextFile(ref string,ref long,ref bool);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetNextFile Method

Get information about the next file in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetNextFile(_
 ByRef fileInfo As FileInformation _
) As Boolean

[C#]
public bool GetNextFile(
 ref FileInformation fileInfo
);

Parameters
fileInfo

A FileInformation structure that is passed by reference. When the method returns, the members of this
structure will be populated with information about the file on the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetNextFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetNextFile Method (FileInformation)

Get the next file name in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetNextFile(_
 ByRef fileName As String _
) As Boolean

[C#]
public bool GetNextFile(
 ref string fileName
);

Parameters
fileName

A string passed by reference which will contain a file name when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetNextFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetNextFile Method (String)

Get information about the next file in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetNextFile(_
 ByRef fileName As String, _
 ByRef isDirectory As Boolean _
) As Boolean

[C#]
public bool GetNextFile(
 ref string fileName,
 ref bool isDirectory
);

Parameters
fileName

A string passed by reference which will contain a file name when the method returns.

isDirectory
A boolean passed by reference which will specify if the file is a regular file or a directory. A value of
true indicates that the file is a directory. A value of false indicates that it is a regular file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetNextFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetNextFile Method (String, Boolean)

Get information about the next file in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetNextFile(_
 ByRef fileName As String, _
 ByRef fileSize As Long, _
 ByRef isDirectory As Boolean _
) As Boolean

[C#]
public bool GetNextFile(
 ref string fileName,
 ref long fileSize,
 ref bool isDirectory
);

Parameters
fileName

A string passed by reference which will contain a file name when the method returns.

fileSize
An integer passed by reference which will contain the size of the file when the method returns.

isDirectory
A boolean passed by reference which will specify if the file is a regular file or a directory. A value of
true indicates that the file is a directory. A value of false indicates that it is a regular file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.GetNextFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetNextFile Method (String, Int64, Boolean)

Initialize an instance of the FileTransfer class.

Overload List
Initialize an instance of the FileTransfer class.

public bool Initialize();

Initialize an instance of the FileTransfer class.

public bool Initialize(string);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Initialize Method

Initialize an instance of the FileTransfer class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Initialize method can be used to explicitly initialize an instance of the FileTransfer class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the FileTransfer class

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Initialize Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Initialize Method ()

Initialize an instance of the FileTransfer class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Initialize method can be used to explicitly initialize an instance of the FileTransfer class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the FileTransfer class

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Initialize Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Initialize Method (String)

Login to the remote server.

Overload List
Login to the remote server.

public bool Login();

Login to the remote server.

public bool Login(string,string);

Login to the remote server.

public bool Login(string,string,string);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Login Method

Login to the remote server.

[Visual Basic]
Overloads Public Function Login() As Boolean

[C#]
public bool Login();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Login method identifies the user to the remote server. The value of the UserName and Password
properties will be used to authenticate the client session. If the user name or password is invalid, an error
will occur. By default, when a connection is established, the user is automatically authenticated. This
method is typically used if you wish to log in as another user during the same session.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Login Method ()

Login to the remote server.

[Visual Basic]
Overloads Public Function Login(_
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Login(
 string userName,
 string userPassword
);

Parameters
userName

A string that specifies the name of the user logging into the server.

userPassword
A string that specifies the password used to authenticate the user.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Login method identifies the user to the remote server. If the user name or password is invalid, an
error will occur. By default, when a connection is established, the UserName and Password properties
are used to automatically log the user in to the server. This method is typically used if you wish to log in as
another user during the same session.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Login Method (String, String)

Login to the remote server.

[Visual Basic]
Overloads Public Function Login(_
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal userAccount As String _
) As Boolean

[C#]
public bool Login(
 string userName,
 string userPassword,
 string userAccount
);

Parameters
userName

A string that specifies the name of the user logging into the server.

userPassword
A string that specifies the password used to authenticate the user.

userAccount
A string that specifies the account name to be used when authenticating the user.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Login method identifies the user to the remote server. If the user name or password is invalid, an
error will occur. By default, when a connection is established, the UserName, Password and Account
properties are used to automatically log the user in to the server. This method is typically used if you wish
to log in as another user during the same session.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Login Method (String, String, String)

Log the current user off the server.

[Visual Basic]
Public Function Logout() As Boolean

[C#]
public bool Logout();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Logout method logs the current user off the server. The Login method may then be used to login as
another user during the same session. Note that this method will not terminate the connection with the
server.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Logout Method

Create a new directory on the server.

[Visual Basic]
Public Function MakeDirectory(_
 ByVal pathName As String _
) As Boolean

[C#]
public bool MakeDirectory(
 string pathName
);

Parameters
pathName

A string that specifies the name of the directory to create on the server. The naming and pathing
conventions used for the directory must be compatible with what is used on the operating system that
hosts the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
Servers may not support creating multiple subdirectories in a single call, so applications should not
assume that this can be done. For example, an error may be returned by the server if the new directory
name "/Projects/Today" is specified, but the "/Projects" directory does not already exist.

It is also important to note that files and directories on UNIX based systems are case sensitive, so the
directory names "Projects" and "projects" refer to two different directories. This is not the case on Windows
systems, where either name would refer to the same directory.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.MakeDirectory Method

Open the current working directory on the server.

Overload List
Open the current working directory on the server.

public bool OpenDirectory();

Open the specified directory on the server.

public bool OpenDirectory(string);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OpenDirectory Method

Open the current working directory on the server.

[Visual Basic]
Overloads Public Function OpenDirectory() As Boolean

[C#]
public bool OpenDirectory();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenDirectory method opens the current working directory on the server so that the list of files in
that directory may be obtained using the GetFirstFile and GetNextFile methods. Once all of the files in
the directory have been read, the application must call the CloseDirectory method in order to close the
data channel to the server. Failure to do this will result in an error the next time the application attempts to
transfer a file or open another directory.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.OpenDirectory Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OpenDirectory Method ()

Open the specified directory on the server.

[Visual Basic]
Overloads Public Function OpenDirectory(_
 ByVal pathName As String _
) As Boolean

[C#]
public bool OpenDirectory(
 string pathName
);

Parameters
pathName

A string that specifies the name of the directory to open on the server. The naming and pathing
conventions used for the directory must be compatible with what is used on the operating system that
hosts the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenDirectory method opens the specified directory on the server so that the list of files in that
directory may be obtained using the GetFirstFile and GetNextFile methods. Once all of the files in the
directory have been read, the application must call the CloseDirectory method in order to close the data
channel to the server. Failure to do this will result in an error the next time the application attempts to
transfer a file or open another directory.

Note that files and directories on UNIX based systems are case sensitive, so the directory names "Projects"
and "projects" refer to two different directories. This is not the case on Windows systems, where either
name would refer to the same directory.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.OpenDirectory Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OpenDirectory Method (String)

Post the contents of the specified file to a script executed on the remote server.

Overload List
Post the contents of the specified file to a script executed on the remote server.

public bool PostFile();

Post the contents of the specified file to a script executed on the remote server.

public bool PostFile(string);

Post the contents of the specified file to a script executed on the remote server.

public bool PostFile(string,string);

Post the contents of the specified file to a script executed on the remote server.

public bool PostFile(string,string,string);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PostFile Method

Post the contents of the specified file to a script executed on the remote server.

[Visual Basic]
Overloads Public Function PostFile() As Boolean

[C#]
public bool PostFile();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostFile method posts the contents of a file to a script that is executed on the server, and can only be
used when connected to a web server. This method will cause the current thread to block until the file
transfer completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

The PostFile method is similar to the PutFile method in that it can be used to upload the contents of a
local file to a server. However, instead of using the HTTP PUT command, the POST command is used to
send the file data to a script that is executed on the server. This method has the advantage of not
requiring any special configuration settings on the server, however it does require that the script be able
to process multipart/form-data as defined in RFC 2388.

To support uploading files from a form on a webpage, the FILE input type is used along with the action
that specifies the script that will accept the file data and process it. For example, the HTML code could
look like this:

 <form action="/cgi-bin/upload.cgi" method="post" enctype="multipart/form-
data"> <input type="file" name="datafile" size="20"> <input type="submit">
</form>

In this example, the script /cgi-bin/upload.cgi is responsible for processing the file data that is posted by
the client, and the form field name "datafile" is used. The user can select a file, and when the Submit
button is clicked, the file data is posted to the script. To simulate this using the PostFile method, the
fileName argument should be set to the name of the local file that is to be posted to the server. The
resourceName argument should be the name of the script, in this case "/cgi-bin/upload.cgi". The
fieldName argument should be specified as the string "datafile" to match the name of the field used by
the form.

Note that the PostFile function always submits the file contents as multipart/form-data with the content
type set to application/octet-stream. The script that accepts the posted data must be able to parse the
multipart header block and correctly process 8-bit data. If the script assumes that the data will be posted
using a specific encoding type such as base64, then the file data may not be accepted or may be
corrupted by the script.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.PostFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PostFile Method ()

Post the contents of the specified file to a script executed on the remote server.

[Visual Basic]
Overloads Public Function PostFile(_
 ByVal localFile As String _
) As Boolean

[C#]
public bool PostFile(
 string localFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostFile method posts the contents of a file to a script that is executed on the server, and can only be
used when connected to a web server. This method will cause the current thread to block until the file
transfer completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

The PostFile method is similar to the PutFile method in that it can be used to upload the contents of a
local file to a server. However, instead of using the HTTP PUT command, the POST command is used to
send the file data to a script that is executed on the server. This method has the advantage of not
requiring any special configuration settings on the server, however it does require that the script be able
to process multipart/form-data as defined in RFC 2388.

To support uploading files from a form on a webpage, the FILE input type is used along with the action
that specifies the script that will accept the file data and process it. For example, the HTML code could
look like this:

 <form action="/cgi-bin/upload.cgi" method="post" enctype="multipart/form-
data"> <input type="file" name="datafile" size="20"> <input type="submit">
</form>

In this example, the script /cgi-bin/upload.cgi is responsible for processing the file data that is posted by
the client, and the form field name "datafile" is used. The user can select a file, and when the Submit
button is clicked, the file data is posted to the script. To simulate this using the PostFile method, the
fileName argument should be set to the name of the local file that is to be posted to the server. The
resourceName argument should be the name of the script, in this case "/cgi-bin/upload.cgi". The
fieldName argument should be specified as the string "datafile" to match the name of the field used by
the form.

Note that the PostFile function always submits the file contents as multipart/form-data with the content
type set to application/octet-stream. The script that accepts the posted data must be able to parse the

FileTransfer.PostFile Method (String)

multipart header block and correctly process 8-bit data. If the script assumes that the data will be posted
using a specific encoding type such as base64, then the file data may not be accepted or may be
corrupted by the script.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.PostFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Post the contents of the specified file to a script executed on the remote server.

[Visual Basic]
Overloads Public Function PostFile(_
 ByVal localFile As String, _
 ByVal resourceName As String _
) As Boolean

[C#]
public bool PostFile(
 string localFile,
 string resourceName
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

resourceName
A string that specifies the resource on the server that the data will be posted to. Typically this is the
name of an executable script on the server. The resource name should be specified using an absolute
path that begins with a leading slash character.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostFile method posts the contents of a file to a script that is executed on the server, and can only be
used when connected to a web server. This method will cause the current thread to block until the file
transfer completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

The PostFile method is similar to the PutFile method in that it can be used to upload the contents of a
local file to a server. However, instead of using the HTTP PUT command, the POST command is used to
send the file data to a script that is executed on the server. This method has the advantage of not
requiring any special configuration settings on the server, however it does require that the script be able
to process multipart/form-data as defined in RFC 2388.

To support uploading files from a form on a webpage, the FILE input type is used along with the action
that specifies the script that will accept the file data and process it. For example, the HTML code could
look like this:

 <form action="/cgi-bin/upload.cgi" method="post" enctype="multipart/form-
data"> <input type="file" name="datafile" size="20"> <input type="submit">
</form>

In this example, the script /cgi-bin/upload.cgi is responsible for processing the file data that is posted by
the client, and the form field name "datafile" is used. The user can select a file, and when the Submit
button is clicked, the file data is posted to the script. To simulate this using the PostFile method, the

FileTransfer.PostFile Method (String, String)

fileName argument should be set to the name of the local file that is to be posted to the server. The
resourceName argument should be the name of the script, in this case "/cgi-bin/upload.cgi". The
fieldName argument should be specified as the string "datafile" to match the name of the field used by
the form.

Note that the PostFile function always submits the file contents as multipart/form-data with the content
type set to application/octet-stream. The script that accepts the posted data must be able to parse the
multipart header block and correctly process 8-bit data. If the script assumes that the data will be posted
using a specific encoding type such as base64, then the file data may not be accepted or may be
corrupted by the script.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.PostFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Post the contents of the specified file to a script executed on the remote server.

[Visual Basic]
Overloads Public Function PostFile(_
 ByVal localFile As String, _
 ByVal resourceName As String, _
 ByVal fieldName As String _
) As Boolean

[C#]
public bool PostFile(
 string localFile,
 string resourceName,
 string fieldName
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

resourceName
A string that specifies the resource on the server that the data will be posted to. Typically this is the
name of an executable script on the server. The resource name should be specified using an absolute
path that begins with a leading slash character.

fieldName
A string argument that specifies the form field name that the script expects. If this argument is omitted
or is an empty string, a default field name of "File1" is used.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostFile method posts the contents of a file to a script that is executed on the server, and can only be
used when connected to a web server. This method will cause the current thread to block until the file
transfer completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

The PostFile method is similar to the PutFile method in that it can be used to upload the contents of a
local file to a server. However, instead of using the HTTP PUT command, the POST command is used to
send the file data to a script that is executed on the server. This method has the advantage of not
requiring any special configuration settings on the server, however it does require that the script be able
to process multipart/form-data as defined in RFC 2388.

To support uploading files from a form on a webpage, the FILE input type is used along with the action
that specifies the script that will accept the file data and process it. For example, the HTML code could
look like this:

 <form action="/cgi-bin/upload.cgi" method="post" enctype="multipart/form-
data"> <input type="file" name="datafile" size="20"> <input type="submit">

FileTransfer.PostFile Method (String, String, String)

</form>

In this example, the script /cgi-bin/upload.cgi is responsible for processing the file data that is posted by
the client, and the form field name "datafile" is used. The user can select a file, and when the Submit
button is clicked, the file data is posted to the script. To simulate this using the PostFile method, the
fileName argument should be set to the name of the local file that is to be posted to the server. The
resourceName argument should be the name of the script, in this case "/cgi-bin/upload.cgi". The
fieldName argument should be specified as the string "datafile" to match the name of the field used by
the form.

Note that the PostFile function always submits the file contents as multipart/form-data with the content
type set to application/octet-stream. The script that accepts the posted data must be able to parse the
multipart header block and correctly process 8-bit data. If the script assumes that the data will be posted
using a specific encoding type such as base64, then the file data may not be accepted or may be
corrupted by the script.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.PostFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a file from the local system to the server.

Overload List
Upload a file from the local system to the server.

public bool PutFile();

Upload a file from the local system to the server.

public bool PutFile(string);

Upload a file from the local system to the server.

public bool PutFile(string,string);

Upload a file from the local system to the server.

public bool PutFile(string,string,bool);

Upload a file from the local system to the server.

public bool PutFile(string,string,long);

Upload a file from the local system to the server.

public bool PutFile(string,string,long,bool);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutFile Method

Upload a file from the local system to the server.

[Visual Basic]
Overloads Public Function PutFile() As Boolean

[C#]
public bool PutFile();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method copies an existing file from the local system to the server. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutFile Method ()

Upload a file from the local system to the server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String _
) As Boolean

[C#]
public bool PutFile(
 string localFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method copies an existing file from the local system to the server. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutFile Method (String)

Upload a file from the local system to the server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the remote host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method copies an existing file from the local system to the server. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutFile Method (String, String)

Upload a file from the local system to the server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal appendFile As Boolean _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string remoteFile,
 bool appendFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the remote host.

appendFile
A boolean value which specifies if the contents of the local file should be appended to the remote file,
rather than overwriting it. A value of true specifies that the remote file should be appended to. A value
of false specifies that the remote file should be overwritten. This parameter is only used with the File
Transfer Protocol.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method copies an existing file from the local system to the server. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutFile Method (String, String, Boolean)

Upload a file from the local system to the server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string remoteFile,
 long offset
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the remote host.

offset
A numeric value which specifies the byte offset where the file transfer should begin. The default value
of zero specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a non-
zero offset requires that the server support the REST command to restart transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method copies an existing file from the local system to the server. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutFile Method (String, String, Int64)

Upload a file from the local system to the server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal offset As Long, _
 ByVal appendFile As Boolean _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string remoteFile,
 long offset,
 bool appendFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the remote host.

offset
A numeric value which specifies the byte offset where the file transfer should begin. The default value
of zero specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a non-
zero offset requires that the server support the REST command to restart transfers.

appendFile
A boolean value which specifies if the contents of the local file should be appended to the remote file,
rather than overwriting it. A value of true specifies that the remote file should be appended to. A value
of false specifies that the remote file should be overwritten. This parameter is only used with the File
Transfer Protocol.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method copies an existing file from the local system to the server. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.PutFile Overload List

FileTransfer.PutFile Method (String, String, Int64, Boolean)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload multiple files from the local system to the server using a wildcard mask.

[Visual Basic]
Public Function PutMultipleFiles(_
 ByVal localPath As String, _
 ByVal remotePath As String, _
 ByVal fileMask As String _
) As Boolean

[C#]
public bool PutMultipleFiles(
 string localPath,
 string remotePath,
 string fileMask
);

Parameters
localPath

A string argument which specifies the name of the directory on the local system where the files will be
copied from. You must have permission to read the contents of the directory.

remotePath
A string argument which specifies the name of the directory on the remote system where the files will
be stored. You must have permission to modify the contents of the directory and create files.

fileMask
A string argument which specifies the wildcard mask to be used when selecting what files should be
transferred. An empty string indicates that all files in the specified directory should be uploaded.
Typically, this argument is a wildcard mask that limits the files uploaded to the server to those which
match a specific extension.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutMultipleFiles method copies multiple files from the local system to the remote server. If the
remote file already exists, it is overwritten. This method will cause the current thread to block until all of
the files have been transferred, a timeout occurs or the transfer is canceled. During the transfer, the
OnProgress event will fire periodically, enabling the application to update any user interface objects such
as a progress bar.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutMultipleFiles Method

Remove a directory on the server.

[Visual Basic]
Public Function RemoveDirectory(_
 ByVal pathName As String _
) As Boolean

[C#]
public bool RemoveDirectory(
 string pathName
);

Parameters
pathName

A string that specifies the name of the directory to remove from the server. The naming and pathing
conventions used for the directory must be compatible with what is used on the operating system that
hosts the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The RemoveDirectory method removes an existing directory on the remote host. You must have the
appropriate permission to remove the directory, or an error will occur. Note that most operating systems
will not permit you to remove a directory that contains files or other subdirectories.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.RemoveDirectory Method

Change the name of a file on the server.

[Visual Basic]
Public Function RenameFile(_
 ByVal oldName As String, _
 ByVal newName As String _
) As Boolean

[C#]
public bool RenameFile(
 string oldName,
 string newName
);

Parameters
oldName

A string that specifies the name of the file to be renamed on the server. The file must exist on the
server, otherwise an error will be returned.

newName
A string that specifies the new name for the file on the server. The naming conventions used for the
file must be compatible with what is used on the operating system that hosts the server. Note that
some servers may not permit you to rename the file if a file with the new name already exists.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The RenameFile method changes the name of an existing file on the server to a new name. Note that
you must have permission to rename the file or an error will occur. On UNIX based systems this means
that you must have write permission to the directory where the file is being renamed.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.RenameFile Method

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a connection to a server has been established,
it will be terminated the resources allocated for the client session will be released. All properties will be
reset to their default values.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Reset Method

Change the access permissions for a file on the server.

[Visual Basic]
Public Function SetFilePermissions(_
 ByVal remoteFile As String, _
 ByVal filePerms As FilePermissions _
) As Boolean

[C#]
public bool SetFilePermissions(
 string remoteFile,
 FilePermissions filePerms
);

Parameters
remoteFile

A string that specifies the name of the file that the access permissions are to be returned for. The
filename cannot contain any wildcard characters.

filePerms
An FilePermissions enumeration which specifies the new permissions for the file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the SITE CHMOD command to set the permissions for the file. This command is typically
only supported on servers that are hosted on UNIX based systems. If the command is not supported, an
error will be returned. You can use the Features property to determine what features are available and/or
enabled on the server.

Users who are familiar with the UNIX operating system will recognize the chmod command used to
change the file permissions. However, it should be noted that the numeric value used as an argument to
the command is in octal, not decimal. For example, issuing the command chmod 644 filename.txt on a
UNIX based system will make the file readable and writable by the owner, and readable by other users in
the owner's group as well as all other users. The value 644 is an octal value, which is equivalent to the
decimal value 420. If you were to mistakenly specify 644 as the value for the Permissions argument, rather
than the decimal value of 420, the permissions on the file would be incorrect. It is strongly recommended
that you use the enumeration values and do not cast a numeric value as the argument.

Note that Visual Basic allows you to specify an integer value in octal by prefixing it with &O. For example,
&O644 could be used as the file permissions value. C# and C++ consider any integer with a preceding 0
to be an octal number, so 0644 would be a valid permissions value.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SetFilePermissions Method

Changes the modification date and time for a file on the server.

[Visual Basic]
Public Function SetFileTime(_
 ByVal remoteFile As String, _
 ByVal fileDate As Date _
) As Boolean

[C#]
public bool SetFileTime(
 string remoteFile,
 DateTime fileDate
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

fileDate
A System.DateTime value that specifies the new date and time for the file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SetFileTime method changes the modification date and time for the specified file on the remote
server. This method uses the MTDM command to change the modification time for the file. If the server
does not support this command, the method will return an error. Note that some servers only support the
MDTM command to return, but not change, the file modification time.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SetFileTime Method

Abort all asynchronous tasks that are currently active.

Overload List
Abort all asynchronous tasks that are currently active.

public bool TaskAbort();

Abort the specified asynchronous task.

public bool TaskAbort(int);

Abort the specified asynchronous task.

public bool TaskAbort(int,int);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskAbort Method

Abort all asynchronous tasks that are currently active.

[Visual Basic]
Overloads Public Function TaskAbort() As Boolean

[C#]
public bool TaskAbort();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskAbort method signals all background worker threads created by this instance of the class to
abort their current operation and terminate as soon as possible. This version of the method will signal
each active task and return immediately to the caller.

The Reset and Uninitialize methods will abort all active background transfers and wait for those tasks to
complete before returning to the caller. It is recommended that your application explicitly wait for
background transfers to complete or abort them using this method before allowing the program to
terminate. This will ensure that your program can perform any necessary cleanup operations. If there are
active background tasks running at the time that the class instance is disposed, it can force the instance to
stop those worker threads immediately without waiting for them to terminate gracefully.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskAbort Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskAbort Method ()

Abort the specified asynchronous task.

[Visual Basic]
Overloads Public Function TaskAbort(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskAbort(
 int taskId
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskAbort method signals the background worker thread associated with the task ID to abort the
current operation and terminate as soon as possible. This version of the method returns immediately after
the background thread has been signaled.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskAbort Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskAbort Method (Int32)

Abort the specified asynchronous task.

[Visual Basic]
Overloads Public Function TaskAbort(_
 ByVal taskId As Integer, _
 ByVal timeWait As Integer _
) As Boolean

[C#]
public bool TaskAbort(
 int taskId,
 int timeWait
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

timeWait
An integer value that specifies the number of milliseconds to wait for the background task to abort.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskAbort method signals the background worker thread associated with the task ID to abort the
current operation and terminate as soon as possible. If the timeWait parameter has a value of zero, the
method returns immediately after the background thread has been signaled. If the timeWait parameter is
non-zero, the method will wait that amount of time for the background thread to terminate.

The Reset and Uninitialize methods will abort all active background transfers and wait for those tasks to
complete before returning to the caller. It is recommended that your application explicitly wait for
background transfers to complete or abort them using this method before allowing the program to
terminate. This will ensure that your program can perform any necessary cleanup operations. If there are
active background tasks running at the time that the class instance is disposed, it can force the instance to
stop those worker threads immediately without waiting for them to terminate gracefully.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskAbort Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskAbort Method (Int32, Int32)

Determine if the current asynchronous task has completed.

Overload List
Determine if the current asynchronous task has completed.

public bool TaskDone();

Determine if an asynchronous task has completed.

public bool TaskDone(int);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskDone Method

Determine if the current asynchronous task has completed.

[Visual Basic]
Overloads Public Function TaskDone() As Boolean

[C#]
public bool TaskDone();

Return Value
This method returns a Boolean value. If the task has finished, the return value is true. If the background
task is still active, the return value is false.

Remarks
The TaskDone method is used to determine if the current asynchronous task has completed. This
overloaded version of the method is functionally equivalent to providing the value of the TaskId property
as the unique task identifier.

If you use this method to poll the status of a background task from within the main UI thread, you must
ensure that Windows messages are processed so that the application remains responsive to the end-user.
To check if a background transfer has completed, it is recommended that you use a timer to periodically
call this method rather than calling it repeatedly within a loop.

To determine if the task completed successfully, the TaskWait method will provide the last error code
associated with the task. Note that if this method returns true, it is guaranteed that calling TaskWait using
the same task ID will return the error code to the caller immediately without causing the current thread to
block.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskDone Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskDone Method ()

Determine if an asynchronous task has completed.

[Visual Basic]
Overloads Public Function TaskDone(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskDone(
 int taskId
);

Parameters
taskId

An optional integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the task has finished, the return value is true. If the background
task is still active, the return value is false.

Remarks
The TaskDone method is used to determine if the specified asynchronous task has completed.

If you use this method to poll the status of a background task from within the main UI thread, you must
ensure that Windows messages are processed so that the application remains responsive to the end-user.
To check if a background transfer has completed, it is recommended that you use a timer to periodically
call this method rather than calling it repeatedly within a loop.

To determine if the task completed successfully, the TaskWait method will provide the last error code
associated with the task. Note that if this method returns true, it is guaranteed that calling TaskWait using
the same task ID will return the error code to the caller immediately without causing the current thread to
block.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskDone Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskDone Method (Int32)

Resume execution of the current asynchronous task.

Overload List
Resume execution of the current asynchronous task.

public bool TaskResume();

Resume execution of an asynchronous task.

public bool TaskResume(int);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskResume Method

Resume execution of the current asynchronous task.

[Visual Basic]
Overloads Public Function TaskResume() As Boolean

[C#]
public bool TaskResume();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskResume method resumes execution of the current background task that was previously
suspended using the TaskSuspend method. This overloaded version of the method is functionally
equivalent to providing the value of the TaskId property as the unique task identifier.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskResume Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskResume Method ()

Resume execution of an asynchronous task.

[Visual Basic]
Overloads Public Function TaskResume(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskResume(
 int taskId
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskResume method resumes execution of the background worker thread that was previously
suspended using the TaskSuspend method.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskResume Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskResume Method (Int32)

Suspend execution of the current asynchronous task.

Overload List
Suspend execution of the current asynchronous task.

public bool TaskSuspend();

Suspend execution of an asynchronous task.

public bool TaskSuspend(int);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskSuspend Method

Suspend execution of the current asynchronous task.

[Visual Basic]
Overloads Public Function TaskSuspend() As Boolean

[C#]
public bool TaskSuspend();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskSuspend method will suspend execution of the background worker thread associated with the
current task. This overloaded version of the method is functionally equivalent to providing the value of the
TaskId property as the unique task identifier.

Once the task has been suspended, it will no longer be scheduled for execution, however the client
session will remain active and the task may be resumed using the TaskResume method. Note that if a
task is suspended for a long period of time, the background operation may fail because it has exceeded
the timeout period imposed by the server.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskSuspend Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskSuspend Method ()

Suspend execution of an asynchronous task.

[Visual Basic]
Overloads Public Function TaskSuspend(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskSuspend(
 int taskId
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskSuspend method will suspend execution of the background worker thread associated with the
task.

Once the task has been suspended, it will no longer be scheduled for execution, however the client
session will remain active and the task may be resumed using the TaskResume method. Note that if a
task is suspended for a long period of time, the background operation may fail because it has exceeded
the timeout period imposed by the server.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskSuspend Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskSuspend Method (Int32)

Wait for all asynchronous tasks to complete.

Overload List
Wait for all asynchronous tasks to complete.

public bool TaskWait();

Wait for an asynchronous task to complete.

public bool TaskWait(int);

Wait for an asynchronous task to complete.

public bool TaskWait(int,int);

Wait for an asynchronous task to complete.

public bool TaskWait(int,int,ref ErrorCode);

Wait for an asynchronous task to complete.

public bool TaskWait(int,int,ref int,ref ErrorCode);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskWait Method

Wait for all asynchronous tasks to complete.

[Visual Basic]
Overloads Public Function TaskWait() As Boolean

[C#]
public bool TaskWait();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This overloaded version of the TaskWait method will cause the current working thread to block until all
background tasks created by this instance of the class have completed. If there are no active background
tasks, this method will return to the caller immediately.

You should not call this version of the method from the main UI thread. Windows messages will not be
processed while this method is blocked waiting for the background tasks to complete, and this can cause
your application to appear non-responsive to the end-user. If you have a GUI application and you need to
determine if all tasks have completed, create a timer to periodically check the value of the TaskCount
property. When it returns zero, there are no active background tasks executing.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskWait Method ()

Wait for an asynchronous task to complete.

[Visual Basic]
Overloads Public Function TaskWait(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskWait(
 int taskId
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskWait method waits for the specified task to complete. This method will cause the current working
thread to block for an indefinite period of time until the task completes. If the specified task has already
completed at the time this method is called, the method will return immediately without causing the
current thread to block.

You should not call this overloaded version of the method from the main UI thread. Windows messages
will not be processed while this method is blocked waiting for the background task to complete, and this
can cause your application to appear non-responsive to the end-user. If you have a GUI application and
you need to determine if a background task has finished, create a timer to periodically call the TaskDone
method. When it returns true (indicating that the task has completed), you can safely call TaskWait to
obtain the elapsed time and last error code without blocking the current thread.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskWait Method (Int32)

Wait for an asynchronous task to complete.

[Visual Basic]
Overloads Public Function TaskWait(_
 ByVal taskId As Integer, _
 ByVal timeWait As Integer _
) As Boolean

[C#]
public bool TaskWait(
 int taskId,
 int timeWait
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

timeWait
An integer value that specifies the number of milliseconds to wait for the background task to
complete.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskWait method waits for the specified task to complete. This method will cause the current working
thread to block until the task completes or the amount of time exceeds the number of milliseconds
specified by the caller. If the timeWait parameter is zero, then this method will poll the status of the task
and return immediately to the caller. If the specified task has already completed at the time this method is
called, the method will return immediately without causing the current thread to block.

You should not call this method from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this method is blocked
waiting for the background task to complete, and this can cause your application to appear non-
responsive to the end-user. If you have a GUI application and you need to determine if a background task
has finished, create a timer to periodically call the TaskDone method. When it returns true (indicating that
the task has completed), you can safely call TaskWait to obtain the elapsed time and last error code
without blocking the current thread.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskWait Method (Int32, Int32)

Wait for an asynchronous task to complete.

[Visual Basic]
Overloads Public Function TaskWait(_
 ByVal taskId As Integer, _
 ByVal timeWait As Integer, _
 ByRef taskError As ErrorCode _
) As Boolean

[C#]
public bool TaskWait(
 int taskId,
 int timeWait,
 ref ErrorCode taskError
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

timeWait
An integer value that specifies the number of milliseconds to wait for the background task to
complete.

taskError
An ErrorCode value passed by reference that will contain the last error code set by the asynchronous
task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskWait method waits for the specified task to complete. This method will cause the current working
thread to block until the task completes or the amount of time exceeds the number of milliseconds
specified by the caller. If the timeWait parameter is zero, then this method will poll the status of the task
and return immediately to the caller.

If the specified task has already completed at the time this method is called, the method will return
immediately without causing the current thread to block. The taskError parameter will contain the last
error code value that was set by the worker thread before it terminated. If the taskError value is zero, that
means that the background task was successful and no error occurred. A non-zero value will indicate that
the background task has failed.

You should not call this method from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this method is blocked
waiting for the background task to complete, and this can cause your application to appear non-
responsive to the end-user. If you have a GUI application and you need to determine if a background task
has finished, create a timer to periodically call the TaskDone method. When it returns true (indicating that
the task has completed), you can safely call TaskWait to obtain the elapsed time and last error code
without blocking the current thread.

FileTransfer.TaskWait Method (Int32, Int32, ErrorCode)

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Wait for an asynchronous task to complete.

[Visual Basic]
Overloads Public Function TaskWait(_
 ByVal taskId As Integer, _
 ByVal timeWait As Integer, _
 ByRef timeElapsed As Integer, _
 ByRef taskError As ErrorCode _
) As Boolean

[C#]
public bool TaskWait(
 int taskId,
 int timeWait,
 ref int timeElapsed,
 ref ErrorCode taskError
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

timeWait
An integer value that specifies the number of milliseconds to wait for the background task to
complete.

timeElapsed
An integer value passed by reference that will contain the elapsed time for the task in milliseconds
when the method returns.

taskError
An ErrorCode value passed by reference that will contain the last error code set by the asynchronous
task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskWait method waits for the specified task to complete. This method will cause the current working
thread to block until the task completes or the amount of time exceeds the number of milliseconds
specified by the caller. If the timeWait parameter is zero, then this method will poll the status of the task
and return immediately to the caller.

If the specified task has already completed at the time this method is called, the method will return
immediately without causing the current thread to block. The timeElapsed parameter contain the number
of milliseconds that it took for the task to complete. The taskError parameter will contain the last error
code value that was set by the worker thread before it terminated. If the taskError value is zero, that
means that the background task was successful and no error occurred. A non-zero value will indicate that
the background task has failed.

You should not call this method from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this method is blocked

FileTransfer.TaskWait Method (Int32, Int32, Int32, ErrorCode)

waiting for the background task to complete, and this can cause your application to appear non-
responsive to the end-user. If you have a GUI application and you need to determine if a background task
has finished, create a timer to periodically call the TaskDone method. When it returns true (indicating that
the task has completed), you can safely call TaskWait to obtain the elapsed time and last error code
without blocking the current thread.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further network
operations may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.Uninitialize Method

Verify that the contents of a file on the local system are the same as the specified file on the server.

Overload List
Verify that the contents of a file on the local system are the same as the specified file on the server.

public bool VerifyFile(string,string);

Verify that the contents of a file on the local system are the same as the specified file on the server.

public bool VerifyFile(string,string,FileVerifyOptions);

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.VerifyFile Method

Verify that the contents of a file on the local system are the same as the specified file on the server.

[Visual Basic]
Overloads Public Function VerifyFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool VerifyFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string value which specifies the name of the local file.

remoteFile
A string value which specifies the name of the file on the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The VerifyFile method will attempt to verify that the contents of the local and remote files are identical
using one of several methods, based on the features that the server supports. Preference will be given to
the most reliable method available, using either an MD5 hash, a CRC32 checksum or comparing the size
of the file, in that order.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.VerifyFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.VerifyFile Method (String, String)

Verify that the contents of a file on the local system are the same as the specified file on the server.

[Visual Basic]
Overloads Public Function VerifyFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As FileVerifyOptions _
) As Boolean

[C#]
public bool VerifyFile(
 string localFile,
 string remoteFile,
 FileVerifyOptions options
);

Parameters
localFile

A string value which specifies the name of the local file.

remoteFile
A string value which specifies the name of the file on the server.

options
An FileVerifyOptions enumeration which specifies one or more options that should be used when
comparing the files.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The VerifyFile method will attempt to verify that the contents of the local and remote files are identical
using one of several methods, based on the features that the server supports. Preference will be given to
the most reliable method available, using either an MD5 hash, a CRC32 checksum or comparing the size
of the file, in that order.

See Also
FileTransfer Class | SocketTools Namespace | FileTransfer.VerifyFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.VerifyFile Method (String, String, FileVerifyOptions)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.FileVerifyOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.FileVerifyOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.FileVerifyOptions.html

The events of the FileTransfer class are listed below. For a complete list of FileTransfer class members,
see the FileTransfer Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnCommand Occurs when the client sends a command to the
server and receives a reply indicating the result of
that command.

OnError Occurs when an network operation fails.

OnGetFile Occurs when a file download has been initiated.

OnProgress Occurs as a data stream is being read or written to
the server.

OnPutFile Occurs when a file upload is initiated.

OnTaskBegin Occurs when an asynchronous task begins
execution.

OnTaskEnd Occurs when an asynchronous task completes.

OnTaskRun Occurs while a background task is active.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer Events

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnCancel.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnCommand.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnError.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnGetFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnProgress.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnPutFile.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnTaskBegin.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnTaskEnd.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnTaskRun.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.OnTimeout.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnCancel Event

Occurs when the client sends a command to the server and receives a reply indicating the result of that
command.

[Visual Basic]
Public Event OnCommand As OnCommandEventHandler

[C#]
public event OnCommandEventHandler OnCommand;

Event Data
The event handler receives an argument of type FileTransfer.CommandEventArgs containing data related
to this event. The following FileTransfer.CommandEventArgs properties provide information specific to
this event.

Property Description

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Remarks
The OnCommand event is generated when the client receives a reply from the server after some action
has been taken.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnCommand Event

Provides data for the OnCommand event.

For a list of all members of this type, see FileTransfer.CommandEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FileTransfer.CommandEventArgs

[Visual Basic]
Public Class FileTransfer.CommandEventArgs
 Inherits EventArgs

[C#]
public class FileTransfer.CommandEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
CommandEventArgs specifies the result code and result string for the last command executed by the
server.

The OnCommand event occurs whenever a command is executed on the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.CommandEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CommandEventArgs Class

FileTransfer.CommandEventArgs overview

Public Instance Constructors

 FileTransfer.CommandEventArgs Constructor Initializes a new instance of the
FileTransfer.CommandEventArgs class.

Public Instance Properties

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransfer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CommandEventArgs Members

Initializes a new instance of the FileTransfer.CommandEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FileTransfer.CommandEventArgs();

See Also
FileTransfer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CommandEventArgs Constructor

The properties of the FileTransfer.CommandEventArgs class are listed below. For a complete list of
FileTransfer.CommandEventArgs class members, see the FileTransfer.CommandEventArgs Members
topic.

Public Instance Properties

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

See Also
FileTransfer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CommandEventArgs Properties

Gets a value which specifies the last result code returned by the server.

[Visual Basic]
Public ReadOnly Property ResultCode As Integer

[C#]
public int ResultCode {get;}

Property Value
An integer value which specifies the last result code returned by the server.

Remarks
This property should be checked after the Command method is used to execute a command on the
server to determine if the operation was successful. Result codes are three-digit numeric values returned
by the remote server and may be broken down into the following ranges:

ResultCode Description

100-199 Positive preliminary result. This indicates that the
requested action is being initiated, and the client
should expect another reply from the server
before proceeding.

200-299 Positive completion result. This indicates that the
server has successfully completed the requested
action.

300-399 Positive intermediate result. This indicates that the
requested action cannot complete until additional
information is provided to the server.

400-499 Transient negative completion result. This indicates
that the requested action did not take place, but
the error condition is temporary and may be
attempted again.

500-599 Permanent negative completion result. This
indicates that the requested action did not take
place.

It is important to note that while some result codes have become standardized, not all servers respond to
commands using the same result codes. For example, one server may respond with a result code of 221
to indicate success, while another may respond with a value of 235. It is recommended that applications
check for ranges of values to determine if a command was successful, not a specific value.

See Also
FileTransfer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CommandEventArgs.ResultCode Property

Gets a string value which describes the result of the previous command.

[Visual Basic]
Public ReadOnly Property ResultString As String

[C#]
public string ResultString {get;}

Property Value
A string which describes the result of the previous command executed on the server.

Remarks
This string is generated by the remote server, and typically is used to describe the result code. For
example, if an error is indicated by the result code, the result string may describe the condition that
caused the error.

See Also
FileTransfer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.CommandEventArgs.ResultString Property

Occurs when an network operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type FileTransfer.ErrorEventArgs containing data related to this
event. The following FileTransfer.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see FileTransfer.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FileTransfer.ErrorEventArgs

[Visual Basic]
Public Class FileTransfer.ErrorEventArgs
 Inherits EventArgs

[C#]
public class FileTransfer.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ErrorEventArgs Class

FileTransfer.ErrorEventArgs overview

Public Instance Constructors

 FileTransfer.ErrorEventArgs Constructor Initializes a new instance of the
FileTransfer.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransfer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ErrorEventArgs Members

Initializes a new instance of the FileTransfer.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FileTransfer.ErrorEventArgs();

See Also
FileTransfer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ErrorEventArgs Constructor

The properties of the FileTransfer.ErrorEventArgs class are listed below. For a complete list of
FileTransfer.ErrorEventArgs class members, see the FileTransfer.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
FileTransfer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
FileTransfer.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public FileTransfer.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
FileTransfer.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ErrorEventArgs.Error Property

Occurs when a file download has been initiated.

[Visual Basic]
Public Event OnGetFile As OnGetFileEventHandler

[C#]
public event OnGetFileEventHandler OnGetFile;

Event Data
The event handler receives an argument of type FileTransfer.GetFileEventArgs containing data related to
this event. The following FileTransfer.GetFileEventArgs properties provide information specific to this
event.

Property Description

LocalFile Gets a value which specifies the name of the local
file.

RemoteFile Gets a value which specifies the name of the
remote file.

Remarks
The OnGetFile event is generated when a file transfer is initiated by calling the GetFile or
GetMultipleFiles methods. This will be followed by one or more OnProgress events which will indicate
the progress of the transfer. If multiple files are being downloaded, this event will fire for each file as it is
transferred.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnGetFile Event

Provides data for the OnGetFile event.

For a list of all members of this type, see FileTransfer.GetFileEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FileTransfer.GetFileEventArgs

[Visual Basic]
Public Class FileTransfer.GetFileEventArgs
 Inherits EventArgs

[C#]
public class FileTransfer.GetFileEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
GetFileEventArgs specifies information about the start of a file transfer from the server to the local
system.

The OnGetFile event occurs when either the GetFile or GetMultipleFiles methods are called.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.GetFileEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileEventArgs Class

FileTransfer.GetFileEventArgs overview

Public Instance Constructors

 FileTransfer.GetFileEventArgs Constructor Initializes a new instance of the
FileTransfer.GetFileEventArgs class.

Public Instance Properties

LocalFile Gets a value which specifies the name of the local
file.

RemoteFile Gets a value which specifies the name of the
remote file.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransfer.GetFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileEventArgs Members

Initializes a new instance of the FileTransfer.GetFileEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FileTransfer.GetFileEventArgs();

See Also
FileTransfer.GetFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileEventArgs Constructor

The properties of the FileTransfer.GetFileEventArgs class are listed below. For a complete list of
FileTransfer.GetFileEventArgs class members, see the FileTransfer.GetFileEventArgs Members topic.

Public Instance Properties

LocalFile Gets a value which specifies the name of the local
file.

RemoteFile Gets a value which specifies the name of the
remote file.

See Also
FileTransfer.GetFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileEventArgs Properties

Gets a value which specifies the name of the local file.

[Visual Basic]
Public ReadOnly Property LocalFile As String

[C#]
public string LocalFile {get;}

Property Value
A string which specifies the name of the local file.

See Also
FileTransfer.GetFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileEventArgs.LocalFile Property

Gets a value which specifies the name of the remote file.

[Visual Basic]
Public ReadOnly Property RemoteFile As String

[C#]
public string RemoteFile {get;}

Property Value
A string value which specifies the name of the remote file.

See Also
FileTransfer.GetFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.GetFileEventArgs.RemoteFile Property

Occurs as a data stream is being read or written to the server.

[Visual Basic]
Public Event OnProgress As OnProgressEventHandler

[C#]
public event OnProgressEventHandler OnProgress;

Event Data
The event handler receives an argument of type FileTransfer.ProgressEventArgs containing data related to
this event. The following FileTransfer.ProgressEventArgs properties provide information specific to this
event.

Property Description

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

FileName Gets a value which specifies a file name.

FileSize Gets a value which specifies the size of the file
being transferred.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Remarks
The OnProgress event occurs as a data stream is being read or written to the server. If large amounts of
data are being read or written, this event can be used to update a progress bar or other user-interface
component to provide the user with some visual feedback on the progress of the operation.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnProgress Event

Provides data for the OnProgress event.

For a list of all members of this type, see FileTransfer.ProgressEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FileTransfer.ProgressEventArgs

[Visual Basic]
Public Class FileTransfer.ProgressEventArgs
 Inherits EventArgs

[C#]
public class FileTransfer.ProgressEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ProgressEventArgs specifies the number of bytes copied from the data stream, the total number of bytes
in the data stream and a completion percentage.

The OnProgress event occurs as a data stream is being read or written to the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.ProgressEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProgressEventArgs Class

FileTransfer.ProgressEventArgs overview

Public Instance Constructors

 FileTransfer.ProgressEventArgs Constructor Initializes a new instance of the
FileTransfer.ProgressEventArgs class.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

FileName Gets a value which specifies a file name.

FileSize Gets a value which specifies the size of the file
being transferred.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransfer.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProgressEventArgs Members

Initializes a new instance of the FileTransfer.ProgressEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FileTransfer.ProgressEventArgs();

See Also
FileTransfer.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProgressEventArgs Constructor

The properties of the FileTransfer.ProgressEventArgs class are listed below. For a complete list of
FileTransfer.ProgressEventArgs class members, see the FileTransfer.ProgressEventArgs Members topic.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

FileName Gets a value which specifies a file name.

FileSize Gets a value which specifies the size of the file
being transferred.

Percent Gets a value which specifies the percentage of
data that has been read or written.

See Also
FileTransfer.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProgressEventArgs Properties

Gets a value which specifies the number of bytes of data that has been read or written.

[Visual Basic]
Public ReadOnly Property BytesCopied As Long

[C#]
public long BytesCopied {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesCopied property specifies the number of bytes that have been read from the server and stored
in the local stream buffer, or written from the stream buffer to the server.

See Also
FileTransfer.ProgressEventArgs Class | SocketTools Namespace | FileSize Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProgressEventArgs.BytesCopied Property

Gets a value which specifies a file name.

[Visual Basic]
Public ReadOnly Property FileName As String

[C#]
public string FileName {get;}

Property Value
A string value which specifies the name of the file being transferred.

See Also
FileTransfer.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProgressEventArgs.FileName Property

Gets a value which specifies the size of the file being transferred.

[Visual Basic]
Public ReadOnly Property FileSize As Long

[C#]
public long FileSize {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The FileSize property specifies the total amount of data being read from the server and written to the
local file, or sent from the local system to the server. If the amount of data was unknown or unspecified at
the time the method call was made, then this value will always be the same as the BytesCopied property.

See Also
FileTransfer.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProgressEventArgs.FileSize Property

Gets a value which specifies the percentage of data that has been read or written.

[Visual Basic]
Public ReadOnly Property Percent As Integer

[C#]
public int Percent {get;}

Property Value
An integer value which specifies a percentage.

Remarks
The Percent property specifies the percentage of data that has been transmitted, expressed as an integer
value between 0 and 100, inclusive. If the maximum size of the data stream was not specified by the caller,
this value will always be 100.

See Also
FileTransfer.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | FileSize Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ProgressEventArgs.Percent Property

Occurs when a file upload is initiated.

[Visual Basic]
Public Event OnPutFile As OnPutFileEventHandler

[C#]
public event OnPutFileEventHandler OnPutFile;

Event Data
The event handler receives an argument of type FileTransfer.PutFileEventArgs containing data related to
this event. The following FileTransfer.PutFileEventArgs properties provide information specific to this
event.

Property Description

LocalFile Gets a value which specifies the name of the local
file.

RemoteFile Gets a value which specifies the name of the
remote file.

Remarks
The OnPutFile event is generated when a file transfer is initiated by calling the PutFile or
PutMultipleFiles methods. This will be followed by one or more OnProgress events which will indicate
the progress of the transfer. If multiple files are being uploaded, this event will fire for each file as it is
transferred.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnPutFile Event

Provides data for the OnPutFile event.

For a list of all members of this type, see FileTransfer.PutFileEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FileTransfer.PutFileEventArgs

[Visual Basic]
Public Class FileTransfer.PutFileEventArgs
 Inherits EventArgs

[C#]
public class FileTransfer.PutFileEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
PutFileEventArgs specifies information about the start of a file transfer from the local system to the
server.

The OnPutFile event occurs when either the PutFile or PutMultipleFiles methods are called.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.PutFileEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutFileEventArgs Class

FileTransfer.PutFileEventArgs overview

Public Instance Constructors

 FileTransfer.PutFileEventArgs Constructor Initializes a new instance of the
FileTransfer.PutFileEventArgs class.

Public Instance Properties

LocalFile Gets a value which specifies the name of the local
file.

RemoteFile Gets a value which specifies the name of the
remote file.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransfer.PutFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutFileEventArgs Members

Initializes a new instance of the FileTransfer.PutFileEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FileTransfer.PutFileEventArgs();

See Also
FileTransfer.PutFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutFileEventArgs Constructor

The properties of the FileTransfer.PutFileEventArgs class are listed below. For a complete list of
FileTransfer.PutFileEventArgs class members, see the FileTransfer.PutFileEventArgs Members topic.

Public Instance Properties

LocalFile Gets a value which specifies the name of the local
file.

RemoteFile Gets a value which specifies the name of the
remote file.

See Also
FileTransfer.PutFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutFileEventArgs Properties

Gets a value which specifies the name of the local file.

[Visual Basic]
Public ReadOnly Property LocalFile As String

[C#]
public string LocalFile {get;}

Property Value
A string which specifies the name of the local file.

See Also
FileTransfer.PutFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutFileEventArgs.LocalFile Property

Gets a value which specifies the name of the remote file.

[Visual Basic]
Public ReadOnly Property RemoteFile As String

[C#]
public string RemoteFile {get;}

Property Value
A string value which specifies the name of the remote file.

See Also
FileTransfer.PutFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PutFileEventArgs.RemoteFile Property

Occurs when an asynchronous task begins execution.

[Visual Basic]
Public Event OnTaskBegin As OnTaskBeginEventHandler

[C#]
public event OnTaskBeginEventHandler OnTaskBegin;

Event Data
The event handler receives an argument of type FileTransfer.TaskBeginEventArgs containing data related
to this event. The following FileTransfer.TaskBeginEventArgs property provides information specific to
this event.

Property Description

TaskId Get the unique task identifier associated with the
event.

Remarks
The OnTaskBegin event occurs when a background task associated with an asynchronous file transfer
begins executing. This event can be used in conjunction with the OnTaskEnd event to monitor one or
more background tasks that are created to perform asynchronous file transfers.

This event and the related asynchronous task events are invoked from the context of the thread that is
managing the background task, and not the thread that created the class instance. If a handler is
implemented for this event, its code will be executing in a different thread than the main UI thread. You
should never attempt to update your application's user interface directly from within this event handler.
Instead, you must create a delegate and use the Invoke method to ensure that any changes to the user
interface are done within the context of the main UI thread.

Because background tasks are managed in separate threads, this has the effect of making your application
multi-threaded, even if you do not explicitly create any worker threads in your own code. If the code in
your event handler modifies a public member variable or shared object, you must ensure that access to
that object is synchronized. For example, if your event handler updates a shared instance of a Hashtable
object, you should ensure that all operations are performed through the thread-safe wrapper returned by
the Synchronized method for that class. Refer to the MSDN documentation for more information about
creating thread-safe applications.

See Also
FileTransfer Class | SocketTools Namespace | OnTaskEnd Event | OnTaskRun Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnTaskBegin Event

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.OnTaskBeginEventHandler.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.OnTaskBeginEventHandler.html

Provides data for the OnTaskBegin event.

For a list of all members of this type, see FileTransfer.TaskBeginEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FileTransfer.TaskBeginEventArgs

[Visual Basic]
Public Class FileTransfer.TaskBeginEventArgs
 Inherits EventArgs

[C#]
public class FileTransfer.TaskBeginEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.TaskBeginEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskBeginEventArgs Class

Initializes a new instance of the FileTransfer.TaskBeginEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FileTransfer.TaskBeginEventArgs();

See Also
FileTransfer.TaskBeginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskBeginEventArgs Constructor

FileTransfer.TaskBeginEventArgs overview

Public Instance Constructors

 FileTransfer.TaskBeginEventArgs Constructor Initializes a new instance of the
FileTransfer.TaskBeginEventArgs class.

Public Instance Properties

TaskId Get the unique task identifier associated with the
event.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransfer.TaskBeginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskBeginEventArgs Members

The properties of the FileTransfer.TaskBeginEventArgs class are listed below. For a complete list of
FileTransfer.TaskBeginEventArgs class members, see the FileTransfer.TaskBeginEventArgs Members
topic.

Public Instance Properties

TaskId Get the unique task identifier associated with the
event.

See Also
FileTransfer.TaskBeginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskBeginEventArgs Properties

Get the unique task identifier associated with the event.

[Visual Basic]
Public ReadOnly Property TaskId As Integer

[C#]
public int TaskId {get;}

Property Value
An integer value that uniquely identifies the task that invoked the event handler.

See Also
FileTransfer.TaskBeginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskBeginEventArgs.TaskId Property

Occurs when an asynchronous task completes.

[Visual Basic]
Public Event OnTaskEnd As OnTaskEndEventHandler

[C#]
public event OnTaskEndEventHandler OnTaskEnd;

Event Data
The event handler receives an argument of type FileTransfer.TaskEndEventArgs containing data related to
this event. The following FileTransfer.TaskEndEventArgs properties provide information specific to this
event.

Property Description

Error Get the last error code for the background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

Remarks
The OnTaskEnd event occurs when a file transfer completes and the background task has terminated.
Refer to the OnTaskBegin event for additional information about implementing a handler for this event.

See Also
FileTransfer Class | SocketTools Namespace | OnTaskBegin Event | OnTaskRun Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnTaskEnd Event

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.OnTaskEndEventHandler.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.OnTaskEndEventHandler.html

Provides data for the OnTaskEnd event.

For a list of all members of this type, see FileTransfer.TaskEndEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FileTransfer.TaskEndEventArgs

[Visual Basic]
Public Class FileTransfer.TaskEndEventArgs
 Inherits EventArgs

[C#]
public class FileTransfer.TaskEndEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.TaskEndEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskEndEventArgs Class

Initializes a new instance of the FileTransfer.TaskEndEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FileTransfer.TaskEndEventArgs();

See Also
FileTransfer.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskEndEventArgs Constructor

FileTransfer.TaskEndEventArgs overview

Public Instance Constructors

 FileTransfer.TaskEndEventArgs Constructor Initializes a new instance of the
FileTransfer.TaskEndEventArgs class.

Public Instance Properties

Error Get the last error code for the background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransfer.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskEndEventArgs Members

The properties of the FileTransfer.TaskEndEventArgs class are listed below. For a complete list of
FileTransfer.TaskEndEventArgs class members, see the FileTransfer.TaskEndEventArgs Members topic.

Public Instance Properties

Error Get the last error code for the background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

See Also
FileTransfer.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskEndEventArgs Properties

Get the last error code for the background task.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public FileTransfer.ErrorCode Error {get;}

Property Value
An ErrorCode enumeration that specifies the last error code set by the background task.

See Also
FileTransfer.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskEndEventArgs.Error Property

Get the unique task identifier associated with the event.

[Visual Basic]
Public ReadOnly Property TaskId As Integer

[C#]
public int TaskId {get;}

Property Value
An integer value that uniquely identifies the task that invoked the event handler.

See Also
FileTransfer.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskEndEventArgs.TaskId Property

Gets the amount of time that has elapsed in milliseconds.

[Visual Basic]
Public ReadOnly Property TimeElapsed As Integer

[C#]
public int TimeElapsed {get;}

Property Value
An integer value that specifies the number of milliseconds that the background task has executed.

See Also
FileTransfer.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskEndEventArgs.TimeElapsed Property

Occurs while a background task is active.

[Visual Basic]
Public Event OnTaskRun As OnTaskRunEventHandler

[C#]
public event OnTaskRunEventHandler OnTaskRun;

Event Data
The event handler receives an argument of type FileTransfer.TaskRunEventArgs containing data related to
this event. The following FileTransfer.TaskRunEventArgs properties provide information specific to this
event.

Property Description

Completed Gets an estimate of the progress of the
background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

Remarks
The OnTaskRun event is generated periodically during a file transfer while the background task is active.
The rate and number of times that this event will be generated depends on the task being performed. This
event is generally analogous to the OnProgress event for file transfers that are performed in the current
working thread, however the OnTaskRun event will occur for each individual background task that is
active.

Refer to the OnTaskBegin event for additional information about implementing a handler for this event.

See Also
FileTransfer Class | SocketTools Namespace | OnTaskBegin Event | OnTaskEnd Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnTaskRun Event

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.OnTaskRunEventHandler.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FileTransfer.OnTaskRunEventHandler.html

Provides data for the OnTaskRun event.

For a list of all members of this type, see FileTransfer.TaskRunEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FileTransfer.TaskRunEventArgs

[Visual Basic]
Public Class FileTransfer.TaskRunEventArgs
 Inherits EventArgs

[C#]
public class FileTransfer.TaskRunEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.TaskRunEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskRunEventArgs Class

Initializes a new instance of the FileTransfer.TaskRunEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FileTransfer.TaskRunEventArgs();

See Also
FileTransfer.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskRunEventArgs Constructor

FileTransfer.TaskRunEventArgs overview

Public Instance Constructors

 FileTransfer.TaskRunEventArgs Constructor Initializes a new instance of the
FileTransfer.TaskRunEventArgs class.

Public Instance Properties

Completed Gets an estimate of the progress of the
background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransfer.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskRunEventArgs Members

The properties of the FileTransfer.TaskRunEventArgs class are listed below. For a complete list of
FileTransfer.TaskRunEventArgs class members, see the FileTransfer.TaskRunEventArgs Members topic.

Public Instance Properties

Completed Gets an estimate of the progress of the
background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

See Also
FileTransfer.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskRunEventArgs Properties

Gets an estimate of the progress of the background task.

[Visual Basic]
Public ReadOnly Property Completed As Integer

[C#]
public int Completed {get;}

Property Value
An integer value that returns a number between 0 and 100 inclusive that specifies the estimated
percentage of completion for the task. A value of zero indicates that the task has just begun executing,
while a value of 100 indicates that the task is at or near completion.

See Also
FileTransfer.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskRunEventArgs.Completed Property

Get the unique task identifier associated with the event.

[Visual Basic]
Public ReadOnly Property TaskId As Integer

[C#]
public int TaskId {get;}

Property Value
An integer value that uniquely identifies the task that invoked the event handler.

See Also
FileTransfer.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskRunEventArgs.TaskId Property

Gets the amount of time that has elapsed in milliseconds.

[Visual Basic]
Public ReadOnly Property TimeElapsed As Integer

[C#]
public int TimeElapsed {get;}

Property Value
An integer value that specifies the number of milliseconds that the background task has been executing.

See Also
FileTransfer.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.TaskRunEventArgs.TimeElapsed Property

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

See Also
FileTransfer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnTimeout Event

This structure is used by the GetFirstFile and GetNextFile methods to return information about a file on the
server.

For a list of all members of this type, see FileTransfer.FileInformation Members.

System.Object
 System.ValueType
 SocketTools.FileTransfer.FileInformation

[Visual Basic]
Public Structure FileTransfer.FileInformation

[C#]
public struct FileTransfer.FileInformation

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.FileInformation Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileInformation Structure

FileTransfer.FileInformation overview

Public Instance Fields

FileDate Specifies the date and time the file was created or
last modified.

FileGroup Specifies the name of the group that owns the file.

FileLinks Specifies the number of links to the file.

FileName Specifies the name of the file.

FileOwner Specifies the name of the file owner.

FilePerms Specifies the permissions for the file.

FileSize Specifies the size of the file in bytes.

FileVersion Specifies the number of revisions made to the file.

IsDirectory Specifies if the file is a directory or regular file.

Public Instance Methods

Equals (inherited from ValueType) Indicates whether this instance and a specified
object are equal.

GetHashCode (inherited from ValueType) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from ValueType) Returns the fully qualified type name of this
instance.

See Also
FileTransfer.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileInformation Members

The fields of the FileTransfer.FileInformation structure are listed below. For a complete list of
FileTransfer.FileInformation structure members, see the FileTransfer.FileInformation Members topic.

Public Instance Fields

FileDate Specifies the date and time the file was created or
last modified.

FileGroup Specifies the name of the group that owns the file.

FileLinks Specifies the number of links to the file.

FileName Specifies the name of the file.

FileOwner Specifies the name of the file owner.

FilePerms Specifies the permissions for the file.

FileSize Specifies the size of the file in bytes.

FileVersion Specifies the number of revisions made to the file.

IsDirectory Specifies if the file is a directory or regular file.

See Also
FileTransfer.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileInformation Fields

Specifies the date and time the file was created or last modified.

[Visual Basic]
Public FileDate As Date

[C#]
public DateTime FileDate;

Remarks
Some file servers may not return a specific time value if the file was last created or modified more than six
months ago. In that case, only the date will be returned.

See Also
FileTransfer.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileInformation.FileDate Field

Specifies the name of the group that owns the file.

[Visual Basic]
Public FileGroup As String

[C#]
public string FileGroup;

See Also
FileTransfer.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileInformation.FileGroup Field

Specifies the number of links to the file.

[Visual Basic]
Public FileLinks As Integer

[C#]
public int FileLinks;

See Also
FileTransfer.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileInformation.FileLinks Field

Specifies the name of the file.

[Visual Basic]
Public FileName As String

[C#]
public string FileName;

See Also
FileTransfer.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileInformation.FileName Field

Specifies the name of the file owner.

[Visual Basic]
Public FileOwner As String

[C#]
public string FileOwner;

See Also
FileTransfer.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileInformation.FileOwner Field

Specifies the permissions for the file.

[Visual Basic]
Public FilePerms As FilePermissions

[C#]
public FilePermissions FilePerms;

Remarks
For those familiar with UNIX, the file permissions are the same as those used by the chmod command.
For the proprietary Sterling directory formats, a bit map representing the status codes and transfer
protocol of the file are stored in this member.

See Also
FileTransfer.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileInformation.FilePerms Field

Specifies the size of the file in bytes.

[Visual Basic]
Public FileSize As Long

[C#]
public long FileSize;

See Also
FileTransfer.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileInformation.FileSize Field

Specifies the number of revisions made to the file.

[Visual Basic]
Public FileVersion As Integer

[C#]
public int FileVersion;

See Also
FileTransfer.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileInformation.FileVersion Field

Specifies if the file is a directory or regular file.

[Visual Basic]
Public IsDirectory As Boolean

[C#]
public bool IsDirectory;

See Also
FileTransfer.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileInformation.IsDirectory Field

This structure is used by the ActivePorts property which allows the client to specify the port range used for
active mode file transfers.

For a list of all members of this type, see FileTransfer.PortRange Members.

System.Object
 System.ValueType
 SocketTools.FileTransfer.PortRange

[Visual Basic]
Public Structure FileTransfer.PortRange

[C#]
public struct FileTransfer.PortRange

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.PortRange Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PortRange Structure

FileTransfer.PortRange overview

Public Instance Constructors

 FileTransfer.PortRange Constructor Initializes a new instance of the PortRange
structure with a specified range of port numbers.

Public Instance Fields

HighPort Specifies the high port number used for active file
transfers.

LowPort Specifies the low port number used for active file
transfers.

Public Instance Methods

Equals (inherited from ValueType) Indicates whether this instance and a specified
object are equal.

GetHashCode (inherited from ValueType) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from ValueType) Returns the fully qualified type name of this
instance.

See Also
FileTransfer.PortRange Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PortRange Members

Initializes a new instance of the PortRange structure with a specified range of port numbers.

[Visual Basic]
Public Sub New(_
 ByVal lowPort As Integer, _
 ByVal highPort As Integer _
)

[C#]
public FileTransfer.PortRange(
 int lowPort,
 int highPort
);

Parameters
lowPort

An integer value which specifies the low port number.

highPort
An integer value which specifies the high port number.

Return Value
The minimum port number is 1025 and the maximum port number is 65535. Port numbers outside of this
range of values will be silently adjusted.

See Also
FileTransfer.PortRange Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PortRange Constructor

The fields of the FileTransfer.PortRange structure are listed below. For a complete list of
FileTransfer.PortRange structure members, see the FileTransfer.PortRange Members topic.

Public Instance Fields

HighPort Specifies the high port number used for active file
transfers.

LowPort Specifies the low port number used for active file
transfers.

See Also
FileTransfer.PortRange Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PortRange Fields

Specifies the high port number used for active file transfers.

[Visual Basic]
Public HighPort As Integer

[C#]
public int HighPort;

Remarks
While this member may be assigned to any integer value, the port range is normalized and the maximum
port number that may be used is 65535.

See Also
FileTransfer.PortRange Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PortRange.HighPort Field

Specifies the low port number used for active file transfers.

[Visual Basic]
Public LowPort As Integer

[C#]
public int LowPort;

Remarks
While this member may be assigned to any integer value, the port range is normalized and the minimum
port number that may be used is 1025.

See Also
FileTransfer.PortRange Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.PortRange.LowPort Field

The structure used to modify or return the current mode for the secure command or data channel.

For a list of all members of this type, see FileTransfer.SecureChannel Members.

System.Object
 System.ValueType
 SocketTools.FileTransfer.SecureChannel

[Visual Basic]
Public Structure FileTransfer.SecureChannel

[C#]
public struct FileTransfer.SecureChannel

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The SecureChannel structure specifies the current channel modes for the client session. This structure is
used with the ChannelMode property when a secure connection is established with the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.SecureChannel Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SecureChannel Structure

FileTransfer.SecureChannel overview

Public Instance Constructors

 FileTransfer.SecureChannel Constructor Initializes a new instance of the SecureChannel
structure with the specified values.

Public Instance Fields

Command Specifies the secure channel mode used when
sending commands to the server.

Data Specifies the secure channel mode used when
uploading or downloading files.

Public Instance Methods

Equals (inherited from ValueType) Indicates whether this instance and a specified
object are equal.

GetHashCode (inherited from ValueType) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from ValueType) Returns the fully qualified type name of this
instance.

See Also
FileTransfer.SecureChannel Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SecureChannel Members

Initializes a new instance of the SecureChannel structure with the specified values.

[Visual Basic]
Public Sub New(_
 ByVal commandMode As FtpChannelMode, _
 ByVal dataMode As FtpChannelMode _
)

[C#]
public FileTransfer.SecureChannel(
 FtpChannelMode commandMode,
 FtpChannelMode dataMode
);

Parameters
commandMode

A FtpChannelMode enumeration which specifies the channel mode used for commands sent to the
server.

dataMode
A FtpChannelMode enumeration which specifies the channel mode used for file transfers.

See Also
FileTransfer.SecureChannel Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SecureChannel Constructor

The fields of the FileTransfer.SecureChannel structure are listed below. For a complete list of
FileTransfer.SecureChannel structure members, see the FileTransfer.SecureChannel Members topic.

Public Instance Fields

Command Specifies the secure channel mode used when
sending commands to the server.

Data Specifies the secure channel mode used when
uploading or downloading files.

See Also
FileTransfer.SecureChannel Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SecureChannel Fields

Specifies the secure channel mode used when sending commands to the server.

[Visual Basic]
Public Command As FtpChannelMode

[C#]
public FtpChannelMode Command;

See Also
FileTransfer.SecureChannel Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SecureChannel.Command Field

Specifies the secure channel mode used when uploading or downloading files.

[Visual Basic]
Public Data As FtpChannelMode

[C#]
public FtpChannelMode Data;

See Also
FileTransfer.SecureChannel Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SecureChannel.Data Field

Represents the method that will handle the OnCommand event.

[Visual Basic]
Public Delegate Sub FileTransfer.OnCommandEventHandler(_
 ByVal sender As Object, _
 ByVal e As CommandEventArgs _
)

[C#]
public delegate void FileTransfer.OnCommandEventHandler(

 object sender,
 CommandEventArgs e
);

Parameters
sender

The source of the event.

e
A CommandEventArgs object that contains the event data.

Remarks
When you create an OnCommandEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnCommandEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnCommandEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub FileTransfer.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void FileTransfer.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs object that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnErrorEventHandler Delegate

Represents the method that will handle the OnGetFile event.

[Visual Basic]
Public Delegate Sub FileTransfer.OnGetFileEventHandler(_
 ByVal sender As Object, _
 ByVal e As GetFileEventArgs _
)

[C#]
public delegate void FileTransfer.OnGetFileEventHandler(

 object sender,
 GetFileEventArgs e
);

Parameters
sender

The source of the event.

e
A GetFileEventArgs object which contains the event data.

Remarks
When you create an OnGetFileEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnGetFileEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnGetFileEventHandler Delegate

Represents the method that will handle the OnProgress event.

[Visual Basic]
Public Delegate Sub FileTransfer.OnProgressEventHandler(_
 ByVal sender As Object, _
 ByVal e As ProgressEventArgs _
)

[C#]
public delegate void FileTransfer.OnProgressEventHandler(

 object sender,
 ProgressEventArgs e
);

Parameters
sender

The source of the event.

e
A ProgressEventArgs object that contains the event data.

Remarks
When you create an OnProgressEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnProgressEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnProgressEventHandler Delegate

Represents the method that will handle the OnPutFile event.

[Visual Basic]
Public Delegate Sub FileTransfer.OnPutFileEventHandler(_
 ByVal sender As Object, _
 ByVal e As PutFileEventArgs _
)

[C#]
public delegate void FileTransfer.OnPutFileEventHandler(

 object sender,
 PutFileEventArgs e
);

Parameters
sender

The source of the event.

e
A PutFileEventArgs object that contains the event data.

Remarks
When you create an OnPutFileEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnPutFileEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.OnPutFileEventHandler Delegate

Specifies the access permissions for a file on the server.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FileTransfer.FilePermissions

[C#]
[Flags]
public enum FileTransfer.FilePermissions

Members

Member Name Description Value

symbolicLink The file is a symbolic link to another file.
Symbolic links are special types of files
found on UNIX based systems which are
similar to Windows shortcuts.

4096

ownerRead The owner has permission to open the
file for reading. If the current user is the
owner of the file, this grants the user the
right to download the file to the local
system.

1024

ownerWrite The owner has permission to open the
file for writing. If the current user is the
owner of the file, this grants the user the
right to replace the file. If this
permission is set for a directory, this
grants the user the right to create and
delete files.

512

ownerExecute The owner has permission to execute
the contents of the file. The file is
typically either a binary executable,
script or batch file. If this permission is
set for a directory, this may also grant
the user the right to open that directory
and search for files in that directory.

256

groupRead Users in the specified group have
permission to open the file for reading.
If the current user is in the same group
as the file owner, this grants the user
the right to download the file.

64

groupWrite Users in the specified group have
permission to open the file for writing.
On some platforms, this may also imply
permission to delete the file. If the
current user is in the same group as the

32

FileTransfer.FilePermissions Enumeration

file owner, this grants the user the right
to replace the file. If this permission is
set for a directory, this grants the user
the right to create and delete files.

groupExecute Users in the specified group have
permission to execute the contents of
the file. If this permission is set for a
directory, this may also grant the user
the right to open that directory and
search for files in that directory.

16

worldRead All users have permission to open the
file for reading. This permission grants
any user the right to download the file
to the local system.

4

worldWrite All users have permission to open the
file for writing. This permission grants
any user the right to replace the file. If
this permission is set for a directory, this
grants any user the right to create and
delete files.

2

worldExecute All users have permission to execute the
contents of the file. If this permission is
set for a directory, this may also grant
all users the right to open that directory
and search for files in that directory.

1

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the error codes returned by the FileTransfer class.

[Visual Basic]
Public Enum FileTransfer.ErrorCode

[C#]
public enum FileTransfer.ErrorCode

Remarks
The FileTransfer class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

FileTransfer.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the type of server that the client is connected to.

[Visual Basic]
Public Enum FileTransfer.FileServerType

[C#]
public enum FileTransfer.FileServerType

Members

Member Name Description

serverUnknown The server type has not been explicitly set. The
server type will be automatically determined by
the value of the remote file URL or the service port
number specified by the value of the ServerPort
property.

serverFtp The File Transfer Protocol is used when
establishing a connection to the server.

serverHttp The Hypertext Transfer Protocol is used when
establishing a connection to the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace | ServerType Property (SocketTools.FileTransfer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileServerType Enumeration

Specifies the options that the FileTransfer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FileTransfer.FileTransferOptions

[C#]
[Flags]
public enum FileTransfer.FileTransferOptions

Remarks
The FileTransfer class uses the FileTransferOptions enumeration to specify one or more options to be
used when establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionDefault The default connection option. This is
the same as specifying optionPassive.

1

optionPassive This option specifies the client should
attempt to establish a passive
connection to the server. This means
that instead of the client opening a port
on the local system and waiting for the
server to establish a connection back to
the client, the client will establish a
second data connection to the server.
This mode is recommended for most
systems that are behind a NAT router or
firewall.

1

optionSecure This option specifies the client should
attempt to establish a secure
connection with the server. Note that
the server must support secure
connections using either the SSL or TLS
protocol. This option specifies the client
should attempt to establish a secure
connection with the server. Note that
the server must support secure
connections using either the SSL or TLS
protocol.

4096

optionImplicitSSL This option specifies the client should
attempt to establish a secure implicit
SSL session. The SSL handshake is
initiated immediately after the

4096

FileTransfer.FileTransferOptions Enumeration

connection to the server has been
established.

optionExplicitSSL This option specifies the client should
attempt to establish a secure explicit SSL
session. The initial connection to the
server is not encrypted, and the client
will attempt to negotiate a secure
connection by sending a command to
the server. Some servers may require
this option when connecting to the
server on ports other than the default
secure port of 990.

8192

optionSecureShell This option specifies the client should
attempt to establish a secure
connection using the Secure Shell (SSH)
protocol. This option is automatically
selected if the connection is established
on port 22, the standard port for SSH
connections. It is only necessary to
specify this option if the SSH connection
must be established on a non-standard
port.

16384

optionSecureFallback This option specifies the client should
permit the use of less secure cipher
suites for compatibility with legacy
servers. If this option is specified, the
client will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

32768

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

optionHiResTimer This option specifies that elapsed time
values should be returned in
milliseconds rather than seconds. This
option is intended to provide greater
accuracy with smaller file transfers over
a high speed network connection.

1048576

optionTLSReuse This option specifies that TLS session
reuse should be enabled when
establishing a secure FTP connection.
This option is only supported on
Windows 8.1 or Windows Server 2012

2097152

R2 and later platforms, and it should
only be used when explicitly required by
the server. This option is not compatible
with servers built using OpenSSL 1.0.2
and earlier versions which do not
provide Extended Master Secret (EMS)
support as outlined in RFC7627.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the transfer priorities that the FileTransfer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FileTransfer.FileTransferPriority

[C#]
[Flags]
public enum FileTransfer.FileTransferPriority

Members

Member Name Description Value

priorityBackground This priority significantly reduces the
memory, processor and network
resource utilization for the transfer. It is
typically used with worker threads
running in the background when the
amount of time required perform the
transfer is not critical.

0

priorityLow This priority lowers the overall resource
utilization for the transfer and meters
the bandwidth allocated for the transfer.
This priority will increase the average
amount of time required to complete a
file transfer.

1

priorityNormal The default priority which balances
resource utilization and transfer speed.
It is recommended that most
applications use this priority.

2

priorityHigh This priority increases the overall
resource utilization for the transfer,
allocating more memory for internal
buffering. It can be used when it is
important to transfer the file quickly,
and there are no other threads currently
performing file transfers at the time.

3

priorityCritical This priority can significantly increase
processor, memory and network
utilization while attempting to transfer
the file as quickly as possible. If the file
transfer is being performed in the main
UI thread, this priority can cause the
application to appear to become non-
responsive. No events will be generated
during the transfer.

4

FileTransfer.FileTransferPriority Enumeration

priorityInvalid An invalid transfer priority which
indicates an error condition.

-1

priorityDefault The default transfer priority. This is the
same as specifying priorityNormal.

2

priorityLowest The lowest valid transfer priority. This is
the same as specifying
priorityBackground.

0

priorityHighest The highest valid transfer priority. This is
the same as specifying priorityCritical.

4

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the type of proxy server that is being used by the FileTransfer class.

[Visual Basic]
Public Enum FileTransfer.FileTransferProxy

[C#]
public enum FileTransfer.FileTransferProxy

Members

Member Name Description

proxyNone No proxy server is being used. This is the default
value.

proxyFtpUser The client is not logged into the proxy server. The
USER command is sent in the format
username@ftpsite followed by the password. This
is the format used with the Gauntlet proxy server.

proxyFtpLogin The client is logged into the FTP proxy server. The
USER command is then sent in the format
username@ftpsite followed by the password. This
is the format used by the InterLock proxy server.

proxyFtpOpen The client is not logged into the FTP proxy server.
The OPEN command is sent specifying the host
name, followed by the username and password.

proxyFtpSite The client is logged into the FTP server. The SITE
command is sent, specifying the host name,
followed by the username and the password.

proxyFtpOther This special proxy type specifies that another,
undefined FTP proxy server is being used. The
client connects to the proxy host, but does not
attempt to authenticate the client. The application
is responsible for negotiating with the proxy
server, typically using the Command property to
send specific command sequences.

proxyHttpStandard A standard HTTP connection is established
through the specified proxy server, and all
resource requests will be specified using a
complete URL. This proxy type should be used
with standard HTTP connections.

proxyHttpSecure A secure HTTP connection is established through
the specified proxy server. This proxy type should
only be used with secure connections and the
Secure property should also be set to a value of
true.

proxyHttpWindows The configuration options for the current system
should be used. These options are the same proxy

FileTransfer.FileTransferProxy Enumeration

server settings confgured in Windows.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the type of file being transferred.

[Visual Basic]
Public Enum FileTransfer.FileTransferType

[C#]
public enum FileTransfer.FileTransferType

Members

Member Name Description

fileAuto The file type should be automatically determined
based on the file name extension. If the file
extension is unknown, the file type should be
determined based on the contents of the file. The
class has an internal list of common text file
extensions, and additional file extensions can be
registered using the AddFileType method.

fileAscii The file being transferred is an ASCII text file. The
characters the mark the end of a line (for example,
a carriage return/linefeed pair under MS-DOS) are
automatically converted to the format used by the
target operating system.

fileEbcdic The file being transferred is a text file created
using the EBCDIC character set. If a file is being
copied to a remote system, the ASCII characters
are automatically converted to EBCDIC. If the file is
being retrieved from a remote system, the EBCDIC
characters are automatically converted to ASCII.

fileImage The file is transferred without any modification.
This is the default file transfer type, and should be
used when transferring binary (non-text) data.

fileText The same value as fileAscii.

fileBinary The same value as fileImage.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FileTransferType Enumeration

Specifies the channel mode specified by setting the ChannelMode property.

[Visual Basic]
Public Enum FileTransfer.FtpChannelMode

[C#]
public enum FileTransfer.FtpChannelMode

Members

Member Name Description

channelClear Data sent and received on this channel should not
be encrypted.

channelSecure Data sent and received on this channel should be
encrypted. Specifying this option requires that a
secure connection has already been established
with the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FtpChannelMode Enumeration

Specifies the channel used by the ChannelMode property.

[Visual Basic]
Public Enum FileTransfer.FtpChannelType

[C#]
public enum FileTransfer.FtpChannelType

Members

Member Name Description

channelCommand The communication channel used to send
commands to the server and receive command
result and status information from the server.

channelData The communication channel used to send or
receive data during a file transfer.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.FtpChannelType Enumeration

A value which specifies the format of a directory listing returned by the server.

[Visual Basic]
Public Enum FileTransfer.FtpDirectoryFormat

[C#]
public enum FileTransfer.FtpDirectoryFormat

Remarks
Values other than formatAuto should only be set if the class library cannot automatically determine the
directory format returned by the server. The default directory format is determined both by the server's
operating system and by analyzing the format of the data returned by the server. If the class is unable to
automatically determine the format, it will attempt to parse the list of files as though it is a UNIX style
listing.

Members

Member Name Description

formatAuto This value specifies that the control should
automatically determine the format of the file lists
returned by the server. It is recommended that
most applications use this value and allow the
control to automatically determine the appropriate
file listing format used by the server.

formatUnix This value specifies that the server returns file lists
in the format commonly used by UNIX servers.
Note that many servers can be configured to
return file listings in this format, even if they are
not actually a UNIX based platform. Consult the
technical reference documentation for your server
for more information.

formatMsdos This value specifies that the server returns file lists
in the format commonly used by MS-DOS based
systems. This includes Windows NT servers. Long
file names will be returned if supported by the
underlying filesystem, such as NTFS or FAT32.

formatVms This value specifies that the server returns file lists
in the format commonly used by VMS servers.
Note that VMS servers can be configured to return
a standard UNIX style listing in additional to the
default VMS format.

formatSterling1 This value specifies that the server returns file
listings in a proprietary format used by the Sterling
server, which is used for EDI (Electronic Data
Interchange) applications. This format uses a 13
byte status code.

formatSterling2 This value specifies that the server returns file

FileTransfer.FtpDirectoryFormat Enumeration

listings in a proprietary format used by the Sterling
server, which is used for EDI (Electronic Data
Interchange) applications. This format uses a 10
byte status code.

formatNetware This value specifies that the server returns file
listings in a proprietary format used by NetWare
servers. The format is similar to UNIX style listings
except that file access and permissions are
indicated by letter codes enclosed in brackets. This
is the default format selected if the server identifies
itself as a NetWare system.

formatMlsd This value specifies that the server should return
file listings in a machine-independent format as
defined by RFC 3659. This format specifies file
information as a sequence of name and value
pairs, with the same format being used regardless
of the operating system that the server is hosted
on. Note that not all servers support this format,
and some proxy servers may reject the command
even if the remote server supports its use.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the server features that are available for the current client session.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FileTransfer.FtpFeatures

[C#]
[Flags]
public enum FileTransfer.FtpFeatures

Remarks
When a client connection is first established, all features are enabled by default. However, as the client
issues commands to the server, if the server reports that the command is unrecognized that feature will
automatically be disabled in the client.

For example, the first time an application calls the GetFileSize method to determine the size of a file, the
class library will try to use the SIZE command. If the server reports that the SIZE command is not available,
that feature will be disabled and the class will not use the command again during the session unless it is
explicitly re-enabled. This is designed to prevent the class from repeatedly sending invalid commands to a
server, which may result in the server aborting the connection.

Members

Member Name Description Value

featureSIZE The server supports the SIZE command
to determine the size of a file. If this
feature is not enabled, the library will
attempt to use the STAT command to
determine the file size.

1

featureSTAT The server supports using the STAT
command to return information about a
specific file. If this feature is not enabled,
the client may not be able to obtain
information about a specific file such as
its size, permissions or modification
time.

2

featureMDTM The server supports the MDTM
command to obtain information about
the modification time for a specific file.
This command may also be used to set
the file time on the server.

4

featureREST The server supports restarting file
transfers using the REST command. If
this feature is not enabled, the client will
not be able to restart file transfers and
must upload or download the complete
file.

8

FileTransfer.FtpFeatures Enumeration

featureSITE The server supports site specific
commands using the SITE command. If
this feature is not enabled, no site
specific commands will be sent to the
server.

16

featureIDLE The server supports setting the idle
timeout period using the SITE IDLE
command to specify the number of
seconds that the client may idle before
the server terminates the connection.

32

featureCHMOD The server supports modifying the
permissions of a specific file using the
SITE CHMOD command. If this feature is
not enabled, the client will not be able
to set the permissions for a file.

64

featureAUTH The server supports explicit SSL sessions
using the AUTH command. If this
feature is not enabled, the client will
only be able to connect to a secure
server that uses implicit SSL
connections. Changing this feature has
no effect on standard, non-secure
connections.

128

featurePBSZ The server supports the PBSZ command
which specifies the buffer size used with
secure data connections. If this feature
is disabled, it may prevent the client
from changing the protection level on
the data channel. Changing this feature
has no effect on standard, non-secure
connections.

256

featurePROT The server supports the PROT
command which specifies the protection
level for the data channel. If this feature
is disabled, the client will be unable to
change the protection level on the data
channel. Changing this feature has no
effect on standard, non-secure
connections.

512

featureCCC The server supports the CCC command
which returns the command channel to
a non-secure mode. Changing this
feature has no effect on standard, non-
secure connections.

1024

featureHOST The server supports the HOST
command which enables a client to
specify the hostname after establishing
a connection with a server that supports
virtual hosting.

2048

featureMLST The server supports the MLST
command which returns status
information for files. If this feature is
enabled, the MLST command will be
used instead of the STAT command.

4096

featureMFMT The server supports the MFMT
command which is used to change the
last modification time for a file. If this
command is supported, it is used
instead of the MDTM command to
change the modification time for a file.

8192

featureXCRC The server supports the XCRC
command which returns the CRC32
checksum for the contents of a specified
file. This command is used for file
verification.

16384

featureXMD5 The server supports the XMD5
command which returns an MD5 hash
for the contents of a specified file. This
command is used for file verification.

32768

featureLANG The server supports the LANG
command which sets the language used
for the current client session. Command
responses and file naming conventions
will use the specified language.

65536

featureUTF8 The server supports the OPTS UTF-8
command which specifies UTF-8
encoding when specifying filenames.
This feature is typically used in
conjunction with setting the default
language for the client session.

131072

featureXQUOTA The server supports the XQUOTA
command which returns quota
information for the current client
session.

262144

featureUTIME The server supports the UTIME
command which is used to change the
last modification time for a specified file.

524288

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the protocol versions supported by the FileTransfer class.

[Visual Basic]
Public Enum FileTransfer.HttpVersion

[C#]
public enum FileTransfer.HttpVersion

Remarks
The FileTransfer class uses the HttpVersion enumeration to specify the protocol version to be used when
establishing a connection to the server.

Members

Member Name Description

version09 Version 0.9 of the protocol. This value specifies
that the client should use the preliminary protocol
version which only supports the use of the GET
command. Header fields are not supported with
this version of the protocol.

version10 Version 1.0 of the protocol.

version11 Version 1.1 of the protocol.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.HttpVersion Enumeration

Specifies the encryption algorithms that the FileTransfer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FileTransfer.SecureCipherAlgorithm

[C#]
[Flags]
public enum FileTransfer.SecureCipherAlgorithm

Remarks
The FileTransfer class uses the SecureCipherAlgorithm enumeration to identify which encryption
algorithm was selected when a secure connection was established with the server.

Members

Member Name Description Value

cipherNone No cipher has been selected. A secure
connection has not been established
with the server.

0

cipherRC2 The RC2 block cipher was selected. This
is a variable key length cipher which
supports keys between 40- and 128-bits
in length, in 8-bit increments.

1

cipherRC4 The RC4 stream cipher was selected.
This is a variable key length cipher
which supports keys between 40- and
128-bits in length, in 8-bit increments.

2

cipherRC5 The RC5 block cipher was selected. This
is a variable key length cipher which
supports keys up to 2040 bits, in 8-bit
increments.

4

cipherDES The DES (Data Encryption Standard)
block cipher was selected. This is a fixed
key length cipher using 56-bit keys.

8

cipherDES3 The Triple DES block cipher was
selected. This cipher encrypts the data
three times using different keys,
effectively using a 168-bit key length.

16

cipherDESX A variant of the DES block cipher which
XORs an extra 64-bits of the key before
and after the plaintext has been
encrypted, increasing the key size to
184 bits.

32

cipherAES The Advanced Encryption Standard 64

FileTransfer.SecureCipherAlgorithm Enumeration

cipher (also known as the Rijndael
cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits.
This cipher is supported on Windows XP
SP3 SP3 and later versions of the
operating system.

cipherSkipjack The Skipjack block cipher was selected.
This is a fixed key length cipher, using
80-bit keys.

128

cipherBlowfish The Blowfish block cipher was selected.
This is a variable key length cipher up to
448 bits, using a 64-bit block size.

256

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the hash algorithms that the FileTransfer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FileTransfer.SecureHashAlgorithm

[C#]
[Flags]
public enum FileTransfer.SecureHashAlgorithm

Remarks
The FileTransfer class uses the SecureHashAlgorithm enumeration to identify the message digest (hash)
algorithm that was selected when a secure connection was established with the server.

Members

Member Name Description Value

hashNone No hash algorithm has been selected.
This is not a secure connection with the
server.

0

hashMD5 The MD5 algorithm was selected. This
algorithm produces a 128-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

1

hashSHA The SHA-1 algorithm was selected. This
algorithm produces a 160-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

2

hashSHA256 The SHA-256 algorithm was selected.
This algorithm produces a 256-bit
message digest.

4

hashSHA384 The SHA-384 algorithm was selected.
This algorithm produces a 384-bit
message digest.

8

hashSHA512 The SHA-512 algorithm was selected.
This algorithm produces a 512-bit
message digest.

16

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also

FileTransfer.SecureHashAlgorithm Enumeration

SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the key exchange algorithms that the FileTransfer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FileTransfer.SecureKeyAlgorithm

[C#]
[Flags]
public enum FileTransfer.SecureKeyAlgorithm

Remarks
The FileTransfer class uses the SecureKeyAlgorithm enumeration to identify the key exchange algorithm
that was selected when a secure connection was established with the server.

Members

Member Name Description Value

keyExchangeNone No key exchange algorithm has been
selected. This is not a secure connection
with the server.

0

keyExchangeRSA The RSA public key exchange algorithm
has been selected.

1

keyExchangeKEA The KEA public key exchange algorithm
has been selected. This is an improved
version of the Diffie-Hellman public key
algorithm.

2

keyExchangeDH The Diffie-Hellman public key exchange
algorithm has been selected.

4

keyExchangeECDH The Elliptic Curve Diffie-Hellman key
exchange algorithm was selected. This is
a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography.
This key exchange algorithm is only
supported on Windows XP SP3 SP3 and
later versions of the operating system.

8

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.SecureKeyAlgorithm Enumeration

Specifies the security certificate status values that may be returned by the FileTransfer class.

[Visual Basic]
Public Enum FileTransfer.SecurityCertificate

[C#]
public enum FileTransfer.SecurityCertificate

Remarks
The FileTransfer class uses the SecurityCertificate enumeration to identify the current status of the
certificate that was provided by the server when a secure connection was established.

Members

Member Name Description

certificateNone No certificate information is available. A secure
connection was not established with the server.

certificateValid The certificate is valid.

certificateNoMatch The certificate is valid, however the domain name
specified in the certificate does not match the
domain name of the server. The application can
examine the CertificateSubject property to
determine the site the certificate was issued to.

certificateExpired The certificate has expired and is no longer valid.
The application can examine the
CertificateExpires property to determine when
the certificate expired.

certificateRevoked The certificate has been revoked and is no longer
valid. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateUntrusted The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the
local host. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateInvalid The certificate is invalid. This typically indicates that
the internal structure of the certificate is damaged.
It is recommended that the application
immediately terminate the connection if this status
is returned.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

FileTransfer.SecurityCertificate Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the security protocols that the FileTransfer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FileTransfer.SecurityProtocols

[C#]
[Flags]
public enum FileTransfer.SecurityProtocols

Remarks
The FileTransfer class uses the SecurityProtocols enumeration to specify one or more security protocols
to be used when establishing a connection with a server. Multiple protocols may be specified if necessary
and the actual protocol used will be negotiated with the server. It is recommended that most applications
use protocolDefault when creating a secure connection.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

FileTransfer.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSH1 The Secure Shell 1.0 protocol should be
used. This version of the protocol has
been deprecated and is no longer
widely used. It is not recommended that
this version of the protocol be used to
establish a connection.

256

protocolSSH2 The Secure Shell 2.0 protocol should be
used. This is the most commonly used
version of the protocol. It is
recommended that this version of the
protocol be used unless the server
explicitly requires the client to use an
earlier version.

512

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolSSH Any version of the the Secure Shell
(SSH) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

768

protocolDefault The default selection of security
protocols will be used when establishing

16

a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the FileTransfer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FileTransfer.TraceOptions

[C#]
[Flags]
public enum FileTransfer.TraceOptions

Remarks
The FileTransfer class uses the TraceOptions enumeration to specify what kind of debugging information
is written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

FileTransfer.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see FileTransfer.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.FileTransfer.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class FileTransfer.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class FileTransfer.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the FileTransfer class.

Example

<Assembly: SocketTools.FileTransfer.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.FileTransfer.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.RuntimeLicenseAttribute Class

FileTransfer.RuntimeLicenseAttribute overview

Public Instance Constructors

 FileTransfer.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransfer.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public FileTransfer.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the FileTransfer class.

See Also
FileTransfer.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.RuntimeLicenseAttribute Constructor

The properties of the FileTransfer.RuntimeLicenseAttribute class are listed below. For a complete list of
FileTransfer.RuntimeLicenseAttribute class members, see the FileTransfer.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
FileTransfer.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
FileTransfer.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.RuntimeLicenseAttribute.LicenseKey Property

Attribute that defines the threading model for the class.

For a list of all members of this type, see FileTransfer.ThreadModelAttribute Members.

System.Object
 System.Attribute
 SocketTools.FileTransfer.ThreadModelAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False, Inherited:=True)>
Public Class FileTransfer.ThreadModelAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False, Inherited=True)]
public class FileTransfer.ThreadModelAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not
guaranteed to be thread-safe.

Remarks
The ThreadModel attribute is used to define the threading model that is to be used when an instance of the class is created.
This attribute is defined in the assembly information module for the language, such as AssemblyInfo.cs when programming
C#.

Example

<Assembly:
SocketTools.FileTransfer.ThreadModel(SocketTools.FileTransfer.ThreadModelAttribute.Model.SingleThread)>

[assembly:
SocketTools.FileTransfer.ThreadModel(SocketTools.FileTransfer.ThreadModelAttribute.Model.SingleThread)]

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransfer.ThreadModelAttribute Members | SocketTools Namespace | ThreadModel Property (SocketTools.FileTransfer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ThreadModelAttribute Class

FileTransfer.ThreadModelAttribute overview

Public Instance Constructors

 FileTransfer.ThreadModelAttribute Constructor Constructor for the ThreadModel attribute which
defines the threading model.

Public Instance Properties

ThreadModel Returns the threading model used by the class.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransfer.ThreadModelAttribute Class | SocketTools Namespace | ThreadModel Property
(SocketTools.FileTransfer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ThreadModelAttribute Members

Constructor for the ThreadModel attribute which defines the threading model.

[Visual Basic]
Public Sub New(_
 ByVal threadModel As Model _
)

[C#]
public FileTransfer.ThreadModelAttribute(
 Model threadModel
);

Parameters
threadModel

A Model enumeration value which specifies the threading model which will be used when creating an
instance of the class. A value of zero specifies a single threaded model, while a non-zero value
specifies a free threaded model.

Remarks
The ThreadModel attribute specifies the threading model that is used by the class instance when a
connection is established. The default threading model is single threaded, which specifies that only the
thread that established the connection should be permitted to invoke methods.

It is important to note that the single threading model does not limit the application to a single thread of
execution. When a session is established using the Connect method, that session is attached to the thread
that created it. From that point on, until the session is terminated, only the owner may invoke methods in
that instance of the class. The ownership of the class instance may be transferred from one thread to
another using the AttachThread method.

Setting this attribute to a non-zero value disables certain internal safety checks that are performed by the
class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this attribute will also change the default value for the ThreadModel property for
all instances of the class.

See Also
FileTransfer.ThreadModelAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ThreadModelAttribute Constructor

The properties of the FileTransfer.ThreadModelAttribute class are listed below. For a complete list of
FileTransfer.ThreadModelAttribute class members, see the FileTransfer.ThreadModelAttribute Members
topic.

Public Instance Properties

ThreadModel Returns the threading model used by the class.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
FileTransfer.ThreadModelAttribute Class | SocketTools Namespace | ThreadModel Property
(SocketTools.FileTransfer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ThreadModelAttribute Properties

Returns the threading model used by the class.

[Visual Basic]
Public Property ThreadModel As Model

[C#]
public FileTransfer.ThreadModelAttribute.Model ThreadModel {get; set;}

Property Value
A Model enumeration value which specifies the threading model which will be used when an instance of
the class is created.

See Also
FileTransfer.ThreadModelAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ThreadModelAttribute.ThreadModel Property

Specifies the threading model used by the class instance.

[Visual Basic]
Public Enum FileTransfer.ThreadModelAttribute.Model

[C#]
public enum FileTransfer.ThreadModelAttribute.Model

Remarks
The threading model SingleThread does not limit the application to a single thread of execution. It
specifies that only a single thread may invoke methods in a class instance. When a session is established
using the Connect method, that session is attached to the thread that created it. From that point on, until
the session is terminated, only the owner may invoke methods in that instance of the class. The ownership
of the class instance may be transferred from one thread to another using the AttachThread method.

The threading model FreeThread disables certain internal safety checks that are performed by the class
and may result in unexpected behavior unless you ensure that access to the class instance is synchronized
across multiple threads. The application must ensure that no two threads will attempt to invoke a blocking
method at the same time. In other words, if one thread invokes a method, the application must ensure
that another thread will not attempt to invoke any other method at the same time using the same instance
of the class.

Members

Member Name Description

SingleThread Methods in the class instance may only be invoked
by a single thread. This threading model specifies
that only the thread which established the
connection should be permitted to invoke
methods. This is the default threading model.

FreeThread Methods in the class instance may be invoked by
any thread. This threading model permits methods
to be invoked across multiple threads without
being explicitly attached to the object.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransfer.ThreadModelAttribute.Model Enumeration

The exception that is thrown when a client error occurs.

For a list of all members of this type, see FileTransferException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.FileTransferException

[Visual Basic]
Public Class FileTransferException
 Inherits ApplicationException

[C#]
public class FileTransferException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A FileTransferException is thrown by the FileTransfer class when an error occurs.

The default constructor for the FileTransferException class sets the ErrorCode property to the last error
that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FileTransfer (in SocketTools.FileTransfer.dll)

See Also
FileTransferException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransferException Class

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

FileTransferException overview

Public Instance Constructors

 FileTransferException Overloaded. Initializes a new instance of the
FileTransferException class.

Public Instance Properties

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

FileTransferException Members

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransferException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Initializes a new instance of the FileTransferException class with the last client error code.

Overload List
Initializes a new instance of the FileTransferException class with the last client error code.

public FileTransferException();

Initializes a new instance of the FileTransferException class with a specified error number.

public FileTransferException(int);

Initializes a new instance of the FileTransferException class with a specified error message.

public FileTransferException(string);

Initializes a new instance of the FileTransferException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

public FileTransferException(string,Exception);

See Also
FileTransferException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransferException Constructor

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Initializes a new instance of the FileTransferException class with the last client error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public FileTransferException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the FileTransfer.ErrorCode enumeration.

See Also
FileTransferException Class | SocketTools Namespace | FileTransferException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransferException Constructor ()

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ErrorCode.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Initializes a new instance of the FileTransferException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public FileTransferException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
FileTransferException Class | SocketTools Namespace | FileTransferException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransferException Constructor (String)

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Initializes a new instance of the FileTransferException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal inner As Exception _
)

[C#]
public FileTransferException(
 string message,
 Exception inner
);

Parameters
message

The error message that explains the reason for the exception.

inner
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
FileTransferException Class | SocketTools Namespace | FileTransferException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransferException Constructor (String, Exception)

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Initializes a new instance of the FileTransferException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public FileTransferException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the FileTransfer.ErrorCode enumeration.

See Also
FileTransferException Class | SocketTools Namespace | FileTransferException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransferException Constructor (Int32)

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.FileTransfer.ErrorCode.html
file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

The properties of the FileTransferException class are listed below. For a complete list of
FileTransferException class members, see the FileTransferException Members topic.

Public Instance Properties

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
FileTransferException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransferException Properties

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
FileTransferException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransferException.Message Property

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. If a network error occurs, this value is the same as the values returned by the Windows
Sockets API. For more information about network error codes, see the Windows Socket Version 2 API
error code documentation in MSDN.

See Also
FileTransferException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransferException.Number Property

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

The methods of the FileTransferException class are listed below. For a complete list of
FileTransferException class members, see the FileTransferException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FileTransferException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransferException Methods

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
FileTransferException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FileTransferException.ToString Method

file:///C|/Projects/cstools11/pdf/file/dotnet/SocketTools.html

Implements the File Transfer Protocol.

For a list of all members of this type, see FtpClient Members.

System.Object
 SocketTools.FtpClient

[Visual Basic]
Public Class FtpClient
 Implements IDisposable

[C#]
public class FtpClient : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The FtpClient class provides a comprehensive interface to the File Transfer Protocol which supports both
high level operations, such as uploading or downloading files, as well as a collection of lower-level file I/O
functions. In addition to file transfers, an application can create, rename and delete files and directories,
search for files using wildcards and perform other common file management functions. The class library
has three distinct groups of functionality:

File Transfer
Methods which enable an application to upload and download files, as well as send and
receive file data using memory buffers. This gives your program the flexibility of handling the
data either on disk or in memory, depending on the best needs of your application. If your
program needs to transfer more than one file at a time, there are also methods which will
automatically download or upload multiple files in a single method call.

File Management
In addition to transferring files, the class can be used to manage files on the server. Methods
are provided to delete, rename and move files between directories. For servers that support
specific protocol extensions, advanced features such as getting or setting a remote file's
modification time or access permissions are also supported. If a server supports site-specific
commands, such as the ability to submit a file as job on the server, the control supports this
by enabling you to send custom commands to the server and then process the information
that it returns.

Directory Management
The class can be used to manage directories as well as files on the server. The application can
open a directory and return a list of the files that it contains, as well as create new directories
and delete empty ones. The class understands a number of different directory listing formats,
including those typically used on UNIX and Linux based systems, Windows server platforms,
NetWare servers and VMS systems.

This class supports secure file transfers using TLS 1.2 and the SSH 2.0 protocol using SFTP.

Requirements
Namespace: SocketTools

FtpClient Class

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient overview

Public Static (Shared) Fields

ftpPortDefault A constant value which specifies the default port
number.

ftpPortSecure A constant value which specifies the default port
number for a secure connection using the SSL or
TLS protocols.

ftpPortSSH A constant value which specifies the default port
number for a secure connection using the SSH1 or
SSH2 protocols.

ftpTimeout A constant value which specifies the default
timeout period.

Public Static (Shared) Methods

ErrorText Returns the description of an error code.

Public Instance Constructors

 FtpClient Constructor Initializes a new instance of the FtpClient class.

Public Instance Properties

Account Get or sets a value that specifies the account name
for the current user.

ActivePorts Gets and sets the port numbers used for active
mode file transfers.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

BufferSize Gets and sets the size of the internal send and
receive buffer that will be used during data
transfers.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

FtpClient Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.ftpPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.ftpPortSecure.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.ftpPortSSH.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.ftpTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.ErrorText.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.CertificatePassword.html

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

ChannelMode Set or return the security mode for the specified
communications channel.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

CodePage Gets and sets a value that specifies the code page
used to perform text conversions. enabled.

DirectoryFormat Gets and sets a value which specifies the current
directory format type.

Encoding Gets and sets the character encoding that is used
when a file name is sent to the server.

Features Gets and sets the features that are currently
enabled for the current session.

FileMask Gets and sets the value which specifies the default
wildcard file mask.

FileType Gets and sets a value which specifies the type of
file that is being transferred.

Fingerprint Gets a value that can be used to uniquely identify
the server.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.CertificateUser.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.Encoding.html

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

KeepAlive Gets and sets a Boolean value which specifies if
the client should attempt to keep the server
connection alive.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

Localize Gets and sets a value which specifies if time and
dates should be adjusted for the current timezone.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

ParseList Gets and sets a value that specifies if directory
listings should be automatically parsed

Passive Gets and sets a value which specifies if passive
mode file transfers should be enabled.

Password Gets and sets the password used to authenticate
the client session.

Priority Gets and sets a value which specifies the priority of
file transfers.

ProxyHost Gets and sets the hostname or IP address of a
proxy server.

ProxyPassword Gets and sets the password used to authenticate
the connection to a proxy server.

ProxyPort Gets and sets a value that specifies the proxy
server port number.

ProxyType Gets and sets the type of proxy server the client
will use to establish a connection.

ProxyUser Gets and sets the username used to authenticate
the connection to a proxy server.

RemoteFile Gets and sets the file name specified in the current
URL.

RemotePath Gets and sets the path specified in the current

URL.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the client.

System Gets a string value which identifies the server.

TaskCount Get the number of active background file transfers.

TaskId Get the task identifier for the last background file
transfer.

TaskList Get an array of active background task identifiers.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

TransferBytes Gets a value which specifies the number of bytes

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.RemoteService.html

transferred to or from the remote server.

TransferRate Gets a value which specifies the data transfer rate
in bytes per second.

TransferTime Gets a value which specifies the number of
seconds elapsed during a data transfer.

URL Gets and sets the current URL used to access a file
on the server.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the FtpClient class library.

Public Instance Methods

AddFileType Associate a file name extension with a specific file
type.

AsyncGetFile Overloaded. Download a file from the server to
the local system in the background.

AsyncPutFile Overloaded. Upload a file from the local system to
the server in the background.

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

ChangeDirectory Change the current working directory on the
remote server.

CloseDirectory Close the directory that was previously opened
with the OpenDirectory method.

CloseFile Close the file that was previously opened with the
OpenFile method.

Command Overloaded. Send a custom command to the
server.

Connect Overloaded. Establish a connection with a remote
host.

CreateFile Create a new file or overwrite an existing file.

DeleteFile Delete a file on the remote server.

Disconnect Terminate the connection with the remote server.

Dispose Overloaded. Releases all resources used by
FtpClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

FileList Overloaded. Return a list of files on the remote
host.

GetData Overloaded. Transfers the contents of a file on the

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.TransferRate.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.AttachThread.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.FileList_overloads.html

server and stores it in a byte array.

GetDirectory Return the current working directory.

GetFile Overloaded. Download a file from the server to
the local system.

GetFileList Overloaded. Returns an unparsed list of files in the
specified directory.

GetFilePermissions Return the access permissions for a file on the
remote system.

GetFileSize Overloaded. Returns the size of the specified file
on the remote server.

GetFileStatus Returns status information about the specified file.

GetFileTime Overloaded. Returns the modification date and
time for specified file on the remote server.

GetFileType Overloaded. Determine the file transfer type based
on the file extension or contents.

GetFirstFile Overloaded. Get information about the first file in
a directory listing returned by the server.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetMultipleFiles Overloaded. Download multiple files from the
server to the local system using a wildcard mask.

GetNextFile Overloaded. Get information about the next file in
a directory listing returned by the server.

GetText Overloaded. Request content from the file server
and store it in a string buffer.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the FtpClient
class.

Login Overloaded. Login to the remote server.

Logout Log the current user off the server.

MakeDirectory Create a new directory on the server.

OpenDirectory Overloaded. Open the specified directory on the
server.

OpenFile Overloaded. Open an existing file or create a new
file on the server.

PutData Overloaded. Transfers data from a byte array and
stores it in a file on the remote server.

PutFile Overloaded. Upload a file from the local system to
the server.

PutMultipleFiles Overloaded. Upload multiple files from the local

system to the server using a wildcard mask.

PutText Overloaded. Transfers data from a string buffer
and stores it in a file on the remote server.

Read Overloaded. Read file data from the server and
store it in a byte array.

RemoveDirectory Remove a directory on the server.

RenameFile Change the name of a file on the server.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SetFilePermissions Change the access permissions for a file on the
server.

SetFileTime Changes the modification date and time for a file
on the server.

TaskAbort Overloaded. Abort the specified asynchronous
task.

TaskDone Overloaded. Determine if an asynchronous task
has completed.

TaskResume Overloaded. Resume execution of an
asynchronous task.

TaskSuspend Overloaded. Suspend execution of an
asynchronous task.

TaskWait Overloaded. Wait for an asynchronous task to
complete.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

VerifyFile Overloaded. Verify that the contents of a file on
the local system are the same as the specified file
on the server.

Write Overloaded. Write one or more bytes of data to
the server.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnCommand Occurs when the client sends a command to the
remote host and receives a reply indicating the
result of that command.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an socket operation fails.

OnFileList Occurs when a directory listing is parsed by the
class.

OnGetFile Occurs when a file download has been initiated.

OnLastFile Occurs when the last file in a directory listing has
been processed.

OnProgress Occurs as a data stream is being read or written to
the socket.

OnPutFile Occurs when a file upload is initiated.

OnRead Occurs when data is available to be read from the
socket.

OnTaskBegin Occurs when an asynchronous task begins
execution.

OnTaskEnd Occurs when an asynchronous task completes.

OnTaskRun Occurs while a background task is active.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the socket.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the FtpClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.OnFileList.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.OnLastFile.html

Initializes a new instance of the FtpClient class.

[Visual Basic]
Public Sub New()

[C#]
public FtpClient();

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient Constructor

This structure is used by the GetFirstFile and GetNextFile methods to return information about a file on the
server.

For a list of all members of this type, see FtpClient.FileInformation Members.

System.Object
 System.ValueType
 SocketTools.FtpClient.FileInformation

[Visual Basic]
Public Structure FtpClient.FileInformation

[C#]
public struct FtpClient.FileInformation

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient.FileInformation Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileInformation Structure

FtpClient.FileInformation overview

Public Instance Fields

FileDate Specifies the date and time the file was created or
last modified.

FileGroup Specifies the name of the group that owns the file.

FileLinks Specifies the number of links to the file.

FileName Specifies the name of the file.

FileOwner Specifies the name of the file owner.

FilePerms Specifies the permissions for the file.

FileSize Specifies the size of the file in bytes.

FileVersion Specifies the number of revisions made to the file.

IsDirectory Specifies if the file is a directory or regular file.

Public Instance Methods

Equals (inherited from ValueType) Indicates whether this instance and a specified
object are equal.

GetHashCode (inherited from ValueType) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from ValueType) Returns the fully qualified type name of this
instance.

See Also
FtpClient.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileInformation Members

The fields of the FtpClient.FileInformation structure are listed below. For a complete list of
FtpClient.FileInformation structure members, see the FtpClient.FileInformation Members topic.

Public Instance Fields

FileDate Specifies the date and time the file was created or
last modified.

FileGroup Specifies the name of the group that owns the file.

FileLinks Specifies the number of links to the file.

FileName Specifies the name of the file.

FileOwner Specifies the name of the file owner.

FilePerms Specifies the permissions for the file.

FileSize Specifies the size of the file in bytes.

FileVersion Specifies the number of revisions made to the file.

IsDirectory Specifies if the file is a directory or regular file.

See Also
FtpClient.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileInformation Fields

Specifies the date and time the file was created or last modified.

[Visual Basic]
Public FileDate As Date

[C#]
public DateTime FileDate;

Remarks
Some file servers may not return a specific time value if the file was last created or modified more than six
months ago. In that case, only the date will be returned.

See Also
FtpClient.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileInformation.FileDate Field

Specifies the name of the group that owns the file.

[Visual Basic]
Public FileGroup As String

[C#]
public string FileGroup;

See Also
FtpClient.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileInformation.FileGroup Field

Specifies the number of links to the file.

[Visual Basic]
Public FileLinks As Integer

[C#]
public int FileLinks;

See Also
FtpClient.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileInformation.FileLinks Field

Specifies the name of the file.

[Visual Basic]
Public FileName As String

[C#]
public string FileName;

See Also
FtpClient.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileInformation.FileName Field

Specifies the name of the file owner.

[Visual Basic]
Public FileOwner As String

[C#]
public string FileOwner;

See Also
FtpClient.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileInformation.FileOwner Field

Specifies the permissions for the file.

[Visual Basic]
Public FilePerms As FtpPermissions

[C#]
public FtpPermissions FilePerms;

Remarks
For those familiar with UNIX, the file permissions are the same as those used by the chmod command.
For the proprietary Sterling directory formats, a bit map representing the status codes and transfer
protocol of the file are stored in this member.

See Also
FtpClient.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileInformation.FilePerms Field

Specifies the size of the file in bytes.

[Visual Basic]
Public FileSize As Long

[C#]
public long FileSize;

See Also
FtpClient.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileInformation.FileSize Field

Specifies the number of revisions made to the file.

[Visual Basic]
Public FileVersion As Integer

[C#]
public int FileVersion;

See Also
FtpClient.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileInformation.FileVersion Field

Specifies if the file is a directory or regular file.

[Visual Basic]
Public IsDirectory As Boolean

[C#]
public bool IsDirectory;

See Also
FtpClient.FileInformation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileInformation.IsDirectory Field

This structure is used by the ActivePorts property which allows the client to specify the port range used for
active mode file transfers.

For a list of all members of this type, see FtpClient.PortRange Members.

System.Object
 System.ValueType
 SocketTools.FtpClient.PortRange

[Visual Basic]
Public Structure FtpClient.PortRange

[C#]
public struct FtpClient.PortRange

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient.PortRange Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PortRange Structure

FtpClient.PortRange overview

Public Instance Constructors

 FtpClient.PortRange Constructor Initializes a new instance of the PortRange
structure with a specified range of port numbers.

Public Instance Fields

HighPort Specifies the high port number used for active file
transfers.

LowPort Specifies the low port number used for active file
transfers.

Public Instance Methods

Equals (inherited from ValueType) Indicates whether this instance and a specified
object are equal.

GetHashCode (inherited from ValueType) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from ValueType) Returns the fully qualified type name of this
instance.

See Also
FtpClient.PortRange Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PortRange Members

Initializes a new instance of the PortRange structure with a specified range of port numbers.

[Visual Basic]
Public Sub New(_
 ByVal lowPort As Integer, _
 ByVal highPort As Integer _
)

[C#]
public FtpClient.PortRange(
 int lowPort,
 int highPort
);

Parameters
lowPort

An integer value which specifies the low port number.

highPort
An integer value which specifies the high port number.

Return Value
The minimum port number is 1025 and the maximum port number is 65535. Port numbers outside of this
range of values will be silently adjusted.

See Also
FtpClient.PortRange Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PortRange Constructor

The fields of the FtpClient.PortRange structure are listed below. For a complete list of
FtpClient.PortRange structure members, see the FtpClient.PortRange Members topic.

Public Instance Fields

HighPort Specifies the high port number used for active file
transfers.

LowPort Specifies the low port number used for active file
transfers.

See Also
FtpClient.PortRange Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PortRange Fields

Specifies the high port number used for active file transfers.

[Visual Basic]
Public HighPort As Integer

[C#]
public int HighPort;

Remarks
While this member may be assigned to any integer value, the port range is normalized and the maximum
port number that may be used is 65535.

See Also
FtpClient.PortRange Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PortRange.HighPort Field

Specifies the low port number used for active file transfers.

[Visual Basic]
Public LowPort As Integer

[C#]
public int LowPort;

Remarks
While this member may be assigned to any integer value, the port range is normalized and the minimum
port number that may be used is 1025.

See Also
FtpClient.PortRange Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PortRange.LowPort Field

The structure used to modify or return the current mode for the secure command or data channel.

For a list of all members of this type, see FtpClient.SecureChannel Members.

System.Object
 System.ValueType
 SocketTools.FtpClient.SecureChannel

[Visual Basic]
Public Structure FtpClient.SecureChannel

[C#]
public struct FtpClient.SecureChannel

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The SecureChannel structure specifies the current channel modes for the client session. This structure is
used with the ChannelMode property when a secure connection is established with the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient.SecureChannel Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SecureChannel Structure

FtpClient.SecureChannel overview

Public Instance Constructors

 FtpClient.SecureChannel Constructor Initializes a new instance of the SecureChannel
structure with the specified values.

Public Instance Fields

Command Specifies the secure channel mode used when
sending commands to the server.

Data Specifies the secure channel mode used when
uploading or downloading files.

Public Instance Methods

Equals (inherited from ValueType) Indicates whether this instance and a specified
object are equal.

GetHashCode (inherited from ValueType) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from ValueType) Returns the fully qualified type name of this
instance.

See Also
FtpClient.SecureChannel Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SecureChannel Members

Initializes a new instance of the SecureChannel structure with the specified values.

[Visual Basic]
Public Sub New(_
 ByVal commandMode As FtpChannelMode, _
 ByVal dataMode As FtpChannelMode _
)

[C#]
public FtpClient.SecureChannel(
 FtpChannelMode commandMode,
 FtpChannelMode dataMode
);

Parameters
commandMode

A FtpChannelMode enumeration which specifies the channel mode used for commands sent to the
server.

dataMode
A FtpChannelMode enumeration which specifies the channel mode used for file transfers.

See Also
FtpClient.SecureChannel Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SecureChannel Constructor

The fields of the FtpClient.SecureChannel structure are listed below. For a complete list of
FtpClient.SecureChannel structure members, see the FtpClient.SecureChannel Members topic.

Public Instance Fields

Command Specifies the secure channel mode used when
sending commands to the server.

Data Specifies the secure channel mode used when
uploading or downloading files.

See Also
FtpClient.SecureChannel Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SecureChannel Fields

Specifies the secure channel mode used when sending commands to the server.

[Visual Basic]
Public Command As FtpChannelMode

[C#]
public FtpChannelMode Command;

See Also
FtpClient.SecureChannel Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SecureChannel.Command Field

Specifies the secure channel mode used when uploading or downloading files.

[Visual Basic]
Public Data As FtpChannelMode

[C#]
public FtpChannelMode Data;

See Also
FtpClient.SecureChannel Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SecureChannel.Data Field

The properties of the FtpClient class are listed below. For a complete list of FtpClient class members, see
the FtpClient Members topic.

Public Instance Properties

Account Get or sets a value that specifies the account name
for the current user.

ActivePorts Gets and sets the port numbers used for active
mode file transfers.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

BufferSize Gets and sets the size of the internal send and
receive buffer that will be used during data
transfers.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

ChannelMode Set or return the security mode for the specified
communications channel.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

CodePage Gets and sets a value that specifies the code page
used to perform text conversions. enabled.

FtpClient Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.CertificateUser.html

DirectoryFormat Gets and sets a value which specifies the current
directory format type.

Encoding Gets and sets the character encoding that is used
when a file name is sent to the server.

Features Gets and sets the features that are currently
enabled for the current session.

FileMask Gets and sets the value which specifies the default
wildcard file mask.

FileType Gets and sets a value which specifies the type of
file that is being transferred.

Fingerprint Gets a value that can be used to uniquely identify
the server.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

KeepAlive Gets and sets a Boolean value which specifies if
the client should attempt to keep the server
connection alive.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

Localize Gets and sets a value which specifies if time and
dates should be adjusted for the current timezone.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.Encoding.html

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

ParseList Gets and sets a value that specifies if directory
listings should be automatically parsed

Passive Gets and sets a value which specifies if passive
mode file transfers should be enabled.

Password Gets and sets the password used to authenticate
the client session.

Priority Gets and sets a value which specifies the priority of
file transfers.

ProxyHost Gets and sets the hostname or IP address of a
proxy server.

ProxyPassword Gets and sets the password used to authenticate
the connection to a proxy server.

ProxyPort Gets and sets a value that specifies the proxy
server port number.

ProxyType Gets and sets the type of proxy server the client
will use to establish a connection.

ProxyUser Gets and sets the username used to authenticate
the connection to a proxy server.

RemoteFile Gets and sets the file name specified in the current
URL.

RemotePath Gets and sets the path specified in the current
URL.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.RemoteService.html

algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the client.

System Gets a string value which identifies the server.

TaskCount Get the number of active background file transfers.

TaskId Get the task identifier for the last background file
transfer.

TaskList Get an array of active background task identifiers.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

TransferBytes Gets a value which specifies the number of bytes
transferred to or from the remote server.

TransferRate Gets a value which specifies the data transfer rate
in bytes per second.

TransferTime Gets a value which specifies the number of
seconds elapsed during a data transfer.

URL Gets and sets the current URL used to access a file
on the server.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the FtpClient class library.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.TransferRate.html

Get or sets a value that specifies the account name for the current user.

[Visual Basic]
Public Property Account As String

[C#]
public string Account {get; set;}

Property Value
A string which specifies the account name for the current user.

Remarks
The Account property specifies the account name of the current user, if it is required by the server for
authentication. Not all servers require an account name, in which case this property is ignored.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Account Property

Gets and sets the port numbers used for active mode file transfers.

[Visual Basic]
Public Property ActivePorts As PortRange

[C#]
public FtpClient.PortRange ActivePorts {get; set;}

Property Value
A PortRange structure which specifies the minimum and maximum port numbers used for active mode
file transfers.

Remarks
This property is used to change the default port numbers used for active mode file transfers. Active mode
is used when the Passive property is set to false. Instead of the client establishing an outbound
connection to the server for the file transfer, it listens for an inbound connection from the server back to
the client. In most cases, passive mode transfers are preferred because they mitigate potential
compatibility issues with firewalls and NAT routers.

If active mode transfers are required, the default port range used when listening for the server connection
is between 1024 and 5000. This is the standard range of ephemeral ports used by the Windows operating
system. However, under some circumstances that range of ports may be too small, or a firewall may be
configured to deny inbound connections on ephemeral ports. In that case, the ActivePorts property can
be used to specify a different range of port numbers.

While it is technically permissible to assign the low and high port numbers to the same value, effectively
specifying a single active port number, this is not recommended as it can cause the transfer to fail
unexpectedly if multiple file transfers are performed. A minimum range of at least 1000 ports is
recommended. For example, if you specify a low port value of 40000 then it is recommended that the
high port value be at least 41000. The maximum port value is 65535.

See Also
FtpClient Class | SocketTools Namespace | PortRange Structure

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ActivePorts Property

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.AutoResolve Property

Gets and sets a value which indicates if the client is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the client is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if client operations complete synchronously or asynchronously.
If set to true, then each client operation (such as sending or receiving data) will return when the operation
has completed or timed-out. If set to false, client operations will return immediately. If the operation
would result in the client blocking (such as attempting to read data when no data has been sent by the
remote host), an error is generated.

It is important to note that certain events, such as OnDisconnect, OnRead and OnWrite are only fired if
the client is in non-blocking mode.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Blocking Property

Gets and sets the size of the internal send and receive buffer that will be used during data transfers.

[Visual Basic]
Public Property BufferSize As Integer

[C#]
public int BufferSize {get; set;}

Property Value
An integer value which specifies the size of the internal transfer buffer, expressed in bytes.

Remarks
Setting the BufferSize property specifies the size in bytes of an internal buffer that will be used during
data transfers. Any set value greater than or equal to zero is acceptable. If the value is set to zero, then
the default value of 4096 will be used. If the set value is between 1 and 255, inclusive, the buffer size will
be set to 256. The maximum value is 1048576.

The speed of data transfers, particularly on uploads, may be sensitive to network type and configuration,
and the size of the internal buffer used for data transfers. The default size of this buffer will result in good
performance for a wide range of network characteristics. A larger buffer will not necessarily result in better
performance. For example, a multiple of 1460, which is the typical Maximum Transmission Unit (MTU),
may be optimal in many situations.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.BufferSize Property

Get a value that specifies the date that the security certificate expires.

[Visual Basic]
Public ReadOnly Property CertificateExpires As String

[C#]
public string CertificateExpires {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateExpires property returns a string that specifies the date and time that the security
certificate expires. This property will return an empty string if a secure connection has not been
established with the remote host.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CertificateExpires Property

Get a value that specifies the date that the security certificate was issued.

[Visual Basic]
Public ReadOnly Property CertificateIssued As String

[C#]
public string CertificateIssued {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateIssued property returns a string that specifies the date and time that the security certificate
was issued. This property will return an empty string if a secure connection has not been established with
the remote host.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CertificateIssued Property

Get a value that provides information about the organization that issued the certificate.

[Visual Basic]
Public ReadOnly Property CertificateIssuer As String

[C#]
public string CertificateIssuer {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateIssuer property returns a string that contains information about the organization that
issued the server certificate. The string value is a comma separated list of tagged name and value pairs. In
the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CertificateIssuer Property

Gets and sets a value that specifies the name of the client certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the certificate name.

Remarks
The CertificateName property is used to specify the name of a client certificate to use when establishing
a secure connection. It is only required that you set this property value if the server requires a client
certificate for authentication. If this property is not set, a client certificate will not be provided to the server.
If a certificate name is specified, the certificate must have a private key associated with it, otherwise the
connection attempt will fail because the control will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
FtpClient Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CertificateName Property

Gets a value which indicates the status of the security certificate returned by the remote host.

[Visual Basic]
Public ReadOnly Property CertificateStatus As SecurityCertificate

[C#]
public FtpClient.SecurityCertificate CertificateStatus {get;}

Property Value
A SecurityCertificate enumeration value which specifies the status of the certificate.

Remarks
The CertificateStatus property is used to determine the status of the security certificate returned by the
remote host when a secure connection has been established. This property value should be checked after
the connection to the server has completed, but prior to beginning a transaction.

Note that if the certificate cannot be validated, the secure connection will not be automatically terminated.
It is the responsibility of your application to determine the best course of action to take if the certificate is
invalid. Even if the security certificate cannot be validated, the data exchanged with the remote host will
still be encrypted.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CertificateStatus Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when establishing a secure connection. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and therefore it is
not necessary to set this property value because that is the default location that will be used to search for
the certificate. This property is only used if the CertificateName property is also set to a valid certificate
name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the property
should specify the full path to the file and must contain both the certificate and private key in PKCS #12

FtpClient.CertificateStore Property

format. If the file is protected by a password, the CertificatePassword property must also be set to
specify the password.

See Also
FtpClient Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.CertificatePassword.html

Gets a value that provides information about the organization that the server certificate was issued to.

[Visual Basic]
Public ReadOnly Property CertificateSubject As String

[C#]
public string CertificateSubject {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateSubject property returns a string that contains information about the organization that the
server certificate was issued to. The string value is a comma separated list of tagged name and value pairs.
In the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CertificateSubject Property

Set or return the security mode for the specified communications channel.

[Visual Basic]
Public Property ChannelMode As SecureChannel

[C#]
public FtpClient.SecureChannel ChannelMode {get; set;}

Property Value
An FtpChannelMode enumeration value which specifies the current channel mode.

Remarks
The ChannelMode property is used to change the default mode for the specified channel, and is typically
used to control whether or not data is encrypted during a file transfer. If a standard, non-secure
connection has been established with the server, an error will be returned if you specify the
channelSecure mode for either channel.

If you have established a secure connection and then specify the channelClear mode for the command
channel, the client will send the CCC command to the server to indicate that commands should no longer
be encrypted. If the server does not support this command, an error will be returned and the channel
mode will remain unchanged. Once the command channel has been changed to clear mode, it cannot be
changed back to secure mode. You must disconnect and re-connect to the server if you want to resume
sending commands over an encrypted channel.

Changing the mode for the data channel requires that the server support the PROT command. If this
command is not supported by the server, an exception will be thrown which must be handled by the
application. You can only set a channel to secure mode if the Secure property is also set to true.

It is important to note that this property should only be used after a connection has been established with
the server. If you attempt to read the property or change a value prior to calling the Connect method, an
exception will be thrown.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ChannelMode Property

Gets a value that indicates the length of the key used by the encryption algorithm for a secure connection.

[Visual Basic]
Public ReadOnly Property CipherStrength As Integer

[C#]
public int CipherStrength {get;}

Property Value
An integer value which specifies the encryption key length if a secure connection has been established;
otherwise a value of 0 is returned.

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure data
stream. Common values returned by this property are 128 and 256. A key length of 40 or 56 bits is
considered insecure and subject to brute force attacks. 128-bit and 256-bit keys are considered secure. If
this property returns a value of 0, this means that a secure connection has not been established with the
remote host.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CipherStrength Property

Gets and sets a value that specifies the code page used to perform text conversions. enabled.

[Visual Basic]
Public Property CodePage As Integer

[C#]
public int CodePage {get; set;}

Property Value
Returns an integer value which identifies the default code page used for text conversions.

Remarks
The CodePage property specifies the code page used when converting text to native Unicode strings.
Text returned by a web server will be handled as UTF-8 encoded characters by default. Changing this
property value will change how the text is converted. If a value of zero is specified, the active code page
for the current locale will be used.

Most modern web servers will always return text using UTF-8 encoding to ensure the broadest compability
with character sets in multiple languages. However, some servers may return text based on their current
locale. Changing this property will enable your application to override the default code page.

This value must specify a valid code page. Code page numbers range from 0 through 65535 and if an
invalid code page is specified a NotSupportedException exception will be thrown.

See Also
FtpClient Class | SocketTools Namespace | GetText

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CodePage Property

Gets and sets a value which specifies the current directory format type.

[Visual Basic]
Public Property DirectoryFormat As FtpDirectoryFormat

[C#]
public FtpClient.FtpDirectoryFormat DirectoryFormat {get; set;}

Property Value
An FtpDirectoryFormat enumeration value which specifies the current directory format.

Remarks
This property should only be set if the client cannot automatically determine the directory format returned
by the server. The default directory format is determined both by the server's operating system and by
analyzing the format of the data returned by the server. If the class is unable to automatically determine
the format, it will attempt to parse the list of files as though it is a UNIX style listing.

If this property is set to the default value FtpDirectoryFormat.formatAuto and the class can determine
from the format of the file listing returned by the server, then the property will change value upon the first
call to the GetFirstFile method.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.DirectoryFormat Property

Gets and sets the features that are currently enabled for the current session.

[Visual Basic]
Public Property Features As FtpFeatures

[C#]
public FtpClient.FtpFeatures Features {get; set;}

Property Value
An FtpFeatures enumeration which specifies the features that are available for the current client session.

Remarks
When a client connection is first established, all features are enabled by default. However, as the client
issues commands to the server, if the server reports that the command is unrecognized that feature will
automatically be disabled in the client.

For example, the first time an application calls the GetFileSize method to determine the size of a file, the
control will try to use the SIZE command. If the server reports that the SIZE command is not available, that
feature will be disabled and the control will not use the command again during the session unless it is
explicitly re-enabled. This is designed to prevent the control from repeatedly sending invalid commands to
a server, which may result in the server aborting the connection.

Setting the Features property enables those features which have been specified. More than one feature
may be enabled by combining the above constants using a bitwise Or operator. To test if a particular
feature has been enabled, use the bitwise And operator.

Because features are specific to the current session, once you disconnect from the server they are reset.
Even if you wish to reconnect to the same server, you must explicitly set the Features property again to
those features which you wish to enable. Setting the Features property when the control is not connected
to a server will cause the client session to only use those specified features for the next connection that is
established. Setting the Features property during an active connection will change the features available
for that session.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Features Property

Gets and sets the value which specifies the default wildcard file mask.

[Visual Basic]
Public Property FileMask As String

[C#]
public string FileMask {get; set;}

Property Value
A string which specifies the current wildcard file mask.

Remarks
The FileMask property specifies the default wildcard mask to be used when uploading or downloading
multiple files. The default value of an empty string indicates that all files in the specified directory should
be uploaded or downloaded. Typically, this property is set to a wildcard mask that limits the files
downloaded from the server to those which match a specific extension. For example, to download only
those files that end in a ".dat" extension, the property could be set to the value "*.dat"

Note that the type of wildcards which may be used depend on the server and the type of file system that
it is using. Take particular care when dealing with file systems that distinguish between upper- and lower-
case letters in a filename.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileMask Property

Gets and sets a value which specifies the type of file that is being transferred.

[Visual Basic]
Public Property FileType As FtpFileType

[C#]
public FtpClient.FtpFileType FileType {get; set;}

Property Value
An FtpFileType enumeration which specifies the type of file being uploaded or downloaded.

Remarks
The file type should be set before a file is uploaded or downloaded from the remote server. Once the file
type is set, it is in effect for all files that are subsequently transferred.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FileType Property

Gets a value that can be used to uniquely identify the server.

[Visual Basic]
Public ReadOnly Property Fingerprint As String

[C#]
public string Fingerprint {get;}

Property Value
A string value that can be used to uniquely identify a server when the SSH protocol is used.

Remarks
The Fingerprint property returns a string that consists of a series of hexadecimal values separated by
colons. The value is unique to the server, and is an MD5 hash of the RSA host key. An application can use
this value to determine if a connection has been established with the server previously by storing the
server's host name, IP address and fingerprint in a file, registry key or a database.

Note that this property only returns a meaningful value after a secure connection has been established
using the SSH protocol. For all other connections, it will return an empty string.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Fingerprint Property

Gets a value that specifies the client handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current client session and is typically used for
debugging or diagnostic purposes.

In SocketTools, handles are used to identify client sessions. A session begins when an instance of the class
is used to establish a connection with the server and ends when that connection is terminated. The client
handle is defined as an integer type and is used internally to reference the active session. When the
connection is terminated, the handle is released, along with any system resources that were allocated for
it. An unused handle is identified by the value -1.

It is important to note that the handles returned by this property are not socket handles and cannot be
used interchangeably with other objects or Windows API functions. The actual value of the handle is only
unique while the client session is active and handle values may be reused. An application should never
depend on the Handle property returning a specific value.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Handle Property

Gets a value which specifies the length of the message digest that was selected for a secure connection.

[Visual Basic]
Public ReadOnly Property HashStrength As Integer

[C#]
public int HashStrength {get;}

Property Value
An integer value which specifies the length of the message digest if a secure connection has been
established; otherwise a value of 0 is returned.

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that was
selected. Common values returned by this property are 128 and 160. If this property returns a value of 0,
this means that a secure connection has not been established with the remote host.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.HashStrength Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.HostAddress Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.HostName Property

Gets a value which indicates if the current thread is performing a blocking client operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next client operation will not fail. An application
should always check the return value from a client operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.IsBlocked Property

Gets a value which indicates if a connection to the remote host has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the remote
host. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.IsInitialized Property

Gets a value which indicates if there is data available to be read from the socket connection to the server.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to read the client. Note
that even if this property does return true indicating that there is data available to be read, applications
should always check the return value from the Read method.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.IsReadable Property

Gets a value which indicates if data can be written to the client without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the client; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to write data to the client.
Note that even if this property does return true indicating that data can be written to the client,
applications should always check the return value from the Write method.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.IsWritable Property

Gets and sets a Boolean value which specifies if the client should attempt to keep the server connection
alive.

[Visual Basic]
Public Property KeepAlive As Boolean

[C#]
public bool KeepAlive {get; set;}

Property Value
A boolean value which specifies if the client should attempt to maintain the connection with the server
over a long period of time.

Remarks
If the KeepAlive property is set to true, the client will attempt to maintain an active connection to the
server over a long period of time. If this property is set to false, then no attempt will be made to hold the
command channel open.

It is important to note that enabling this option does not guarantee that the connection will be
maintained. The application must be written to account for situations where the connection to the server is
terminated if it is idle for a long period of time, regardless of the value of this property.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.KeepAlive Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As Integer

[C#]
public int LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.LastErrorString Property

Gets the local Internet address that the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local Internet address that the client is bound to when a
connection is established with a remote host. This property may return either an IPv4 or IPv6 formatted
address, depending on the type of connection that was established.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.LocalAddress Property

Gets and sets a value which specifies if time and dates should be adjusted for the current timezone.

[Visual Basic]
Public Property Localize As Boolean

[C#]
public bool Localize {get; set;}

Property Value
A boolean value which specifies if file time and dates should be adjusted for the local timezone. The
default value is false.

Remarks
The Localize property controls how remote file date and time values are localized when the GetFileTime
method is called. If the property is set to true the file date and time will be adjusted to the current
timezone. If the property is set to false the file date and time are returned as UTC (Coordinated Universal
Time) values.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Localize Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.LocalName Property

Gets the local port number the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalPort As Integer

[C#]
public int LocalPort {get;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to identify the local port number that the client is bound to to when a
connection is established with a remote host.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.LocalPort Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As FtpOptions

[C#]
public FtpClient.FtpOptions Options {get; set;}

Property Value
Returns one or more FtpOptions enumeration flags which specify the options for the client. The default
value for this property is optionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Options Property

Gets and sets a value that specifies if directory listings should be automatically parsed

[Visual Basic]
Public Property ParseList As Boolean

[C#]
public bool ParseList {get; set;}

Property Value
A boolean value which specifies if directory listings should be automatically parsed. If the value is true,
then the class will attempt to parse directory listings returned by the server. If the value is false, raw
directory listings will be returned to the client.

Remarks
The ParseList property is used to control how remote file lists are processed. If the property is set to false,
file lists are not parsed and the application is responsible for parsing the list of files returned by the server.

The class recognizes file listings in UNIX, MS-DOS, VMS, Windows and NetWare formats, and will attempt
to automatically determine the format that is being returned by the server. If the server does not return
file lists in one of these formats, the ParseList property should be set to false, and the application must
parse the file listing itself.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ParseList Property

Gets and sets a value which specifies if passive mode file transfers should be enabled.

[Visual Basic]
Public Property Passive As Boolean

[C#]
public bool Passive {get; set;}

Property Value
A boolean value which specifies if passive mode file transfers are enabled. If this value is set to true,
passive mode is enabled. If the value is set to false, then passive mode transfers are disabled. The default
value is true.

Remarks
When the client uploads or downloads a file and the Passive property is set to false, the server
establishes a second connection back to the client which is used to transfer the file data. However, if the
local system is behind a firewall or a NAT router, the server may not be able to create the data connection
and the transfer will fail. By setting this property to true, it forces the client to establish an outbound data
connection with the server. It is recommended that most applications use passive mode whenever
possible.

Setting this property to true is the same as specifying the optionPassive flag when establishing a
connection to the server.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Passive Property

Gets and sets the password used to authenticate the client session.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password.

Remarks
If a password is not specified when the Connect method is called, the value of this property will be used
as the default password when establishing a connection with the server.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Password Property

Gets and sets a value which specifies the priority of file transfers.

[Visual Basic]
Public Property Priority As FtpPriority

[C#]
public FtpClient.FtpPriority Priority {get; set;}

Property Value
Returns a FtpPriority enumeration value which specify the current file transfer priority. The default value for
this property is priorityNormal.

Remarks
The Priority property can be used to control the processor usage, memory and network bandwidth
allocated for file transfers. The default priority balances resource utilization and transfer speed while
ensuring that a single-threaded application remains responsive to the user. Lower priorities reduce the
overall resource utilization at the expense of transfer speed. For example, if you create a worker thread to
download a file in the background and want to ensure that it has a minimal impact on the process, the
priorityBackground value can be used.

Higher priority values increase the memory allocated for the transfers and increases processor utilization
for the transfer. The priorityCritical priority maximizes transfer speed at the expense of system resources.
It is not recommended that you increase the file transfer priority unless you understand the implications of
doing so and have thoroughly tested your application. If the file transfer is being performed in the main UI
thread, increasing the priority may interfere with the normal processing of Windows messages and cause
the application to appear to become non-responsive. It is also important to note that when the priority is
set to priorityCritical, normal progress events will not be generated during the transfer.

See Also
FtpClient Class | SocketTools Namespace | FtpPriority Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Priority Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.FtpPriority.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.FtpPriority.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.FtpPriority.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.FtpPriority.html

Gets and sets the hostname or IP address of a proxy server.

[Visual Basic]
Public Property ProxyHost As String

[C#]
public string ProxyHost {get; set;}

Property Value
A string which specifies the hostname or IP address of the proxy server that will be used when establishing
a connection.

Remarks
The ProxyHost property should be set to the name of the proxy server that you want to connect to. This
property may be set to either a fully qualified domain name, or an IP address. This property is only used if
the ProxyType property specifies a proxy server type other than proxyNone.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProxyHost Property

Gets and sets the password used to authenticate the connection to a proxy server.

[Visual Basic]
Public Property ProxyPassword As String

[C#]
public string ProxyPassword {get; set;}

Property Value
A string which specifies a password.

Remarks
The ProxyPassword property specifies the password used to authenticate the user to the proxy server. If
a password is not required by the server, this property is ignored.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProxyPassword Property

Gets and sets a value that specifies the proxy server port number.

[Visual Basic]
Public Property ProxyPort As Integer

[C#]
public int ProxyPort {get; set;}

Property Value
An integer value which specifies the proxy port number.

Remarks
The ProxyPort property is used to set the port number that the control will use to establish a connection
with the proxy server. A value of zero specifies that the client will connect to the proxy server using the
standard FTP service port.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProxyPort Property

Gets and sets the type of proxy server the client will use to establish a connection.

[Visual Basic]
Public Property ProxyType As FtpProxyType

[C#]
public FtpClient.FtpProxyType ProxyType {get; set;}

Property Value
An FtpProxyType enumeration which specifies the type of proxy that the client will connect through.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProxyType Property

Gets and sets the username used to authenticate the connection to a proxy server.

[Visual Basic]
Public Property ProxyUser As String

[C#]
public string ProxyUser {get; set;}

Property Value
A string which specifies the username.

Remarks
The ProxyUser property specifies the user that is logging in to the proxy server. If the proxy server does
not require the user to login, then this property is ignored.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProxyUser Property

Gets and sets the file name specified in the current URL.

[Visual Basic]
Public Property RemoteFile As String

[C#]
public string RemoteFile {get; set;}

Property Value
A string which specifies a file name on the server.

Remarks
The RemoteFile property returns the name of the file that was specified when the URL property was set.
Changing the value of this property causes the current URL to change. The class does not check to make
sure that the remote file name is valid or that it actually exists on the server.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.RemoteFile Property

Gets and sets the path specified in the current URL.

[Visual Basic]
Public Property RemotePath As String

[C#]
public string RemotePath {get; set;}

Property Value
A string which specifies a directory path on the server.

Remarks
The RemotePath property returns the path that was specified when the URL property was set. Changing
the value of this property causes the current URL to change. The class does not check to make sure that
the remote path is valid or that it actually exists on the server.

Note that the path is relative to the user's home directory and should not be considered an absolute path
from the root directory on the server. If no username and password are provided when the connection is
established, then an anonymous session is used and the path is relative to the public directory defined by
the FTP server.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.RemotePath Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.RemotePort Property

Gets a value which specifies the last result code returned by the server.

[Visual Basic]
Public ReadOnly Property ResultCode As Integer

[C#]
public int ResultCode {get;}

Property Value
An integer value which specifies the last result code returned by the server.

Remarks
Result codes are three-digit numeric values returned by the remote server and may be broken down into
the following ranges:

ResultCode Description

100-199 Positive preliminary result. This indicates that the
requested action is being initiated, and the client
should expect another reply from the server
before proceeding.

200-299 Positive completion result. This indicates that the
server has successfully completed the requested
action.

300-399 Positive intermediate result. This indicates that the
requested action cannot complete until additional
information is provided to the server.

400-499 Transient negative completion result. This indicates
that the requested action did not take place, but
the error condition is temporary and may be
attempted again.

500-599 Permanent negative completion result. This
indicates that the requested action did not take
place.

It is important to note that while some result codes have become standardized, not all servers respond to
commands using the same result codes. For example, one server may respond with a result code of 221
to indicate success, while another may respond with a value of 235. It is recommended that applications
check for ranges of values to determine if a command was successful, not a specific value.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ResultCode Property

Gets a string value which describes the result of the previous command.

[Visual Basic]
Public ReadOnly Property ResultString As String

[C#]
public string ResultString {get;}

Property Value
A string which describes the result of the previous command executed on the server.

Remarks
The ResultString property returns the result string from the last action taken by the client. This string is
generated by the remote server, and typically is used to describe the result code. For example, if an error
is indicated by the result code, the result string may describe the condition that caused the error.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ResultString Property

Gets and sets a value which specifies if a secure connection is established.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connection is established; otherwise returns false. The default value is false.

Remarks
The Secure property determines if a secure connection is established with the remote host. The default
value for this property is false, which specifies that a standard connection to the server is used. To
establish a secure connection, the application should set this property value to true prior to calling the
Connect method. Once the connection has been established, the client may exchange data with the
server as with standard connections.

It is strongly recommended that any application that sets this property true use error handling to trap an
errors that may occur. If the class is unable to initialize the security libraries, or otherwise cannot create a
secure session for the client, an exception may be generated when this property value is set to true.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Secure Property

Gets a value that specifies the encryption algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureCipher As SecureCipherAlgorithm

[C#]
public FtpClient.SecureCipherAlgorithm SecureCipher {get;}

Property Value
A SecureCipherAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureCipher property returns a value which identifies the algorithm used to encrypt the data
stream. If a secure connection has not been established, this property will return a value of cipherNone.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SecureCipher Property

Gets a value that specifies the message digest algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureHash As SecureHashAlgorithm

[C#]
public FtpClient.SecureHashAlgorithm SecureHash {get;}

Property Value
A SecureHashAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureHash property returns a value which identifies the message digest (hash) algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of hashNone.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SecureHash Property

Gets a value that specifies the key exchange algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureKeyExchange As SecureKeyAlgorithm

[C#]
public FtpClient.SecureKeyAlgorithm SecureKeyExchange {get;}

Property Value
A SecureKeyAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureKeyExchange property returns a value which identifies the key exchange algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of keyExchangeNone.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SecureKeyExchange Property

Gets and sets a value which specifies the protocol used for a secure connection.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public FtpClient.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when establishing a secure
connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when establishing a
secure connection with a server or accepting a secure connection from a client. By default, the class will
attempt to use either SSL v3 or TLS v1 to establish the connection, with the appropriate protocol
automatically selected based on the capabilities of the remote host. It is recommended that you only
change this property value if you fully understand the implications of doing so. Assigning a value to this
property will override the default protocol and force the class to attempt to use only the protocol
specified.

Multiple security protocols may be specified by combining them using a bitwise or operator. After a
connection has been established, this property will identify the protocol that was selected. Attempting to
set this property after a connection has been established will result in an exception being thrown. This
property should only be set after setting the Secure property to true and before calling the Accept or
Connect methods.

In some cases, a server may only accept a secure connection if the TLS v1 protocol is specified. If the
security protocol is not compatible with the server, then the connection will fail with an error indicating
that the control is unable to establish a security context for the session. In this case, try assigning the
property to protocolTLS1 and attempt the connection again.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SecureProtocol Property

Gets a value which specifies the current status of the client.

[Visual Basic]
Public ReadOnly Property Status As FtpStatus

[C#]
public FtpClient.FtpStatus Status {get;}

Property Value
A FtpStatus enumeration value which specifies the current client status.

Remarks
The Status property returns the current status of the client. This property can be used to check on
blocking connections to determine if the client is interacting with the remote host before taking some
action.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Status Property

Gets a string value which identifies the server.

[Visual Basic]
Public ReadOnly Property System As String

[C#]
public string System {get;}

Property Value
A string which identifies the type of server the client has connected to.

Remarks
The System property returns information about the remote host operating system. This is a read-only
property that can be used by the application to identify the type of server that the client has connected to.
Reading this property will cause the SYST command to be sent to the server and will only return a useful
value after a connection has been established with the server.

By convention, the first whitespace separated token in the string identifies the general operating system
platform. For example, here are some strings commonly returned by various FTP servers:

Examples Description

UNIX Type: L8 A standard UNIX based server. This is the most
common value returned by servers, and this
indicates that the server supports UNIX file naming
and directory listing conventions. This string may
also include additional information such as the
specific variant of UNIX and its version. The L8
portion of the string is a convention that lets the
client know that a byte consists of 8 bits.

Windows_NT Version 5.0 A standard Windows based server, typically part of
Internet Information Services (ISS). The server will
use Windows file naming and directory listing
conventions. The version identifies the specific
release of Windows. For example, version 4.0
specifies Windows NT 4.0 and 5.0 specifies
Windows 2000.

VMS V7.1 AlphaServer A server running the VMS operating system. The
server will use the standard file naming and
directory listing conventions for that platform.
Note that it is possible that a VMS system may also
be configured to operate in a UNIX emulation
mode, in which case it will return UNIX instead of
VMS.

NetWare A server running the NetWare operating system.
The server will use the standard file naming and
directory listing conventions for that platform.
Note that it is possible that a NetWare system may
be configured to operate in a UNIX emulation

FtpClient.System Property

mode, in which case it return UNIX instead of
NetWare.

WORLDGROUP Type: L8 A server running the WorldGroup software on the
Windows platform. This server supports UNIX file
naming and directory listing conventions.
WorldGroup is a collaborative workgroup, email
and file sharing service which includes an FTP
server.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public FtpClient.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
FtpClient Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.AttachThread.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.ThreadModelAttribute.html

Get the number of active background file transfers.

[Visual Basic]
Public ReadOnly Property TaskCount As Integer

[C#]
public int TaskCount {get;}

Property Value
An integer value that specifies the number of background file transfers that are currently in progress.

Remarks
The TaskCount property returns the number of background file transfers that are currently in progress.
One common use for this property is to create a timer that periodically checks this value when a series of
background transfers are started. When the property returns a value of zero, that indicates all of the
background transfers have completed. This property can also be used to enumerate the active
background tasks in conjunction with the TaskList property.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskCount Property

Get the task identifier for the last background file transfer.

[Visual Basic]
Public ReadOnly Property TaskId As Integer

[C#]
public int TaskId {get;}

Property Value
An integer value the uniquely identifies the current background task.

Remarks
The TaskId property returns the task ID associated with the current background task. This identifies the
last background file transfer that was initiated with a call to the AsyncGetFile or AsyncPutFile methods.
This property value will change with each subsequent background transfer that is performed. If this
property returns a value of zero, that indicates that no background tasks have been started for this
instance of the class.

To enumerate the active background tasks, use the TaskCount property and the TaskList array.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskId Property

Get an array of active background task identifiers.

[Visual Basic]
Public ReadOnly Property TaskList As ArrayList

[C#]
public System.Collections.ArrayList TaskList {get;}

Property Value
An ArrayList object that contains a list of integer values that uniquely identify the active background tasks
that have been started by this instance of the class.

Remarks
The TaskList property returns a read-only ArrayList object that is popularted with the task identifiers for
all active background tasks that have been created by this instance of the class. The current number of
active tasks can be determined using the TaskCount property.

As background tasks complete and additional tasks are started, the values stored in this array will change.
The application should never make any assumptions about the numeric values stored in the array or the
order they are returned. Task IDs should be considered opaque values that are unique to the process.
When a background task completes, its corresponding ID is removed from the list of active tasks and this
can potentially change the task ID values associated with each index into the array.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskList Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Timeout Property

Gets and sets the current timezone offset in seconds.

[Visual Basic]
Public Property TimeZone As Integer

[C#]
public int TimeZone {get; set;}

Property Value
An integer value which specifies the current timezone offset in seconds.

Remarks
The TimeZone property returns the current offset from UTC in seconds. Setting the property changes the
current timezone offset to the specified value. The value of this property is initially determined by the date
and time settings on the local system.

This property value is used in conjunction with the Localize property to control how date and time
localization is handled.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TimeZone Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public FtpClient.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TraceFlags Property

Gets a value which specifies the number of bytes transferred to or from the remote server.

[Visual Basic]
Public ReadOnly Property TransferBytes As Long

[C#]
public long TransferBytes {get;}

Property Value
An integer value which specifies the number of bytes of data transferred to or from the server.

Remarks
The TransferBytes property returns the number of bytes that have been copied to or from the remote
FTP server. If this property is read while a transfer is ongoing, the property returns the number of bytes
that have been copied up to that point. If read after a transfer has completed, the total number of bytes
copied is returned. This property value is reset with every data transfer.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TransferBytes Property

Gets a value which specifies the number of seconds elapsed during a data transfer.

[Visual Basic]
Public ReadOnly Property TransferTime As Integer

[C#]
public int TransferTime {get;}

Property Value
An integer value which specifies the transfer time in seconds.

Remarks
The TransferTime property returns the number of seconds that have elapsed since the data connection
was opened on the remote server. If the property is read while a transfer is ongoing, it returns the elapsed
time. If the property is read after the transfer is complete, it returns the total number of seconds it took to
transfer the data. This property value is reset with every data transfer.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TransferTime Property

Gets and sets the current URL used to access a file on the server.

[Visual Basic]
Public Property URL As String

[C#]
public string URL {get; set;}

Property Value
A string which specifies the current URL.

Remarks
The URL property returns the current Uniform Resource Locator string which is used by the control to
access a file on the server. URLs have a specific format which provides information about the remote host,
port, path and file name, as well as optional information such as a username and password for
authentication:

ftp://[username : [password] @] hostname [:port] / [path/...]
filename [;type=id]

The first part of the URL is the protocol and in this case will always be "ftp", or "ftps" if a secure connection
is being used. If a username and password is required for authentication, then this will be included in the
URL before the name of the remote host; otherwise an anonymous FTP session is assumed. Next, there is
the name of the remote host to connect to, optionally followed by a port number. If no port number is
given, then the default port for the protocol will be used. This is followed by the path, and then the name
of the file on the server. An optional file type may be specified as well, with the type identifier being either
"a" for text files or "i" for binary files.

One important consideration when using FTP URLs is that the path is relative to the user's home directory
and should not be considered an absolute path from the root directory on the server. If no username and
password is provided, then an anonymous session is used and the path is relative to the public directory
used by the FTP server.

Here are some typical examples of URLs used to access files on an FTP server:

 ftp://www.example.com/pub/financial/jan2023.xlsx

In this example, the remote host is www.example.com, the path is "pub/financial" and the file
name is "jan2023.xlsx". The default port will be used to access the file, and no username and
password is provided for authentication so this file must be publicly available to anonymous
users.

 ftp://www.example.com:2121/employees/picnic.docx

In this example, the remote host is www.example.com, the path is "employees" and the file
name is "picnic.docx". However, the client should connect to an alternative port number, in
this case 2121. This file must also be available to anonymous users because no username or
password has been specified.

FtpClient.URL Property

ftps://executive:secret@www.example.com/corporate/projections/sales2024.xlsx

In this example, the remote host is www.example.com and, the path is
"corporate/projections" and the file name is "sales2024.xlsx". Because the protocol is ftps, a
secure connection on port 990 will be established. The user name "executive" and password
"secret" will be used to authenticate the session.

When setting the URL property, the class will parse the string and automatically update the HostName,
RemotePort, UserName, Password, RemotePath and RemoteFile properties according to the values
specified in the URL. This enables an application to simply provide the URL and then call the Connect
method to establish the connection.

Note that if this property is assigned a value which cannot be parsed, an exception will be thrown that
indicates that the property value is invalid. If the user enters an invalid URL and there is no exception
handler, the unhandled exception will terminate the application.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets the username used to authenticate the client session.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username.

Remarks
If a username is not specified when the Connect method is called, the value of this property will be used
as the default username when establishing a connection with the server.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.UserName Property

Gets a value which returns the current version of the FtpClient class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the FtpClient class
library. This value can be used by an application for validation and debugging purposes.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Version Property

The methods of the FtpClient class are listed below. For a complete list of FtpClient class members, see
the FtpClient Members topic.

Public Static (Shared) Methods

ErrorText Returns the description of an error code.

Public Instance Methods

AddFileType Associate a file name extension with a specific file
type.

AsyncGetFile Overloaded. Download a file from the server to
the local system in the background.

AsyncPutFile Overloaded. Upload a file from the local system to
the server in the background.

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

ChangeDirectory Change the current working directory on the
remote server.

CloseDirectory Close the directory that was previously opened
with the OpenDirectory method.

CloseFile Close the file that was previously opened with the
OpenFile method.

Command Overloaded. Send a custom command to the
server.

Connect Overloaded. Establish a connection with a remote
host.

CreateFile Create a new file or overwrite an existing file.

DeleteFile Delete a file on the remote server.

Disconnect Terminate the connection with the remote server.

Dispose Overloaded. Releases all resources used by
FtpClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

FileList Overloaded. Return a list of files on the remote
host.

GetData Overloaded. Transfers the contents of a file on the
server and stores it in a byte array.

GetDirectory Return the current working directory.

GetFile Overloaded. Download a file from the server to
the local system.

FtpClient Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.ErrorText.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.AttachThread.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.FileList_overloads.html

GetFileList Overloaded. Returns an unparsed list of files in the
specified directory.

GetFilePermissions Return the access permissions for a file on the
remote system.

GetFileSize Overloaded. Returns the size of the specified file
on the remote server.

GetFileStatus Returns status information about the specified file.

GetFileTime Overloaded. Returns the modification date and
time for specified file on the remote server.

GetFileType Overloaded. Determine the file transfer type based
on the file extension or contents.

GetFirstFile Overloaded. Get information about the first file in
a directory listing returned by the server.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetMultipleFiles Overloaded. Download multiple files from the
server to the local system using a wildcard mask.

GetNextFile Overloaded. Get information about the next file in
a directory listing returned by the server.

GetText Overloaded. Request content from the file server
and store it in a string buffer.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the FtpClient
class.

Login Overloaded. Login to the remote server.

Logout Log the current user off the server.

MakeDirectory Create a new directory on the server.

OpenDirectory Overloaded. Open the specified directory on the
server.

OpenFile Overloaded. Open an existing file or create a new
file on the server.

PutData Overloaded. Transfers data from a byte array and
stores it in a file on the remote server.

PutFile Overloaded. Upload a file from the local system to
the server.

PutMultipleFiles Overloaded. Upload multiple files from the local
system to the server using a wildcard mask.

PutText Overloaded. Transfers data from a string buffer
and stores it in a file on the remote server.

Read Overloaded. Read file data from the server and
store it in a byte array.

RemoveDirectory Remove a directory on the server.

RenameFile Change the name of a file on the server.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SetFilePermissions Change the access permissions for a file on the
server.

SetFileTime Changes the modification date and time for a file
on the server.

TaskAbort Overloaded. Abort the specified asynchronous
task.

TaskDone Overloaded. Determine if an asynchronous task
has completed.

TaskResume Overloaded. Resume execution of an
asynchronous task.

TaskSuspend Overloaded. Suspend execution of an
asynchronous task.

TaskWait Overloaded. Wait for an asynchronous task to
complete.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

VerifyFile Overloaded. Verify that the contents of a file on
the local system are the same as the specified file
on the server.

Write Overloaded. Write one or more bytes of data to
the server.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the FtpClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Associate a file name extension with a specific file type.

[Visual Basic]
Public Function AddFileType(_
 ByVal fileExtension As String, _
 ByVal fileType As FtpFileType _
) As Boolean

[C#]
public bool AddFileType(
 string fileExtension,
 FtpFileType fileType
);

Parameters
fileExtension

A string value which specifies the file name extension.

fileType
A FtpFileType enumeration which specifies the type of file associated with the file extension.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method is used to associate specific file types with file name extensions. The class has an internal list
of standard text file extensions which it automatically recognizes. This method can be used to extend or
modify that list for the client session.

See Also
FtpClient Class | SocketTools Namespace | FtpFileType Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.AddFileType Method

Download a file from the server to the local system in the background.

Overload List
Download a file from the server to the local system in the background.

public bool AsyncGetFile(string);

Download a file from the server to the local system in the background.

public bool AsyncGetFile(string,string);

Download a file from the server to the local system in the background.

public bool AsyncGetFile(string,string,FtpTransferOptions);

Download a file from the server to the local system in the background.

public bool AsyncGetFile(string,string,FtpTransferOptions,long);

See Also
FtpClient Class | SocketTools Namespace | AsyncPutFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.AsyncGetFile Method

Download a file from the server to the local system in the background.

[Visual Basic]
Overloads Public Function AsyncGetFile(_
 ByVal localFile As String _
) As Boolean

[C#]
public bool AsyncGetFile(
 string localFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local system. It is
similar to the GetFile method, however it retrieves the file using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other operations
while the file is being downloaded from the server. This method requires that you explicitly establish a
connection using the Connect method. All background tasks will duplicate the active connection and use
it establish a secondary connection with the server to perform the file transfer. If you wish to perform
multiple asynchronous file transfers from different servers, you must create a new instance of this class for
each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is downloaded,
the class will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to download more than one file in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP address.
The application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.AsyncGetFile Overload List | AsyncPutFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.AsyncGetFile Method (String)

Download a file from the server to the local system in the background.

[Visual Basic]
Overloads Public Function AsyncGetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool AsyncGetFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be transferred to the local system. The file pathing
and name conventions must be that of the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local system. It is
similar to the GetFile method, however it retrieves the file using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other operations
while the file is being downloaded from the server. This method requires that you explicitly establish a
connection using the Connect method. All background tasks will duplicate the active connection and use
it establish a secondary connection with the server to perform the file transfer. If you wish to perform
multiple asynchronous file transfers from different servers, you must create a new instance of this class for
each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is downloaded,
the class will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to download more than one file in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP address.
The application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

FtpClient.AsyncGetFile Method (String, String)

See Also
FtpClient Class | SocketTools Namespace | FtpClient.AsyncGetFile Overload List | AsyncPutFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Download a file from the server to the local system in the background.

[Visual Basic]
Overloads Public Function AsyncGetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As FtpTransferOptions _
) As Boolean

[C#]
public bool AsyncGetFile(
 string localFile,
 string remoteFile,
 FtpTransferOptions options
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be transferred to the local system. The file pathing
and name conventions must be that of the server.

options
An FtpTransferOptions enumeration value which specifies one or more file transfer options.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local system. It is
similar to the GetFile method, however it retrieves the file using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other operations
while the file is being downloaded from the server. This method requires that you explicitly establish a
connection using the Connect method. All background tasks will duplicate the active connection and use
it establish a secondary connection with the server to perform the file transfer. If you wish to perform
multiple asynchronous file transfers from different servers, you must create a new instance of this class for
each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is downloaded,
the class will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to download more than one file in the background; however,

FtpClient.AsyncGetFile Method (String, String, FtpTransferOptions)

most servers limit the number of simultaneous connections that can originate from a single IP address.
The application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.AsyncGetFile Overload List | AsyncPutFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Download a file from the server to the local system in the background.

[Visual Basic]
Overloads Public Function AsyncGetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As FtpTransferOptions, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool AsyncGetFile(
 string localFile,
 string remoteFile,
 FtpTransferOptions options,
 long offset
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be transferred to the local system. The file pathing
and name conventions must be that of the server.

options
An FtpTransferOptions enumeration value which specifies one or more file transfer options.

offset
A byte offset which specifies where the file transfer should begin. The default value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the REST command to restart transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local system. It is
similar to the GetFile method, however it retrieves the file using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other operations
while the file is being downloaded from the server. This method requires that you explicitly establish a
connection using the Connect method. All background tasks will duplicate the active connection and use
it establish a secondary connection with the server to perform the file transfer. If you wish to perform
multiple asynchronous file transfers from different servers, you must create a new instance of this class for
each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is downloaded,

FtpClient.AsyncGetFile Method (String, String, FtpTransferOptions,
Int64)

the class will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to download more than one file in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP address.
The application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.AsyncGetFile Overload List | AsyncPutFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a file from the local system to the server in the background.

Overload List
Upload a file from the local system to the server in the background.

public bool AsyncPutFile(string);

Upload a file from the local system to the server in the background.

public bool AsyncPutFile(string,string);

Upload a file from the local system to the server in the background.

public bool AsyncPutFile(string,string,FtpTransferOptions);

Upload a file from the local system to the server in the background.

public bool AsyncPutFile(string,string,FtpTransferOptions,long);

See Also
FtpClient Class | SocketTools Namespace | AsyncGetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.AsyncPutFile Method

Upload a file from the local system to the server in the background.

[Visual Basic]
Overloads Public Function AsyncPutFile(_
 ByVal localFile As String _
) As Boolean

[C#]
public bool AsyncPutFile(
 string localFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is similar
to the PutFile method, however it retrieves the file using a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations while the
file is being uploaded to the server. This method requires that you explicitly establish a connection using
the Connect method. All background tasks will duplicate the active connection and use it establish a
secondary connection with the server to perform the file transfer. If you wish to perform multiple
asynchronous file transfers from different servers, you must create an instance of the control for each
server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is uploaded, the
control will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background; however, most
servers limit the number of simultaneous connections that can originate from a single IP address. The
application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.AsyncPutFile Overload List | AsyncGetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.AsyncPutFile Method (String)

Upload a file from the local system to the server in the background.

[Visual Basic]
Overloads Public Function AsyncPutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool AsyncPutFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is similar
to the PutFile method, however it retrieves the file using a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations while the
file is being uploaded to the server. This method requires that you explicitly establish a connection using
the Connect method. All background tasks will duplicate the active connection and use it establish a
secondary connection with the server to perform the file transfer. If you wish to perform multiple
asynchronous file transfers from different servers, you must create an instance of the control for each
server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is uploaded, the
control will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background; however, most
servers limit the number of simultaneous connections that can originate from a single IP address. The
application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

FtpClient.AsyncPutFile Method (String, String)

See Also
FtpClient Class | SocketTools Namespace | FtpClient.AsyncPutFile Overload List | AsyncGetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a file from the local system to the server in the background.

[Visual Basic]
Overloads Public Function AsyncPutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As FtpTransferOptions _
) As Boolean

[C#]
public bool AsyncPutFile(
 string localFile,
 string remoteFile,
 FtpTransferOptions options
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the server.

options
An FtpTransferOptions enumeration value which specifies one or more file transfer options.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is similar
to the PutFile method, however it retrieves the file using a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations while the
file is being uploaded to the server. This method requires that you explicitly establish a connection using
the Connect method. All background tasks will duplicate the active connection and use it establish a
secondary connection with the server to perform the file transfer. If you wish to perform multiple
asynchronous file transfers from different servers, you must create an instance of the control for each
server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is uploaded, the
control will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background; however, most

FtpClient.AsyncPutFile Method (String, String, FtpTransferOptions)

servers limit the number of simultaneous connections that can originate from a single IP address. The
application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.AsyncPutFile Overload List | AsyncGetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a file from the local system to the server in the background.

[Visual Basic]
Overloads Public Function AsyncPutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As FtpTransferOptions, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool AsyncPutFile(
 string localFile,
 string remoteFile,
 FtpTransferOptions options,
 long offset
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the server.

options
An FtpTransferOptions enumeration value which specifies one or more file transfer options.

offset
A byte offset which specifies where the file transfer should begin. The default value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the REST command to restart transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is similar
to the PutFile method, however it retrieves the file using a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations while the
file is being uploaded to the server. This method requires that you explicitly establish a connection using
the Connect method. All background tasks will duplicate the active connection and use it establish a
secondary connection with the server to perform the file transfer. If you wish to perform multiple
asynchronous file transfers from different servers, you must create an instance of the control for each
server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is uploaded, the

FtpClient.AsyncPutFile Method (String, String, FtpTransferOptions,
Int64)

control will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background; however, most
servers limit the number of simultaneous connections that can originate from a single IP address. The
application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.AsyncPutFile Overload List | AsyncGetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Cancel Method

Change the current working directory on the remote server.

[Visual Basic]
Public Function ChangeDirectory(_
 ByVal pathName As String _
) As Boolean

[C#]
public bool ChangeDirectory(
 string pathName
);

Parameters
pathName

A string which specifies the directory on the remote server. The file pathing and name conventions
must be that of the remote host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ChangeDirectory Method

Close the directory that was previously opened with the OpenDirectory method.

[Visual Basic]
Public Function CloseDirectory() As Boolean

[C#]
public bool CloseDirectory();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CloseDirectory Method

Close the file that was previously opened with the OpenFile method.

[Visual Basic]
Public Function CloseFile() As Boolean

[C#]
public bool CloseFile();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CloseFile Method

Send a custom command to the server.

Overload List
Send a custom command to the server.

public bool Command(string);

Send a custom command to the server.

public bool Command(string,string);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Command Method

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String _
) As Boolean

[C#]
public bool Command(
 string command
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Command Method (String)

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal parameters As String _
) As Boolean

[C#]
public bool Command(
 string command,
 string parameters
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

parameters
An string which specifies one or more parameters to be sent along with the command. If more than
one parameter is required, they must be separated by a single space character. Consult the protocol
standard and/or technical reference documentation for the server to determine what parameters
should be provided when issuing a specific command.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Command Method (String, String)

Establish a connection with a remote host.

Overload List
Establish a connection with a remote host.

public bool Connect();

Establish a connection with a remote host.

public bool Connect(string);

Establish a connection with a remote host.

public bool Connect(string,int);

Establish a connection with a remote host.

public bool Connect(string,int,string,string);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int,FtpOptions);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,string);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,string,int);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,string,int,FtpOptions);

Establish a connection with a remote host.

public bool Connect(string,string,string);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Connect Method

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect() As Boolean

[C#]
public bool Connect();

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Connect Method ()

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String _
) As Boolean

[C#]
public bool Connect(
 string hostName
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Connect Method (String)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Connect Method (String, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Connect Method (String, Int32, String, String)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also

FtpClient.Connect Method (String, Int32, String, String, Int32)

FtpClient Class | SocketTools Namespace | FtpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer, _
 ByVal options As FtpOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout,
 FtpOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the FtpOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

FtpClient.Connect Method (String, Int32, String, String, Int32,
FtpOptions)

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal userAccount As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 string userAccount
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

userAccount
A string that specifies the account name to be used to authenticate the current client session. This
parameter may be an empty string if no account name is required for the specified user.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Connect Overload List

FtpClient.Connect Method (String, Int32, String, String, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal userAccount As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 string userAccount,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

userAccount
A string that specifies the account name to be used to authenticate the current client session. This
parameter may be an empty string if no account name is required for the specified user.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

FtpClient.Connect Method (String, Int32, String, String, String, Int32)

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal userAccount As String, _
 ByVal timeout As Integer, _
 ByVal options As FtpOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 string userAccount,
 int timeout,
 FtpOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

userAccount
A string that specifies the account name to be used to authenticate the current client session. This
parameter may be an empty string if no account name is required for the specified user.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the FtpOptions enumeration flags.

FtpClient.Connect Method (String, Int32, String, String, String, Int32,
FtpOptions)

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

userName
A string which specifies the user name which will be used to authenticate the client session. If the user
name is specified as an empty string, then the login is considered to be anonymous.

userPassword
A string which specifies the password which will be used to authenticate the client session. This
argument may be an empty string if no password is required for the specified user, or if no username
has been specified.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Connect Method (String, String, String)

Create a new file or overwrite an existing file.

[Visual Basic]
Public Function CreateFile(_
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool CreateFile(
 string remoteFile
);

Parameters
remoteFile

A string which specifies the name of the file to create on the remote server. The file pathing and name
conventions must be that of the remote host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateFile method creates a new file on the remote server using the specified file name. The Write
method may then be used to copy data to the open file. The user must have the appropriate permission
to create the file on the server

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CreateFile Method

Delete a file on the remote server.

[Visual Basic]
Public Function DeleteFile(_
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool DeleteFile(
 string remoteFile
);

Parameters
remoteFile

A string which specifies the name of the file on the remote server that is to be deleted. The file pathing
and name conventions must be that of the remote host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The DeleteFile method deletes an existing file from the remote server. The user must have the
appropriate permission to delete the specified file.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.DeleteFile Method

Terminate the connection with the remote server.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and closes the socket handle
allocated by the class. Note that the socket is not immediately released when the connection is terminated
and will enter a wait state for two minutes. After the time wait period has elapsed, the socket will be
released by the operating system. This is a normal safety mechanism to handle any packets that may
arrive after the connection has been closed.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Disconnect Method

Releases all resources used by FtpClient.

Overload List
Releases all resources used by FtpClient.

public void Dispose();

Releases the unmanaged resources allocated by the FtpClient class and optionally releases the managed
resources.

protected virtual void Dispose(bool);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Dispose Method

Releases the unmanaged resources allocated by the FtpClient class and optionally releases the managed
resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the FtpClient class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Dispose Method (Boolean)

Releases all resources used by FtpClient.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Dispose Method ()

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Finalize Method

Transfers the contents of a file on the server and stores it in a byte array.

Overload List
Transfers the contents of a file on the server and stores it in a byte array.

public bool GetData(string,byte[],ref int);

Transfers the contents of a file from the server and stores it in a MemoryStream.

public bool GetData(string,MemoryStream);

Transfers the contents of a file on the server and stores it in a string.

public bool GetData(string,ref string);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetData Method

Transfers the contents of a file on the server and stores it in a byte array.

[Visual Basic]
Overloads Public Function GetData(_
 ByVal remoteFile As String, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetData(
 string remoteFile,
 byte[] buffer,
 ref int length
);

Parameters
remoteFile

A string that specifies the file on the remote system that will be transferred to the local system. The file
pathing and name conventions must be that of the remote host.

buffer
A byte array that the data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the number of bytes actually stored in the byte array.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetData method transfers data from a file on the server to the local system, storing it in the specified
buffer . This method will cause the calling current thread to block until the file transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetData Method (String, Byte[], Int32)

Transfers the contents of a file on the server and stores it in a string.

[Visual Basic]
Overloads Public Function GetData(_
 ByVal remoteFile As String, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetData(
 string remoteFile,
 ref string buffer
);

Parameters
remoteFile

A string that specifies the file on the remote system that will be transferred to the local system. The file
pathing and name conventions must be that of the remote host.

buffer
A string passed by reference that the data will be stored in. It is not recommended that binary files be
stored in a string buffer. Only text files should be downloaded using this implementation of the
method. For binary files, store the data in a byte array instead.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetData method transfers data from a file on the server to the local system, storing it in the specified
buffer . This method will cause the calling current thread to block until the file transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetData Method (String, String)

Transfers the contents of a file from the server and stores it in a MemoryStream.

[Visual Basic]
Overloads Public Function GetData(_
 ByVal remoteFile As String, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool GetData(
 string remoteFile,
 MemoryStream memStream
);

Parameters
remoteFile

A string that specifies the file on the remote system that will be transferred to the local system. The file
pathing and name conventions must be that of the remote host.

memStream
A System.IO.MemoryStream object that will contain the file data when the method returns. This stream
must be open and writable.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetData method transfers data from a file on the server to the local system, storing it in the specified
MemoryStream. This method will cause the calling current thread to block until the file transfer completes,
a timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire
periodically, enabling the application to update any user interface objects such as a progress bar.

The contents of the MemoryStream will be replaced by the contents of the file and the current position
will be reset to the beginning of the stream. The stream must be open and writable, otherwise this method
will throw System.NotSupportedException.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetData Method (String, MemoryStream)

Return the current working directory.

[Visual Basic]
Public Function GetDirectory(_
 ByRef pathName As String _
) As Boolean

[C#]
public bool GetDirectory(
 ref string pathName
);

Parameters
pathName

A string passed by reference which will contain the current working directory on the server when the
method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetDirectory Method

Download a file from the server to the local system.

Overload List
Download a file from the server to the local system.

public bool GetFile(string);

Download a file from the server to the local system.

public bool GetFile(string,string);

Download a file from the server to the local system.

public bool GetFile(string,string,FtpTransferOptions);

Download a file from the server to the local system.

public bool GetFile(string,string,FtpTransferOptions,long);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFile Method

Download a file from the server to the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String _
) As Boolean

[C#]
public bool GetFile(
 string localFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method copies an existing file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

This implementation of the GetFile method is most commonly used when the name of the remote file has
already been specified, either by setting the URL property or by explicitly setting the RemoteFile
property.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFile Method (String)

Download a file from the server to the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool GetFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the remote system that will be transferred to the local system. The file
pathing and name conventions must be that of the remote host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method copies an existing file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFile Method (String, String)

Download a file from the server to the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As FtpTransferOptions _
) As Boolean

[C#]
public bool GetFile(
 string localFile,
 string remoteFile,
 FtpTransferOptions options
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the remote system that will be transferred to the local system. The file
pathing and name conventions must be that of the remote host.

options
An FtpTransferOptions enumeration value which specifies one or more file transfer options.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method copies an existing file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFile Method (String, String, FtpTransferOptions)

Download a file from the server to the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As FtpTransferOptions, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool GetFile(
 string localFile,
 string remoteFile,
 FtpTransferOptions options,
 long offset
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the remote system that will be transferred to the local system. The file
pathing and name conventions must be that of the remote host.

options
An FtpTransferOptions enumeration value which specifies one or more file transfer options.

offset
A integer value which specifies the offset where the file transfer should begin. A value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the REST command to restart file transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method copies an existing file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFile Method (String, String, FtpTransferOptions, Int64)

Returns an unparsed list of files in the specified directory.

Overload List
Returns an unparsed list of files in the specified directory.

public bool GetFileList(string,ref string);

Returns an unparsed list of files in the specified directory.

public bool GetFileList(string,ref string,bool);

Returns an unparsed list of files in the current working directory.

public bool GetFileList(ref string);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileList Method

Returns an unparsed list of files in the current working directory.

[Visual Basic]
Overloads Public Function GetFileList(_
 ByRef fileList As String _
) As Boolean

[C#]
public bool GetFileList(
 ref string fileList
);

Parameters
fileList

A string buffer passed by reference that will contain the file list data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFileList method returns a list of files in the current working directory on the server, copying the
data to a string buffer. Unlike the GetFirstFile and GetNextFile methods that parses a directory listing,
this method returns the unparsed file list data. The actual format of the data that is returned depends on
the operating system and how the server implements file listings. For example, UNIX servers typically
return the output from the /bin/ls command.

This method can be particularly useful when the client is connected to a server that returns file listings in a
format that is not recognized by the component. The application can retrieve the unparsed file listing from
the server and parse the contents.

This method is supported for both FTP and SFTP (SSH) connections, however the format of the data may
differ depending on which protocol is used. Most UNIX based FTP servers will not list files and
subdirectories that begin with a period, however most SFTP servers will return a list of all files, even those
that begin with a period.

This method will cause the current thread to block until the file listing completes, a timeout occurs or the
operation is canceled.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFileList Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileList Method (String)

Returns an unparsed list of files in the specified directory.

[Visual Basic]
Overloads Public Function GetFileList(_
 ByVal remotePath As String, _
 ByRef fileList As String _
) As Boolean

[C#]
public bool GetFileList(
 string remotePath,
 ref string fileList
);

Parameters
remotePath

A string value which specifies the name of a directory on the server. The list of files and subdirectories
in that directory will be returned to the client. To obtain a list of files in the current working directory
on the server, use an empty string.

fileList
A string buffer passed by reference that will contain the file list data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFileList method returns a list of files in the specified directory, copying the data to a string buffer.
Unlike the GetFirstFile and GetNextFile methods that parses a directory listing, this method returns the
unparsed file list data. The actual format of the data that is returned depends on the operating system and
how the server implements file listings. For example, UNIX servers typically return the output from the
/bin/ls command.

Some servers may not support file listings for any directory other than the current working directory. If an
error is returned when specifying a directory name, try changing the current working directory using the
ChangeDirectory method and then call this method again, an empty string as the remotePath
parameter.

This method can be particularly useful when the client is connected to a server that returns file listings in a
format that is not recognized by the component. The application can retrieve the unparsed file listing from
the server and parse the contents.

This method is supported for both FTP and SFTP (SSH) connections, however the format of the data may
differ depending on which protocol is used. Most UNIX based FTP servers will not list files and
subdirectories that begin with a period, however most SFTP servers will return a list of all files, even those
that begin with a period.

This method will cause the current thread to block until the file listing completes, a timeout occurs or the
operation is canceled.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFileList Overload List

FtpClient.GetFileList Method (String, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Returns an unparsed list of files in the specified directory.

[Visual Basic]
Overloads Public Function GetFileList(_
 ByVal remotePath As String, _
 ByRef fileList As String, _
 ByVal nameOnly As Boolean _
) As Boolean

[C#]
public bool GetFileList(
 string remotePath,
 ref string fileList,
 bool nameOnly
);

Parameters
remotePath

A string value which specifies the name of a directory on the server. The list of files and subdirectories
in that directory will be returned to the client. To obtain a list of files in the current working directory
on the server, use an empty string.

fileList
A string buffer passed by reference that will contain the file list data when the method returns.

nameOnly
A boolean value that specifies if the file listing should contain only the file name, or should include
additional information about the file such as the size, ownership and permissions.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFileList method returns a list of files in the specified directory, copying the data to a string buffer.
Unlike the GetFirstFile and GetNextFile methods that parses a directory listing, this method returns the
unparsed file list data. The actual format of the data that is returned depends on the operating system and
how the server implements file listings. For example, UNIX servers typically return the output from the
/bin/ls command.

Some servers may not support file listings for any directory other than the current working directory. If an
error is returned when specifying a directory name, try changing the current working directory using the
ChangeDirectory method and then call this method again, an empty string as the remotePath
parameter.

This method can be particularly useful when the client is connected to a server that returns file listings in a
format that is not recognized by the component. The application can retrieve the unparsed file listing from
the server and parse the contents. Note that if you specify the nameOnly parameter as true, the data will
only contain a list of file names and there will be no way for the application to know if they represent a
regular file or a subdirectory.

This method is supported for both FTP and SFTP (SSH) connections, however the format of the data may
differ depending on which protocol is used. Most UNIX based FTP servers will not list files and

FtpClient.GetFileList Method (String, String, Boolean)

subdirectories that begin with a period, however most SFTP servers will return a list of all files, even those
that begin with a period.

This method will cause the current thread to block until the file listing completes, a timeout occurs or the
operation is canceled.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFileList Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Return the access permissions for a file on the remote system.

[Visual Basic]
Public Function GetFilePermissions(_
 ByVal remoteFile As String, _
 ByRef filePerms As FtpPermissions _
) As Boolean

[C#]
public bool GetFilePermissions(
 string remoteFile,
 ref FtpPermissions filePerms
);

Parameters
remoteFile

A string that specifies the name of the file that the access permissions are to be returned for. The
filename cannot contain any wildcard characters.

filePerms
An FtpPermissions enumeration value which is passed by reference and set to the file permissions
when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFilePermissions method returns information about the access permissions for a specific file on
the server. This method uses the STAT command to retrieve information about the specified file. If the
server does not support the use of this command, an error will be returned. You can use the Features
property to determine what features are available and/or enabled on the server.

Note that on some systems, the STAT command will not return information on files that contain spaces or
tabs in the filename. In this case, the method will fail.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFilePermissions Method

Returns the size of the specified file on the remote server.

Overload List
Returns the size of the specified file on the remote server.

public bool GetFileSize(string,ref int);

Returns the size of the specified file on the remote server.

public bool GetFileSize(string,ref long);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileSize Method

Returns the size of the specified file on the remote server.

[Visual Basic]
Overloads Public Function GetFileSize(_
 ByVal remoteFile As String, _
 ByRef fileSize As Long _
) As Boolean

[C#]
public bool GetFileSize(
 string remoteFile,
 ref long fileSize
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

fileSize
A long integer value which is passed by reference and will specify the size of the file on the server
when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the SIZE command to determine the length of the specified file. Not all servers
implement this command, in which case the method will fail. You can use the Features property to
determine what features are available and/or enabled on the server.

Note that if the file on the server is a text file, it is possible that the value returned by this method will not
match the size of the file when it is downloaded to the local system. This is because different operating
systems use different sequences of characters to mark the end of a line of text, and when a file is
transferred in text mode, the end of line character sequence is automatically converted to a carriage
return-linefeed, which is the convention used by the Windows platform.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFileSize Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileSize Method (String, Int64)

Returns the size of the specified file on the remote server.

[Visual Basic]
Overloads Public Function GetFileSize(_
 ByVal remoteFile As String, _
 ByRef fileSize As Integer _
) As Boolean

[C#]
public bool GetFileSize(
 string remoteFile,
 ref int fileSize
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

fileSize
A long integer value which is passed by reference and will specify the size of the file on the server
when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the SIZE command to determine the length of the specified file. Not all servers
implement this command, in which case the method will fail. You can use the Features property to
determine what features are available and/or enabled on the server.

Note that if the file on the server is a text file, it is possible that the value returned by this method will not
match the size of the file when it is downloaded to the local system. This is because different operating
systems use different sequences of characters to mark the end of a line of text, and when a file is
transferred in text mode, the end of line character sequence is automatically converted to a carriage
return-linefeed, which is the convention used by the Windows platform.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFileSize Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileSize Method (String, Int32)

Returns status information about the specified file.

[Visual Basic]
Public Function GetFileStatus(_
 ByVal remoteFile As String, _
 ByRef fileInfo As FileInformation _
) As Boolean

[C#]
public bool GetFileStatus(
 string remoteFile,
 ref FileInformation fileInfo
);

Parameters
remoteFile

A string which specifies the name of the file that status information is to be returned for.

fileInfo
A FileInformation structure that is passed by reference. When the method returns, the members of this
structure will be populated with information about the file on the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFileStatus method returns information about the specified file. The filename must be specified
using the remote host file naming conventions, and cannot include wildcard characters. The primary
difference between using this method and using the OpenDirectory, GetFirstFile and GetNextFile
methods to obtain file information is that the file status information is returned on the command channel.
This method cannot be used while a file transfer is in progress or while a file listing is being returned by
the server.

This method requires that the server return file status information in response to the STAT command.
Some servers, for example on VMS platforms, do not provide this information. On some systems, the
STAT command will not return information on files that contain spaces or tabs in the filename. In this case,
the method will return an empty structure.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileStatus Method

Returns the modification date and time for specified file on the remote server.

Overload List
Returns the modification date and time for specified file on the remote server.

public bool GetFileTime(string,ref DateTime);

Returns the modification date and time for specified file on the remote server.

public bool GetFileTime(string,ref DateTime,bool);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileTime Method

Returns the modification date and time for specified file on the remote server.

[Visual Basic]
Overloads Public Function GetFileTime(_
 ByVal remoteFile As String, _
 ByRef fileDate As Date _
) As Boolean

[C#]
public bool GetFileTime(
 string remoteFile,
 ref DateTime fileDate
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

fileDate
A System.DateTime structure which is passed by reference. When the method returns, this object will
be set to the date and time that the file was created or last modified.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the MTDM command to determine the modification time for the file. If the server does
not support this command, the method will attempt to use the STAT command to determine the file
modification time. You can use the Features property to determine what features are available and/or
enabled on the server.

The value of the Localize property determines if the date and time are adjusted for the local timezone.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFileTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileTime Method (String, DateTime)

Returns the modification date and time for specified file on the remote server.

[Visual Basic]
Overloads Public Function GetFileTime(_
 ByVal remoteFile As String, _
 ByRef fileDate As Date, _
 ByVal localDate As Boolean _
) As Boolean

[C#]
public bool GetFileTime(
 string remoteFile,
 ref DateTime fileDate,
 bool localDate
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

fileDate
A System.DateTime structure which is passed by reference. When the method returns, this object will
be set to the date and time that the file was created or last modified.

localDate
A boolean flag which specifies if the date and time for the file should adjusted for the local timezone.
A value of true specifies that the date and time should be adjusted for the local timezone. A value of
false specifies that the date and time should be returned as a UTC (Coordinated Universal Time) value.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the MTDM command to determine the modification time for the file. If the server does
not support this command, the method will attempt to use the STAT command to determine the file
modification time. You can use the Features property to determine what features are available and/or
enabled on the server.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFileTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileTime Method (String, DateTime, Boolean)

Determine the file transfer type based on the file extension.

Overload List
Determine the file transfer type based on the file extension.

public bool GetFileType(string,ref FtpFileType);

Determine the file transfer type based on the file extension or contents.

public bool GetFileType(string,ref FtpFileType,bool);

See Also
FtpClient Class | SocketTools Namespace | FtpFileType Enumeration | FileType Property | GetFileType
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileType Method

Determine the file transfer type based on the file extension or contents.

[Visual Basic]
Overloads Public Function GetFileType(_
 ByVal fileName As String, _
 ByRef fileType As FtpFileType, _
 ByVal scanFile As Boolean _
) As Boolean

[C#]
public bool GetFileType(
 string fileName,
 ref FtpFileType fileType,
 bool scanFile
);

Parameters
fileName

A string value which specifies the local path to a file.

fileType
A FtpFileType enumeration passed by reference which specifies the type of file associated with the file
extension.

scanFile
A Boolean value which specifies if the contents of the file should be checked to determine the possible
file type. If this parameter is true, the local file will be opened in a shared reading mode and up to
4,096 bytes will be examined to determine if it contains binary data.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method is used to determine the file transfer type to be used when uploading or downloading files.
This method is used internally to determine the transfer mode when the FileType property is set to
FtpFileType.fileAuto.

If the file extension or contents are not recognized, the default file transfer type for the client session will
be returned. This will usually be FtpFileType.fileImage, however this can be changed by calling the
AddFileType method. The file type for the current client session can be explicitly set using the FileType
property.

If the bScanFile parameter is true and the file does not exist, is currently locked or has been opened
exclusively by another process, the file type associated with the file extension will be returned instead. Text
files which contain UTF-16 text will always return a file type of FtpFileType.fileImage because they can
contain embedded null characters.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFileType Overload List | FtpFileType Enumeration |
FileType Property

FtpClient.GetFileType Method (String, FtpFileType, Boolean)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Determine the file transfer type based on the file extension.

[Visual Basic]
Overloads Public Function GetFileType(_
 ByVal fileName As String, _
 ByRef fileType As FtpFileType _
) As Boolean

[C#]
public bool GetFileType(
 string fileName,
 ref FtpFileType fileType
);

Parameters
fileName

A string value which specifies the local path to a file.

fileType
A FtpFileType enumeration passed by reference which specifies the type of file associated with the file
extension.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method is used to determine the file transfer type to be used when uploading or downloading files. It
is used internally to determine the transfer mode when the FileType property is set to
FtpFileType.fileAuto.

If the file extension is not recognized, the default file transfer type for the client session will be returned.
This will usually be FtpFileType.fileImage, however this can be changed by calling the AddFileType
method. The file transfer type for the current client session can be explicitly set using the FileType
property.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFileType Overload List | FtpFileType Enumeration |
FileType Property | GetFileType Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileType Method (String, FtpFileType)

Get information about the first file in a directory listing returned by the server.

Overload List
Get information about the first file in a directory listing returned by the server.

public bool GetFirstFile(ref FileInformation);

Get the first file name in a directory listing returned by the server.

public bool GetFirstFile(ref string);

Get information about the first file in a directory listing returned by the server.

public bool GetFirstFile(ref string,ref bool);

Get information about the first file in a directory listing returned by the server.

public bool GetFirstFile(ref string,ref long,ref bool);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFirstFile Method

Get information about the first file in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetFirstFile(_
 ByRef fileInfo As FileInformation _
) As Boolean

[C#]
public bool GetFirstFile(
 ref FileInformation fileInfo
);

Parameters
fileInfo

A FileInformation structure that is passed by reference. When the method returns, the members of this
structure will be populated with information about the file on the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFirstFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFirstFile Method (FileInformation)

Get the first file name in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetFirstFile(_
 ByRef fileName As String _
) As Boolean

[C#]
public bool GetFirstFile(
 ref string fileName
);

Parameters
fileName

A string passed by reference which will contain a file name when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFirstFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFirstFile Method (String)

Get information about the first file in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetFirstFile(_
 ByRef fileName As String, _
 ByRef isDirectory As Boolean _
) As Boolean

[C#]
public bool GetFirstFile(
 ref string fileName,
 ref bool isDirectory
);

Parameters
fileName

A string passed by reference which will contain a file name when the method returns.

isDirectory
A boolean passed by reference which will specify if the file is a regular file or a directory. A value of
true indicates that the file is a directory. A value of false indicates that it is a regular file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFirstFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFirstFile Method (String, Boolean)

Get information about the first file in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetFirstFile(_
 ByRef fileName As String, _
 ByRef fileSize As Long, _
 ByRef isDirectory As Boolean _
) As Boolean

[C#]
public bool GetFirstFile(
 ref string fileName,
 ref long fileSize,
 ref bool isDirectory
);

Parameters
fileName

A string passed by reference which will contain a file name when the method returns.

fileSize
An integer passed by reference which will contain the size of the file when the method returns.

isDirectory
A boolean passed by reference which will specify if the file is a regular file or a directory. A value of
true indicates that the file is a directory. A value of false indicates that it is a regular file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetFirstFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFirstFile Method (String, Int64, Boolean)

Download multiple files from the server to the local system using a wildcard mask.

Overload List
Download multiple files from the server to the local system using a wildcard mask.

public bool GetMultipleFiles(string,string);

Download multiple files from the server to the local system using a wildcard mask.

public bool GetMultipleFiles(string,string,string);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetMultipleFiles Method

Download multiple files from the server to the local system using a wildcard mask.

[Visual Basic]
Overloads Public Function GetMultipleFiles(_
 ByVal localPath As String, _
 ByVal remotePath As String, _
 ByVal fileMask As String _
) As Boolean

[C#]
public bool GetMultipleFiles(
 string localPath,
 string remotePath,
 string fileMask
);

Parameters
localPath

A string argument which specifies the name of the directory on the local system where the files will be
stored. If a file by the same name already exists, it will be overwritten

remotePath
A string argument which specifies the name of the directory on the remote system where the files will
be copied from. You must have permission to read the contents of the directory.

fileMask
An string argument which specifies the wildcard mask to be used when selecting what files should be
transferred. Typically, this argument is a wildcard mask that limits the files downloaded from the server
to those which match a specific extension.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMultipleFiles method copies multiple files from the remote system to the local system. If the local
file already exists, it is overwritten. This method will cause the current thread to block until all of the files
have been transferred, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetMultipleFiles Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetMultipleFiles Method (String, String, String)

Download multiple files from the server to the local system using a wildcard mask.

[Visual Basic]
Overloads Public Function GetMultipleFiles(_
 ByVal localPath As String, _
 ByVal remotePath As String _
) As Boolean

[C#]
public bool GetMultipleFiles(
 string localPath,
 string remotePath
);

Parameters
localPath

A string argument which specifies the name of the directory on the local system where the files will be
stored. If a file by the same name already exists, it will be overwritten

remotePath
A string argument which specifies the name of the directory on the remote system where the files will
be copied from. You must have permission to read the contents of the directory.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMultipleFiles method copies multiple files from the remote system to the local system. If the local
file already exists, it is overwritten. This method will cause the current thread to block until all of the files
have been transferred, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetMultipleFiles Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetMultipleFiles Method (String, String)

Get information about the next file in a directory listing returned by the server.

Overload List
Get information about the next file in a directory listing returned by the server.

public bool GetNextFile(ref FileInformation);

Get the next file name in a directory listing returned by the server.

public bool GetNextFile(ref string);

Get information about the next file in a directory listing returned by the server.

public bool GetNextFile(ref string,ref bool);

Get information about the next file in a directory listing returned by the server.

public bool GetNextFile(ref string,ref long,ref bool);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetNextFile Method

Get information about the next file in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetNextFile(_
 ByRef fileInfo As FileInformation _
) As Boolean

[C#]
public bool GetNextFile(
 ref FileInformation fileInfo
);

Parameters
fileInfo

A FileInformation structure that is passed by reference. When the method returns, the members of this
structure will be populated with information about the file on the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetNextFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetNextFile Method (FileInformation)

Get the next file name in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetNextFile(_
 ByRef fileName As String _
) As Boolean

[C#]
public bool GetNextFile(
 ref string fileName
);

Parameters
fileName

A string passed by reference which will contain a file name when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetNextFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetNextFile Method (String)

Get information about the next file in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetNextFile(_
 ByRef fileName As String, _
 ByRef isDirectory As Boolean _
) As Boolean

[C#]
public bool GetNextFile(
 ref string fileName,
 ref bool isDirectory
);

Parameters
fileName

A string passed by reference which will contain a file name when the method returns.

isDirectory
A boolean passed by reference which will specify if the file is a regular file or a directory. A value of
true indicates that the file is a directory. A value of false indicates that it is a regular file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetNextFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetNextFile Method (String, Boolean)

Get information about the next file in a directory listing returned by the server.

[Visual Basic]
Overloads Public Function GetNextFile(_
 ByRef fileName As String, _
 ByRef fileSize As Long, _
 ByRef isDirectory As Boolean _
) As Boolean

[C#]
public bool GetNextFile(
 ref string fileName,
 ref long fileSize,
 ref bool isDirectory
);

Parameters
fileName

A string passed by reference which will contain a file name when the method returns.

fileSize
An integer passed by reference which will contain the size of the file when the method returns.

isDirectory
A boolean passed by reference which will specify if the file is a regular file or a directory. A value of
true indicates that the file is a directory. A value of false indicates that it is a regular file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A file listing is initiated by calling the OpenDirectory method. Then, the application must call GetFirstFile,
followed by calling GetNextFile in a loop until the method returns false. Once the complete directory
listing has been returned, the CloseDirectory method must be called.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetNextFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetNextFile Method (String, Int64, Boolean)

Request content from the file server and store it in a string buffer..

Overload List
Request content from the file server and store it in a string buffer..

public bool GetText(string,ref string);

Request content from the file server and store it in a string buffer.

public bool GetText(string,ref string,int);

Request content from the file server and store it in a string buffer..

public bool GetText(string,ref string,string);

Request content from the file server and store it in a string buffer..

public bool GetText(ref string);

See Also
FtpClient Class | SocketTools Namespace | CodePage Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetText Method

Request content from the file server and store it in a string buffer..

[Visual Basic]
Overloads Public Function GetText(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetText(
 ref string buffer
);

Parameters
buffer

A string the file contents will be stored in. This parameter is passed by reference and if the request fails
an empty string will be returned.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetText method downloads the contents of a file on the server and returns the data in a string
buffer. This method will cause the current thread to block until the all of the data is returned, timeout
occurs or the operation is canceled.

Unlike the general purpose GetData method, this method should only be used with files which contain
readable text.

This version of the method uses the resource specified by the RemoteFile property. The value of the
CodePage property will used to convert the text to Unicode. Overloaded versions of this method allow for
selecting an alternate code page.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetText Overload List | CodePage Property |
RemoteFile Property | URL Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetText Method (String)

Request content from the file server and store it in a string buffer..

[Visual Basic]
Overloads Public Function GetText(_
 ByVal remoteFile As String, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetText(
 string remoteFile,
 ref string buffer
);

Parameters
remoteFile

A string that specifies the file on the server that will be downloaded. The file name may be a complete
URL.

buffer
A string the file contents will be stored in. This parameter is passed by reference and if the request fails
an empty string will be returned.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetText method downloads the contents of a file on the server and returns the data in a string
buffer. This method will cause the current thread to block until the all of the data is returned, timeout
occurs or the operation is canceled.

Unlike the general purpose GetData method, this method should only be used with files which contain
readable text.

This version of the method uses the value of the CodePage property to convert the text to Unicode.
Overloaded versions of this method allow for selecting an alternate code page.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetText Overload List | CodePage Property | GetText
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetText Method (String, String)

Request content from the file server and store it in a string buffer..

[Visual Basic]
Overloads Public Function GetText(_
 ByVal remoteFile As String, _
 ByRef buffer As String, _
 ByVal codePage As String _
) As Boolean

[C#]
public bool GetText(
 string remoteFile,
 ref string buffer,
 string codePage
);

Parameters
remoteFile

A string that specifies the file on the server that will be downloaded. The file name may be a complete
URL.

buffer
A string the file contents will be stored in. This parameter is passed by reference and if the request fails
an empty string will be returned.

codePage
A string which specifies the code page which should be used to convert the text to Unicode. If this
value is an empty string or zero the active code page for the current locale will be used. An exception
will be thrown if an invalid code page is specified.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetText method downloads the contents of a file on the server and returns the data in a string
buffer. This method will cause the current thread to block until the all of the data is returned, timeout
occurs or the operation is canceled.

Unlike the general purpose GetData method, this method should only be used with files which contain
readable text.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetText Overload List | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetText Method (String, String, String)

Request content from the file server and store it in a string buffer.

[Visual Basic]
Overloads Public Function GetText(_
 ByVal remoteFile As String, _
 ByRef buffer As String, _
 ByVal codePage As Integer _
) As Boolean

[C#]
public bool GetText(
 string remoteFile,
 ref string buffer,
 int codePage
);

Parameters
remoteFile

A string that specifies the file on the server that will be downloaded. The file name may be a complete
URL.

buffer
A string the file contents will be stored in. This parameter is passed by reference and if the request fails
an empty string will be returned.

codePage
An integer value which specifies the code page which should be used to convert the text to Unicode. If
this value is zero, the active code page for the current locale will be used. An exception will be thrown
if an invalid code page is specified.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetText method downloads the contents of a file on the server and returns the data in a string
buffer. This method will cause the current thread to block until the all of the data is returned, timeout
occurs or the operation is canceled.

Unlike the general purpose GetData method, this method should only be used with files which contain
readable text.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.GetText Overload List | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetText Method (String, String, Int32)

Initialize an instance of the FtpClient class.

Overload List
Initialize an instance of the FtpClient class.

public bool Initialize();

Initialize an instance of the FtpClient class.

public bool Initialize(string);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Initialize Method

Initialize an instance of the FtpClient class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Initialize method can be used to explicitly initialize an instance of the FtpClient class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the FtpClient class

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Initialize Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Initialize Method ()

Initialize an instance of the FtpClient class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Initialize method can be used to explicitly initialize an instance of the FtpClient class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the FtpClient class

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Initialize Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Initialize Method (String)

Login to the remote server.

Overload List
Login to the remote server.

public bool Login();

Login to the remote server.

public bool Login(string,string);

Login to the remote server.

public bool Login(string,string,string);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Login Method

Login to the remote server.

[Visual Basic]
Overloads Public Function Login() As Boolean

[C#]
public bool Login();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Login method identifies the user to the remote server. The value of the UserName and Password
properties will be used to authenticate the client session. If the user name or password is invalid, an error
will occur. By default, when a connection is established, the user is automatically authenticated. This
method is typically used if you wish to log in as another user during the same session.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Login Method ()

Login to the remote server.

[Visual Basic]
Overloads Public Function Login(_
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Login(
 string userName,
 string userPassword
);

Parameters
userName

A string that specifies the name of the user logging into the server.

userPassword
A string that specifies the password used to authenticate the user.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Login method identifies the user to the remote server. If the user name or password is invalid, an
error will occur. By default, when a connection is established, the UserName and Password properties
are used to automatically log the user in to the server. This method is typically used if you wish to log in as
another user during the same session.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Login Method (String, String)

Login to the remote server.

[Visual Basic]
Overloads Public Function Login(_
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal userAccount As String _
) As Boolean

[C#]
public bool Login(
 string userName,
 string userPassword,
 string userAccount
);

Parameters
userName

A string that specifies the name of the user logging into the server.

userPassword
A string that specifies the password used to authenticate the user.

userAccount
A string that specifies the account name to be used when authenticating the user.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Login method identifies the user to the remote server. If the user name or password is invalid, an
error will occur. By default, when a connection is established, the UserName, Password and Account
properties are used to automatically log the user in to the server. This method is typically used if you wish
to log in as another user during the same session.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Login Method (String, String, String)

Log the current user off the server.

[Visual Basic]
Public Function Logout() As Boolean

[C#]
public bool Logout();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Logout method logs the current user off the server. The Login method may then be used to login as
another user during the same session. Note that this method will not terminate the connection with the
server.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Logout Method

Create a new directory on the server.

[Visual Basic]
Public Function MakeDirectory(_
 ByVal pathName As String _
) As Boolean

[C#]
public bool MakeDirectory(
 string pathName
);

Parameters
pathName

A string that specifies the name of the directory to create on the server. The naming and pathing
conventions used for the directory must be compatible with what is used on the operating system that
hosts the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
Servers may not support creating multiple subdirectories in a single call, so applications should not
assume that this can be done. For example, an error may be returned by the server if the new directory
name "/Projects/Today" is specified, but the "/Projects" directory does not already exist.

It is also important to note that files and directories on UNIX based systems are case sensitive, so the
directory names "Projects" and "projects" refer to two different directories. This is not the case on Windows
systems, where either name would refer to the same directory.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.MakeDirectory Method

Open the current working directory on the server.

Overload List
Open the current working directory on the server.

public bool OpenDirectory();

Open the specified directory on the server.

public bool OpenDirectory(string);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OpenDirectory Method

Open the current working directory on the server.

[Visual Basic]
Overloads Public Function OpenDirectory() As Boolean

[C#]
public bool OpenDirectory();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenDirectory method opens the current working directory on the server so that the list of files in
that directory may be obtained using the GetFirstFile and GetNextFile methods. Once all of the files in
the directory have been read, the application must call the CloseDirectory method in order to close the
data channel to the server. Failure to do this will result in an error the next time the application attempts to
transfer a file or open another directory.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.OpenDirectory Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OpenDirectory Method ()

Open the specified directory on the server.

[Visual Basic]
Overloads Public Function OpenDirectory(_
 ByVal pathName As String _
) As Boolean

[C#]
public bool OpenDirectory(
 string pathName
);

Parameters
pathName

A string that specifies the name of the directory to open on the server. The naming and pathing
conventions used for the directory must be compatible with what is used on the operating system that
hosts the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenDirectory method opens the specified directory on the server so that the list of files in that
directory may be obtained using the GetFirstFile and GetNextFile methods. Once all of the files in the
directory have been read, the application must call the CloseDirectory method in order to close the data
channel to the server. Failure to do this will result in an error the next time the application attempts to
transfer a file or open another directory.

Note that files and directories on UNIX based systems are case sensitive, so the directory names "Projects"
and "projects" refer to two different directories. This is not the case on Windows systems, where either
name would refer to the same directory.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.OpenDirectory Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OpenDirectory Method (String)

Open an existing file for reading on the server.

Overload List
Open an existing file for reading on the server.

public bool OpenFile(string);

Open an existing file or create a new file on the server.

public bool OpenFile(string,FtpOpenMode);

Open an existing file or create a new file on the server.

public bool OpenFile(string,FtpOpenMode,long);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OpenFile Method

Open an existing file for reading on the server.

[Visual Basic]
Overloads Public Function OpenFile(_
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool OpenFile(
 string remoteFile
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenFile method opens an existing file on the server for reading. The Read method may then be
used to read data from the file. Once the all of the data has been read, the CloseFile method must be
called to close the data channel.

It is strongly recommended that most applications use the GetFile or PutFile methods to perform file
transfers. These methods are easier to use, and have internal optimizations that improves the overall data
transfer rate when compared to implementing the file transfer code in your own application.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.OpenFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OpenFile Method (String)

Open an existing file or create a new file on the server.

[Visual Basic]
Overloads Public Function OpenFile(_
 ByVal remoteFile As String, _
 ByVal openMode As FtpOpenMode _
) As Boolean

[C#]
public bool OpenFile(
 string remoteFile,
 FtpOpenMode openMode
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

openMode
An FtpOpenMode enumeration which specifies how the file should be accessed on the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenFile method opens an existing file or creates a new file on the remote server using the specified
file name. The Read method may then be used to read data from the file and the Write method may be
used to write data to the file. Once the all of the data has been read or written, the CloseFile method
must be called to close the data channel.

It is strongly recommended that most applications use the GetFile or PutFile methods to perform file
transfers. These methods are easier to use, and have internal optimizations that improves the overall data
transfer rate when compared to implementing the file transfer code in your own application.

When a file is created on the remote server, the file ownership and access rights are determined by the
server. Some servers may provide a method to change these attributes through site-specific commands.
Refer to the server's operating system documentation for more information about what commands may
be available.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.OpenFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OpenFile Method (String, FtpOpenMode)

Open an existing file or create a new file on the server.

[Visual Basic]
Overloads Public Function OpenFile(_
 ByVal remoteFile As String, _
 ByVal openMode As FtpOpenMode, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool OpenFile(
 string remoteFile,
 FtpOpenMode openMode,
 long offset
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

openMode
An FtpOpenMode enumeration which specifies how the file should be accessed on the server.

offset
An integer value which specifies the byte offset where the file transfer should begin. If this argument is
omitted, this specifies that the file transfer should start at the beginning of the file. A value greater than
zero is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenFile method opens an existing file or creates a new file on the remote server using the specified
file name. The Read method may then be used to read data from the file and the Write method may be
used to write data to the file. Once the all of the data has been read or written, the CloseFile method
must be called to close the data channel.

It is strongly recommended that most applications use the GetFile or PutFile methods to perform file
transfers. These methods are easier to use, and have internal optimizations that improves the overall data
transfer rate when compared to implementing the file transfer code in your own application.

When a file is created on the remote server, the file ownership and access rights are determined by the
server. Some servers may provide a method to change these attributes through site-specific commands.
Refer to the server's operating system documentation for more information about what commands may
be available.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.OpenFile Overload List

FtpClient.OpenFile Method (String, FtpOpenMode, Int64)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Transfers data from a byte array and stores it in a file on the remote server.

Overload List
Transfers data from a byte array and stores it in a file on the remote server.

public bool PutData(string,byte[],int);

Transfers data from a MemoryStream and stores it in a file on the remote server.

public bool PutData(string,MemoryStream);

Transfers data from a string buffer and stores it in a file on the remote server.

public bool PutData(string,string);

Transfers data from a string buffer and stores it in a file on the remote server.

public bool PutData(string,string,int);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutData Method

Transfers data from a byte array and stores it in a file on the remote server.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal remoteFile As String, _
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutData(
 string remoteFile,
 byte[] buffer,
 int length
);

Parameters
remoteFile

A string that specifies the file on the remote system that will contain the data being transferred. If the
file already exists, it will be overwritten. The file pathing and name conventions must be that of the
remote host.

buffer
A byte array that contains the data to be written to the file.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the byte array specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutData method transfers data from a local buffer and stores it on a file on the server. This method
will cause the current thread to block until the file transfer completes, a timeout occurs or the transfer is
canceled. During the transfer, the OnProgress event will fire periodically, enabling the application to
update any user interface objects such as a progress bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutData Method (String, Byte[], Int32)

Transfers data from a string buffer and stores it in a file on the remote server.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal remoteFile As String, _
 ByVal buffer As String _
) As Boolean

[C#]
public bool PutData(
 string remoteFile,
 string buffer
);

Parameters
remoteFile

A string that specifies the file on the remote system that will contain the data being transferred. If the
file already exists, it will be overwritten. The file pathing and name conventions must be that of the
remote host.

buffer
A string that contains the data to be written to the file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutData method transfers data from a local buffer and stores it on a file on the server. This method
will cause the current thread to block until the file transfer completes, a timeout occurs or the transfer is
canceled. During the transfer, the OnProgress event will fire periodically, enabling the application to
update any user interface objects such as a progress bar.

This implementation of the method should only be used with text files.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutData Method (String, String)

Transfers data from a string buffer and stores it in a file on the remote server.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal remoteFile As String, _
 ByVal buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutData(
 string remoteFile,
 string buffer,
 int length
);

Parameters
remoteFile

A string that specifies the file on the remote system that will contain the data being transferred. If the
file already exists, it will be overwritten. The file pathing and name conventions must be that of the
remote host.

buffer
A string that contains the data to be written to the file.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the byte array specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutData method transfers data from a local buffer and stores it on a file on the server. This method
will cause the current thread to block until the file transfer completes, a timeout occurs or the transfer is
canceled. During the transfer, the OnProgress event will fire periodically, enabling the application to
update any user interface objects such as a progress bar.

This implementation of the method should only be used with text files.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutData Method (String, String, Int32)

Transfers data from a MemoryStream and stores it in a file on the remote server.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal remoteFile As String, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool PutData(
 string remoteFile,
 MemoryStream memStream
);

Parameters
remoteFile

A string that specifies the file on the remote system that will contain the data being transferred. If the
file already exists, it will be overwritten. The file pathing and name conventions must be that of the
remote host.

memStream
A MemoryStream that contains the data to be uploaded to the server. This stream must be open and
readable.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutData method transfers data from a MemoryStream and stores it on a file on the server. This
method will cause the current thread to block until the file transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The complete contents of the stream will be uploaded to the server, and when the method returns, the
current position will be at the end of the stream. The stream must be open and readable, otherwise this
method will throw System.NotSupportedException.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutData Method (String, MemoryStream)

Upload a file from the local system to the server.

Overload List
Upload a file from the local system to the server.

public bool PutFile(string);

Upload a file from the local system to the server.

public bool PutFile(string,string);

Upload a file from the local system to the server.

public bool PutFile(string,string,FtpTransferOptions);

Upload a file from the local system to the server.

public bool PutFile(string,string,FtpTransferOptions,long);

See Also
FtpClient Class | SocketTools Namespace | RemoteFile Property | URL Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutFile Method

Upload a file from the local system to the server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String _
) As Boolean

[C#]
public bool PutFile(
 string localFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method copies an existing file from the local system to the server. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

This implementation of the PutFile method is most commonly used when the name of the remote file has
already been specified, either by setting the URL property or by explicitly setting the RemoteFile
property.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutFile Overload List | RemoteFile Property | URL
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutFile Method (String)

Upload a file from the local system to the server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created. If the file already exists on the server, it
will be overwritten. The file pathing and name conventions must be that of the remote host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method copies an existing file from the local system to the server. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutFile Method (String, String)

Upload a file from the local system to the server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As FtpTransferOptions _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string remoteFile,
 FtpTransferOptions options
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the remote host.

options
An FtpTransferOptions enumeration which specifies how the file should be uploaded to the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method copies an existing file from the local system to the server. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutFile Method (String, String, FtpTransferOptions)

Upload a file from the local system to the server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As FtpTransferOptions, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string remoteFile,
 FtpTransferOptions options,
 long offset
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the remote host.

options
An FtpTransferOptions enumeration which specifies how the file should be uploaded to the server.

offset
A numeric value which specifies the byte offset where the file transfer should begin. The default value
of zero specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a non-
zero offset requires that the server support the REST command to restart transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method copies an existing file from the local system to the server. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutFile Method (String, String, FtpTransferOptions, Int64)

Upload multiple files from the local system to the server using a wildcard mask.

Overload List
Upload multiple files from the local system to the server using a wildcard mask.

public bool PutMultipleFiles(string,string);

Upload multiple files from the local system to the server using a wildcard mask.

public bool PutMultipleFiles(string,string,string);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutMultipleFiles Method

Upload multiple files from the local system to the server using a wildcard mask.

[Visual Basic]
Overloads Public Function PutMultipleFiles(_
 ByVal localPath As String, _
 ByVal remotePath As String, _
 ByVal fileMask As String _
) As Boolean

[C#]
public bool PutMultipleFiles(
 string localPath,
 string remotePath,
 string fileMask
);

Parameters
localPath

A string argument which specifies the name of the directory on the local system where the files will be
copied from. You must have permission to read the contents of the directory.

remotePath
A string argument which specifies the name of the directory on the remote system where the files will
be stored. You must have permission to modify the contents of the directory and create files.

fileMask
A string argument which specifies the wildcard mask to be used when selecting what files should be
transferred. An empty string indicates that all files in the specified directory should be uploaded.
Typically, this argument is a wildcard mask that limits the files uploaded to the server to those which
match a specific extension.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutMultipleFiles method copies multiple files from the local system to the remote server. If the
remote file already exists, it is overwritten. This method will cause the current thread to block until all of
the files have been transferred, a timeout occurs or the transfer is canceled. During the transfer, the
OnProgress event will fire periodically, enabling the application to update any user interface objects such
as a progress bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutMultipleFiles Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutMultipleFiles Method (String, String, String)

Upload multiple files from the local system to the server using a wildcard mask.

[Visual Basic]
Overloads Public Function PutMultipleFiles(_
 ByVal localPath As String, _
 ByVal remotePath As String _
) As Boolean

[C#]
public bool PutMultipleFiles(
 string localPath,
 string remotePath
);

Parameters
localPath

A string argument which specifies the name of the directory on the local system where the files will be
copied from. You must have permission to read the contents of the directory.

remotePath
A string argument which specifies the name of the directory on the remote system where the files will
be stored. You must have permission to modify the contents of the directory and create files.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutMultipleFiles method copies multiple files from the local system to the remote server. If the
remote file already exists, it is overwritten. This method will cause the current thread to block until all of
the files have been transferred, a timeout occurs or the transfer is canceled. During the transfer, the
OnProgress event will fire periodically, enabling the application to update any user interface objects such
as a progress bar.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutMultipleFiles Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutMultipleFiles Method (String, String)

Transfers data from a string buffer and stores it in a file on the remote server.

Overload List
Transfers data from a string buffer and stores it in a file on the remote server.

public bool PutText(string);

Transfers data from a string buffer and stores it in a file on the remote server.

public bool PutText(string,int);

Transfers data from a string buffer and stores it in a file on the remote server.

public bool PutText(string,string);

Transfers data from a string buffer and stores it in a file on the remote server.

public bool PutText(string,string,int);

Transfers data from a string buffer and stores it in a file on the remote server.

public bool PutText(string,string,int,int);

Transfers data from a string buffer and stores it in a file on the remote server.

public bool PutText(string,string,int,string);

See Also
FtpClient Class | SocketTools Namespace | CodePage Property | RemoteFile Property | URL Property |
GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutText Method

Transfers data from a string buffer and stores it in a file on the remote server.

[Visual Basic]
Overloads Public Function PutText(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool PutText(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the file. If this parameter is null or an empty string, a
zero-length file will be created or overwritten on the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutText method uploads data from a string buffer and stores it on a file on the server. This method
will cause the current thread to block until the data transfer completes, a timeout occurs or the transfer is
canceled.

This version of the method uses the value of RemoteFile property to specify the name of the file which
should be created or overwritten on the server. The CodePage property value will be used to convert the
text using the specified encoding. Overloaded versions of this method allow for selecting an alternate
code page.

This method will always set the file transfer mode to text and should only be used to upload readable text
to the server. Because the text will be converted from Unicode using the encoding method specified by
the CodePage property, the actual number of bytes stored in the file may differ from the length of the
string.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutText Overload List | CodePage Property |
RemoteFile Property | URL Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutText Method (String)

Transfers data from a string buffer and stores it in a file on the remote server.

[Visual Basic]
Overloads Public Function PutText(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutText(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the file. If this parameter is null or an empty string, a
zero-length file will be created or overwritten on the server.

length
An integer value which specifies the maximum number of characters of data to write. This value cannot
be larger than the length of the string buffer.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutText method uploads data from a string buffer and stores it on a file on the server. This method
will cause the current thread to block until the data transfer completes, a timeout occurs or the transfer is
canceled.

This version of the method uses the value of RemoteFile property to specify the name of the file which
should be created or overwritten on the server. The CodePage property value will be used to convert the
text using the specified encoding. Overloaded versions of this method allow for selecting an alternate
code page.

This method will always set the file transfer mode to text and should only be used to upload readable text
to the server. Because the text will be converted from Unicode using the encoding method specified by
the CodePage property, the actual number of bytes stored in the file may differ from the length specified.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutText Overload List | CodePage Property |
RemoteFile Property | URL Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutText Method (String, Int32)

Transfers data from a string buffer and stores it in a file on the remote server.

[Visual Basic]
Overloads Public Function PutText(_
 ByVal remoteFile As String, _
 ByVal buffer As String _
) As Boolean

[C#]
public bool PutText(
 string remoteFile,
 string buffer
);

Parameters
remoteFile

A string that specifies the file on the remote system that will contain the data being transferred. If the
file already exists, it will be overwritten. The file pathing and name conventions must be that of the
remote host. The file name can be a complete URL.

buffer
A string which contains the data to be written to the file. If this parameter is null or an empty string, a
zero-length file will be created or overwritten on the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutText method uploads data from a string buffer and stores it on a file on the server. This method
will cause the current thread to block until the data transfer completes, a timeout occurs or the transfer is
canceled.

This version of the method uses the value of the CodePage property to convert the text using the
specified encoding. Overloaded versions of this method allow for selecting an alternate code page.

This method will always set the file transfer mode to text and should only be used to upload readable text
to the server. Because the text will be converted from Unicode using the encoding method specified by
the CodePage property, the actual number of bytes stored in the file may differ from the length of the
string.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutText Overload List | CodePage Property | URL
Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutText Method (String, String)

Transfers data from a string buffer and stores it in a file on the remote server.

[Visual Basic]
Overloads Public Function PutText(_
 ByVal remoteFile As String, _
 ByVal buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutText(
 string remoteFile,
 string buffer,
 int length
);

Parameters
remoteFile

A string that specifies the file on the remote system that will contain the data being transferred. If the
file already exists, it will be overwritten. The file pathing and name conventions must be that of the
remote host. The file name can be a complete URL.

buffer
A string which contains the data to be written to the file. If this parameter is null or an empty string, a
zero-length file will be created or overwritten on the server.

length
An integer value which specifies the maximum number of characters of data to write. This value cannot
be larger than the length of the string buffer.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutText method uploads data from a string buffer and stores it on a file on the server. This method
will cause the current thread to block until the data transfer completes, a timeout occurs or the transfer is
canceled.

This version of the method uses the value of the CodePage property to convert the text using the
specified encoding. Overloaded versions of this method allow for selecting an alternate code page.

This method will always set the file transfer mode to text and should only be used to upload readable text
to the server. Because the text will be converted from Unicode using the encoding method specified by
the CodePage property, the actual number of bytes stored in the file may differ from the length specified.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.PutText Overload List | CodePage Property | URL
Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutText Method (String, String, Int32)

Transfers data from a string buffer and stores it in a file on the remote server.

[Visual Basic]
Overloads Public Function PutText(_
 ByVal remoteFile As String, _
 ByVal buffer As String, _
 ByVal length As Integer, _
 ByVal codePage As String _
) As Boolean

[C#]
public bool PutText(
 string remoteFile,
 string buffer,
 int length,
 string codePage
);

Parameters
remoteFile

A string that specifies the file on the remote system that will contain the data being transferred. If the
file already exists, it will be overwritten. The file pathing and name conventions must be that of the
remote host. The file name can be a complete URL.

buffer
A string which contains the data to be written to the file. If this parameter is null or an empty string, a
zero-length file will be created or overwritten on the server.

length
An integer value which specifies the maximum number of characters of data to write. This value cannot
be larger than the length of the string buffer.

codePage
A string which specifies the code page which should be used to convert the text to Unicode. If this
value is an empty string or zero the active code page for the current locale will be used. An exception
will be thrown if an invalid code page is specified.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutText method uploads data from a string buffer and stores it on a file on the server. This method
will cause the current thread to block until the data transfer completes, a timeout occurs or the transfer is
canceled.

This method will always set the file transfer mode to text and should only be used to upload readable text
to the server. Because the text will be converted from Unicode using the encoding method specified by
the codePage parameter, the actual number of bytes stored in the file may differ from the length
specified.

See Also

FtpClient.PutText Method (String, String, Int32, String)

FtpClient Class | SocketTools Namespace | FtpClient.PutText Overload List | CodePage Property | URL
Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Transfers data from a string buffer and stores it in a file on the remote server.

[Visual Basic]
Overloads Public Function PutText(_
 ByVal remoteFile As String, _
 ByVal buffer As String, _
 ByVal length As Integer, _
 ByVal codePage As Integer _
) As Boolean

[C#]
public bool PutText(
 string remoteFile,
 string buffer,
 int length,
 int codePage
);

Parameters
remoteFile

A string that specifies the file on the remote system that will contain the data being transferred. If the
file already exists, it will be overwritten. The file pathing and name conventions must be that of the
remote host. The file name can be a complete URL.

buffer
A string which contains the data to be written to the file. If this parameter is null or an empty string, a
zero-length file will be created or overwritten on the server.

length
An integer value which specifies the maximum number of characters of data to write. This value cannot
be larger than the length of the string buffer.

codePage
An integer value which specifies the code page which should be used to convert the text to Unicode. If
this value is zero, the active code page for the current locale will be used. An exception will be thrown
if an invalid code page is specified.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutText method uploads data from a string buffer and stores it on a file on the server. This method
will cause the current thread to block until the data transfer completes, a timeout occurs or the transfer is
canceled.

This method will always set the file transfer mode to text and should only be used to upload readable text
to the server. Because the text will be converted from Unicode using the encoding method specified by
the codePage parameter, the actual number of bytes stored in the file may differ from the length
specified.

See Also

FtpClient.PutText Method (String, String, Int32, Int32)

FtpClient Class | SocketTools Namespace | FtpClient.PutText Overload List | CodePage Property | URL
Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read file data from the server and store it in a byte array.

Overload List
Read file data from the server and store it in a byte array.

public int Read(byte[]);

Read file data from the server and store it in a byte array.

public int Read(byte[],int);

Read file data from the server and store it in a string.

public int Read(ref string);

Read file data from the server and store it in a string.

public int Read(ref string,int);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Read Method

Read file data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Read Method (Byte[])

Read file data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Read Method (Byte[], Int32)

Read file data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that is passed by reference. When the method returns, it will contain the data read from the
server.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Read Method (String)

Read file data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that is passed by reference. When the method returns, it will contain the data read from the
server.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Read Method (String, Int32)

Remove a directory on the server.

[Visual Basic]
Public Function RemoveDirectory(_
 ByVal pathName As String _
) As Boolean

[C#]
public bool RemoveDirectory(
 string pathName
);

Parameters
pathName

A string that specifies the name of the directory to remove from the server. The naming and pathing
conventions used for the directory must be compatible with what is used on the operating system that
hosts the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The RemoveDirectory method removes an existing directory on the remote host. You must have the
appropriate permission to remove the directory, or an error will occur. Note that most operating systems
will not permit you to remove a directory that contains files or other subdirectories.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.RemoveDirectory Method

Change the name of a file on the server.

[Visual Basic]
Public Function RenameFile(_
 ByVal oldName As String, _
 ByVal newName As String _
) As Boolean

[C#]
public bool RenameFile(
 string oldName,
 string newName
);

Parameters
oldName

A string that specifies the name of the file to be renamed on the server. The file must exist on the
server, otherwise an error will be returned.

newName
A string that specifies the new name for the file on the server. The naming conventions used for the
file must be compatible with what is used on the operating system that hosts the server. Note that
some servers may not permit you to rename the file if a file with the new name already exists.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The RenameFile method changes the name of an existing file on the server to a new name. Note that
you must have permission to rename the file or an error will occur. On UNIX based systems this means
that you must have write permission to the directory where the file is being renamed.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.RenameFile Method

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a connection to a server has been established,
it will be terminated the resources allocated for the client session will be released. All properties will be
reset to their default values.

The Reset and Uninitialize methods will abort all active background transfers and wait for those tasks to
complete before returning to the caller. It is recommended that your application explicitly wait for
background transfers to complete or abort them using this method before allowing the program to
terminate. This will ensure that your program can perform any necessary cleanup operations. If there are
active background tasks running at the time that the class instance is disposed, it can force the instance to
stop those worker threads immediately without waiting for them to terminate gracefully.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Reset Method

Change the access permissions for a file on the server.

[Visual Basic]
Public Function SetFilePermissions(_
 ByVal remoteFile As String, _
 ByVal filePerms As FtpPermissions _
) As Boolean

[C#]
public bool SetFilePermissions(
 string remoteFile,
 FtpPermissions filePerms
);

Parameters
remoteFile

A string that specifies the name of the file that the access permissions are to be returned for. The
filename cannot contain any wildcard characters.

filePerms
An FtpPermissions enumeration which specifies the new permissions for the file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the SITE CHMOD command to set the permissions for the file. This command is typically
only supported on servers that are hosted on UNIX based systems. If the command is not supported, an
error will be returned. You can use the Features property to determine what features are available and/or
enabled on the server.

Users who are familiar with the UNIX operating system will recognize the chmod command used to
change the file permissions. However, it should be noted that the numeric value used as an argument to
the command is in octal, not decimal. For example, issuing the command chmod 644 filename.txt on a
UNIX based system will make the file readable and writable by the owner, and readable by other users in
the owner's group as well as all other users. The value 644 is an octal value, which is equivalent to the
decimal value 420. If you were to mistakenly specify 644 as the value for the Permissions argument, rather
than the decimal value of 420, the permissions on the file would be incorrect. It is strongly recommended
that you use the enumeration values and do not cast a numeric value as the argument.

Note that Visual Basic allows you to specify an integer value in octal by prefixing it with &O. For example,
&O644 could be used as the file permissions value. C# and C++ consider any integer with a preceding 0
to be an octal number, so 0644 would be a valid permissions value.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SetFilePermissions Method

Changes the modification date and time for a file on the server.

[Visual Basic]
Public Function SetFileTime(_
 ByVal remoteFile As String, _
 ByVal fileDate As Date _
) As Boolean

[C#]
public bool SetFileTime(
 string remoteFile,
 DateTime fileDate
);

Parameters
remoteFile

A string that specifies the name of the file on the server. The filename cannot contain any wildcard
characters and must follow the naming conventions of the operating system the server is hosted on.

fileDate
A System.DateTime value that specifies the new date and time for the file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SetFileTime method changes the modification date and time for the specified file on the remote
server. This method uses the MTDM command to change the modification time for the file. If the server
does not support this command, the method will return an error. Note that some servers only support the
MDTM command to return, but not change, the file modification time.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SetFileTime Method

Abort all asynchronous tasks that are currently active.

Overload List
Abort all asynchronous tasks that are currently active.

public bool TaskAbort();

Abort the specified asynchronous task.

public bool TaskAbort(int);

Abort the specified asynchronous task.

public bool TaskAbort(int,int);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskAbort Method

Abort all asynchronous tasks that are currently active.

[Visual Basic]
Overloads Public Function TaskAbort() As Boolean

[C#]
public bool TaskAbort();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskAbort method signals all background worker threads created by this instance of the class to
abort their current operation and terminate as soon as possible. This version of the method will signal
each active task and return immediately to the caller.

The Reset and Uninitialize methods will abort all active background transfers and wait for those tasks to
complete before returning to the caller. It is recommended that your application explicitly wait for
background transfers to complete or abort them using this method before allowing the program to
terminate. This will ensure that your program can perform any necessary cleanup operations. If there are
active background tasks running at the time that the class instance is disposed, it can force the instance to
stop those worker threads immediately without waiting for them to terminate gracefully.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskAbort Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskAbort Method ()

Abort the specified asynchronous task.

[Visual Basic]
Overloads Public Function TaskAbort(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskAbort(
 int taskId
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskAbort method signals the background worker thread associated with the task ID to abort the
current operation and terminate as soon as possible. This version of the method returns immediately after
the background thread has been signaled.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskAbort Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskAbort Method (Int32)

Abort the specified asynchronous task.

[Visual Basic]
Overloads Public Function TaskAbort(_
 ByVal taskId As Integer, _
 ByVal timeWait As Integer _
) As Boolean

[C#]
public bool TaskAbort(
 int taskId,
 int timeWait
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

timeWait
An integer value that specifies the number of milliseconds to wait for the background task to abort.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskAbort method signals the background worker thread associated with the task ID to abort the
current operation and terminate as soon as possible. If the timeWait parameter has a value of zero, the
method returns immediately after the background thread has been signaled. If the timeWait parameter is
non-zero, the method will wait that amount of time for the background thread to terminate.

The Reset and Uninitialize methods will abort all active background transfers and wait for those tasks to
complete before returning to the caller. It is recommended that your application explicitly wait for
background transfers to complete or abort them using this method before allowing the program to
terminate. This will ensure that your program can perform any necessary cleanup operations. If there are
active background tasks running at the time that the class instance is disposed, it can force the instance to
stop those worker threads immediately without waiting for them to terminate gracefully.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskAbort Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskAbort Method (Int32, Int32)

Determine if the current asynchronous task has completed.

Overload List
Determine if the current asynchronous task has completed.

public bool TaskDone();

Determine if an asynchronous task has completed.

public bool TaskDone(int);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskDone Method

Determine if the current asynchronous task has completed.

[Visual Basic]
Overloads Public Function TaskDone() As Boolean

[C#]
public bool TaskDone();

Return Value
This method returns a Boolean value. If the task has finished, the return value is true. If the background
task is still active, the return value is false.

Remarks
The TaskDone method is used to determine if the current asynchronous task has completed. This
overloaded version of the method is functionally equivalent to providing the value of the TaskId property
as the unique task identifier.

If you use this method to poll the status of a background task from within the main UI thread, you must
ensure that Windows messages are processed so that the application remains responsive to the end-user.
To check if a background transfer has completed, it is recommended that you use a timer to periodically
call this method rather than calling it repeatedly within a loop.

To determine if the task completed successfully, the TaskWait method will provide the last error code
associated with the task. Note that if this method returns true, it is guaranteed that calling TaskWait using
the same task ID will return the error code to the caller immediately without causing the current thread to
block.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskDone Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskDone Method ()

Determine if an asynchronous task has completed.

[Visual Basic]
Overloads Public Function TaskDone(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskDone(
 int taskId
);

Parameters
taskId

An optional integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the task has finished, the return value is true. If the background
task is still active, the return value is false.

Remarks
The TaskDone method is used to determine if the specified asynchronous task has completed.

If you use this method to poll the status of a background task from within the main UI thread, you must
ensure that Windows messages are processed so that the application remains responsive to the end-user.
To check if a background transfer has completed, it is recommended that you use a timer to periodically
call this method rather than calling it repeatedly within a loop.

To determine if the task completed successfully, the TaskWait method will provide the last error code
associated with the task. Note that if this method returns true, it is guaranteed that calling TaskWait using
the same task ID will return the error code to the caller immediately without causing the current thread to
block.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskDone Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskDone Method (Int32)

Resume execution of the current asynchronous task.

Overload List
Resume execution of the current asynchronous task.

public bool TaskResume();

Resume execution of an asynchronous task.

public bool TaskResume(int);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskResume Method

Resume execution of the current asynchronous task.

[Visual Basic]
Overloads Public Function TaskResume() As Boolean

[C#]
public bool TaskResume();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskResume method resumes execution of the current background task that was previously
suspended using the TaskSuspend method. This overloaded version of the method is functionally
equivalent to providing the value of the TaskId property as the unique task identifier.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskResume Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskResume Method ()

Resume execution of an asynchronous task.

[Visual Basic]
Overloads Public Function TaskResume(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskResume(
 int taskId
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskResume method resumes execution of the background worker thread that was previously
suspended using the TaskSuspend method.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskResume Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskResume Method (Int32)

Suspend execution of the current asynchronous task.

Overload List
Suspend execution of the current asynchronous task.

public bool TaskSuspend();

Suspend execution of an asynchronous task.

public bool TaskSuspend(int);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskSuspend Method

Suspend execution of the current asynchronous task.

[Visual Basic]
Overloads Public Function TaskSuspend() As Boolean

[C#]
public bool TaskSuspend();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskSuspend method will suspend execution of the background worker thread associated with the
current task. This overloaded version of the method is functionally equivalent to providing the value of the
TaskId property as the unique task identifier.

Once the task has been suspended, it will no longer be scheduled for execution, however the client
session will remain active and the task may be resumed using the TaskResume method. Note that if a
task is suspended for a long period of time, the background operation may fail because it has exceeded
the timeout period imposed by the server.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskSuspend Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskSuspend Method ()

Suspend execution of an asynchronous task.

[Visual Basic]
Overloads Public Function TaskSuspend(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskSuspend(
 int taskId
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskSuspend method will suspend execution of the background worker thread associated with the
task.

Once the task has been suspended, it will no longer be scheduled for execution, however the client
session will remain active and the task may be resumed using the TaskResume method. Note that if a
task is suspended for a long period of time, the background operation may fail because it has exceeded
the timeout period imposed by the server.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskSuspend Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskSuspend Method (Int32)

Wait for all asynchronous tasks to complete.

Overload List
Wait for all asynchronous tasks to complete.

public bool TaskWait();

Wait for an asynchronous task to complete.

public bool TaskWait(int);

Wait for an asynchronous task to complete.

public bool TaskWait(int,int);

Wait for an asynchronous task to complete.

public bool TaskWait(int,int,ref ErrorCode);

Wait for an asynchronous task to complete.

public bool TaskWait(int,int,ref int,ref ErrorCode);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskWait Method

Wait for all asynchronous tasks to complete.

[Visual Basic]
Overloads Public Function TaskWait() As Boolean

[C#]
public bool TaskWait();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This overloaded version of the TaskWait method will cause the current working thread to block until all
background tasks created by this instance of the class have completed. If there are no active background
tasks, this method will return to the caller immediately.

You should not call this version of the method from the main UI thread. Windows messages will not be
processed while this method is blocked waiting for the background tasks to complete, and this can cause
your application to appear non-responsive to the end-user. If you have a GUI application and you need to
determine if all tasks have completed, create a timer to periodically check the value of the TaskCount
property. When it returns zero, there are no active background tasks executing.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskWait Method ()

Wait for an asynchronous task to complete.

[Visual Basic]
Overloads Public Function TaskWait(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskWait(
 int taskId
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskWait method waits for the specified task to complete. This method will cause the current working
thread to block for an indefinite period of time until the task completes. If the specified task has already
completed at the time this method is called, the method will return immediately without causing the
current thread to block.

You should not call this overloaded version of the method from the main UI thread. Windows messages
will not be processed while this method is blocked waiting for the background task to complete, and this
can cause your application to appear non-responsive to the end-user. If you have a GUI application and
you need to determine if a background task has finished, create a timer to periodically call the TaskDone
method. When it returns true (indicating that the task has completed), you can safely call TaskWait to
obtain the elapsed time and last error code without blocking the current thread.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskWait Method (Int32)

Wait for an asynchronous task to complete.

[Visual Basic]
Overloads Public Function TaskWait(_
 ByVal taskId As Integer, _
 ByVal timeWait As Integer _
) As Boolean

[C#]
public bool TaskWait(
 int taskId,
 int timeWait
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

timeWait
An integer value that specifies the number of milliseconds to wait for the background task to
complete.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskWait method waits for the specified task to complete. This method will cause the current working
thread to block until the task completes or the amount of time exceeds the number of milliseconds
specified by the caller. If the timeWait parameter is zero, then this method will poll the status of the task
and return immediately to the caller. If the specified task has already completed at the time this method is
called, the method will return immediately without causing the current thread to block.

You should not call this method from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this method is blocked
waiting for the background task to complete, and this can cause your application to appear non-
responsive to the end-user. If you have a GUI application and you need to determine if a background task
has finished, create a timer to periodically call the TaskDone method. When it returns true (indicating that
the task has completed), you can safely call TaskWait to obtain the elapsed time and last error code
without blocking the current thread.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskWait Method (Int32, Int32)

Wait for an asynchronous task to complete.

[Visual Basic]
Overloads Public Function TaskWait(_
 ByVal taskId As Integer, _
 ByVal timeWait As Integer, _
 ByRef taskError As ErrorCode _
) As Boolean

[C#]
public bool TaskWait(
 int taskId,
 int timeWait,
 ref ErrorCode taskError
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

timeWait
An integer value that specifies the number of milliseconds to wait for the background task to
complete.

taskError
An ErrorCode value passed by reference that will contain the last error code set by the asynchronous
task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskWait method waits for the specified task to complete. This method will cause the current working
thread to block until the task completes or the amount of time exceeds the number of milliseconds
specified by the caller. If the timeWait parameter is zero, then this method will poll the status of the task
and return immediately to the caller.

If the specified task has already completed at the time this method is called, the method will return
immediately without causing the current thread to block. The taskError parameter will contain the last
error code value that was set by the worker thread before it terminated. If the taskError value is zero, that
means that the background task was successful and no error occurred. A non-zero value will indicate that
the background task has failed.

You should not call this method from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this method is blocked
waiting for the background task to complete, and this can cause your application to appear non-
responsive to the end-user. If you have a GUI application and you need to determine if a background task
has finished, create a timer to periodically call the TaskDone method. When it returns true (indicating that
the task has completed), you can safely call TaskWait to obtain the elapsed time and last error code
without blocking the current thread.

FtpClient.TaskWait Method (Int32, Int32, ErrorCode)

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Wait for an asynchronous task to complete.

[Visual Basic]
Overloads Public Function TaskWait(_
 ByVal taskId As Integer, _
 ByVal timeWait As Integer, _
 ByRef timeElapsed As Integer, _
 ByRef taskError As ErrorCode _
) As Boolean

[C#]
public bool TaskWait(
 int taskId,
 int timeWait,
 ref int timeElapsed,
 ref ErrorCode taskError
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

timeWait
An integer value that specifies the number of milliseconds to wait for the background task to
complete.

timeElapsed
An integer value passed by reference that will contain the elapsed time for the task in milliseconds
when the method returns.

taskError
An ErrorCode value passed by reference that will contain the last error code set by the asynchronous
task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskWait method waits for the specified task to complete. This method will cause the current working
thread to block until the task completes or the amount of time exceeds the number of milliseconds
specified by the caller. If the timeWait parameter is zero, then this method will poll the status of the task
and return immediately to the caller.

If the specified task has already completed at the time this method is called, the method will return
immediately without causing the current thread to block. The timeElapsed parameter contain the number
of milliseconds that it took for the task to complete. The taskError parameter will contain the last error
code value that was set by the worker thread before it terminated. If the taskError value is zero, that
means that the background task was successful and no error occurred. A non-zero value will indicate that
the background task has failed.

You should not call this method from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this method is blocked

FtpClient.TaskWait Method (Int32, Int32, Int32, ErrorCode)

waiting for the background task to complete, and this can cause your application to appear non-
responsive to the end-user. If you have a GUI application and you need to determine if a background task
has finished, create a timer to periodically call the TaskDone method. When it returns true (indicating that
the task has completed), you can safely call TaskWait to obtain the elapsed time and last error code
without blocking the current thread.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further network
operations may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

The Reset and Uninitialize methods will abort all active background transfers and wait for those tasks to
complete before returning to the caller. It is recommended that your application explicitly wait for
background transfers to complete or abort them using this method before allowing the program to
terminate. This will ensure that your program can perform any necessary cleanup operations. If there are
active background tasks running at the time that the class instance is disposed, it can force the instance to
stop those worker threads immediately without waiting for them to terminate gracefully.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Uninitialize Method

Verify that the contents of a file on the local system are the same as the specified file on the server.

Overload List
Verify that the contents of a file on the local system are the same as the specified file on the server.

public bool VerifyFile(string,string);

Verify that the contents of a file on the local system are the same as the specified file on the server.

public bool VerifyFile(string,string,FtpVerifyOptions);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.VerifyFile Method

Verify that the contents of a file on the local system are the same as the specified file on the server.

[Visual Basic]
Overloads Public Function VerifyFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool VerifyFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string value which specifies the name of the local file.

remoteFile
A string value which specifies the name of the file on the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The VerifyFile method will attempt to verify that the contents of the local and remote files are identical
using one of several methods, based on the features that the server supports. Preference will be given to
the most reliable method available, using either an MD5 hash, a CRC32 checksum or comparing the size
of the file, in that order.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.VerifyFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.VerifyFile Method (String, String)

Verify that the contents of a file on the local system are the same as the specified file on the server.

[Visual Basic]
Overloads Public Function VerifyFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As FtpVerifyOptions _
) As Boolean

[C#]
public bool VerifyFile(
 string localFile,
 string remoteFile,
 FtpVerifyOptions options
);

Parameters
localFile

A string value which specifies the name of the local file.

remoteFile
A string value which specifies the name of the file on the server.

options
An FtpVerifyOptions enumeration which specifies one or more options that should be used when
comparing the files.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The VerifyFile method will attempt to verify that the contents of the local and remote files are identical
using one of several methods, based on the features that the server supports. Preference will be given to
the most reliable method available, using either an MD5 hash, a CRC32 checksum or comparing the size
of the file, in that order.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.VerifyFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.VerifyFile Method (String, String, FtpVerifyOptions)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.FtpVerifyOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.FtpVerifyOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.FtpVerifyOptions.html

Write one or more bytes of data to the server.

Overload List
Write one or more bytes of data to the server.

public int Write(byte[]);

Write one or more bytes of data to the server.

public int Write(byte[],int);

Write a string of characters to the server.

public int Write(string);

Write a string of characters to the server.

public int Write(string,int);

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Write Method

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the server.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the socket's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Write Method (Byte[])

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the server.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the socket's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Write Method (Byte[], Int32)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the socket's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Write Method (String)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the server.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the socket's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

See Also
FtpClient Class | SocketTools Namespace | FtpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.Write Method (String, Int32)

The events of the FtpClient class are listed below. For a complete list of FtpClient class members, see the
FtpClient Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnCommand Occurs when the client sends a command to the
remote host and receives a reply indicating the
result of that command.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an socket operation fails.

OnFileList Occurs when a directory listing is parsed by the
class.

OnGetFile Occurs when a file download has been initiated.

OnLastFile Occurs when the last file in a directory listing has
been processed.

OnProgress Occurs as a data stream is being read or written to
the socket.

OnPutFile Occurs when a file upload is initiated.

OnRead Occurs when data is available to be read from the
socket.

OnTaskBegin Occurs when an asynchronous task begins
execution.

OnTaskEnd Occurs when an asynchronous task completes.

OnTaskRun Occurs while a background task is active.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the socket.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient Events

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.OnFileList.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.OnLastFile.html

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnCancel Event

Occurs when the client sends a command to the remote host and receives a reply indicating the result of
that command.

[Visual Basic]
Public Event OnCommand As OnCommandEventHandler

[C#]
public event OnCommandEventHandler OnCommand;

Event Data
The event handler receives an argument of type FtpClient.CommandEventArgs containing data related to
this event. The following FtpClient.CommandEventArgs properties provide information specific to this
event.

Property Description

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Remarks
The OnCommand event is generated when the client receives a reply from the server after some action
has been taken.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnCommand Event

Provides data for the OnCommand event.

For a list of all members of this type, see FtpClient.CommandEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpClient.CommandEventArgs

[Visual Basic]
Public Class FtpClient.CommandEventArgs
 Inherits EventArgs

[C#]
public class FtpClient.CommandEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
CommandEventArgs specifies the result code and result string for the last command executed by the
server.

The OnCommand event occurs whenever a command is executed on the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient.CommandEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CommandEventArgs Class

FtpClient.CommandEventArgs overview

Public Instance Constructors

 FtpClient.CommandEventArgs Constructor Initializes a new instance of the
FtpClient.CommandEventArgs class.

Public Instance Properties

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CommandEventArgs Members

Initializes a new instance of the FtpClient.CommandEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpClient.CommandEventArgs();

See Also
FtpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CommandEventArgs Constructor

The properties of the FtpClient.CommandEventArgs class are listed below. For a complete list of
FtpClient.CommandEventArgs class members, see the FtpClient.CommandEventArgs Members topic.

Public Instance Properties

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

See Also
FtpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CommandEventArgs Properties

Gets a value which specifies the last result code returned by the server.

[Visual Basic]
Public ReadOnly Property ResultCode As Integer

[C#]
public int ResultCode {get;}

Property Value
An integer value which specifies the last result code returned by the server.

Remarks
This property should be checked after the Command method is used to execute a command on the
server to determine if the operation was successful. Result codes are three-digit numeric values returned
by the remote server and may be broken down into the following ranges:

ResultCode Description

100-199 Positive preliminary result. This indicates that the
requested action is being initiated, and the client
should expect another reply from the server
before proceeding.

200-299 Positive completion result. This indicates that the
server has successfully completed the requested
action.

300-399 Positive intermediate result. This indicates that the
requested action cannot complete until additional
information is provided to the server.

400-499 Transient negative completion result. This indicates
that the requested action did not take place, but
the error condition is temporary and may be
attempted again.

500-599 Permanent negative completion result. This
indicates that the requested action did not take
place.

It is important to note that while some result codes have become standardized, not all servers respond to
commands using the same result codes. For example, one server may respond with a result code of 221
to indicate success, while another may respond with a value of 235. It is recommended that applications
check for ranges of values to determine if a command was successful, not a specific value.

See Also
FtpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CommandEventArgs.ResultCode Property

Gets a string value which describes the result of the previous command.

[Visual Basic]
Public ReadOnly Property ResultString As String

[C#]
public string ResultString {get;}

Property Value
A string which describes the result of the previous command executed on the server.

Remarks
This string is generated by the remote server, and typically is used to describe the result code. For
example, if an error is indicated by the result code, the result string may describe the condition that
caused the error.

See Also
FtpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.CommandEventArgs.ResultString Property

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a remote host as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a socket is
created but the connection is not actually established until after this event occurs. Between the time
connection process is started and this event fires, no operation may be performed by the client other than
calling the Disconnect method.

This event is only generated if the client is in non-blocking mode.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnConnect Event

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the remote host closes its socket, terminating its connection with
the application. Because there may still be data in the socket receive buffers, you should continue to read
data from the socket until the Read method returns a value of 0. Once all of the data has been read, you
should call the Disconnect method to close the local socket and terminate the session.

This event is only generated if the client is in non-blocking mode.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnDisconnect Event

Occurs when an socket operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type FtpClient.ErrorEventArgs containing data related to this
event. The following FtpClient.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see FtpClient.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpClient.ErrorEventArgs

[Visual Basic]
Public Class FtpClient.ErrorEventArgs
 Inherits EventArgs

[C#]
public class FtpClient.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ErrorEventArgs Class

FtpClient.ErrorEventArgs overview

Public Instance Constructors

 FtpClient.ErrorEventArgs Constructor Initializes a new instance of the
FtpClient.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ErrorEventArgs Members

Initializes a new instance of the FtpClient.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpClient.ErrorEventArgs();

See Also
FtpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ErrorEventArgs Constructor

The properties of the FtpClient.ErrorEventArgs class are listed below. For a complete list of
FtpClient.ErrorEventArgs class members, see the FtpClient.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
FtpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
FtpClient.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public FtpClient.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
FtpClient.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ErrorEventArgs.Error Property

Occurs when a file download has been initiated.

[Visual Basic]
Public Event OnGetFile As OnGetFileEventHandler

[C#]
public event OnGetFileEventHandler OnGetFile;

Event Data
The event handler receives an argument of type FtpClient.GetFileEventArgs containing data related to this
event. The following FtpClient.GetFileEventArgs properties provide information specific to this event.

Property Description

LocalFile Gets a value which specifies the name of the local
file.

RemoteFile Gets a value which specifies the name of the
remote file.

Remarks
The OnGetFile event is generated when a file transfer is initiated by calling the GetFile or
GetMultipleFiles methods. This will be followed by one or more OnProgress events which will indicate
the progress of the transfer. If multiple files are being downloaded, this event will fire for each file as it is
transferred.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnGetFile Event

Provides data for the OnGetFile event.

For a list of all members of this type, see FtpClient.GetFileEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpClient.GetFileEventArgs

[Visual Basic]
Public Class FtpClient.GetFileEventArgs
 Inherits EventArgs

[C#]
public class FtpClient.GetFileEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
GetFileEventArgs specifies information about the start of a file transfer from the server to the local
system.

The OnGetFile event occurs when either the GetFile or GetMultipleFiles methods are called.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient.GetFileEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileEventArgs Class

FtpClient.GetFileEventArgs overview

Public Instance Constructors

 FtpClient.GetFileEventArgs Constructor Initializes a new instance of the
FtpClient.GetFileEventArgs class.

Public Instance Properties

LocalFile Gets a value which specifies the name of the local
file.

RemoteFile Gets a value which specifies the name of the
remote file.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClient.GetFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileEventArgs Members

Initializes a new instance of the FtpClient.GetFileEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpClient.GetFileEventArgs();

See Also
FtpClient.GetFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileEventArgs Constructor

The properties of the FtpClient.GetFileEventArgs class are listed below. For a complete list of
FtpClient.GetFileEventArgs class members, see the FtpClient.GetFileEventArgs Members topic.

Public Instance Properties

LocalFile Gets a value which specifies the name of the local
file.

RemoteFile Gets a value which specifies the name of the
remote file.

See Also
FtpClient.GetFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileEventArgs Properties

Gets a value which specifies the name of the local file.

[Visual Basic]
Public ReadOnly Property LocalFile As String

[C#]
public string LocalFile {get;}

Property Value
A string which specifies the name of the local file.

See Also
FtpClient.GetFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileEventArgs.LocalFile Property

Gets a value which specifies the name of the remote file.

[Visual Basic]
Public ReadOnly Property RemoteFile As String

[C#]
public string RemoteFile {get;}

Property Value
A string value which specifies the name of the remote file.

See Also
FtpClient.GetFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.GetFileEventArgs.RemoteFile Property

Occurs as a data stream is being read or written to the socket.

[Visual Basic]
Public Event OnProgress As OnProgressEventHandler

[C#]
public event OnProgressEventHandler OnProgress;

Event Data
The event handler receives an argument of type FtpClient.ProgressEventArgs containing data related to
this event. The following FtpClient.ProgressEventArgs properties provide information specific to this
event.

Property Description

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

FileName Gets a value which specifies a file name.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Remarks
The OnProgress event occurs as a data stream is being read or written to the socket. If large amounts of
data are being read or written, this event can be used to update a progress bar or other user-interface
component to provide the user with some visual feedback on the progress of the operation.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnProgress Event

Provides data for the OnProgress event.

For a list of all members of this type, see FtpClient.ProgressEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpClient.ProgressEventArgs

[Visual Basic]
Public Class FtpClient.ProgressEventArgs
 Inherits EventArgs

[C#]
public class FtpClient.ProgressEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ProgressEventArgs specifies the number of bytes copied from the data stream, the total number of bytes
in the data stream and a completion percentage.

The OnProgress event occurs as a data stream is being read or written to the socket.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient.ProgressEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProgressEventArgs Class

FtpClient.ProgressEventArgs overview

Public Instance Constructors

 FtpClient.ProgressEventArgs Constructor Initializes a new instance of the
FtpClient.ProgressEventArgs class.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

FileName Gets a value which specifies a file name.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProgressEventArgs Members

Initializes a new instance of the FtpClient.ProgressEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpClient.ProgressEventArgs();

See Also
FtpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProgressEventArgs Constructor

The properties of the FtpClient.ProgressEventArgs class are listed below. For a complete list of
FtpClient.ProgressEventArgs class members, see the FtpClient.ProgressEventArgs Members topic.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

FileName Gets a value which specifies a file name.

Percent Gets a value which specifies the percentage of
data that has been read or written.

See Also
FtpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProgressEventArgs Properties

Gets a value which specifies the number of bytes of data that has been read or written.

[Visual Basic]
Public ReadOnly Property BytesCopied As Long

[C#]
public long BytesCopied {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesCopied property specifies the number of bytes that have been read from the socket and stored
in the local stream buffer, or written from the stream buffer to the socket.

See Also
FtpClient.ProgressEventArgs Class | SocketTools Namespace | BytesTotal Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProgressEventArgs.BytesCopied Property

Gets a value which specifies the total number of bytes in the data stream.

[Visual Basic]
Public ReadOnly Property BytesTotal As Long

[C#]
public long BytesTotal {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesTotal property specifies the total amount of data being read from the socket and stored in the
data stream, or written from the data stream to the socket. If the amount of data was unknown or
unspecified at the time the method call was made, then this value will always be the same as the
BytesCopied property.

See Also
FtpClient.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProgressEventArgs.BytesTotal Property

Gets a value which specifies a file name.

[Visual Basic]
Public ReadOnly Property FileName As String

[C#]
public string FileName {get;}

Property Value
A string value which specifies the name of the file being transferred.

See Also
FtpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProgressEventArgs.FileName Property

Gets a value which specifies the percentage of data that has been read or written.

[Visual Basic]
Public ReadOnly Property Percent As Integer

[C#]
public int Percent {get;}

Property Value
An integer value which specifies a percentage.

Remarks
The Percent property specifies the percentage of data that has been transmitted, expressed as an integer
value between 0 and 100, inclusive. If the maximum size of the data stream was not specified by the caller,
this value will always be 100.

See Also
FtpClient.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | BytesTotal Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.ProgressEventArgs.Percent Property

Occurs when a file upload is initiated.

[Visual Basic]
Public Event OnPutFile As OnPutFileEventHandler

[C#]
public event OnPutFileEventHandler OnPutFile;

Event Data
The event handler receives an argument of type FtpClient.PutFileEventArgs containing data related to this
event. The following FtpClient.PutFileEventArgs properties provide information specific to this event.

Property Description

LocalFile Gets a value which specifies the name of the local
file.

RemoteFile Gets a value which specifies the name of the
remote file.

Remarks
The OnPutFile event is generated when a file transfer is initiated by calling the PutFile or
PutMultipleFiles methods. This will be followed by one or more OnProgress events which will indicate
the progress of the transfer. If multiple files are being uploaded, this event will fire for each file as it is
transferred.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnPutFile Event

Provides data for the OnPutFile event.

For a list of all members of this type, see FtpClient.PutFileEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpClient.PutFileEventArgs

[Visual Basic]
Public Class FtpClient.PutFileEventArgs
 Inherits EventArgs

[C#]
public class FtpClient.PutFileEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
PutFileEventArgs specifies information about the start of a file transfer from the local system to the
server.

The OnPutFile event occurs when either the PutFile or PutMultipleFiles methods are called.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient.PutFileEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutFileEventArgs Class

FtpClient.PutFileEventArgs overview

Public Instance Constructors

 FtpClient.PutFileEventArgs Constructor Initializes a new instance of the
FtpClient.PutFileEventArgs class.

Public Instance Properties

LocalFile Gets a value which specifies the name of the local
file.

RemoteFile Gets a value which specifies the name of the
remote file.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClient.PutFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutFileEventArgs Members

Initializes a new instance of the FtpClient.PutFileEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpClient.PutFileEventArgs();

See Also
FtpClient.PutFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutFileEventArgs Constructor

The properties of the FtpClient.PutFileEventArgs class are listed below. For a complete list of
FtpClient.PutFileEventArgs class members, see the FtpClient.PutFileEventArgs Members topic.

Public Instance Properties

LocalFile Gets a value which specifies the name of the local
file.

RemoteFile Gets a value which specifies the name of the
remote file.

See Also
FtpClient.PutFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutFileEventArgs Properties

Gets a value which specifies the name of the local file.

[Visual Basic]
Public ReadOnly Property LocalFile As String

[C#]
public string LocalFile {get;}

Property Value
A string which specifies the name of the local file.

See Also
FtpClient.PutFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutFileEventArgs.LocalFile Property

Gets a value which specifies the name of the remote file.

[Visual Basic]
Public ReadOnly Property RemoteFile As String

[C#]
public string RemoteFile {get;}

Property Value
A string value which specifies the name of the remote file.

See Also
FtpClient.PutFileEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.PutFileEventArgs.RemoteFile Property

Occurs when data is available to be read from the socket.

[Visual Basic]
Public Event OnRead As EventHandler

[C#]
public event EventHandler OnRead;

Remarks
The OnRead event occurs when data is available to be read from the server. This event is level-triggered,
which means that once this event fires, it will not occur again until some data has been read from the
server. This design prevents an application from being flooded with event notifications. It is recommended
that your application read all of the available data from the server and store it in a local buffer for
processing. See the example below.

This event is only generated if the client is in non-blocking mode.

Example

Private Sub FtpClient1_OnRead(ByVal sender As Object, ByVal e As System.EventArgs)
Handles FtpClient1.OnRead
 Dim strBuffer As String
 Dim nRead As Integer

 Do
 ' Read up to m_nBufferSize bytes of data from the socket
 nRead = FtpClient1.Read(strBuffer, m_nBufferSize)

 If nRead > 0 Then
 ' Append the data to an internal buffer for processing
 m_dataBuffer = m_dataBuffer + strBuffer
 End If
 Loop Until nRead < 1

 ProcessData()
End Sub

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnRead Event

Occurs when an asynchronous task begins execution.

[Visual Basic]
Public Event OnTaskBegin As OnTaskBeginEventHandler

[C#]
public event OnTaskBeginEventHandler OnTaskBegin;

Event Data
The event handler receives an argument of type FtpClient.TaskBeginEventArgs containing data related to
this event. The following FtpClient.TaskBeginEventArgs property provides information specific to this
event.

Property Description

TaskId Get the unique task identifier associated with the
event.

Remarks
The OnTaskBegin event occurs when a background task associated with an asynchronous file transfer
begins executing. This event can be used in conjunction with the OnTaskEnd event to monitor one or
more background tasks that are created to perform asynchronous file transfers.

This event and the related asynchronous task events are invoked from the context of the thread that is
managing the background task, and not the thread that created the class instance. If a handler is
implemented for this event, its code will be executing in a different thread than the main UI thread. You
should never attempt to update your application's user interface directly from within this event handler.
Instead, you must create a delegate and use the Invoke method to ensure that any changes to the user
interface are done within the context of the main UI thread.

Because background tasks are managed in separate threads, this has the effect of making your application
multi-threaded, even if you do not explicitly create any worker threads in your own code. If the code in
your event handler modifies a public member variable or shared object, you must ensure that access to
that object is synchronized. For example, if your event handler updates a shared instance of a Hashtable
object, you should ensure that all operations are performed through the thread-safe wrapper returned by
the Synchronized method for that class. Refer to the MSDN documentation for more information about
creating thread-safe applications.

See Also
FtpClient Class | SocketTools Namespace | OnTaskEnd Event | OnTaskRun Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnTaskBegin Event

Provides data for the OnTaskBegin event.

For a list of all members of this type, see FtpClient.TaskBeginEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpClient.TaskBeginEventArgs

[Visual Basic]
Public Class FtpClient.TaskBeginEventArgs
 Inherits EventArgs

[C#]
public class FtpClient.TaskBeginEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient.TaskBeginEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskBeginEventArgs Class

Initializes a new instance of the FtpClient.TaskBeginEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpClient.TaskBeginEventArgs();

See Also
FtpClient.TaskBeginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskBeginEventArgs Constructor

FtpClient.TaskBeginEventArgs overview

Public Instance Constructors

 FtpClient.TaskBeginEventArgs Constructor Initializes a new instance of the
FtpClient.TaskBeginEventArgs class.

Public Instance Properties

TaskId Get the unique task identifier associated with the
event.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClient.TaskBeginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskBeginEventArgs Members

The properties of the FtpClient.TaskBeginEventArgs class are listed below. For a complete list of
FtpClient.TaskBeginEventArgs class members, see the FtpClient.TaskBeginEventArgs Members topic.

Public Instance Properties

TaskId Get the unique task identifier associated with the
event.

See Also
FtpClient.TaskBeginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskBeginEventArgs Properties

Get the unique task identifier associated with the event.

[Visual Basic]
Public ReadOnly Property TaskId As Integer

[C#]
public int TaskId {get;}

Property Value
An integer value that uniquely identifies the task that invoked the event handler.

See Also
FtpClient.TaskBeginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskBeginEventArgs.TaskId Property

Occurs when an asynchronous task completes.

[Visual Basic]
Public Event OnTaskEnd As OnTaskEndEventHandler

[C#]
public event OnTaskEndEventHandler OnTaskEnd;

Event Data
The event handler receives an argument of type FtpClient.TaskEndEventArgs containing data related to
this event. The following FtpClient.TaskEndEventArgs properties provide information specific to this
event.

Property Description

Error Get the last error code for the background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

Remarks
The OnTaskEnd event occurs when a file transfer completes and the background task has terminated.
Refer to the OnTaskBegin event for additional information about implementing a handler for this event.

See Also
FtpClient Class | SocketTools Namespace | OnTaskBegin Event | OnTaskRun Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnTaskEnd Event

Provides data for the OnTaskEnd event.

For a list of all members of this type, see FtpClient.TaskEndEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpClient.TaskEndEventArgs

[Visual Basic]
Public Class FtpClient.TaskEndEventArgs
 Inherits EventArgs

[C#]
public class FtpClient.TaskEndEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient.TaskEndEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskEndEventArgs Class

Initializes a new instance of the FtpClient.TaskEndEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpClient.TaskEndEventArgs();

See Also
FtpClient.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskEndEventArgs Constructor

FtpClient.TaskEndEventArgs overview

Public Instance Constructors

 FtpClient.TaskEndEventArgs Constructor Initializes a new instance of the
FtpClient.TaskEndEventArgs class.

Public Instance Properties

Error Get the last error code for the background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClient.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskEndEventArgs Members

The properties of the FtpClient.TaskEndEventArgs class are listed below. For a complete list of
FtpClient.TaskEndEventArgs class members, see the FtpClient.TaskEndEventArgs Members topic.

Public Instance Properties

Error Get the last error code for the background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

See Also
FtpClient.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskEndEventArgs Properties

Get the last error code for the background task.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public FtpClient.ErrorCode Error {get;}

Property Value
An ErrorCode enumeration that specifies the last error code set by the background task.

See Also
FtpClient.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskEndEventArgs.Error Property

Get the unique task identifier associated with the event.

[Visual Basic]
Public ReadOnly Property TaskId As Integer

[C#]
public int TaskId {get;}

Property Value
An integer value that uniquely identifies the task that invoked the event handler.

See Also
FtpClient.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskEndEventArgs.TaskId Property

Gets the amount of time that has elapsed in milliseconds.

[Visual Basic]
Public ReadOnly Property TimeElapsed As Integer

[C#]
public int TimeElapsed {get;}

Property Value
An integer value that specifies the number of milliseconds that the background task has executed.

See Also
FtpClient.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskEndEventArgs.TimeElapsed Property

Occurs while a background task is active.

[Visual Basic]
Public Event OnTaskRun As OnTaskRunEventHandler

[C#]
public event OnTaskRunEventHandler OnTaskRun;

Event Data
The event handler receives an argument of type FtpClient.TaskRunEventArgs containing data related to
this event. The following FtpClient.TaskRunEventArgs properties provide information specific to this
event.

Property Description

Completed Gets an estimate of the progress of the
background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

Remarks
The OnTaskRun event is generated periodically during a file transfer while the background task is active.
The rate and number of times that this event will be generated depends on the task being performed. This
event is generally analogous to the OnProgress event for file transfers that are performed in the current
working thread, however the OnTaskRun event will occur for each individual background task that is
active.

Refer to the OnTaskBegin event for additional information about implementing a handler for this event.

See Also
FtpClient Class | SocketTools Namespace | OnTaskBegin Event | OnTaskEnd Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnTaskRun Event

Provides data for the OnTaskRun event.

For a list of all members of this type, see FtpClient.TaskRunEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpClient.TaskRunEventArgs

[Visual Basic]
Public Class FtpClient.TaskRunEventArgs
 Inherits EventArgs

[C#]
public class FtpClient.TaskRunEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient.TaskRunEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskRunEventArgs Class

Initializes a new instance of the FtpClient.TaskRunEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpClient.TaskRunEventArgs();

See Also
FtpClient.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskRunEventArgs Constructor

FtpClient.TaskRunEventArgs overview

Public Instance Constructors

 FtpClient.TaskRunEventArgs Constructor Initializes a new instance of the
FtpClient.TaskRunEventArgs class.

Public Instance Properties

Completed Gets an estimate of the progress of the
background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClient.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskRunEventArgs Members

The properties of the FtpClient.TaskRunEventArgs class are listed below. For a complete list of
FtpClient.TaskRunEventArgs class members, see the FtpClient.TaskRunEventArgs Members topic.

Public Instance Properties

Completed Gets an estimate of the progress of the
background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

See Also
FtpClient.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskRunEventArgs Properties

Gets an estimate of the progress of the background task.

[Visual Basic]
Public ReadOnly Property Completed As Integer

[C#]
public int Completed {get;}

Property Value
An integer value that returns a number between 0 and 100 inclusive that specifies the estimated
percentage of completion for the task. A value of zero indicates that the task has just begun executing,
while a value of 100 indicates that the task is at or near completion.

See Also
FtpClient.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskRunEventArgs.Completed Property

Get the unique task identifier associated with the event.

[Visual Basic]
Public ReadOnly Property TaskId As Integer

[C#]
public int TaskId {get;}

Property Value
An integer value that uniquely identifies the task that invoked the event handler.

See Also
FtpClient.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskRunEventArgs.TaskId Property

Gets the amount of time that has elapsed in milliseconds.

[Visual Basic]
Public ReadOnly Property TimeElapsed As Integer

[C#]
public int TimeElapsed {get;}

Property Value
An integer value that specifies the number of milliseconds that the background task has been executing.

See Also
FtpClient.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.TaskRunEventArgs.TimeElapsed Property

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the
socket, fails to complete before the specified timeout period elapses. The timeout period for a blocking
operation can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnTimeout Event

Occurs when data can be written to the socket.

[Visual Basic]
Public Event OnWrite As EventHandler

[C#]
public event EventHandler OnWrite;

Remarks
The OnWrite event occurs when the application can write data to the server. This event will typically occur
when a connection is first established with the remote host, and after the Write method has failed
because there was insufficient memory available in the socket send buffers. In the second case, when
some of the buffered data has been successfully sent to the remote host and there is space available in
the send buffers, this event is used to signal the application that it may attempt to send more data.

This event is only generated if the client is in non-blocking mode.

See Also
FtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnWrite Event

Specifies the error codes returned by the FtpClient class.

[Visual Basic]
Public Enum FtpClient.ErrorCode

[C#]
public enum FtpClient.ErrorCode

Remarks
The FtpClient class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

FtpClient.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the channel mode specified by setting the ChannelMode property.

[Visual Basic]
Public Enum FtpClient.FtpChannelMode

[C#]
public enum FtpClient.FtpChannelMode

Members

Member Name Description

channelClear Data sent and received on this channel should not
be encrypted.

channelSecure Data sent and received on this channel should be
encrypted. Specifying this option requires that a
secure connection has already been established
with the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FtpChannelMode Enumeration

Specifies the channel used by the ChannelMode property.

[Visual Basic]
Public Enum FtpClient.FtpChannelType

[C#]
public enum FtpClient.FtpChannelType

Members

Member Name Description

channelCommand The communication channel used to send
commands to the server and receive command
result and status information from the server.

channelData The communication channel used to send or
receive data during a file transfer.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FtpChannelType Enumeration

A value which specifies the format of a directory listing returned by the server.

[Visual Basic]
Public Enum FtpClient.FtpDirectoryFormat

[C#]
public enum FtpClient.FtpDirectoryFormat

Remarks
Values other than formatAuto should only be set if the class library cannot automatically determine the
directory format returned by the server. The default directory format is determined both by the server's
operating system and by analyzing the format of the data returned by the server. If the class is unable to
automatically determine the format, it will attempt to parse the list of files as though it is a UNIX style
listing.

Members

Member Name Description

formatAuto This value specifies that the control should
automatically determine the format of the file lists
returned by the server. It is recommended that
most applications use this value and allow the
control to automatically determine the appropriate
file listing format used by the server.

formatUnix This value specifies that the server returns file lists
in the format commonly used by UNIX servers.
Note that many servers can be configured to
return file listings in this format, even if they are
not actually a UNIX based platform. Consult the
technical reference documentation for your server
for more information.

formatMsdos This value specifies that the server returns file lists
in the format commonly used by MS-DOS based
systems. This includes Windows NT servers. Long
file names will be returned if supported by the
underlying filesystem, such as NTFS or FAT32.

formatVms This value specifies that the server returns file lists
in the format commonly used by VMS servers.
Note that VMS servers can be configured to return
a standard UNIX style listing in additional to the
default VMS format.

formatSterling1 This value specifies that the server returns file
listings in a proprietary format used by the Sterling
server, which is used for EDI (Electronic Data
Interchange) applications. This format uses a 13
byte status code.

formatSterling2 This value specifies that the server returns file

FtpClient.FtpDirectoryFormat Enumeration

listings in a proprietary format used by the Sterling
server, which is used for EDI (Electronic Data
Interchange) applications. This format uses a 10
byte status code.

formatNetware This value specifies that the server returns file
listings in a proprietary format used by NetWare
servers. The format is similar to UNIX style listings
except that file access and permissions are
indicated by letter codes enclosed in brackets. This
is the default format selected if the server identifies
itself as a NetWare system.

formatMlsd This value specifies that the server should return
file listings in a machine-independent format as
defined by RFC 3659. This format specifies file
information as a sequence of name and value
pairs, with the same format being used regardless
of the operating system that the server is hosted
on. Note that not all servers support this format,
and some proxy servers may reject the command
even if the remote server supports its use.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the server features that are available for the current client session.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpClient.FtpFeatures

[C#]
[Flags]
public enum FtpClient.FtpFeatures

Remarks
When a client connection is first established, all features are enabled by default. However, as the client
issues commands to the server, if the server reports that the command is unrecognized that feature will
automatically be disabled in the client.

For example, the first time an application calls the GetFileSize method to determine the size of a file, the
class library will try to use the SIZE command. If the server reports that the SIZE command is not available,
that feature will be disabled and the class will not use the command again during the session unless it is
explicitly re-enabled. This is designed to prevent the class from repeatedly sending invalid commands to a
server, which may result in the server aborting the connection.

Members

Member Name Description Value

featureSIZE The server supports the SIZE command
to determine the size of a file. If this
feature is not enabled, the library will
attempt to use the STAT command to
determine the file size.

1

featureSTAT The server supports using the STAT
command to return information about a
specific file. If this feature is not enabled,
the client may not be able to obtain
information about a specific file such as
its size, permissions or modification
time.

2

featureMDTM The server supports the MDTM
command to obtain information about
the modification time for a specific file.
This command may also be used to set
the file time on the server.

4

featureREST The server supports restarting file
transfers using the REST command. If
this feature is not enabled, the client will
not be able to restart file transfers and
must upload or download the complete
file.

8

FtpClient.FtpFeatures Enumeration

featureSITE The server supports site specific
commands using the SITE command. If
this feature is not enabled, no site
specific commands will be sent to the
server.

16

featureIDLE The server supports setting the idle
timeout period using the SITE IDLE
command to specify the number of
seconds that the client may idle before
the server terminates the connection.

32

featureCHMOD The server supports modifying the
permissions of a specific file using the
SITE CHMOD command. If this feature is
not enabled, the client will not be able
to set the permissions for a file.

64

featureAUTH The server supports explicit SSL sessions
using the AUTH command. If this
feature is not enabled, the client will
only be able to connect to a secure
server that uses implicit SSL
connections. Changing this feature has
no effect on standard, non-secure
connections.

128

featurePBSZ The server supports the PBSZ command
which specifies the buffer size used with
secure data connections. If this feature
is disabled, it may prevent the client
from changing the protection level on
the data channel. Changing this feature
has no effect on standard, non-secure
connections.

256

featurePROT The server supports the PROT
command which specifies the protection
level for the data channel. If this feature
is disabled, the client will be unable to
change the protection level on the data
channel. Changing this feature has no
effect on standard, non-secure
connections.

512

featureCCC The server supports the CCC command
which returns the command channel to
a non-secure mode. Changing this
feature has no effect on standard, non-
secure connections.

1024

featureHOST The server supports the HOST
command which enables a client to
specify the hostname after establishing
a connection with a server that supports
virtual hosting.

2048

featureMLST The server supports the MLST
command which returns status
information for files. If this feature is
enabled, the MLST command will be
used instead of the STAT command.

4096

featureMFMT The server supports the MFMT
command which is used to change the
last modification time for a file. If this
command is supported, it is used
instead of the MDTM command to
change the modification time for a file.

8192

featureXCRC The server supports the XCRC
command which returns the CRC32
checksum for the contents of a specified
file. This command is used for file
verification.

16384

featureXMD5 The server supports the XMD5
command which returns an MD5 hash
for the contents of a specified file. This
command is used for file verification.

32768

featureLANG The server supports the LANG
command which sets the language used
for the current client session. Command
responses and file naming conventions
will use the specified language.

65536

featureUTF8 The server supports the OPTS UTF-8
command which specifies UTF-8
encoding when specifying filenames.
This feature is typically used in
conjunction with setting the default
language for the client session.

131072

featureXQUOTA The server supports the XQUOTA
command which returns quota
information for the current client
session.

262144

featureUTIME The server supports the UTIME
command which is used to change the
last modification time for a specified file.

524288

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the type of file being transferred.

[Visual Basic]
Public Enum FtpClient.FtpFileType

[C#]
public enum FtpClient.FtpFileType

Members

Member Name Description

fileAuto The file type should be automatically determined
based on the file name extension. If the file
extension is unknown, the file type should be
determined based on the contents of the file. The
class has an internal list of common text file
extensions, and additional file extensions can be
registered using the AddFileType method.

fileAscii The file being transferred is an ASCII text file. The
characters the mark the end of a line (for example,
a carriage return/linefeed pair under MS-DOS) are
automatically converted to the format used by the
target operating system.

fileEbcdic The file being transferred is a text file created
using the EBCDIC character set. If a file is being
copied to a remote system, the ASCII characters
are automatically converted to EBCDIC. If the file is
being retrieved from a remote system, the EBCDIC
characters are automatically converted to ASCII.

fileImage The file is transferred without any modification.
This is the default file transfer type, and should be
used when transferring binary (non-text) data.

fileText The same value as fileAscii.

fileBinary The same value as fileImage.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace | AddFileType Method (SocketTools.FtpClient)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FtpFileType Enumeration

Specifies how a file is opened on the server.

[Visual Basic]
Public Enum FtpClient.FtpOpenMode

[C#]
public enum FtpClient.FtpOpenMode

Members

Member Name Description

fileRead The file is opened for read access. If the file does
not exist, an error will occur.

fileWrite The file is opened for write access. If the file does
not exist, it will be created. If it does exist, it will be
overwritten.

fileAppend The file is opened for write access. If the file does
not exist, it will be created. If it does exist, the data
will be appended to the end of the file.

fileUnique The file is opened for write access and created
using a file name that is guaranteed to be unique.
This option is not supported on all servers.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FtpOpenMode Enumeration

Specifies the options that the FtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpClient.FtpOptions

[C#]
[Flags]
public enum FtpClient.FtpOptions

Remarks
The FtpClient class uses the FtpOptions enumeration to specify one or more options to be used when
establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionDefault The default connection option. This is
the same as specifying optionPassive.

1

optionPassive This option specifies the client should
attempt to establish a passive
connection to the server. This means
that instead of the client opening a port
on the local system and waiting for the
server to establish a connection back to
the client, the client will establish a
second data connection to the server.
This mode is recommended for most
systems that are behind a NAT router or
firewall.

1

optionFirewall This option specifies the client should
always use the host IP address to
establish the data connection with the
server, not the address returned by the
server in response to the PASV
command. This option may be
necessary if the server is behind a router
that performs Network Address
Translation (NAT) and it returns an
unreachable IP address for the data
connection. If this option is specified, it
will also enable passive mode data
transfers.

2

optionNoAuth This option specifies the server does not
require authentication, or that it

4

FtpClient.FtpOptions Enumeration

requires an alternate authentication
method. When this option is used, the
client connection is flagged as
authenticated as soon as the connection
to the server has been established. Note
that using this option to bypass
authentication may result in subsequent
errors when attempting to retrieve a
directory listing or transfer a file. It is
recommended that you consult the
technical reference documentation for
the server to determine its specific
authentication requirements.

optionKeepAlive This option specifies the client should
attempt to keep the connection with the
server active for an extended period of
time. It is important to note that
regardless of this option, the server may
still choose to disconnect client sessions
that are holding the command channel
open but are not performing file
transfers.

8

optionNoAuthRSA This option specifies that RSA
authentication should not be used with
SSH-1 connections. This option is
ignored with SSH-2 connections and
should only be specified if required by
the remote host. This option has no
effect on standard or secure
connections using SSL.

16

optionNoPwdNul This option specifies that the user
password cannot be terminated with a
null byte. This option is ignored with
SSH-2 connections and should only be
specified if required by the remote host.
This option has no effect on standard or
secure connections using SSL.

32

optionNoRekey This option specifies the client should
never attempt a repeat key exchange
with the server. Some SSH servers do
not support rekeying the session, and
this can cause the client to become
non-responsive or abort the connection
after being connected for an hour. This
option has no effect on standard or
secure connections using SSL.

64

optionCompatSID This compatibility option changes how
the session ID is handled during public
key authentication with older SSH
servers. This option should only be

128

specified when connecting to servers
that use OpenSSH 2.2.0 or earlier
versions. This option has no effect on
standard or secure connections using
SSL.

optionCompatHMAC This compatibility option changes how
the HMAC authentication codes are
generated. This option should only be
specified when connecting to servers
that use OpenSSH 2.2.0 or earlier
versions. This option has no effect on
standard or secure connections using
SSL.

256

optionVirtualHost This option specifies the server supports
virtual hosting, where multiple domains
are hosted by a server using the same
external IP address. If this option is
enabled, the client will send the HOST
command to the server upon
establishing a connection.

512

optionVerify This option specifies that file transfers
should be automatically verified after
the transfer has completed. If the server
supports the XMD5 command, the
transfer will be verified by calculating an
MD5 hash of the file contents. If the
server does not support the XMD5
command, but does support the XCRC
command, the transfer will be verified
by calculating a CRC32 checksum of the
file contents. If neither the XMD5 or
XCRC commands are supported, the
transfer is verified by comparing the size
of the file. Automatic file verification is
only performed for binary mode
transfers because of the end-of-line
conversion that may occur when text
files are uploaded or downloaded.

1024

optionTunnel This option specifies that a tunneled
TCP connection and/or port-forwarding
is being used to establish the
connection to the server. This changes
the behavior of the client with regards
to internal checks of the destination IP
address and remote port number,
default capability selection and how the
connection is established. This option
also forces all connections to be
outbound and enables the firewall
compatibility features in the client.

65536

optionTrustedSite This option specifies the server is
trusted. The server certificate will not be
validated and the connection will always
be permitted. This option only affects
connections using either the SSL or TLS
protocols.

2048

optionSecure This option specifies the client should
attempt to establish a secure
connection with the server. The server
must support secure connections using
either the SSL or TLS protocol.

4096

optionImplicitSSL This option specifies the client should
attempt to establish a secure implicit
SSL session. The SSL handshake is
initiated immediately after the
connection to the server has been
established.

4096

optionExplicitSSL This option specifies the client should
attempt to establish a secure explicit SSL
session. The initial connection to the
server is not encrypted, and the client
will attempt to negotiate a secure
connection by sending a command to
the server. Some servers may require
this option when connecting to the
server on ports other than the default
secure port of 990.

8192

optionSecureShell This option specifies the client should
attempt to establish a secure
connection using the Secure Shell (SSH)
protocol. This option is automatically
selected if the connection is established
on port 22, the standard port for SSH
connections. It is only necessary to
specify this option if the SSH connection
must be established on a non-standard
port.

16384

optionSecureFallback This option specifies the client should
permit the use of less secure cipher
suites for compatibility with legacy
servers. If this option is specified, the
client will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

32768

optionPreferIPv6 This option specifies the client should
prefer the use of IPv6 if the server
hostname can be resolved to both an
IPv6 and IPv4 address. This option is
ignored if the local system does not

262144

have IPv6 enabled, or when the
hostname can only be resolved to an
IPv4 address. If the server hostname can
only be resolved to an IPv6 address, the
client will attempt to establish a
connection using IPv6 regardless if this
option has been specified.

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

optionHiResTimer This option specifies that elapsed time
values should be returned in
milliseconds rather than seconds. This
option is intended to provide greater
accuracy with smaller file transfers over
a high speed network connection.

1048576

optionTLSReuse This option specifies that TLS session
reuse should be enabled when
establishing a secure data connection.
This option is only supported on
Windows 8.1 or Windows Server 2012
R2 and later platforms, and it should
only be used when explicitly required by
the server. This option is not compatible
with servers built using OpenSSL 1.0.2
and earlier versions which do not
provide Extended Master Secret (EMS)
support as outlined in RFC7627.

2097152

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the access permissions for a file on the server.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpClient.FtpPermissions

[C#]
[Flags]
public enum FtpClient.FtpPermissions

Members

Member Name Description Value

symbolicLink The file is a symbolic link to another file.
Symbolic links are special types of files
found on UNIX based systems which are
similar to Windows shortcuts.

4096

ownerRead The owner has permission to open the
file for reading. If the current user is the
owner of the file, this grants the user the
right to download the file to the local
system.

1024

ownerWrite The owner has permission to open the
file for writing. If the current user is the
owner of the file, this grants the user the
right to replace the file. If this
permission is set for a directory, this
grants the user the right to create and
delete files.

512

ownerExecute The owner has permission to execute
the contents of the file. The file is
typically either a binary executable,
script or batch file. If this permission is
set for a directory, this may also grant
the user the right to open that directory
and search for files in that directory.

256

groupRead Users in the specified group have
permission to open the file for reading.
If the current user is in the same group
as the file owner, this grants the user
the right to download the file.

64

groupWrite Users in the specified group have
permission to open the file for writing.
On some platforms, this may also imply
permission to delete the file. If the
current user is in the same group as the

32

FtpClient.FtpPermissions Enumeration

file owner, this grants the user the right
to replace the file. If this permission is
set for a directory, this grants the user
the right to create and delete files.

groupExecute Users in the specified group have
permission to execute the contents of
the file. If this permission is set for a
directory, this may also grant the user
the right to open that directory and
search for files in that directory.

16

worldRead All users have permission to open the
file for reading. This permission grants
any user the right to download the file
to the local system.

4

worldWrite All users have permission to open the
file for writing. This permission grants
any user the right to replace the file. If
this permission is set for a directory, this
grants any user the right to create and
delete files.

2

worldExecute All users have permission to execute the
contents of the file. If this permission is
set for a directory, this may also grant
all users the right to open that directory
and search for files in that directory.

1

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the type of proxy server that is being used by the FtpClient class.

[Visual Basic]
Public Enum FtpClient.FtpProxyType

[C#]
public enum FtpClient.FtpProxyType

Members

Member Name Description

proxyNone No proxy server is being used. This is the default
value.

proxyUser The client is not logged into the proxy server. The
USER command is sent in the format
username@ftpsite followed by the password. This
is the format used with the Gauntlet proxy server.

proxyLogin The client is logged into the proxy server. The
USER command is then sent in the format
username@ftpsite followed by the password. This
is the format used by the InterLock proxy server.

proxyOpen The client is not logged into the proxy server. The
OPEN command is sent specifying the host name,
followed by the username and password.

proxySite The client is logged into the server. The SITE
command is sent, specifying the host name,
followed by the username and the password.

proxyOther This special proxy type specifies that another,
undefined proxy server is being used. The client
connects to the proxy host, but does not attempt
to authenticate the client. The application is
responsible for negotiating with the proxy server,
typically using the Command property to send
specific command sequences.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FtpProxyType Enumeration

Specifies the type of server that the client is connected to.

[Visual Basic]
Public Enum FtpClient.FtpServerType

[C#]
public enum FtpClient.FtpServerType

Members

Member Name Description

serverUnknown The server type could not be determined by
issuing the SYST command. The server may not
support the command, or the command may only
allowed when issued by an authenticated user.

serverUNIX The server is running on a UNIX based operating
system. This can include Linux and other variants,
as well as operating systems which emulate UNIX
style file pathing and directory listings.

serverMSDOS The server is running on an MS-DOS based
operating system. The server expects file pathing
and naming conventions according to the
standard MS-DOS format and returns directory
listings similar to the output of the DIR command.

serverWindows The server is running on a Windows based
operating system. The server expects file pathing
and naming conventions according to the
standard Windows long filename format, and
returns directory listings similar to the output of
the DIR command. Note that Windows servers
may be configured to return file and directory
information in a format similar to UNIX systems, in
which case the system may be identified as UNIX
even though it is actually running on a Windows
platform.

serverVMS The server is running on a DEC VMS based
operating system. The server expects file pathing
and naming conventions specific to that operating
system. Note that VMS servers may be configured
to return file and directory information in a format
similar to UNIX systems, in which case the system
may be identified as UNIX even though it is
actually running on a VMS platform.

serverNetware The server is running on a NetWare based
operating system. The server expects file pathing
and naming conventions similar to the standard
Windows long filename format, and returns

FtpClient.FtpServerType Enumeration

directory listings that are similar to UNIX systems
with the exception of the access and permissions
flags for the file. Note that a NetWare system may
return listings in different formats based on the
filesystem and site specific options specified.

serverOther The server type was not recognized. An attempt
will be made to automatically determine the
correct file pathing and naming conventions used
by the server. To obtain a list of files on the server,
it may be necessary to explicitly set the
DirectoryFormat property to specify the directory
listing format.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the status values that may be returned by the FtpClient class.

[Visual Basic]
Public Enum FtpClient.FtpStatus

[C#]
public enum FtpClient.FtpStatus

Members

Member Name Description

statusUnused A client connection has not been established.
Attempts to perform any network operations, such
as sending or receiving data, will generate an
error.

statusIdle A client connection has been created, but is not
currently in use. A blocking socket operation can
be executed at this point.

statusConnect The client is in the process of establishing a
connection with a remote host.

statusRead The client is in the process of receiving data from a
remote host.

statusWrite The client is in the process of sending data to a
remote host.

statusDisconnect The client connection is being closed and
subsequent attempts to access that session will
result in an error.

statusOpenFile A file on the remote host is being opened.

statusCloseFile A file on the remote host is being closed.

statusGetFile A file is being downloaded from the remote host
to the local system. No other blocking operation
may be performed in the current thread while the
file transfer is in progress.

statusPutFile A file is being uploaded from the local system to
the remote host. No other blocking operation may
be performed in the current thread while the file
transfer is in progress.

statusFileList A file listing is being returned from the remote
host. No other blocking operation may be
performed in the current thread while the file
listing is in progress, including downloading or
uploading files.

Requirements

FtpClient.FtpStatus Enumeration

Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the file transfer options that the FtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpClient.FtpTransferOptions

[C#]
[Flags]
public enum FtpClient.FtpTransferOptions

Members

Member Name Description Value

transferDefault This option specifies the default transfer
mode should be used. If the file exists, it
will be overwritten.

0

transferAppend This option specifies that if the file exists,
data will be appended to the end of the
file. If the file does not exist, it will be
created.

1

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.FtpTransferOptions Enumeration

Specifies the security certificate status values that may be returned by the FtpClient class.

[Visual Basic]
Public Enum FtpClient.SecurityCertificate

[C#]
public enum FtpClient.SecurityCertificate

Remarks
The FtpClient class uses the SecurityCertificate enumeration to identify the current status of the
certificate that was provided by the remote host when a secure connection was established.

Members

Member Name Description

certificateNone No certificate information is available. A secure
connection was not established with the server.

certificateValid The certificate is valid.

certificateNoMatch The certificate is valid, however the domain name
specified in the certificate does not match the
domain name of the remote host. The application
can examine the CertificateSubject property to
determine the site the certificate was issued to.

certificateExpired The certificate has expired and is no longer valid.
The application can examine the
CertificateExpires property to determine when
the certificate expired.

certificateRevoked The certificate has been revoked and is no longer
valid. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateUntrusted The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the
local host. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateInvalid The certificate is invalid. This typically indicates that
the internal structure of the certificate is damaged.
It is recommended that the application
immediately terminate the connection if this status
is returned.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

FtpClient.SecurityCertificate Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the encryption algorithms that the FtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpClient.SecureCipherAlgorithm

[C#]
[Flags]
public enum FtpClient.SecureCipherAlgorithm

Remarks
The FtpClient class uses the SecureCipherAlgorithm enumeration to identify which encryption algorithm
was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

cipherNone No cipher has been selected. A secure
connection has not been established
with the remote host.

0

cipherRC2 The RC2 block cipher was selected. This
is a variable key length cipher which
supports keys between 40- and 128-bits
in length, in 8-bit increments.

1

cipherRC4 The RC4 stream cipher was selected.
This is a variable key length cipher
which supports keys between 40- and
128-bits in length, in 8-bit increments.

2

cipherRC5 The RC5 block cipher was selected. This
is a variable key length cipher which
supports keys up to 2040 bits, in 8-bit
increments.

4

cipherDES The DES (Data Encryption Standard)
block cipher was selected. This is a fixed
key length cipher using 56-bit keys.

8

cipherDES3 The Triple DES block cipher was
selected. This cipher encrypts the data
three times using different keys,
effectively using a 168-bit key length.

16

cipherDESX A variant of the DES block cipher which
XORs an extra 64-bits of the key before
and after the plaintext has been
encrypted, increasing the key size to
184 bits.

32

cipherAES The Advanced Encryption Standard 64

FtpClient.SecureCipherAlgorithm Enumeration

cipher (also known as the Rijndael
cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits.
This cipher is supported on Windows XP
SP3 SP3 and later versions of the
operating system.

cipherSkipjack The Skipjack block cipher was selected.
This is a fixed key length cipher, using
80-bit keys.

128

cipherBlowfish The Blowfish block cipher was selected.
This is a variable key length cipher up to
448 bits, using a 64-bit block size.

256

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the hash algorithms that the FtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpClient.SecureHashAlgorithm

[C#]
[Flags]
public enum FtpClient.SecureHashAlgorithm

Remarks
The FtpClient class uses the SecureHashAlgorithm enumeration to identify the message digest (hash)
algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

hashNone No hash algorithm has been selected.
This is not a secure connection with the
server.

0

hashMD5 The MD5 algorithm was selected. This
algorithm produces a 128-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

1

hashSHA The SHA-1 algorithm was selected. This
algorithm produces a 160-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

2

hashSHA256 The SHA-256 algorithm was selected.
This algorithm produces a 256-bit
message digest.

4

hashSHA384 The SHA-384 algorithm was selected.
This algorithm produces a 384-bit
message digest.

8

hashSHA512 The SHA-512 algorithm was selected.
This algorithm produces a 512-bit
message digest.

16

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also

FtpClient.SecureHashAlgorithm Enumeration

SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the key exchange algorithms that the FtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpClient.SecureKeyAlgorithm

[C#]
[Flags]
public enum FtpClient.SecureKeyAlgorithm

Remarks
The FtpClient class uses the SecureKeyAlgorithm enumeration to identify the key exchange algorithm
that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

keyExchangeNone No key exchange algorithm has been
selected. This is not a secure connection
with the server.

0

keyExchangeRSA The RSA public key exchange algorithm
has been selected.

1

keyExchangeKEA The KEA public key exchange algorithm
has been selected. This is an improved
version of the Diffie-Hellman public key
algorithm.

2

keyExchangeDH The Diffie-Hellman public key exchange
algorithm has been selected.

4

keyExchangeECDH The Elliptic Curve Diffie-Hellman key
exchange algorithm was selected. This is
a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography.
This key exchange algorithm is only
supported on Windows XP SP3 SP3 and
later versions of the operating system.

8

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.SecureKeyAlgorithm Enumeration

Specifies the security protocols that the FtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpClient.SecurityProtocols

[C#]
[Flags]
public enum FtpClient.SecurityProtocols

Remarks
The FtpClient class uses the SecurityProtocols enumeration to specify one or more security protocols to
be used when establishing a connection with a remote host. Multiple protocols may be specified if
necessary and the actual protocol used will be negotiated with the remote host. It is recommended that
most applications use protocolDefault when creating a secure connection.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

FtpClient.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSH1 The Secure Shell 1.0 protocol should be
used. This version of the protocol has
been deprecated and is no longer
widely used. It is not recommended that
this version of the protocol be used to
establish a connection.

256

protocolSSH2 The Secure Shell 2.0 protocol should be
used. This is the most commonly used
version of the protocol. It is
recommended that this version of the
protocol be used unless the server
explicitly requires the client to use an
earlier version.

512

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolSSH Any version of the the Secure Shell
(SSH) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

768

protocolDefault The default selection of security
protocols will be used when establishing

16

a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the FtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpClient.TraceOptions

[C#]
[Flags]
public enum FtpClient.TraceOptions

Remarks
The FtpClient class uses the TraceOptions enumeration to specify what kind of debugging information is
written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

FtpClient.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnCommand event.

[Visual Basic]
Public Delegate Sub FtpClient.OnCommandEventHandler(_
 ByVal sender As Object, _
 ByVal e As CommandEventArgs _
)

[C#]
public delegate void FtpClient.OnCommandEventHandler(

 object sender,
 CommandEventArgs e
);

Parameters
sender

The source of the event.

e
A CommandEventArgs object that contains the event data.

Remarks
When you create an OnCommandEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnCommandEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnCommandEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub FtpClient.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void FtpClient.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs object that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnErrorEventHandler Delegate

Represents the method that will handle the OnFileList event.

[Visual Basic]
Public Delegate Sub FtpClient.OnFileListEventHandler(_
 ByVal sender As Object, _
 ByVal e As FileListEventArgs _
)

[C#]
public delegate void FtpClient.OnFileListEventHandler(

 object sender,
 FileListEventArgs e
);

Parameters
sender

The source of the event.

e
A FileListEventArgs object which contains the event data.

Remarks
When you create an OnFileListEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnFileListEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnFileListEventHandler Delegate

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.OnFileList.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.FileListEventArgs.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.FileListEventArgs.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpClient.FileListEventArgs.html

Represents the method that will handle the OnGetFile event.

[Visual Basic]
Public Delegate Sub FtpClient.OnGetFileEventHandler(_
 ByVal sender As Object, _
 ByVal e As GetFileEventArgs _
)

[C#]
public delegate void FtpClient.OnGetFileEventHandler(

 object sender,
 GetFileEventArgs e
);

Parameters
sender

The source of the event.

e
A GetFileEventArgs object which contains the event data.

Remarks
When you create an OnGetFileEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnGetFileEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnGetFileEventHandler Delegate

Represents the method that will handle the OnProgress event.

[Visual Basic]
Public Delegate Sub FtpClient.OnProgressEventHandler(_
 ByVal sender As Object, _
 ByVal e As ProgressEventArgs _
)

[C#]
public delegate void FtpClient.OnProgressEventHandler(

 object sender,
 ProgressEventArgs e
);

Parameters
sender

The source of the event.

e
A ProgressEventArgs object that contains the event data.

Remarks
When you create an OnProgressEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnProgressEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnProgressEventHandler Delegate

Represents the method that will handle the OnPutFile event.

[Visual Basic]
Public Delegate Sub FtpClient.OnPutFileEventHandler(_
 ByVal sender As Object, _
 ByVal e As PutFileEventArgs _
)

[C#]
public delegate void FtpClient.OnPutFileEventHandler(

 object sender,
 PutFileEventArgs e
);

Parameters
sender

The source of the event.

e
A PutFileEventArgs object that contains the event data.

Remarks
When you create an OnPutFileEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnPutFileEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnPutFileEventHandler Delegate

Represents the method that will handle the OnTaskBegin event.

[Visual Basic]
Public Delegate Sub FtpClient.OnTaskBeginEventHandler(_
 ByVal sender As Object, _
 ByVal e As TaskBeginEventArgs _
)

[C#]
public delegate void FtpClient.OnTaskBeginEventHandler(

 object sender,
 TaskBeginEventArgs e
);

Parameters
sender

The source of the event.

e
A TaskBeginEventArgs object that contains the event data.

Remarks
When you create an OnTaskBeginEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnTaskBeginEventHandler delegate declaration.

This event handler will be invoked in the context of the worker thread that is managing the background
task, not the thread that created an instance of the class. Because UI components should only be modified
by the thread that created them, the event handler should never attempt to update the user interface
directly.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnTaskBeginEventHandler Delegate

Represents the method that will handle the OnTaskEnd event.

[Visual Basic]
Public Delegate Sub FtpClient.OnTaskEndEventHandler(_
 ByVal sender As Object, _
 ByVal e As TaskEndEventArgs _
)

[C#]
public delegate void FtpClient.OnTaskEndEventHandler(

 object sender,
 TaskEndEventArgs e
);

Parameters
sender

The source of the event.

e
A TaskEndEventArgs object that contains the event data.

Remarks
When you create an OnTaskEndEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnTaskEndEventHandler delegate declaration.

This event handler will be invoked in the context of the worker thread that is managing the background
task, not the thread that created an instance of the class. Because UI components should only be modified
by the thread that created them, the event handler should never attempt to update the user interface
directly.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnTaskEndEventHandler Delegate

Represents the method that will handle the OnTaskRun event.

[Visual Basic]
Public Delegate Sub FtpClient.OnTaskRunEventHandler(_
 ByVal sender As Object, _
 ByVal e As TaskRunEventArgs _
)

[C#]
public delegate void FtpClient.OnTaskRunEventHandler(

 object sender,
 TaskRunEventArgs e
);

Parameters
sender

The source of the event.

e
A TaskRunEventArgs object that contains the event data.

Remarks
When you create an OnTaskRunEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnTaskRunEventHandler delegate declaration.

This event handler will be invoked in the context of the worker thread that is managing the background
task, not the thread that created an instance of the class. Because UI components should only be modified
by the thread that created them, the event handler should never attempt to update the user interface
directly.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.OnTaskRunEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see FtpClient.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.FtpClient.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class FtpClient.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class FtpClient.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the FtpClient class.

Example

<Assembly: SocketTools.FtpClient.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.FtpClient.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClient.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.RuntimeLicenseAttribute Class

FtpClient.RuntimeLicenseAttribute overview

Public Instance Constructors

 FtpClient.RuntimeLicenseAttribute Constructor Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public FtpClient.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the FtpClient class.

See Also
FtpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.RuntimeLicenseAttribute Constructor

The properties of the FtpClient.RuntimeLicenseAttribute class are listed below. For a complete list of
FtpClient.RuntimeLicenseAttribute class members, see the FtpClient.RuntimeLicenseAttribute Members
topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
FtpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
FtpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClient.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see FtpClientException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.FtpClientException

[Visual Basic]
Public Class FtpClientException
 Inherits ApplicationException

[C#]
public class FtpClientException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A FtpClientException is thrown by the FtpClient class when an error occurs.

The default constructor for the FtpClientException class sets the ErrorCode property to the last error that
occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpClient (in SocketTools.FtpClient.dll)

See Also
FtpClientException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClientException Class

FtpClientException overview

Public Instance Constructors

 FtpClientException Overloaded. Initializes a new instance of the
FtpClientException class.

Public Instance Properties

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

FtpClientException Members

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the FtpClientException class with the last client error code.

Overload List
Initializes a new instance of the FtpClientException class with the last client error code.

public FtpClientException();

Initializes a new instance of the FtpClientException class with a specified error number.

public FtpClientException(int);

Initializes a new instance of the FtpClientException class with a specified error message.

public FtpClientException(string);

Initializes a new instance of the FtpClientException class with a specified error message and a reference to
the inner exception that is the cause of this exception.

public FtpClientException(string,Exception);

See Also
FtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClientException Constructor

Initializes a new instance of the FtpClientException class with the last client error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public FtpClientException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the FtpClient.ErrorCode enumeration.

See Also
FtpClientException Class | SocketTools Namespace | FtpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClientException Constructor ()

Initializes a new instance of the FtpClientException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public FtpClientException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
FtpClientException Class | SocketTools Namespace | FtpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClientException Constructor (String)

Initializes a new instance of the FtpClientException class with a specified error message and a reference to
the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal inner As Exception _
)

[C#]
public FtpClientException(
 string message,
 Exception inner
);

Parameters
message

The error message that explains the reason for the exception.

inner
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
FtpClientException Class | SocketTools Namespace | FtpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClientException Constructor (String, Exception)

Initializes a new instance of the FtpClientException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public FtpClientException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the FtpClient.ErrorCode enumeration.

See Also
FtpClientException Class | SocketTools Namespace | FtpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClientException Constructor (Int32)

The properties of the FtpClientException class are listed below. For a complete list of
FtpClientException class members, see the FtpClientException Members topic.

Public Instance Properties

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
FtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClientException Properties

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
FtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClientException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. If a network error occurs, this value is the same as the values returned by the Windows
Sockets API. For more information about socket error codes, see the Windows Socket Version 2 API error
code documentation in MSDN.

See Also
FtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClientException.Number Property

The methods of the FtpClientException class are listed below. For a complete list of FtpClientException
class members, see the FtpClientException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClientException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
FtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpClientException.ToString Method

Implements a server that enables the application to send and receive files using the File Transfer Protocol.

For a list of all members of this type, see FtpServer Members.

System.Object
 SocketTools.FtpServer

[Visual Basic]
Public Class FtpServer
 Implements IDisposable

[C#]
public class FtpServer : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The SocketTools.FtpServer class provides an interface for implementing an embedded, lightweight
server that can be used to exchange files with a client using the standard File Transfer Protocol. The server
can accept connections from any third-party application or a program developed using the
SocketTools.FtpClient class.

The application specifies an initial server configuration by setting the relevant properties and can
implement event handlers to monitor the activities of the clients that have connected to the server. The
class automatically handles the standard FTP commands and requires minimal coding on the part of the
application that is hosting the control. However, the application may also use event mechanism to filter
specific commands or to extend the protocol by providing custom implementations of existing commands
or add entirely new commands.

The server supports active and passive mode file transfers, has compatibility options for NAT router and
firewall support, and provides support for secure file transfers using explicit TLS sessions. Secure
connections require that a valid server certificate be installed on the system.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer Class

FtpServer overview

Public Static (Shared) Methods

ErrorText Returns the description of an error code.

Public Instance Constructors

 FtpServer Constructor Initializes a new instance of the FtpServer class.

Public Instance Fields

AdapterAddress Returns the IP address associated with the
specified network adapter.

Public Instance Properties

AdapterCount Get the number of available local and remote
network adapters.

AuthFail Gets and sets the maximum number of
authentication attempts permitted.

AuthTime Gets and sets the amount of time a client has to
authenticate the session.

CertificateName Gets and sets a value that specifies the name of
the server certificate.

CertificatePassword Gets and sets the password associated with the
server certificate.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateUser Gets and sets the user that owns the server
certificate.

ClientAccess Gets and sets the access rights that have been
granted to the client session.

ClientAddress Return the Internet address of the current client
connection.

ClientCount Return the number of active client sessions
connected to the server.

ClientDirectory Return the current working directory for the active
client session.

ClientHome Return the home directory for the active client
session.

ClientHost Return the host name that the client used to
establish the connection.

ClientId Gets the unique client identifier for the current
client session.

FtpServer Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.ErrorText.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.CertificateUser.html

ClientIdle Gets and sets the maximum number of seconds a
client can be idle before the server terminates the
session.

ClientPort Gets a value that specifies the port number used
by the current client session.

ClientThread Gets the thread ID for the current client session.

ClientUser Return the user name associated with the specified
client session.

CommandLine Return the complete command line issued by the
client.

Directory Get and set the full path to the root directory
assigned to the server.

ExecTime Get and set maximum number of seconds that the
server will permit an external command to
execute.

ExternalAddress Get and set the external IP address used for
passive mode data transfers.

HiddenFiles Determine if the server should permit access to
hidden files.

Identity Gets and sets a string that identifies the server to
the client.

IdleTime Gets and sets the maximum number of seconds a
client can be idle before the server terminates the
session.

IsActive Gets a value which indicates if the server is active.

IsAnonymous Determine if the active client session has
authenticated as an anonymous user.

IsAuthenticated Determine if the active client session has been
authenticated.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsListening Gets a value which indicates if the server is
listening for client connections.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalPath Return the full path to the local file or directory
that is the target of the current command.

LocalTime Determines if the server should return file and
directory times adjusted for the local timezone.

LocalUser Determines if the server should perform user
authentication using the Windows local account

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.CommandLine.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.ExecTime.html

database.

LockFiles Determines if files should be exclusively locked
when a client attempts to upload or download a
file.

LogFile Gets and sets the name of the server log file.

LogFormat Gets and sets the format used when updating the
server log file.

LogLevel Gets and sets the level of detail included in the
server log file.

MaxClients Gets and sets the maximum number of clients that
can connect to the server.

MaxGuests Gets and sets the maximum number of
anonymous users that are permitted to connect to
the server.

MaxPort Gets and sets the maximum port number used by
the server for passive data connections.

MemoryUsage Gets the amount of unmanaged memory currently
allocated by the server.

MinPort Gets and sets the maximum port number used by
the server for passive data connections.

MultiUser Determine if the server should be started in multi-
user mode.

Options Gets and sets the options that may be specified for
the server instance.

Priority Gets and sets a value which specifies the server
priority.

ReadOnly Determine if the server should prevent clients from
uploading files.

Restricted Determine if the server should be started in
restricted mode, limiting client access to the server.

Secure Determine if the server should accept secure client
connections.

ServerAddress Gets and sets the address that will be used by the
server to listen for connections.

ServerHandle Gets the handle to the server created to listen for
client connections.

ServerName Gets a value which specifies the host name for the
local system.

ServerPort Gets and sets the port number that will be used by
the server to listen for connections.

ServerThread Gets the thread ID for the current server.

ServerUuid Gets and sets the Universally Unique Identifier

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.ServerHandle.html

(UUID) associated with the server.

StackSize Gets and sets the size of the stack allocated for
threads created by the server.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the network function tracing logfile.

TraceFlags Gets and sets a value which specifies the network
function tracing flags.

UnixMode Determine if the server should impersonate a
UNIX-based operating system.

Version Gets a value which returns the current version of
the FtpServer class library.

VirtualPath Return the virtual path to the local file or directory
that is the target of the current command.

Public Instance Methods

AddUser Overloaded. Add a new virtual user to the server.

Authenticate Overloaded. Authenticate the client and assign
access rights for the session.

DeleteUser Remove a virtual user from the server.

Disconnect Overloaded. Disconnect the specified client session
from the server.

Dispose Overloaded. Releases all resources used by
FtpServer.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the FtpServer
class.

RegisterProgram Overloaded. Register a program for use with the
SITE EXEC command.

Reset Reset the internal state of the object, resetting all
properties to their default values.

ResolvePath Overloaded. Resolve a path to its full virtual or
local file name.

Restart Restarts the server and terminates all active client
connections.

Resume Resume accepting new client connections.

SendResponse Overloaded. Send a result code and message to
the client in response to a command.

Start Overloaded. Start listening for client connections
on the specified IP address and port number.

Stop Stop listening for new client connections and
terminate all active clients already connected to
the server.

Suspend Suspend accepting new client connections.

Throttle Overloaded. Limit the maximum number of client
connections, connections per IP address and
connection rate.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the server.

Public Instance Events

OnAuthenticate Occurs when the client has requested
authentication with the specified username and
password.

OnCommand Occurs when a client has issued a command to the
server.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnDownload Occurs when a connection is established with the
remote host.

OnError Occurs when an network operation fails.

OnExecute Occurs when the client has executed an external
program on the server.

OnIdle Occurs when the there are no clients connected to
the server.

OnLogin Occurs when the client has successfully
authenticated the session.

OnLogout Occurs when the client has logged out or
reinitialized the session.

OnResult Occurs when the command issued by the client
has been processed by the server.

OnStart Occurs when the server starts accepting
connections.

OnStop Occurs when the server stops accepting
connections.

OnTimeout Occurs when the client has exceeded the
maximum allowed idle time.

OnUpload Occurs when the client has successfully uploaded a
file to the server.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the FtpServer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the FtpServer class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer();

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer Constructor

The fields of the FtpServer class are listed below. For a complete list of FtpServer class members, see the
FtpServer Members topic.

Public Instance Fields

AdapterAddress Returns the IP address associated with the
specified network adapter.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer Fields

Returns the IP address associated with the specified network adapter.

[Visual Basic]
Public ReadOnly AdapterAddress As AdapterAddressArray

[C#]
public readonly AdapterAddressArray AdapterAddress;

Remarks
The AdapterAddress array returns the IP addresses that are associated with the local network or remote
dial-up network adapters configured on the system. The AdapterCount property can be used to
determine the number of adapters that are available.

Multihomed systems with more than one local network adapter, or a combination of local and dial-up
adapters will not be listed in a specific order. An application should not make the assumption that the first
address returned by AdapterAddress always refers to a local network adapter.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress will return an
empty string. This indicates that the system does not have a physical network adapter with an assigned IP
address, and there are no dial-up networking connections currently active. If a dial-up networking
connection is established at some later point, the AdapterCount property will change to 1, and the
AdapterAddress property will return the IP address allocated for that connection.

See Also
FtpServer Class | SocketTools Namespace | AdapterAddressArray Class | AdapterCount Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AdapterAddress Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.AdapterAddressArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.AdapterAddressArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.AdapterAddressArray.html

The properties of the FtpServer class are listed below. For a complete list of FtpServer class members,
see the FtpServer Members topic.

Public Instance Properties

AdapterCount Get the number of available local and remote
network adapters.

AuthFail Gets and sets the maximum number of
authentication attempts permitted.

AuthTime Gets and sets the amount of time a client has to
authenticate the session.

CertificateName Gets and sets a value that specifies the name of
the server certificate.

CertificatePassword Gets and sets the password associated with the
server certificate.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateUser Gets and sets the user that owns the server
certificate.

ClientAccess Gets and sets the access rights that have been
granted to the client session.

ClientAddress Return the Internet address of the current client
connection.

ClientCount Return the number of active client sessions
connected to the server.

ClientDirectory Return the current working directory for the active
client session.

ClientHome Return the home directory for the active client
session.

ClientHost Return the host name that the client used to
establish the connection.

ClientId Gets the unique client identifier for the current
client session.

ClientIdle Gets and sets the maximum number of seconds a
client can be idle before the server terminates the
session.

ClientPort Gets a value that specifies the port number used
by the current client session.

ClientThread Gets the thread ID for the current client session.

ClientUser Return the user name associated with the specified
client session.

FtpServer Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.CertificateUser.html

CommandLine Return the complete command line issued by the
client.

Directory Get and set the full path to the root directory
assigned to the server.

ExecTime Get and set maximum number of seconds that the
server will permit an external command to
execute.

ExternalAddress Get and set the external IP address used for
passive mode data transfers.

HiddenFiles Determine if the server should permit access to
hidden files.

Identity Gets and sets a string that identifies the server to
the client.

IdleTime Gets and sets the maximum number of seconds a
client can be idle before the server terminates the
session.

IsActive Gets a value which indicates if the server is active.

IsAnonymous Determine if the active client session has
authenticated as an anonymous user.

IsAuthenticated Determine if the active client session has been
authenticated.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsListening Gets a value which indicates if the server is
listening for client connections.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalPath Return the full path to the local file or directory
that is the target of the current command.

LocalTime Determines if the server should return file and
directory times adjusted for the local timezone.

LocalUser Determines if the server should perform user
authentication using the Windows local account
database.

LockFiles Determines if files should be exclusively locked
when a client attempts to upload or download a
file.

LogFile Gets and sets the name of the server log file.

LogFormat Gets and sets the format used when updating the
server log file.

LogLevel Gets and sets the level of detail included in the

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.CommandLine.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.ExecTime.html

server log file.

MaxClients Gets and sets the maximum number of clients that
can connect to the server.

MaxGuests Gets and sets the maximum number of
anonymous users that are permitted to connect to
the server.

MaxPort Gets and sets the maximum port number used by
the server for passive data connections.

MemoryUsage Gets the amount of unmanaged memory currently
allocated by the server.

MinPort Gets and sets the maximum port number used by
the server for passive data connections.

MultiUser Determine if the server should be started in multi-
user mode.

Options Gets and sets the options that may be specified for
the server instance.

Priority Gets and sets a value which specifies the server
priority.

ReadOnly Determine if the server should prevent clients from
uploading files.

Restricted Determine if the server should be started in
restricted mode, limiting client access to the server.

Secure Determine if the server should accept secure client
connections.

ServerAddress Gets and sets the address that will be used by the
server to listen for connections.

ServerHandle Gets the handle to the server created to listen for
client connections.

ServerName Gets a value which specifies the host name for the
local system.

ServerPort Gets and sets the port number that will be used by
the server to listen for connections.

ServerThread Gets the thread ID for the current server.

ServerUuid Gets and sets the Universally Unique Identifier
(UUID) associated with the server.

StackSize Gets and sets the size of the stack allocated for
threads created by the server.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Trace Gets and sets a value which indicates if network
function logging is enabled.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.ServerHandle.html

TraceFile Gets and sets a value which specifies the name of
the network function tracing logfile.

TraceFlags Gets and sets a value which specifies the network
function tracing flags.

UnixMode Determine if the server should impersonate a
UNIX-based operating system.

Version Gets a value which returns the current version of
the FtpServer class library.

VirtualPath Return the virtual path to the local file or directory
that is the target of the current command.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Get the number of available local and remote network adapters.

[Visual Basic]
Public ReadOnly Property AdapterCount As Integer

[C#]
public int AdapterCount {get;}

Property Value
Returns the number of available local and remote network adapters.

Remarks
The AdapterCount property returns the number of local and remote dial-up networking adapters
available on the local system. This value can be used in conjunction with the AdapterAddress array to
enumerate the IP addresses assigned to the various network adapters.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress will return an
empty string. This indicates that the system does not have a physical network adapter with an assigned IP
address, and there are no dial-up networking connections currently active. If a dial-up networking
connection is established at some later point, the AdapterCount property will change to 1, and the
AdapterAddress property will return the IP address allocated for that connection.

See Also
FtpServer Class | SocketTools Namespace | AdapterAddress Field

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AdapterCount Property

Gets and sets the maximum number of authentication attempts permitted.

[Visual Basic]
Public Property AuthFail As Integer

[C#]
public int AuthFail {get; set;}

Property Value
An integer value that specifies the maximum number of user authentication attempts permitted.

Remarks
The AuthFail property value specifies the maximum number of user authentication attempts that are
permitted until the server terminates the client connection. A value of zero specifies that the default
configuration limit of 3 authentication attempts per login should be allowed. The maximum number of
authentication attempts is 10.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AuthFail Property

Gets and sets the amount of time a client has to authenticate the session.

[Visual Basic]
Public Property AuthTime As Integer

[C#]
public int AuthTime {get; set;}

Property Value
An integer value that specifies the user authentication time in seconds.

Remarks
The AuthTime property value specifies the maximum number of user authentication attempts that are
permitted until the server terminates the client connection. A value of zero specifies the default value of 60
seconds. If the value is non-zero, the minimum value is 20 seconds and the maximum value is 300
seconds (5 minutes). This value is used to ensure that a client has successfully authenticated itself within a
limited period of time. This prevents a potential denial-of-service attack against the server where clients
establish connections and hold them open without authentication. In conjunction with the AuthFail
property, this also limits the ability of a client to attempt to probe the server for valid username and
password combinations.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AuthTime Property

Gets and sets a value that specifies the name of the server certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the server certificate name.

Remarks
The CertificateName property sets the common name or friendly name of the certificate that should be
used when starting a secure server. If the Secure property is set to True, this property must be specify a
valid certificate name. The certificate must have a private key associated with it, otherwise client
connections will fail because the class will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
FtpServer Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.CertificateName Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when security is enabled for the server. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the server certificate will be installed in the user's personal certificate store, and therefore it
is not necessary to set this property value because that is the default location that will be used to search
for the certificate. This property is only used if the CertificateName property is also set to a valid
certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the server certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private key in

FtpServer.CertificateStore Property

PKCS #12 format. If the file is protected by a password, the CertificatePassword property must also be
set to specify the password.

See Also
FtpServer Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.CertificatePassword.html

Gets and sets the access rights that have been granted to the client session.

[Visual Basic]
Public Property ClientAccess As UserAccess

[C#]
public FtpServer.UserAccess ClientAccess {get; set;}

Property Value
A UserAccess enumeration that specifies on or more user access permissions.

Remarks
The ClientAccess property is used to determine all of the access permissions that are currently granted to
an authenticated client session and optionally change those permissions. For a list of user access rights
that can be granted to the client, see the UserAccess enumeration.

When modifying the value of this property, it is recommended that you use bitwise OR and AND
operands to set and clear specific bitflags. The exception is when using the ftpAccessDefault permission.
If you wish to reset the client session to use the default permissions based on the server configuration and
client authentication, then you should assign this value directly to the ClientAccess property.

This property should only be accessed within an event handler such as OnCommand because its value is
specific to the client session that raised the event. This property will always return a value of zero outside
of an event handler, and an exception will be raised if you attempt to modify this property outside of an
event handler.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ClientAccess Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html

Return the Internet address of the current client connection.

[Visual Basic]
Public ReadOnly Property ClientAddress As String

[C#]
public string ClientAddress {get;}

Property Value
A string that specifies the client Internet Protocol address.

Remarks
The ClientAddress property returns the address of the current client session which has connected to the
server. This property should only be accessed within an event handler such as OnConnect because its
value is specific to the client session that raised the event. This property will always return an empty string
when accessed outside of an event handler.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ClientAddress Property

Return the number of active client sessions connected to the server.

[Visual Basic]
Public ReadOnly Property ClientCount As Integer

[C#]
public int ClientCount {get;}

Property Value
An integer value that specifies the number of active client sessions.

Remarks
The ClientCount read-only property returns the number of active client sessions that have been
established with the server. The value includes both authenticated and unauthenticated client sessions.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ClientCount Property

Return the current working directory for the active client session.

[Visual Basic]
Public ReadOnly Property ClientDirectory As String

[C#]
public string ClientDirectory {get;}

Property Value
A string that specifies the full path to a local directory on the server.

Remarks
The ClientDirectory property returns the current working directory for the active client session. Initially
this value will be the absolute path on the local system that maps to an authenticated client's home
directory. The client can change its current working directory using the CWD command. The ClientHome
property will return the home directory that has been assigned to the client.

It is important to note that the current working directory for client sessions is virtual, and does not reflect
the current working directory for the server process. This property should only be accessed within an
event handler after the client session has been authenticated. Unauthenticated clients are not assigned a
current working directory. This property will always return an empty string when accessed outside of an
event handler.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ClientDirectory Property

Return the home directory for the active client session.

[Visual Basic]
Public ReadOnly Property ClientHome As String

[C#]
public string ClientHome {get;}

Property Value
A string that specifies the full path to a local directory on the server.

Remarks
The ClientHome property returns the home directory for the active client session. This will be the same
path to the home directory specified when the Authenticate method was used to authenticate the client
session. If a home directory was not explicitly assigned when the client was authenticated, then this
property returns the default home directory that was created for the client, or the server root directory if
the MultiUser property was set to False when the server was started. The ClientDirectory property will
return the current working directory for the client.

This property should only be accessed within an event handler after the client session has been
authenticated. Unauthenticated clients are not assigned a home directory. This property will always return
an empty string when accessed outside of an event handler.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ClientHome Property

Return the host name that the client used to establish the connection.

[Visual Basic]
Public ReadOnly Property ClientHost As String

[C#]
public string ClientHost {get;}

Property Value
A string that specifies the host name used by the client to connect to the server.

Remarks
The ClientHost property returns the host name that the client used to establish the connection. If the
client sends the HOST command, this property will return the value specified by the client. If the client
does not explicitly specify the host name, then this property will return the same host name that was
assigned to the server when it started.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ClientHost Property

Gets the unique client identifier for the current client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which uniquely identifies the client session.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This value can be
used by the application to identify that client session, and is different than the socket handle allocated for
the client. While it is possible for a client socket handle to be reused by the operating system, client IDs are
unique throughout the life of the server session and are never duplicated.

It is important to note that the actual value of the client ID should be considered opaque. It is only
guaranteed that the value will be greater than zero, and that it will be unique to the client session.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ClientId Property

Gets and sets the maximum number of seconds a client can be idle before the server terminates the
session.

[Visual Basic]
Public Property ClientIdle As Integer

[C#]
public int ClientIdle {get; set;}

Property Value
An integer value that specifies the idle timeout period in seconds.

Remarks
The ClientIdle property returns the maximum number of seconds that the active client session may be
idle before the server closes the control connection. The idle timeout period for each client session is
based on the value of the IdleTime property when the server was started, with the default value of 300
seconds (5 minutes). Changing this value inside an event handler will change the timeout period for the
active client session. Clients may also use the SITE IDLE command to request that the server change the
idle timeout period.

This property should only be accessed within an event handler such as OnConnect or OnLogin because
its value is specific to the client session that raised the event. This property will always return a value of
zero outside of an event handler, and an exception will be raised if you attempt to modify this property
outside of an event handler.

When the timeout period for the client has elapsed, the OnTimeout event will fire prior to the client being
disconnected from the server.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ClientIdle Property

Gets a value that specifies the port number used by the current client session.

[Visual Basic]
Public ReadOnly Property ClientPort As Integer

[C#]
public int ClientPort {get;}

Property Value
An integer value which specifies the peer port number.

Remarks
The ClientPort property returns the port number that the current client has used when establishing a
connection with the server. This property value is only meaningful when accessed within an event handler
such as the OnConnect event.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ClientPort Property

Gets the thread ID for the current client session.

[Visual Basic]
Public ReadOnly Property ClientThread As Integer

[C#]
public int ClientThread {get;}

Property Value
An integer value which identifies the client thread that was created to manage the client session.

Remarks
Until the thread terminates, the thread identifier uniquely identifies the thread throughout the system.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ClientThread Property

Return the user name associated with the specified client session.

[Visual Basic]
Public ReadOnly Property ClientUser As String

[C#]
public string ClientUser {get;}

Property Value
A string that specifies the user name associated with the active client session.

Remarks
The ClientUser property returns the user name that the client used to authenticate the client session. This
property should only be accessed within an event handler after the client session has been authenticated.
Unauthenticated clients are not assigned a user name. This property will always return an empty string
when accessed outside of an event handler.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ClientUser Property

Get and set the full path to the root directory assigned to the server.

[Visual Basic]
Public Property Directory As String

[C#]
public string Directory {get; set;}

Property Value
A string that specifies the full path to a local directory on the server.

Remarks
The Directory property returns the path to the root directory for the server. If this property is set to the
name of a valid directory before the server is started, that directory will be considered the root directory
for the server. If this property is not set, or is set to an empty string, then the server will use the current
working directory as its root directory, however this is not recommended. It is recommended that you
specify an absolute path to the directory, otherwise the path will be relative to the current working
directory. You may include environment variables in the path surrounded by percent (%) symbols and
they will be expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

If the MultiUser property is False, all authenticated clients will have their current working directory
initialized to the server root directory. If the MultiUser property is True, then the Public and User
subdirectories will be created in the root directory, and each authenticated client will have their current
working directory initialized to their individual home directory.

This property can be read after the server has started and it will return the full path to the root directory.
However, attempting to change the value of this property after the server has started will cause an
exception to be raised. To change the root directory for the server, you must first call the Stop method
which will terminate all active client connections.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Directory Property

Get and set the external IP address used for passive mode data transfers.

[Visual Basic]
Public Property ExternalAddress As String

[C#]
public string ExternalAddress {get; set;}

Property Value
A string that specifies an Internet Protocol address.

Remarks
When using passive mode file transfers, the server creates a second listening (passive) socket that is used
to exchange data between the client and server. The client sends the PASV command, and the server
responds with its IP address and the ephemeral port number that was selected for the transfer. If the
server is located behind a router that performs Network Address Translation (NAT), the address that the
server will return will typically be a non-routable IP address assigned to the local system on the LAN side
of the network. Setting the ExternalAddress property will instruct the server to return a different IP
address in response to the PASV command sent by the client. Typically you would use the address
assigned to the router on the Internet side of the connection.

If the ExternalAddresss property is not assigned a specific address, reading this property value will cause
the control to automatically determine its external IP address. This requires that you have an active
connection to the Internet; checking the value of this property on a system that uses dial-up networking
may cause the operating system to automatically connect to the Internet service provider. The control
may be unable to determine the external IP address for the local host for a number of reasons, particularly
if the system is behind a firewall or uses a proxy server that restricts access to external sites on the Internet.
If the external address for the local host cannot be determined, the property will return an empty string.

This property will not change the IP address the server is using to listen for client connections. The only
way to change the listening IP address is to stop and restart the server using the new address. This
property only changes the IP address that is reported to clients when a passive data connection is used.
Incorrect use of this property can prevent the client from establishing a data connection to the server. The
address must be in the same address family as the local address that the server was started with. For
example, if the server was started using an IPv4 address, the IP address assigned to this property cannot
be an IPv6 address.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ExternalAddress Property

Determine if the server should permit access to hidden files.

[Visual Basic]
Public Property HiddenFiles As Boolean

[C#]
public bool HiddenFiles {get; set;}

Property Value
A Boolean value that specifies if hidden files can be accessed by clients.

Remarks
The HiddenFiles property determines if the server should allow clients to access files with the hidden
and/or system attribute. If this property is True, then hidden files are included in directory listings and
clients may download or replace hidden files. If the property is False, hidden files are not included in
directory listings and any attempt to access, delete or modify a hidden file will result in an error.

The default value for this property is False.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.HiddenFiles Property

Gets and sets a string that identifies the server to the client.

[Visual Basic]
Public Property Identity As String

[C#]
public string Identity {get; set;}

Property Value
A string that identifies the server instance.

Remarks
The Identity property returns a string that is used to identify the server. It is used for informational
purposes only and does not affect the operation of the server. Typically the string specifies the name of
the application and a version number, and is displayed whenever a client establishes its initial connection
to the server. This property can be set to assign an identity to the server, however after the server has
started this property becomes read-only.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Identity Property

Gets and sets the maximum number of seconds a client can be idle before the server terminates the
session.

[Visual Basic]
Public Property IdleTime As Integer

[C#]
public int IdleTime {get; set;}

Property Value
An integer value that specifies the idle timeout period in seconds.

Remarks
The IdleTime property specifies the maximum number of seconds that a client session may be idle before
the server closes the control connection to the client. A value of zero specifies the default value of 300
seconds (5 minutes). If the value is non-zero, the minimum value is 60 seconds and the maximum value is
7200 seconds (2 hours). This value is used to initialize the default idle timeout period for each client
session. A client may request that the server change the idle timeout period for its session by sending the
SITE IDLE command. The server determines if a client is idle based on the time the last command was
issued and whether or not a file transfer is in progress.

The ClientIdle property can be used to determine the idle timeout period for a specific client. When the
timeout period for the client has elapsed, the OnTimeout event will fire prior to the client being
disconnected from the server.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.IdleTime Property

Gets a value which indicates if the server is active.

[Visual Basic]
Public ReadOnly Property IsActive As Boolean

[C#]
public bool IsActive {get;}

Property Value
A Boolean value that specifies if the server instance is currently active.

Remarks
The IsActive property returns True if the server has been started using the Start method. If the server has
not been started, the property will return False.

To determine if the server is accepting client connections, use the IsListening property. This property will
only indicate if the server has been started. For example, if the server has been suspended using the
Suspend method, this property will return a value of True, while the IsListening property will return a
value of False.

An application should not depend on this property returning False immediately after the Stop method
has been called to shutdown the server. This property will continue to return True until all clients have
disconnected from the server and the server thread has terminated. To determine when the server has
stopped, implement a handler for the OnStop event.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.IsActive Property

Determine if the active client session has authenticated as an anonymous user.

[Visual Basic]
Public ReadOnly Property IsAnonymous As Boolean

[C#]
public bool IsAnonymous {get;}

Property Value
A Boolean value that specifies if the active client session is anonymous.

Remarks
The IsAnonymous property returns True if the active client session has authenticated as an anonymous
(guest) user. This property should only be accessed within an event handler such as OnCommand
because its value is specific to the client session that raised the event. This property will always return a
value of False outside of an event handler.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.IsAnonymous Property

Determine if the active client session has been authenticated.

[Visual Basic]
Public ReadOnly Property IsAuthenticated As Boolean

[C#]
public bool IsAuthenticated {get;}

Property Value
A Boolean value that specifies if the active client session has been authenticated.

Remarks
The IsAuthenticated property returns True if the active client session has successfully authenticated with
a valid username and password. This property should only be accessed within an event handler such as
OnCommand because its value is specific to the client session that raised the event. This property will
always return a value of False outside of an event handler.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.IsAuthenticated Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.IsInitialized Property

Gets a value which indicates if the server is listening for client connections.

[Visual Basic]
Public ReadOnly Property IsListening As Boolean

[C#]
public bool IsListening {get;}

Property Value
Returns true if the server is listening for client connections; otherwise returns false.

Remarks
The IsListening property will return true if the Start method was called and the server is currently
accepting incoming client connections. In all other situations, this property will return false.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.IsListening Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public FtpServer.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LastErrorString Property

Return the full path to the local file or directory that is the target of the current command.

[Visual Basic]
Public Property LocalPath As String

[C#]
public string LocalPath {get; set;}

Property Value
A string that specifies the full path to a local file or directory on the server.

Remarks
The LocalPath property returns the full path to a local file name or directory specified by the client as an
argument to a standard FTP command. For example, if the client sends the RETR command to the server,
this property will return the complete path to the local file that the client wants to download. This property
will only return a value for those standard commands that perform some action on a file or directory,
otherwise it will return an empty string.

Setting this property allows you to effectively redirect the client to use a different file than the one that was
actually requested. If the path is absolute, then it will be used as-is. If the path is relative, it will be relative
to the current working directory for the active client session. The full path to this file is not limited to the
server root directory or its subdirectory, it can specify a file anywhere on the local system. If this property is
set to an empty string, then the server will revert to using the actual file or directory name specified by the
command.

This property should only be set within an OnCommand event handler, and only for those commands
that perform an action on a file or directory. If the current command does not target a file or directory,
setting this property will cause an exception to be raised by the control. Exercise caution when using this
property to redirect the server to use a different file than the one requested by the client; changing the
target file may cause the client to behave in unexpected ways.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LocalPath Property

Determines if the server should return file and directory times adjusted for the local timezone.

[Visual Basic]
Public Property LocalTime As Boolean

[C#]
public bool LocalTime {get; set;}

Property Value
A Boolean value that specifies of files should be listed using the local timezone on the server.

Remarks
The LocalTime property determines if the server should return file and directory times adjusted for the
local timezone. By default, the server will return all file times as UTC values. This option affects the time
information sent to a client when a list of files is requested, as well as when status information is requested
for a specific file. This property value will not affect the MDTM and MFMT commands which always use file
times as UTC values.

The default value for this property is False.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LocalTime Property

Determines if the server should perform user authentication using the Windows local account database.

[Visual Basic]
Public Property LocalUser As Boolean

[C#]
public bool LocalUser {get; set;}

Property Value
A Boolean value that specifies if the server should authenticate local users.

Remarks
The LocalUser property determines if the server should perform user authentication using the Windows
local account database. If this option is not specified, the application is responsible for creating virtual
users using the AddUser method or implementing an OnAuthenticate event handler and authenticating
client sessions individually.

If this property is set to True, a client can authenticate as a local user, however the session will not inherit
that user's access rights. All files that are accessed or created by the server will continue to use the
permissions of the process that started the server. For example, consider a server application that was
started by local user A. Next, a client connects to the server and authenticates itself as local user B. When
that client uploads a file to the server, the file that is created will be owned by user A, not user B. This
ensures that the server application retains ownership and control of the files that have been created or
modified.

The default value for this property is False.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LocalUser Property

Determines if files should be exclusively locked when a client attempts to upload or download a file.

[Visual Basic]
Public Property LockFiles As Boolean

[C#]
public bool LockFiles {get; set;}

Property Value
A Boolean value that specifies if files should be locked during file transfers.

Remarks
The LocalTime property determines if files should be exclusively locked when a client attempts to upload
or download a file. If another client attempts to access the same file, the operation will fail. By default, the
server will permit multiple clients to access the same file, although it will still write-lock files that are in the
process of being uploaded..

The default value for this property is False.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LockFiles Property

Gets and sets the name of the server log file.

[Visual Basic]
Public Property LogFile As String

[C#]
public string LogFile {get; set;}

Property Value
A string that specifies the full path to a local log file.

Remarks
The LogFile property is used to specify the name of a file that will contain a log of all client activity. The
LogFormat and LogLevel properties affect the specific format for the file and the level of detail included
in the log. It is recommended that you specify an absolute path to the log file, otherwise the path will be
relative to the current working directory. You may include environment variables in the path surrounded
by percent (%) symbols and they will be expanded.

If the log file does not exist it will be created when the server is started. If file already exists, the server will
append the new logging data to the file. The server must have permission to create and/or modify the
specified file.

Setting this property to an empty string after the server has been started will have the effect of disabling
logging, setting the logging level to 0 and the logging format to FormatType.formatNone.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LogFile Property

Gets and sets the format used when updating the server log file.

[Visual Basic]
Public Property LogFormat As FormatType

[C#]
public FtpServer.FormatType LogFormat {get; set;}

Property Value
A FormatType enumeration that specifies the log file format.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LogFormat Property

Gets and sets the level of detail included in the server log file.

[Visual Basic]
Public Property LogLevel As Integer

[C#]
public int LogLevel {get; set;}

Property Value
An integer value that specifies the amount of information the server writes to the log file.

Remarks
The LogLevel property is used to specify the level of detail that should generated in the log file. The
minimum value is 1 and the maximum value is 10. If this parameter is zero, it is the same as specifying a
log file format of ftpLogNone and will disable logging by the server.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LogLevel Property

Gets and sets the maximum number of clients that can connect to the server.

[Visual Basic]
Public Property MaxClients As Integer

[C#]
public int MaxClients {get; set;}

Property Value
An integer value which specifies the maximum number of client sessions that will be accepted by the
server. A value of zero specifies that there is no fixed limit to the maximum number of clients.

Remarks
The MaxClients property specifies the maximum number of client connections that will be accepted by
the server. Once the maximum number of connections has been established, the server will reject any
subsequent connections until the number of active client connections drops below the specified value. A
value of zero specifies that there should be no limit on the number of clients.

Changing the value of this property while a server is actively listening for connections will modify the
maximum number of client connections permitted, but it will not affect connections that have already
been established.

By default, there are no limits on the number of client connections or the connection rate when a server is
started. Use the Throttle method to change the maximum number of client connections per IP address or
the overall connection rate threshold for the server.

It is important to note that regardless of the maximum number of clients specified by this property, the
actual number of client connections that can be managed by the server depends on the number of
sockets that can be allocated from the operating system. The amount of physical memory installed on the
system affects the number of connections that can be maintained because each connection allocates
memory for the socket context from the non-paged memory pool.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.MaxClients Property

Gets and sets the maximum number of anonymous users that are permitted to connect to the server.

[Visual Basic]
Public Property MaxGuests As Integer

[C#]
public int MaxGuests {get; set;}

Property Value
An integer value that specifies the maximum number of anonymous (guest) users.

Remarks
The MaxGuests property specifies the maximum number of guest users that will be accepted by the
server. Once the maximum number of connections has been established, the server will reject any
subsequent connections until the number of active guest users drops below the specified value. A guest
user is one that authenticates with the username "anonymous" and their email address as the password.

Changing the value of this property while a server is actively listening for connections will modify the
maximum number of guest logins permitted, but it will not affect connections that have already been
established. You can also use the Throttle method to change the maximum number of clients, the
maximum number of clients per IP address and the rate at which clients can connect to the server.

The default value for this property is zero, disabling guest logins. If your server is accessible to the public
and you decide to allow guest users, it is recommended that you set the Restricted property to True, and
you should not grant permission for guests to upload files or execute registered programs using the SITE
EXEC command.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.MaxGuests Property

Gets and sets the maximum port number used by the server for passive data connections.

[Visual Basic]
Public Property MaxPort As Integer

[C#]
public int MaxPort {get; set;}

Property Value
An integer value that specifies the maximum port number.

Remarks
The MaxPort property specifies the maximum range of port numbers that will be used with passive data
connections. A value of zero specifies the default value of 65535 should be used. The minimum value of
this member is 10000 and the maximum value is 65535. If the value is non-zero, it must be greater than
the value of the MinPort property.

Attempting to change the value of this property after the server has started will cause an exception to be
raised. To change the maximum port number for the server, you must first call the Stop method which will
terminate all active client connections.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.MaxPort Property

Gets and sets the maximum port number used by the server for passive data connections.

[Visual Basic]
Public Property MinPort As Integer

[C#]
public int MinPort {get; set;}

Property Value
An integer value that specifies the minimum port number.

Remarks
The MinPort property specifies the minimum range of port numbers that will be used with passive data
connections. A value of zero specifies that the default value of 30000 should be used. The minimum value
of this member is 10000 and the maximum value is 65535. If the value is non-zero, it must be less than the
value of the MaxPort property.

Attempting to change the value of this property after the server has started will cause an exception to be
raised. To change the minimum port number for the server, you must first call the Stop method which will
terminate all active client connections.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.MinPort Property

Gets the amount of unmanaged memory currently allocated by the server.

[Visual Basic]
Public ReadOnly Property MemoryUsage As Long

[C#]
public long MemoryUsage {get;}

Property Value
A long integer which specifies the number of bytes of memory allocated.

Remarks
This read-only property returns the amount of memory allocated by the server and all active client
sessions. It enumerates all unmanaged memory allocations made by the server process and client session
threads, returning the total number of bytes allocated for the server. This value reflects the amount of
memory explicitly allocated by the class and does not reflect the total working set size of the process, or
the memory allocated on the managed heap which is used by the .NET garbage collector.

Getting the value of this property forces the server into a locked state, and all client sessions will block
while the memory usage is being calculated. Because this enumerates all unmanaged heaps allocated for
the server process, it can be an expensive operation, particularly when there are a large number of active
clients connected to the server. Frequently checking the value of this property can significantly degrade
the performance of the server. It is primarily intended for use as a debugging tool to determine if memory
usage is the result of an increase in active client sessions. If the value returned by this property remains
reasonably constant, but the amount of memory allocated for the process continues to grow, it could
indicate a memory leak in some other area of the application.

See Also
FtpServer Class | SocketTools Namespace | StackSize Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.MemoryUsage Property

Determine if the server should be started in multi-user mode.

[Visual Basic]
Public Property MultiUser As Boolean

[C#]
public bool MultiUser {get; set;}

Property Value
A Boolean value that specifies if the server should be started in multi-user mode.

Remarks
The MultiUser property determines if the server should be started in multi-user mode. If this property is
set to True, each user will be assigned their own home directory which will be based on their user name.
When a client authenticates as that user, its current working directory is set to the user's home directory. If
this property is set to False, then all users will share the server root directory by default. This property
does not affect the maximum number of simultaneous client connections to the server. To isolate users to
their own individual home directory, set the Restricted property to True.

Setting this property to True will cause the server to create two subdirectories under the server root
directory named Public and Users. The Public subdirectory is where public files should be stored, and also
serves as the home directory for anonymous (guest) users. The Users subdirectory is where the home
directories for each user will be created.

Attempting to change the value of this property after the server has started will cause an exception to be
raised. To change this property value, you must first call the Stop method which will terminate all active
client connections.

The default value for this property is False.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.MultiUser Property

Gets and sets the options that may be specified for the server instance.

[Visual Basic]
Public Property Options As ServerOptions

[C#]
public FtpServer.ServerOptions Options {get; set;}

Property Value
A ServerOptions enumeration that specifies one or more server options.

Remarks
The Options property is used to specify one or more server options as bitflags using the ServerOptions
enumeration. Each option has a corresponding property, and it is recommended that you use those
properties, such as LocalUser and UnixMode, to specify whether a particular server option should be
enabled or disabled. Using the class properties will make your code more readable and ensure forward
compatibility.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Options Property

Gets and sets a value which specifies the server priority.

[Visual Basic]
Public Property Priority As ServerPriority

[C#]
public FtpServer.ServerPriority Priority {get; set;}

Property Value
Returns a ServerPriority enumeration value which specifies the current server priority. The default value for
this property is priorityNormal.

Remarks
The Priority property can be used to control the processor usage, memory and network bandwidth
allocated by the server for client sessions. The default priority balances resource utilization and client
throughput while ensuring that the user interface remains responsive to the user. Lower priorities reduce
the overall resource utilization at the expense of throughput.

Higher priority values increases the thread priority and processor utilization for the client sessions. It is not
recommended that you increase the server priority unless you understand the implications of doing so
and have thoroughly tested your application. Raising the priority of the server can have a negative impact
on the responsiveness of the user interface.

See Also
FtpServer Class | SocketTools Namespace | ServerPriority Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Priority Property

Determine if the server should prevent clients from uploading files.

[Visual Basic]
Public Property ReadOnly As Boolean

[C#]
public bool ReadOnly {get; set;}

Property Value
A Boolean value that specifies if clients have read-only access to the server.

Remarks
The ReadOnly property determines if the server should only allow read-only access to files by default,
changing the default permissions granted to authenticated users. If this property is set to True,
anonymous users will not be able to upload, rename or delete files and cannot create subdirectories. This
is recommended if the server is publicly accessible over the Internet and guest logins are permitted.

Attempting to change the value of this property after the server has started will cause an exception to be
raised. To change this property value, you must first call the Stop method which will terminate all active
client connections.

The default value for this property is False.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ReadOnly Property

Determine if the server should be started in restricted mode, limiting client access to the server.

[Visual Basic]
Public Property Restricted As Boolean

[C#]
public bool Restricted {get; set;}

Property Value
A Boolean value that specifies if client access to the server is restricted.

Remarks
The Restricted property determines if the server should be initialized in a restricted mode that isolates the
server and limits the ability for clients to access files on the host system. If this property is set to True, all
file transfers are limited to the user's home directory and certain site-specific commands are disabled. This
is recommended for general purpose applications designed to accept connections from clients over the
Internet. This property value is only meaningful if the MultiUser property has also been set to True.

Attempting to change the value of this property after the server has started will cause an exception to be
raised. To change this property value, you must first call the Stop method which will terminate all active
client connections.

The default value for this property is False.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Restricted Property

Determine if the server should accept secure client connections.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
A Boolean value that specifies if the server should accept secure connections.

Remarks
The Secure property determines if client connections are encrypted using the standard SSL or TLS security
protocols. The default value for this property is False, which specifies that clients will use a standard,
unencrypted connection to the server. To enable secure connections, the application should set this
property value to True prior to calling the Start method.

When secure connections are enabled, the server will accept the client connection and then wait for the
client to initiate the handshake where both the client and server negotiate the various encryption options
available. This process is handled automatically by the server, and all that is required is that the application
specify the server certificate which should be used. This is done by setting the CertificateName property,
and optionally the CertificateStore property if required.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Secure Property

Gets and sets the address that will be used by the server to listen for connections.

[Visual Basic]
Public Property ServerAddress As String

[C#]
public string ServerAddress {get; set;}

Property Value
A string which specifies the IP address that the server will use to listen for incoming client connections. An
empty string indicates that the server will accept connections on any valid network interface configured for
the local system.

Remarks
The ServerAddress property is used to specify the default address that the server will use when listening
for connections. Setting this property to the value 0.0.0.0 or an empty string indicates that the server
should listen for client connections using any valid network interface. If an address is specified, it must be a
valid Internet address that is bound to a network adapter configured on the local system. Clients will only
be able to connect to the server using that specific address.

It is common to set this property to the value 127.0.0.1 for testing purposes. It is a non-routable address
that specifies the local system, and most software firewalls are configured so they do not block
applications using this address.

See Also
FtpServer Class | SocketTools Namespace | ServerName Property | ServerPort Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ServerAddress Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public Property ServerName As String

[C#]
public string ServerName {get; set;}

Property Value
A string which specifies the local host name.

Remarks
The ServerName property returns the fully-qualified host name assigned to the local system. This consists
of the local computer name and its domain name. The actual value returned depends on the system
configuration. If no domain has been specified for the system, then only the machine name will be
returned.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ServerName Property

Gets and sets the port number that will be used by the server to listen for connections.

[Visual Basic]
Public Property ServerPort As Integer

[C#]
public int ServerPort {get; set;}

Property Value
An integer value which specifies the port number.

Remarks
The ServerPort property is used to set the port number that server will use to listen for incoming client
connections. Valid port numbers are in the range of 1 to 65535. It is recommended that most custom
servers specify a port number larger than 5000 to avoid potential conflicts with standard Internet services
and ephemeral ports used by client applications.

If a port number is specified that is already in use by another application, the OnError event will fire and
the background server thread will terminate. To enable a server to be stopped and immediately restarted
using the same address and port number, make sure that the ReuseAddress property is set to a value of
true.

See Also
FtpServer Class | SocketTools Namespace | ServerAddress Property | ServerName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ServerPort Property

Gets the thread ID for the current server.

[Visual Basic]
Public ReadOnly Property ServerThread As Integer

[C#]
public int ServerThread {get;}

Property Value
An integer value which identifies the server thread that was created. A return value of zero specifies that
no server has been started.

Remarks
Until the thread terminates, the thread identifier uniquely identifies the thread throughout the system.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ServerThread Property

Gets and sets the Universally Unique Identifier (UUID) associated with the server.

[Visual Basic]
Public Property ServerUuid As String

[C#]
public string ServerUuid {get; set;}

Property Value
A string that specifies the UUID assigned to the server instance.

Remarks
The ServerUuid property returns the UUID that uniquely identifies this instance of the server. If the
application does not set this property, a temporary UUID will be assigned to the server. If a value is
assigned to this property, it must be a valid UUID string. A permanent UUID can be generated using a
utility such as uuidgen which is included with Visual Studio.

Attempting to change the value of this property after the server has started will cause an exception to be
raised. To change this property value, you must first call the Stop method which will terminate all active
client connections.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ServerUuid Property

Gets and sets the size of the stack allocated for threads created by the server.

[Visual Basic]
Public Property StackSize As Integer

[C#]
public int StackSize {get; set;}

Property Value
An integer value that specifies the initial amount of memory that is committed to the stack for each thread
created by the server.

Remarks
The default stack size for each thread is set to 256K for 32-bit processes and 512K for 64-bit processes.
Increasing or decreasing the stack size will only affect new threads that are created by the server, it will not
affect those threads that have already been created to manage active client sessions. It is recommended
that most applications use the default stack size.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.StackSize Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ThrowError Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Trace Property

Gets and sets a value which specifies the name of the network function tracing logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.TraceFile Property

Gets and sets a value which specifies the network function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public FtpServer.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.TraceFlags Property

Determine if the server should impersonate a UNIX-based operating system.

[Visual Basic]
Public Property UnixMode As Boolean

[C#]
public bool UnixMode {get; set;}

Property Value
A Boolean value that specifies if the server should impersonate a UNIX based server.

Remarks
The UnixMode property determines if the server should impersonate a UNIX-based operating system. If
this property is set to a value of True, the server will identify itself as running on a UNIX system and
directory listings will be in a format commonly used by UNIX. If this property value is False, the server will
identify itself as running on Windows NT and directory listings will be in the same format used by the
Microsoft IIS FTP server. Note that this option does not affect the path delimiter used with file and
directory names.

Attempting to change the value of this property after the server has started will cause an exception to be
raised. To change this property value, you must first call the Stop method which will terminate all active
client connections.

The default value for this property is False.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.UnixMode Property

Gets a value which returns the current version of the FtpServer class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the FtpServer class
library. This value can be used by an application for validation and debugging purposes.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Version Property

Return the virtual path to the local file or directory that is the target of the current command.

[Visual Basic]
Public Property VirtualPath As String

[C#]
public string VirtualPath {get; set;}

Property Value
A string that specifies the virtual path to the local file accessed by the active client session.

Remarks
The VirtualPath property returns the virtual path to a local file name or directory specified by the client as
an argument to a standard FTP command. For example, if the client sends the RETR command to the
server, this property will return the complete virtual path to the file that the client wants to download. This
property will only return a value for those standard commands that perform some action on a file or
directory, otherwise it will return an empty string.

Setting this property allows you to effectively redirect the client to use a different file than the one that was
actually requested. If the path is absolute, then it will be used as-is. If the path is relative, it will be relative
to the current working directory for the active client session. If this property is set to an empty string, then
the server will revert to using the actual file or directory name specified by the command.

This property should only be set within an OnCommand event handler, and only for those commands
that perform an action on a file or directory. If the current command does not target a file or directory,
setting this property will cause an exception to be raised by the control. Exercise caution when using this
property to redirect the server to use a different file than the one requested by the client; changing the
target file may cause the client to behave in unexpected ways.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.VirtualPath Property

The methods of the FtpServer class are listed below. For a complete list of FtpServer class members, see
the FtpServer Members topic.

Public Static (Shared) Methods

ErrorText Returns the description of an error code.

Public Instance Methods

AddUser Overloaded. Add a new virtual user to the server.

Authenticate Overloaded. Authenticate the client and assign
access rights for the session.

DeleteUser Remove a virtual user from the server.

Disconnect Overloaded. Disconnect the specified client session
from the server.

Dispose Overloaded. Releases all resources used by
FtpServer.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the FtpServer
class.

RegisterProgram Overloaded. Register a program for use with the
SITE EXEC command.

Reset Reset the internal state of the object, resetting all
properties to their default values.

ResolvePath Overloaded. Resolve a path to its full virtual or
local file name.

Restart Restarts the server and terminates all active client
connections.

Resume Resume accepting new client connections.

SendResponse Overloaded. Send a result code and message to
the client in response to a command.

Start Overloaded. Start listening for client connections
on the specified IP address and port number.

Stop Stop listening for new client connections and
terminate all active clients already connected to
the server.

Suspend Suspend accepting new client connections.

FtpServer Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.ErrorText.html

Throttle Overloaded. Limit the maximum number of client
connections, connections per IP address and
connection rate.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the server.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the FtpServer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual user to the server.

Overload List
Add a new virtual user to the server.

public bool AddUser(string,string);

Add a new virtual user to the server.

public bool AddUser(string,string,UserAccess,string);

Add a new virtual user to the server.

public bool AddUser(string,string,string);

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AddUser Method

Add a new virtual user to the server.

[Visual Basic]
Overloads Public Function AddUser(_
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal accessFlags As UserAccess, _
 ByVal homeDirectory As String _
) As Boolean

[C#]
public bool AddUser(
 string userName,
 string userPassword,
 UserAccess accessFlags,
 string homeDirectory
);

Parameters
userName

A string which specifies the user name. The maximum length of a username is 63 characters and it is
recommended that names be limited to alphanumeric characters. Whitespace, control characters and
certain symbols such as path delimiters and wildcard characters are not permitted. If an invalid
character is included in the name, the method will fail with an error indicating the username is invalid.
The username must be at least three characters in length. Usernames are not case sensitive.

userPassword
A string which specifies the user password. The maximum length of a password is 63 characters and is
limited to printable characters. Whitespace and control characters are not permitted. If an invalid
character is included in the password, the function will fail with an error indicating the password is
invalid. The password must be at least one character in length. Passwords are case sensitive.

accessFlags
A UserAccess enumeration which specifies the access clients will be given when authenticated as this
user.

homeDirectory
A string which specifies the directory that will be the virtual user's home directory. If the server was
started in multi-user mode, this directory will be relative to the user directory created by the server,
otherwise it will be relative to the server root directory. If the directory does not exist, it will be created
the first time that the virtual user successfully logs in to the server. If this parameter is an empty string,
a default home directory will be created for the virtual user.

Return Value
A boolean value which specifies if the virtual user was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The AddUser method creates a virtual user that is associated with the server. When a client connects with
the server and provides authentication credentials, the server will check if the username has been created
using this method. If a match is found, the client access rights will be updated.

FtpServer.AddUser Method (String, String, UserAccess, String)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html

If you wish to modify the information for an existing user, it is not necessary to delete the username first. If
this method is called with a username that already exists, that record is replaced with the values passed to
this method. You cannot use this method to create a virtual user named "anonymous".

The virtual users created by this method exist only as long as the server is active. If you wish to maintain a
persistent database of users and passwords, you are responsible for its implementation based on the
requirements of your specific application. For example, a simple implementation would be to store the
user information in a local XML or INI file and then read that configuration file after the server has started,
calling this method for each user that is listed.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.AddUser Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual user to the server.

[Visual Basic]
Overloads Public Function AddUser(_
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal homeDirectory As String _
) As Boolean

[C#]
public bool AddUser(
 string userName,
 string userPassword,
 string homeDirectory
);

Parameters
userName

A string which specifies the user name. The maximum length of a username is 63 characters and it is
recommended that names be limited to alphanumeric characters. Whitespace, control characters and
certain symbols such as path delimiters and wildcard characters are not permitted. If an invalid
character is included in the name, the method will fail with an error indicating the username is invalid.
The username must be at least three characters in length. Usernames are not case sensitive.

userPassword
A string which specifies the user password. The maximum length of a password is 63 characters and is
limited to printable characters. Whitespace and control characters are not permitted. If an invalid
character is included in the password, the function will fail with an error indicating the password is
invalid. The password must be at least one character in length. Passwords are case sensitive.

homeDirectory
A string which specifies the directory that will be the virtual user's home directory. If the server was
started in multi-user mode, this directory will be relative to the user directory created by the server,
otherwise it will be relative to the server root directory. If the directory does not exist, it will be created
the first time that the virtual user successfully logs in to the server. If this parameter is an empty string,
a default home directory will be created for the virtual user.

Return Value
A boolean value which specifies if the virtual user was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The AddUser method creates a virtual user that is associated with the server. When a client connects with
the server and provides authentication credentials, the server will check if the username has been created
using this method. If a match is found, the client access rights will be updated.

If you wish to modify the information for an existing user, it is not necessary to delete the username first. If
this method is called with a username that already exists, that record is replaced with the values passed to
this method. You cannot use this method to create a virtual user named "anonymous".

The virtual users created by this method exist only as long as the server is active. If you wish to maintain a

FtpServer.AddUser Method (String, String, String)

persistent database of users and passwords, you are responsible for its implementation based on the
requirements of your specific application. For example, a simple implementation would be to store the
user information in a local XML or INI file and then read that configuration file after the server has started,
calling this method for each user that is listed.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.AddUser Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual user to the server.

[Visual Basic]
Overloads Public Function AddUser(_
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool AddUser(
 string userName,
 string userPassword
);

Parameters
userName

A string which specifies the user name. The maximum length of a username is 63 characters and it is
recommended that names be limited to alphanumeric characters. Whitespace, control characters and
certain symbols such as path delimiters and wildcard characters are not permitted. If an invalid
character is included in the name, the method will fail with an error indicating the username is invalid.
The username must be at least three characters in length. Usernames are not case sensitive.

userPassword
A string which specifies the user password. The maximum length of a password is 63 characters and is
limited to printable characters. Whitespace and control characters are not permitted. If an invalid
character is included in the password, the function will fail with an error indicating the password is
invalid. The password must be at least one character in length. Passwords are case sensitive.

Return Value
A boolean value which specifies if the virtual user was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The AddUser method creates a virtual user that is associated with the server. When a client connects with
the server and provides authentication credentials, the server will check if the username has been created
using this method. If a match is found, the client access rights will be updated.

If you wish to modify the information for an existing user, it is not necessary to delete the username first. If
this method is called with a username that already exists, that record is replaced with the values passed to
this method. You cannot use this method to create a virtual user named "anonymous".

The virtual users created by this method exist only as long as the server is active. If you wish to maintain a
persistent database of users and passwords, you are responsible for its implementation based on the
requirements of your specific application. For example, a simple implementation would be to store the
user information in a local XML or INI file and then read that configuration file after the server has started,
calling this method for each user that is listed.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.AddUser Overload List

FtpServer.AddUser Method (String, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Authenticate the client and assign access rights for the session.

Overload List
Authenticate the client and assign access rights for the session.

public bool Authenticate(UserAccess,string);

Authenticate the client and assign access rights for the session.

public bool Authenticate(int,UserAccess,string);

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Authenticate Method

Authenticate the client and assign access rights for the session.

[Visual Basic]
Overloads Public Function Authenticate(_
 ByVal clientId As Integer, _
 ByVal accessFlags As UserAccess, _
 ByVal homeDirectory As String _
) As Boolean

[C#]
public bool Authenticate(
 int clientId,
 UserAccess accessFlags,
 string homeDirectory
);

Parameters
clientId

An integer that identifies the client session.

accessFlags
A UserAccess enumeration which specifies the access clients will be given when authenticated as this
user.

homeDirectory
A string which specifies the directory that will be the client's home directory. If the server was
started in multi-user mode, this directory will be relative to the user directory created by the server,
otherwise it will be relative to the server root directory. If the directory does not exist, it will be
created. If this parameter is an empty string, a default home directory will be created for the client.

Return Value
A boolean value which specifies if the virtual user has been authenticated. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The Authenticate method authenticates a client session, typically in response to an OnAuthenticate
event that indicates a client has requested authentication. It is recommended that most applications
specify accessDefault as the accessFlags parameter for a client session, since this allows the server
automatically grant the appropriate access based on the server configuration options for normal and
anonymous users. If the server is going to be publicly accessible or third-party FTP clients will be used to
access the server, you should always grant the ftpAccessList permission to clients. Many client
applications will not function correctly if they are unable to obtain a list of files in the user's home
directory.

If the server was started with the MultiUser and Restricted properties set to a value of true, the client
session will be effectively locked to its home directory and cannot navigate to the server root directory. By
default, restricted client sessions are also limited to only downloading files and requesting directory
listings. If a client session is not restricted, the client can access files outside of its home directory.
Regardless of this option, a client cannot access files outside of the server root directory.

If the Restricted property is true or the accessAnonymous permission is specified, the client session will

FtpServer.Authenticate Method (Int32, UserAccess, String)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html

be authenticated in a restricted mode and the access rights for the session will persist until the client
disconnects from the server. Unlike regular users, the access rights for a restricted client cannot be
changed by the server at a later point. This restriction is designed to prevent the inadvertent granting of
rights to an untrusted client that could compromise the security of the server.

If the homeDirectory parameter is an empty string and the server has been started in multi-user mode,
each user is assigned their own home directory based on their username. If the server has not been
started in multi-user mode, then the default home directory will be the server root directory and is shared
by all users. The ClientHome property will return the full path to the home directory for an authenticated
client.

If the accessExecute permission is granted to the client session, it can execute external programs using
the SITE EXEC command. Because the program is executed in the context of the server process, it is
recommended that you limit access to this functionality and ensure that the programs being executed do
not introduce any security risks to the operating system. This permission is never granted by default, and
the SITE EXEC command will return an error if the client session is anonymous, regardless of whether this
permission is granted or not.

This method is should only be used for custom authentication schemes and is not necessary if you have
used the AddUser method to create virtual users.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Authenticate Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Authenticate the client and assign access rights for the session.

[Visual Basic]
Overloads Public Function Authenticate(_
 ByVal accessFlags As UserAccess, _
 ByVal homeDirectory As String _
) As Boolean

[C#]
public bool Authenticate(
 UserAccess accessFlags,
 string homeDirectory
);

Parameters
accessFlags

A UserAccess enumeration which specifies the access clients will be given when authenticated as this
user.

homeDirectory
A string which specifies the directory that will be the client's home directory. If the server was
started in multi-user mode, this directory will be relative to the user directory created by the server,
otherwise it will be relative to the server root directory. If the directory does not exist, it will be
created. If this parameter is an empty string, a default home directory will be created for the client.

Return Value
A boolean value which specifies if the virtual user has been authenticated. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The Authenticate method authenticates the active client session, typically in response to an
OnAuthenticate event that indicates a client has requested authentication. It is recommended that most
applications specify accessDefault as the accessFlags parameter for a client session, since this allows the
server automatically grant the appropriate access based on the server configuration options for normal
and anonymous users. If the server is going to be publicly accessible or third-party FTP clients will be used
to access the server, you should always grant the ftpAccessList permission to clients. Many client
applications will not function correctly if they are unable to obtain a list of files in the user's home
directory.

If the server was started with the MultiUser and Restricted properties set to a value of true, the client
session will be effectively locked to its home directory and cannot navigate to the server root directory. By
default, restricted client sessions are also limited to only downloading files and requesting directory
listings. If a client session is not restricted, the client can access files outside of its home directory.
Regardless of this option, a client cannot access files outside of the server root directory.

If the Restricted property is true or the accessAnonymous permission is specified, the client session will
be authenticated in a restricted mode and the access rights for the session will persist until the client
disconnects from the server. Unlike regular users, the access rights for a restricted client cannot be
changed by the server at a later point. This restriction is designed to prevent the inadvertent granting of
rights to an untrusted client that could compromise the security of the server.

FtpServer.Authenticate Method (UserAccess, String)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.UserAccess.html

If the homeDirectory parameter is an empty string and the server has been started in multi-user mode,
each user is assigned their own home directory based on their username. If the server has not been
started in multi-user mode, then the default home directory will be the server root directory and is shared
by all users. The ClientHome property will return the full path to the home directory for an authenticated
client.

If the accessExecute permission is granted to the client session, it can execute external programs using
the SITE EXEC command. Because the program is executed in the context of the server process, it is
recommended that you limit access to this functionality and ensure that the programs being executed do
not introduce any security risks to the operating system. This permission is never granted by default, and
the SITE EXEC command will return an error if the client session is anonymous, regardless of whether this
permission is granted or not.

This method is should only be used for custom authentication schemes and is not necessary if you have
used the AddUser method to create virtual users.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Authenticate Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Remove a virtual user from the server.

[Visual Basic]
Public Function DeleteUser(_
 ByVal userName As String _
) As Boolean

[C#]
public bool DeleteUser(
 string userName
);

Parameters
userName

A string which specifies the user name to be deleted. Usernames are not case sensitive.

Return Value
A boolean value which specifies if the virtual user has been deleted. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The DeleteUser method removes a virtual user that was created by a previous call to the AddUser
method. This method will not match partial usernames and wildcard characters cannot be used to delete
multiple users. Usernames are not case sensitive. You cannot use this method to delete the "anonymous"
user.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DeleteUser Method

Disconnect the specified client session from the server.

Overload List
Disconnect the specified client session from the server.

public void Disconnect();

Disconnect the specified client session from the server.

public void Disconnect(int);

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Disconnect Method

Disconnect the specified client session from the server.

[Visual Basic]
Overloads Public Sub Disconnect(_
 ByVal clientId As Integer _
)

[C#]
public void Disconnect(
 int clientId
);

Parameters
clientId

An integer that identifies the client session.

Return Value
A boolean value which specifies if the client has been signaled to disconnect from the server. A return
value of true specifies that the operation was successful. If an error occurs, the method returns false and
the application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Disconnect method terminates the specified client session, releasing the socket handle other
resources that were allocated for the session. It is only necessary to use this method if you want the server
to explicitly terminate a client connection. Normally the client will close its connection to the server, the
OnDisconnect event will fire and the server will automatically disconnect the client.

This method signals the thread that is managing the client that it should disconnect from the server, and it
will begin the process of terminating the session. This is an asynchronous process and it is not guaranteed
that the client will have actually disconnected from the server at the time that this method returns to the
caller.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Disconnect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Disconnect Method (Int32)

Disconnect the specified client session from the server.

[Visual Basic]
Overloads Public Sub Disconnect()

[C#]
public void Disconnect();

Return Value
A boolean value which specifies if the client has been signaled to disconnect from the server. A return
value of true specifies that the operation was successful. If an error occurs, the method returns false and
the application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Disconnect method terminates the active client session, releasing the socket handle other resources
that were allocated for the session. It is only necessary to use this method if you want the server to
explicitly terminate a client connection. Normally the client will close its connection to the server, the
OnDisconnect event will fire and the server will automatically disconnect the client.

This method signals the thread that is managing the client that it should disconnect from the server, and it
will begin the process of terminating the session. This is an asynchronous process and it is not guaranteed
that the client will have actually disconnected from the server at the time that this method returns to the
caller.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Disconnect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Disconnect Method ()

Releases all resources used by FtpServer.

Overload List
Releases all resources used by FtpServer.

public void Dispose();

Releases the unmanaged resources allocated by the FtpServer class and optionally releases the managed
resources.

protected void Dispose(bool);

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Dispose Method

Releases the unmanaged resources allocated by the FtpServer class and optionally releases the managed
resources.

[Visual Basic]
Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the FtpServer class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Dispose Method (Boolean)

Releases all resources used by FtpServer.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method stops the server, terminates all active client sessions and explicitly releases the
resources allocated for this instance of the class. In some cases, better performance can be achieved if the
programmer explicitly releases resources when they are no longer being used. The Dispose method
provides explicit control over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Dispose Method ()

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Finalize Method

Initialize an instance of the FtpServer class.

Overload List
Initialize an instance of the FtpServer class.

public bool Initialize();

Initialize an instance of the FtpServer class.

public bool Initialize(string);

See Also
FtpServer Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Initialize Method

Initialize an instance of the FtpServer class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the FtpServer class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of FtpServer can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the FtpServer class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.FtpServer server = new SocketTools.FtpServer();

if (server.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(server.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim Server As New SocketTools.FtpServer

If Server.Initialize(strLicenseKey) = False Then
 MsgBox(Server.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Initialize Method (String)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.RuntimeLicenseAttribute.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.RuntimeLicenseAttribute.html

Initialize an instance of the FtpServer class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the FtpServer class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Initialize Method ()

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a server has been started, it will be stopped
and any active client connections will be terminated. All properties will be reset to their default values.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Reset Method

Restarts the server and terminates all active client connections.

[Visual Basic]
Public Function Restart() As Boolean

[C#]
public bool Restart();

Return Value
A boolean value which specifies if the server was restarted. A return value of true specifies that the server
has been successfully restarted. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The Restart method terminates all active client connections, recreates a new listening socket bound to the
same address and port number, and then resumes accepting new client connections.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Restart Method

Register a program for use with the SITE EXEC command.

Overload List
Register a program for use with the SITE EXEC command.

public bool RegisterProgram(string,string);

Register a program for use with the SITE EXEC command.

public bool RegisterProgram(string,string,string);

Register a program for use with the SITE EXEC command.

public bool RegisterProgram(string,string,string,string);

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.RegisterProgram Method

Register a program for use with the SITE EXEC command.

[Visual Basic]
Overloads Public Function RegisterProgram(_
 ByVal command As String, _
 ByVal program As String, _
 ByVal parameters As String, _
 ByVal directory As String _
) As Boolean

[C#]
public bool RegisterProgram(
 string command,
 string program,
 string parameters,
 string directory
);

Parameters
command

A string which identifies the external program. This is the name that is passed to the SITE EXEC
command and does not need to match the actual name of the executable file on the local system. The
maximum length of the command name is 31 characters and this parameter cannot be an empty
string.

program
A string which specifies the full path to the executable program on the local system.

parameters
A string that specifies additional parameters for the program. This value will be passed to the program
as command line arguments. If the program does not require any command line parameters, this
value may be an empty string.

directory
A string that specifies the current working directory for the program. If this value is an empty string,
the server will use the root document directory assigned to the server.

Return Value
A boolean value which specifies if the external program has been registered with the server. A return value
of true specifies that the operation was successful. If an error occurs, the method returns false and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The RegisterProgram method registers an executable program for use with the SITE EXEC command.
Because this can present a significant security risk to the server, clients are not given permission to use this
command by default. A client must be explicitly granted permission to use SITE EXEC by including
accessExecute as one of the permissions when authenticating the client session with the Authenticate
method or creating a virtual user using the AddUser method.

To give the server complete control over what programs can be executed using SITE EXEC, the program
must be registered with the server and referenced by an alias specified by the CommandName
parameter. The maximum length of a program name is 31 characters and it must be at least 3 characters
in length. The name must only consist of alphanumeric characters and the first character of the program

FtpServer.RegisterProgram Method (String, String, String, String)

name cannot be numeric. The program name is not case-sensitive, however convention is to use upper-
case characters. If a program name is specified that already has been registered, it will be updated with
the new information provided by this method.

The ProgramFile string specifies file name of the program that will be executed. You should not install any
executable programs in the server root directory or its subdirectories. A client should never have the
ability to directly access the executable file itself. It is permitted to have multiple command names that
reference the same executable file. The only requirement is that the command names be unique. The
program name may contain environment variables surrounded by % symbols. For example,
%ProgramFiles% would be expanded to the C:\Program Files folder.

It is important to note that the program specified by ProgramFile must be an executable file, not a script
or batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The Parameters string is used to define optional command line parameters that will be included with the
command. This string can contain placeholders that are replaced by additional parameters specified by
the client when it sends the SITE EXEC command. First replacement parameter is %1, the second is %2
and so on.

The executable program that is registered using this method must be a console application that writes to
standard output. Programs that write directly to a console, or programs written to use a Windows user
interface are not supported and will yield unpredictable results. In most cases, those programs that do not
use standard input and output will be forcibly terminated by the server. If the program attempts to read
from standard input, it will immediately encounter an end-of-file condition. Programs executed by the
SITE EXEC command have no input; it is similar to a program that has its input redirected from the NUL:
device. If the program must process a file on the server, the local file name should be passed as a
command line parameter.

The output from the program will be redirected back to the client control channel. The output should be
textual, with each line of text terminated by a carriage return and linefeed (CRLF). Programs that write
binary data to standard output, particular data with embedded nulls, will yield unpredictable results and
are not supported. To ensure that the program output conforms to the protocol standard, any non-
printable characters will be replaced with a space and each line of output will be prefixed by a single
space.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.RegisterProgram Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a program for use with the SITE EXEC command.

[Visual Basic]
Overloads Public Function RegisterProgram(_
 ByVal command As String, _
 ByVal program As String, _
 ByVal parameters As String _
) As Boolean

[C#]
public bool RegisterProgram(
 string command,
 string program,
 string parameters
);

Parameters
command

A string which identifies the external program. This is the name that is passed to the SITE EXEC
command and does not need to match the actual name of the executable file on the local system. The
maximum length of the command name is 31 characters and this parameter cannot be an empty
string.

program
A string which specifies the full path to the executable program on the local system.

parameters
A string that specifies additional parameters for the program. This value will be passed to the program
as command line arguments. If the program does not require any command line parameters, this
value may be an empty string.

Return Value
A boolean value which specifies if the external program has been registered with the server. A return value
of true specifies that the operation was successful. If an error occurs, the method returns false and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The RegisterProgram method registers an executable program for use with the SITE EXEC command.
Because this can present a significant security risk to the server, clients are not given permission to use this
command by default. A client must be explicitly granted permission to use SITE EXEC by including
accessExecute as one of the permissions when authenticating the client session with the Authenticate
method or creating a virtual user using the AddUser method.

To give the server complete control over what programs can be executed using SITE EXEC, the program
must be registered with the server and referenced by an alias specified by the CommandName
parameter. The maximum length of a program name is 31 characters and it must be at least 3 characters
in length. The name must only consist of alphanumeric characters and the first character of the program
name cannot be numeric. The program name is not case-sensitive, however convention is to use upper-
case characters. If a program name is specified that already has been registered, it will be updated with
the new information provided by this method.

The ProgramFile string specifies file name of the program that will be executed. You should not install any

FtpServer.RegisterProgram Method (String, String, String)

executable programs in the server root directory or its subdirectories. A client should never have the
ability to directly access the executable file itself. It is permitted to have multiple command names that
reference the same executable file. The only requirement is that the command names be unique. The
program name may contain environment variables surrounded by % symbols. For example,
%ProgramFiles% would be expanded to the C:\Program Files folder.

It is important to note that the program specified by ProgramFile must be an executable file, not a script
or batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The Parameters string is used to define optional command line parameters that will be included with the
command. This string can contain placeholders that are replaced by additional parameters specified by
the client when it sends the SITE EXEC command. First replacement parameter is %1, the second is %2
and so on.

The executable program that is registered using this method must be a console application that writes to
standard output. Programs that write directly to a console, or programs written to use a Windows user
interface are not supported and will yield unpredictable results. In most cases, those programs that do not
use standard input and output will be forcibly terminated by the server. If the program attempts to read
from standard input, it will immediately encounter an end-of-file condition. Programs executed by the
SITE EXEC command have no input; it is similar to a program that has its input redirected from the NUL:
device. If the program must process a file on the server, the local file name should be passed as a
command line parameter.

The output from the program will be redirected back to the client control channel. The output should be
textual, with each line of text terminated by a carriage return and linefeed (CRLF). Programs that write
binary data to standard output, particular data with embedded nulls, will yield unpredictable results and
are not supported. To ensure that the program output conforms to the protocol standard, any non-
printable characters will be replaced with a space and each line of output will be prefixed by a single
space.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.RegisterProgram Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a program for use with the SITE EXEC command.

[Visual Basic]
Overloads Public Function RegisterProgram(_
 ByVal command As String, _
 ByVal program As String _
) As Boolean

[C#]
public bool RegisterProgram(
 string command,
 string program
);

Parameters
command

A string which identifies the external program. This is the name that is passed to the SITE EXEC
command and does not need to match the actual name of the executable file on the local system. The
maximum length of the command name is 31 characters and this parameter cannot be an empty
string.

program
A string which specifies the full path to the executable program on the local system.

Return Value
A boolean value which specifies if the external program has been registered with the server. A return value
of true specifies that the operation was successful. If an error occurs, the method returns false and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The RegisterProgram method registers an executable program for use with the SITE EXEC command.
Because this can present a significant security risk to the server, clients are not given permission to use this
command by default. A client must be explicitly granted permission to use SITE EXEC by including
accessExecute as one of the permissions when authenticating the client session with the Authenticate
method or creating a virtual user using the AddUser method.

To give the server complete control over what programs can be executed using SITE EXEC, the program
must be registered with the server and referenced by an alias specified by the CommandName
parameter. The maximum length of a program name is 31 characters and it must be at least 3 characters
in length. The name must only consist of alphanumeric characters and the first character of the program
name cannot be numeric. The program name is not case-sensitive, however convention is to use upper-
case characters. If a program name is specified that already has been registered, it will be updated with
the new information provided by this method.

The ProgramFile string specifies file name of the program that will be executed. You should not install any
executable programs in the server root directory or its subdirectories. A client should never have the
ability to directly access the executable file itself. It is permitted to have multiple command names that
reference the same executable file. The only requirement is that the command names be unique. The
program name may contain environment variables surrounded by % symbols. For example,
%ProgramFiles% would be expanded to the C:\Program Files folder.

It is important to note that the program specified by ProgramFile must be an executable file, not a script

FtpServer.RegisterProgram Method (String, String)

or batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The Parameters string is used to define optional command line parameters that will be included with the
command. This string can contain placeholders that are replaced by additional parameters specified by
the client when it sends the SITE EXEC command. First replacement parameter is %1, the second is %2
and so on.

The executable program that is registered using this method must be a console application that writes to
standard output. Programs that write directly to a console, or programs written to use a Windows user
interface are not supported and will yield unpredictable results. In most cases, those programs that do not
use standard input and output will be forcibly terminated by the server. If the program attempts to read
from standard input, it will immediately encounter an end-of-file condition. Programs executed by the
SITE EXEC command have no input; it is similar to a program that has its input redirected from the NUL:
device. If the program must process a file on the server, the local file name should be passed as a
command line parameter.

The output from the program will be redirected back to the client control channel. The output should be
textual, with each line of text terminated by a carriage return and linefeed (CRLF). Programs that write
binary data to standard output, particular data with embedded nulls, will yield unpredictable results and
are not supported. To ensure that the program output conforms to the protocol standard, any non-
printable characters will be replaced with a space and each line of output will be prefixed by a single
space.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.RegisterProgram Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Resolve a path to its full virtual or local file name.

Overload List
Resolve a path to its full virtual or local file name.

public bool ResolvePath(int,string,ref string,bool);

Resolve a path to its full virtual or local file name.

public bool ResolvePath(string,ref string,bool);

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ResolvePath Method

Resolve a path to its full virtual or local file name.

[Visual Basic]
Overloads Public Function ResolvePath(_
 ByVal clientId As Integer, _
 ByVal sourcePath As String, _
 ByRef resolvedPath As String, _
 ByVal isVirtual As Boolean _
) As Boolean

[C#]
public bool ResolvePath(
 int clientId,
 string sourcePath,
 ref string resolvedPath,
 bool isVirtual
);

Parameters
clientId

An integer that identifies the client session.

sourcePath
A string that specifies the name of the path to resolve. This may either be a virtual path, or a path to a
local file name or directory.

resolvedPath
A string that will contain the resolved path when the method returns.

isVirtual
A Boolean parameter that specifies if the source path is a virtual path or local path.

Return Value
A boolean value which specifies if the source path could be resolved. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The ResolvePath method is used to resolve a local file name or directory to obtain its virtual path name,
or obtain the full path name of a file or directory that is mapped to a virtual path. If the isVirtual
parameter is false, the sourcePath parameter is considered to be a path to a local file or directory and the
resolvedPath parameter will contain the virtual path. If the isVirtual parameter is true, then the
sourcePath parameter is considered to be a virtual path and the resolvedPath parameter will contain the
full path to the local file or directory that the virtual path is mapped to

A virtual path for the client is either relative to the server root directory, or the client home directory if the
client was authenticated as a restricted user. These virtual paths are what the client will see as an absolute
path on the server. For example, if the server was configured to use "C:\ProgramData\MyServer" as the
root directory, and the SourcePath parameter was specified as
"C:\ProgramData\MyServer\Documents\Research", this method would return the virtual path to that
directory as "/Documents/Research".

If the client session was authenticated as a restricted user, then the virtual path is always relative to the

FtpServer.ResolvePath Method (Int32, String, String, Boolean)

client home directory instead of the server root directory. This is because restricted users are isolated to
their own home directory and any subdirectories. For example, if restricted user "John" has a home
directory of "C:\ProgramData\MyServer\Users\John" and the SourcePath parameter was specified as
"C:\ProgramData\MyServer\Users\John\Accounting\Projections.pdf" this method would return the virtual
path as "/Accounting/Projections.pdf".

If the sourcePath parameter specifies a file or directory outside of the server root directory, this method
will fail and the last error code will be set to errorInvalidFileName. This method can only be used with
authenticated clients. If the clientId parameter specifies a client session that has not been authenticated,
this method will fail and the last error code will be errorAuthenticationRequired.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.ResolvePath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Resolve a path to its full virtual or local file name.

[Visual Basic]
Overloads Public Function ResolvePath(_
 ByVal sourcePath As String, _
 ByRef resolvedPath As String, _
 ByVal isVirtual As Boolean _
) As Boolean

[C#]
public bool ResolvePath(
 string sourcePath,
 ref string resolvedPath,
 bool isVirtual
);

Parameters
sourcePath

A string that specifies the name of the path to resolve. This may either be a virtual path, or a path to a
local file name or directory.

resolvedPath
A string that will contain the resolved path when the method returns.

isVirtual
A Boolean parameter that specifies if the source path is a virtual path or local path.

Return Value
A boolean value which specifies if the source path could be resolved. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The ResolvePath method is used to resolve a local file name or directory to obtain its virtual path name,
or obtain the full path name of a file or directory that is mapped to a virtual path. If the isVirtual
parameter is false, the sourcePath parameter is considered to be a path to a local file or directory and the
resolvedPath parameter will contain the virtual path. If the isVirtual parameter is true, then the
sourcePath parameter is considered to be a virtual path and the resolvedPath parameter will contain the
full path to the local file or directory that the virtual path is mapped to

A virtual path for the client is either relative to the server root directory, or the client home directory if the
client was authenticated as a restricted user. These virtual paths are what the client will see as an absolute
path on the server. For example, if the server was configured to use "C:\ProgramData\MyServer" as the
root directory, and the SourcePath parameter was specified as
"C:\ProgramData\MyServer\Documents\Research", this method would return the virtual path to that
directory as "/Documents/Research".

If the client session was authenticated as a restricted user, then the virtual path is always relative to the
client home directory instead of the server root directory. This is because restricted users are isolated to
their own home directory and any subdirectories. For example, if restricted user "John" has a home
directory of "C:\ProgramData\MyServer\Users\John" and the SourcePath parameter was specified as
"C:\ProgramData\MyServer\Users\John\Accounting\Projections.pdf" this method would return the virtual

FtpServer.ResolvePath Method (String, String, Boolean)

path as "/Accounting/Projections.pdf".

If the sourcePath parameter specifies a file or directory outside of the server root directory, this method
will fail and the last error code will be set to errorInvalidFileName. This method can only be used with
authenticated clients. If the clientId parameter specifies a client session that has not been authenticated,
this method will fail and the last error code will be errorAuthenticationRequired.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.ResolvePath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Resume accepting new client connections.

[Visual Basic]
Public Function Resume() As Boolean

[C#]
public bool Resume();

Return Value
A boolean value which specifies if the server has resumed accepting client connections. A return value of
true specifies that the operation was successful. If an error occurs, the method returns false and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Resume method instructs the server to resume accepting new client connections. Any pending client
connections that were requested while the server was suspended will be accepted.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Resume Method

Send a result code and message to the client in response to a command.

Overload List
Send a result code and message to the client in response to a command.

public bool SendResponse(int);

Send a result code and message to the client in response to a command.

public bool SendResponse(int,int);

Send a result code and message to the client in response to a command.

public bool SendResponse(int,int,string);

Send a result code and message to the client in response to a command.

public bool SendResponse(int,string);

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.SendResponse Method

Send a result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendResponse(_
 ByVal clientId As Integer, _
 ByVal resultCode As Integer, _
 ByVal message As String _
) As Boolean

[C#]
public bool SendResponse(
 int clientId,
 int resultCode,
 string message
);

Parameters
clientId

An integer that identifies the client session.

resultCode
An integer value that specifies the command result code to be returned to the client.

message
A string value that specifies a message to be sent to the client. If this parameter is an empty string, a
default message associated with the result code will be used.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a normal part
of processing a command and this method is only used if the application has implemented custom
commands or wishes to modify the standard responses sent by the server. The message may be a
maximum of 2048 characters and may include embedded carriage-return and linefeed characters. If no
message is specified, then a default message will be sent based on the result code.

Result codes must be three digits (in the range of 100 through 999) and although this method will support
the use of non-standard result codes, it is recommended that the client application use the standard
codes defined in RFC 959 whenever possible. The use of non-standard result codes may cause problems
with FTP clients that expect specific result codes in response to a particular command.

This method should only be called once in response to a command sent by the client. If a result code has
already been sent in response to a command and this method is called, it will fail and return a value of
zero. This is necessary because sending multiple result codes in response to a single command may cause
unpredictable behavior by the client.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.SendResponse Overload List

FtpServer.SendResponse Method (Int32, Int32, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Send a result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendResponse(_
 ByVal clientId As Integer, _
 ByVal resultCode As Integer _
) As Boolean

[C#]
public bool SendResponse(
 int clientId,
 int resultCode
);

Parameters
clientId

An integer that identifies the client session.

resultCode
An integer value that specifies the command result code to be returned to the client.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a normal part
of processing a command and this method is only used if the application has implemented custom
commands or wishes to modify the standard responses sent by the server. The message may be a
maximum of 2048 characters and may include embedded carriage-return and linefeed characters. If no
message is specified, then a default message will be sent based on the result code.

Result codes must be three digits (in the range of 100 through 999) and although this method will support
the use of non-standard result codes, it is recommended that the client application use the standard
codes defined in RFC 959 whenever possible. The use of non-standard result codes may cause problems
with FTP clients that expect specific result codes in response to a particular command.

This method should only be called once in response to a command sent by the client. If a result code has
already been sent in response to a command and this method is called, it will fail and return a value of
zero. This is necessary because sending multiple result codes in response to a single command may cause
unpredictable behavior by the client.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.SendResponse Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.SendResponse Method (Int32, Int32)

Send a result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendResponse(_
 ByVal resultCode As Integer, _
 ByVal message As String _
) As Boolean

[C#]
public bool SendResponse(
 int resultCode,
 string message
);

Parameters
resultCode

An integer value that specifies the command result code to be returned to the client.

message
A string value that specifies a message to be sent to the client. If this parameter is an empty string, a
default message associated with the result code will be used.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a normal part
of processing a command and this method is only used if the application has implemented custom
commands or wishes to modify the standard responses sent by the server. The message may be a
maximum of 2048 characters and may include embedded carriage-return and linefeed characters. If no
message is specified, then a default message will be sent based on the result code.

Result codes must be three digits (in the range of 100 through 999) and although this method will support
the use of non-standard result codes, it is recommended that the client application use the standard
codes defined in RFC 959 whenever possible. The use of non-standard result codes may cause problems
with FTP clients that expect specific result codes in response to a particular command.

This method should only be called once in response to a command sent by the client. If a result code has
already been sent in response to a command and this method is called, it will fail and return a value of
zero. This is necessary because sending multiple result codes in response to a single command may cause
unpredictable behavior by the client.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.SendResponse Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.SendResponse Method (Int32, String)

Send a result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendResponse(_
 ByVal resultCode As Integer _
) As Boolean

[C#]
public bool SendResponse(
 int resultCode
);

Parameters
resultCode

An integer value that specifies the command result code to be returned to the client.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a normal part
of processing a command and this method is only used if the application has implemented custom
commands or wishes to modify the standard responses sent by the server. The message may be a
maximum of 2048 characters and may include embedded carriage-return and linefeed characters. If no
message is specified, then a default message will be sent based on the result code.

Result codes must be three digits (in the range of 100 through 999) and although this method will support
the use of non-standard result codes, it is recommended that the client application use the standard
codes defined in RFC 959 whenever possible. The use of non-standard result codes may cause problems
with FTP clients that expect specific result codes in response to a particular command.

This method should only be called once in response to a command sent by the client. If a result code has
already been sent in response to a command and this method is called, it will fail and return a value of
zero. This is necessary because sending multiple result codes in response to a single command may cause
unpredictable behavior by the client.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.SendResponse Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.SendResponse Method (Int32)

Start listening for client connections on the specified IP address and port number.

Overload List
Start listening for client connections on the specified IP address and port number.

public bool Start();

Start listening for client connections on the specified IP address and port number.

public bool Start(int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,string);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,string,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,string,int,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,string,int,int,ServerOptions);

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Start Method

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal rootDirectory As String, _
 ByVal maxClients As Integer, _
 ByVal idleTime As Integer, _
 ByVal options As ServerOptions _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 string rootDirectory,
 int maxClients,
 int idleTime,
 ServerOptions options
);

Parameters
localAddress

A string which specifies the local hostname or IP address address that the server should be bound to.
If this parameter is an empty string, then an appropriate address will automatically be used. If a specific
address is used, the server will only accept client connections on the network interface that is bound to
that address.

localPort
An integer that specifies the port number the server should use to listen for client connections. If a
value of zero is specified, the server will use the standard port number 21 to listen for connections, or
port 990 if the server is configured to use implicit SSL. The port number used by the application must
be unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

rootDirectory
A string that specifies the path to the root directory for the server. If this value is an empty string, the
server will use the current working directory as the root directory.

maxClients
An integer value that specifies the maximum number of clients that may connect to the server.

idleTime
An integer value that specifies the number of seconds a client can be idle before the server terminates
the session.

options
A ServerOptions enumeration that specifies one or more server options.

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should

FtpServer.Start Method (String, Int32, String, Int32, Int32,
ServerOptions)

check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an
IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path
includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal rootDirectory As String, _
 ByVal maxClients As Integer, _
 ByVal idleTime As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 string rootDirectory,
 int maxClients,
 int idleTime
);

Parameters
localAddress

A string which specifies the local hostname or IP address address that the server should be bound to.
If this parameter is an empty string, then an appropriate address will automatically be used. If a specific
address is used, the server will only accept client connections on the network interface that is bound to
that address.

localPort
An integer that specifies the port number the server should use to listen for client connections. If a
value of zero is specified, the server will use the standard port number 21 to listen for connections, or
port 990 if the server is configured to use implicit SSL. The port number used by the application must
be unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

rootDirectory
A string that specifies the path to the root directory for the server. If this value is an empty string, the
server will use the current working directory as the root directory.

maxClients
An integer value that specifies the maximum number of clients that may connect to the server.

idleTime
An integer value that specifies the number of seconds a client can be idle before the server terminates
the session.

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

FtpServer.Start Method (String, Int32, String, Int32, Int32)

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an
IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path
includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal rootDirectory As String, _
 ByVal maxClients As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 string rootDirectory,
 int maxClients
);

Parameters
localAddress

A string which specifies the local hostname or IP address address that the server should be bound to.
If this parameter is an empty string, then an appropriate address will automatically be used. If a specific
address is used, the server will only accept client connections on the network interface that is bound to
that address.

localPort
An integer that specifies the port number the server should use to listen for client connections. If a
value of zero is specified, the server will use the standard port number 21 to listen for connections, or
port 990 if the server is configured to use implicit SSL. The port number used by the application must
be unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

rootDirectory
A string that specifies the path to the root directory for the server. If this value is an empty string, the
server will use the current working directory as the root directory.

maxClients
An integer value that specifies the maximum number of clients that may connect to the server.

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an

FtpServer.Start Method (String, Int32, String, Int32)

IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path
includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal rootDirectory As String _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 string rootDirectory
);

Parameters
localAddress

A string which specifies the local hostname or IP address address that the server should be bound to.
If this parameter is an empty string, then an appropriate address will automatically be used. If a specific
address is used, the server will only accept client connections on the network interface that is bound to
that address.

localPort
An integer that specifies the port number the server should use to listen for client connections. If a
value of zero is specified, the server will use the standard port number 21 to listen for connections, or
port 990 if the server is configured to use implicit SSL. The port number used by the application must
be unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

rootDirectory
A string that specifies the path to the root directory for the server. If this value is an empty string, the
server will use the current working directory as the root directory.

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an
IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path

FtpServer.Start Method (String, Int32, String)

includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort
);

Parameters
localAddress

A string which specifies the local hostname or IP address address that the server should be bound to.
If this parameter is an empty string, then an appropriate address will automatically be used. If a specific
address is used, the server will only accept client connections on the network interface that is bound to
that address.

localPort
An integer that specifies the port number the server should use to listen for client connections. If a
value of zero is specified, the server will use the standard port number 21 to listen for connections, or
port 990 if the server is configured to use implicit SSL. The port number used by the application must
be unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an
IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path
includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory

FtpServer.Start Method (String, Int32)

does not exist at the time that the server is started, it will be created.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Start(
 int localPort
);

Parameters
localPort

An integer that specifies the port number the server should use to listen for client connections. If a
value of zero is specified, the server will use the standard port number 21 to listen for connections, or
port 990 if the server is configured to use implicit SSL. The port number used by the application must
be unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an
IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path
includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Start Method (Int32)

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start() As Boolean

[C#]
public bool Start();

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an
IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path
includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Start Method ()

Stop listening for new client connections and terminate all active clients already connected to the server.

[Visual Basic]
Public Function Stop() As Boolean

[C#]
public bool Stop();

Return Value
A boolean value which specifies if the server was stopped. A return value of true specifies that the server
has been successfully stopped. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The Stop method instructs the server to stop accepting client connections, disconnects all active client
connections and terminates the thread that is managing the server session. If this method is called when
there is one or more clients connected to the server, it will signal each client thread to terminate and then
wait for the server thread to terminate.

See Also
FtpServer Class | SocketTools Namespace | Restart Method | Resume Method | Start Method | Throttle
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Stop Method

Suspend accepting new client connections.

[Visual Basic]
Public Function Suspend() As Boolean

[C#]
public bool Suspend();

Return Value
A boolean value which specifies if the server has been suspended. A return value of true specifies that the
server has been successfully stopped. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. All new clients
that attempt to connect to the server will be sent a 421 "service unavailable" error code and the
connection will be immediately closed. To resume accepting new client connections, call the Resume
method. This method will not affect those clients that have already established a connection with the
server before the Suspend method was called.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Suspend Method

Limit the maximum number of client connections.

Overload List
Limit the maximum number of client connections.

public bool Throttle(int);

Limit the maximum number of client connections and connections per IP address.

public bool Throttle(int,int);

Limit the maximum number of client connections, connections per IP address and connection rate.

public bool Throttle(int,int,int);

Limit the maximum number of client connections, connections per IP address and connection rate.

public bool Throttle(int,int,int,int);

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Throttle Method

Limit the maximum number of client connections, connections per IP address and connection rate.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer, _
 ByVal maxClientsPerAddress As Integer, _
 ByVal maxGuests As Integer, _
 ByVal connectionRate As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients,
 int maxClientsPerAddress,
 int maxGuests,
 int connectionRate
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

maxClientsPerAddress
An integer value that specifies the maximum number of clients that may connect to the server from
the same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is no limit on the number of client connections per address.

maxGuests
An integer value that specifies the maximum number of anonymous (guest) users that may be logged
in at any one time.

connectionRate
An integer value that specifies a restriction on the rate of client connections, limiting the number of
connections that will be accepted within that period of time. A value of zero specifies that there is no
restriction on the rate of client connections. The higher this value, the fewer the number of
connections that will be accepted within a specific period of time. By default, there is no limit on the
client connection rate.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

FtpServer.Throttle Method (Int32, Int32, Int32, Int32)

If the value of the maxGuests parameter is greater than zero, then anonymous logins will be enabled and
clients can authenticate with the username "anonymous" and their email address as the password. If the
parameter is set to zero, then anonymous logins will be disabled. Note that this will not affect any clients
that are currently logged in, it only affects those clients that connect after the Throttle method has been
called.

Increasing the connection rate value will force the server to slow down the rate at which it will accept
incoming client connection requests. For example, setting this parameter to a value of 1000 would limit
the server to accepting one client connection every second, while a value of 250 would allow the server to
accept four client connections per second. Note that significantly increasing the amount of time the server
must wait to accept client connections can exceed the connection backlog queue, resulting in client
connections being rejected.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Limit the maximum number of client connections, connections per IP address and connection rate.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer, _
 ByVal maxClientsPerAddress As Integer, _
 ByVal maxGuests As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients,
 int maxClientsPerAddress,
 int maxGuests
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

maxClientsPerAddress
An integer value that specifies the maximum number of clients that may connect to the server from
the same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is no limit on the number of client connections per address.

maxGuests
An integer value that specifies the maximum number of anonymous (guest) users that may be logged
in at any one time.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

If the value of the maxGuests parameter is greater than zero, then anonymous logins will be enabled and
clients can authenticate with the username "anonymous" and their email address as the password. If the
parameter is set to zero, then anonymous logins will be disabled. Note that this will not affect any clients
that are currently logged in, it only affects those clients that connect after the Throttle method has been
called.

Increasing the connection rate value will force the server to slow down the rate at which it will accept
incoming client connection requests. For example, setting this parameter to a value of 1000 would limit

FtpServer.Throttle Method (Int32, Int32, Int32)

the server to accepting one client connection every second, while a value of 250 would allow the server to
accept four client connections per second. Note that significantly increasing the amount of time the server
must wait to accept client connections can exceed the connection backlog queue, resulting in client
connections being rejected.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Limit the maximum number of client connections and connections per IP address.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer, _
 ByVal maxClientsPerAddress As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients,
 int maxClientsPerAddress
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

maxClientsPerAddress
An integer value that specifies the maximum number of clients that may connect to the server from
the same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is no limit on the number of client connections per address.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Throttle Method (Int32, Int32)

Limit the maximum number of client connections.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

See Also
FtpServer Class | SocketTools Namespace | FtpServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Throttle Method (Int32)

Uninitialize the class library and release any resources allocated for the server.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the server and
unloads the networking library. After this method has been called, no further network operations may be
performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
FtpServer Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.Uninitialize Method

The events of the FtpServer class are listed below. For a complete list of FtpServer class members, see
the FtpServer Members topic.

Public Instance Events

OnAuthenticate Occurs when the client has requested
authentication with the specified username and
password.

OnCommand Occurs when a client has issued a command to the
server.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnDownload Occurs when a connection is established with the
remote host.

OnError Occurs when an network operation fails.

OnExecute Occurs when the client has executed an external
program on the server.

OnIdle Occurs when the there are no clients connected to
the server.

OnLogin Occurs when the client has successfully
authenticated the session.

OnLogout Occurs when the client has logged out or
reinitialized the session.

OnResult Occurs when the command issued by the client
has been processed by the server.

OnStart Occurs when the server starts accepting
connections.

OnStop Occurs when the server stops accepting
connections.

OnTimeout Occurs when the client has exceeded the
maximum allowed idle time.

OnUpload Occurs when the client has successfully uploaded a
file to the server.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer Events

Occurs when the client has requested authentication with the specified username and password.

[Visual Basic]
Public Event OnAuthenticate As OnAuthenticateEventHandler

[C#]
public event OnAuthenticateEventHandler OnAuthenticate;

Event Data
The event handler receives an argument of type FtpServer.AuthenticateEventArgs containing data related
to this event. The following FtpServer.AuthenticateEventArgs properties provide information specific to
this event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

HostName Gets the host name used by the client to establish
the connection to the server.

Password Gets the password provided by the client for
authentication.

UserName Gets the password provided by the client for
authentication.

Remarks
The OnAuthenticate event occurs when the client has requested authentication by sending the USER and
PASS command to the server. The event handler can call the Authenticate method to authenticate the
client session. If the client is not authenticated, the server will send an error message to the client and
terminate the session.

If the application has created one or more virtual users using the AddUser method and/or the LocalUser
property has been set to True, it is not necessary to implement an OnAuthenticate handler unless you
also wish to perform custom authentication for specific users.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnAuthenticate Event

Provides data for the OnAuthenticate event.

For a list of all members of this type, see FtpServer.AuthenticateEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpServer.AuthenticateEventArgs

[Visual Basic]
Public Class FtpServer.AuthenticateEventArgs
 Inherits EventArgs

[C#]
public class FtpServer.AuthenticateEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer.AuthenticateEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AuthenticateEventArgs Class

Initializes a new instance of the FtpServer.AuthenticateEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer.AuthenticateEventArgs();

See Also
FtpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AuthenticateEventArgs Constructor

FtpServer.AuthenticateEventArgs overview

Public Instance Constructors

 FtpServer.AuthenticateEventArgs Constructor Initializes a new instance of the
FtpServer.AuthenticateEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

HostName Gets the host name used by the client to establish
the connection to the server.

Password Gets the password provided by the client for
authentication.

UserName Gets the password provided by the client for
authentication.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AuthenticateEventArgs Members

The properties of the FtpServer.AuthenticateEventArgs class are listed below. For a complete list of
FtpServer.AuthenticateEventArgs class members, see the FtpServer.AuthenticateEventArgs Members
topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

HostName Gets the host name used by the client to establish
the connection to the server.

Password Gets the password provided by the client for
authentication.

UserName Gets the password provided by the client for
authentication.

See Also
FtpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AuthenticateEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
FtpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AuthenticateEventArgs.ClientId Property

Gets the host name used by the client to establish the connection to the server.

[Visual Basic]
Public ReadOnly Property HostName As String

[C#]
public string HostName {get;}

Property Value
A string that specifies a host name.

See Also
FtpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AuthenticateEventArgs.HostName Property

Gets the password provided by the client for authentication.

[Visual Basic]
Public ReadOnly Property Password As String

[C#]
public string Password {get;}

Property Value
A string that specifies the password provided by the client when it requests authentication.

See Also
FtpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AuthenticateEventArgs.Password Property

Gets the password provided by the client for authentication.

[Visual Basic]
Public ReadOnly Property UserName As String

[C#]
public string UserName {get;}

Property Value
A string that specifies the username provided by the client when it requests authentication.

See Also
FtpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.AuthenticateEventArgs.UserName Property

Occurs when a client has issued a command to the server.

[Visual Basic]
Public Event OnCommand As OnCommandEventHandler

[C#]
public event OnCommandEventHandler OnCommand;

Event Data
The event handler receives an argument of type FtpServer.CommandEventArgs containing data related to
this event. The following FtpServer.CommandEventArgs properties provide information specific to this
event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

Command Gets a value that specifies the command issued by
the client.

Parameters Gets a value that specifies the command
parameters issued by the client.

Remarks
The OnCommand event occurs after the client has sent a command to the server, but before the
command has been processed. This event occurs for all commands issued by the client, including invalid
or disabled commands. If the application wishes to handle the command itself, it must perform any
processing and then call the SendResponse method to send the success or error code to the client. If the
SendResponse method is not called, then the server will perform its default processing for the command.

After the command has been processed, the OnResult event handler will be invoked.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnCommand Event

Provides data for the OnCommand event.

For a list of all members of this type, see FtpServer.CommandEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpServer.CommandEventArgs

[Visual Basic]
Public Class FtpServer.CommandEventArgs
 Inherits EventArgs

[C#]
public class FtpServer.CommandEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer.CommandEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.CommandEventArgs Class

Initializes a new instance of the FtpServer.CommandEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer.CommandEventArgs();

See Also
FtpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.CommandEventArgs Constructor

FtpServer.CommandEventArgs overview

Public Instance Constructors

 FtpServer.CommandEventArgs Constructor Initializes a new instance of the
FtpServer.CommandEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Command Gets a value that specifies the command issued by
the client.

Parameters Gets a value that specifies the command
parameters issued by the client.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.CommandEventArgs Members

The properties of the FtpServer.CommandEventArgs class are listed below. For a complete list of
FtpServer.CommandEventArgs class members, see the FtpServer.CommandEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Command Gets a value that specifies the command issued by
the client.

Parameters Gets a value that specifies the command
parameters issued by the client.

See Also
FtpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.CommandEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
FtpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.CommandEventArgs.ClientId Property

Gets a value that specifies the command issued by the client.

[Visual Basic]
Public ReadOnly Property Command As String

[C#]
public string Command {get;}

Property Value
A string that specifies the command sent by the client.

See Also
FtpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.CommandEventArgs.Command Property

Gets a value that specifies the command parameters issued by the client.

[Visual Basic]
Public ReadOnly Property Parameters As String

[C#]
public string Parameters {get;}

Property Value
A string that specifies the command parameters sent by the client.

See Also
FtpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.CommandEventArgs.Parameters Property

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As OnConnectEventHandler

[C#]
public event OnConnectEventHandler OnConnect;

Event Data
The event handler receives an argument of type FtpServer.ConnectEventArgs containing data related to
this event. The following FtpServer.ConnectEventArgs properties provide information specific to this
event.

Property Description

ClientAddress Gets the address of the client establishing the
connection.

ClientId Gets a value that uniquely identifies the client
session.

Remarks
The OnConnect event occurs after the client has established its initial connection to the server, after the
server has checked the active client limits and the TLS handshake has been performed if required. If the
server has been suspended, or the limit on the maximum number of client sessions has been exceeded,
the server will terminate the client session prior to this event handler being invoked.

If no event handler is implemented, the server will perform the default action of accepting the connection
and sending a standard greeting to the client. If you want your application to send a custom greeting to
the client when it connects, call the SendResponse method, specifying a result code of 220 and a
message of your choice.

To reject a connection, call the SendResponse method to send an error response to the client. Typically
the result code value would be 421 to indicate that the server will not accept the connection. Next, call the
DisconnectClient method to terminate the client session.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnConnect Event

Provides data for the OnConnect event.

For a list of all members of this type, see FtpServer.ConnectEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpServer.ConnectEventArgs

[Visual Basic]
Public Class FtpServer.ConnectEventArgs
 Inherits EventArgs

[C#]
public class FtpServer.ConnectEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer.ConnectEventArgs Members | SocketTools Namespace | OnConnect Event
(SocketTools.FtpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ConnectEventArgs Class

Initializes a new instance of the FtpServer.ConnectEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer.ConnectEventArgs();

See Also
FtpServer.ConnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ConnectEventArgs Constructor

FtpServer.ConnectEventArgs overview

Public Instance Constructors

 FtpServer.ConnectEventArgs Constructor Initializes a new instance of the
FtpServer.ConnectEventArgs class.

Public Instance Properties

ClientAddress Gets the address of the client establishing the
connection.

ClientId Gets a value that uniquely identifies the client
session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer.ConnectEventArgs Class | SocketTools Namespace | OnConnect Event (SocketTools.FtpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ConnectEventArgs Members

The properties of the FtpServer.ConnectEventArgs class are listed below. For a complete list of
FtpServer.ConnectEventArgs class members, see the FtpServer.ConnectEventArgs Members topic.

Public Instance Properties

ClientAddress Gets the address of the client establishing the
connection.

ClientId Gets a value that uniquely identifies the client
session.

See Also
FtpServer.ConnectEventArgs Class | SocketTools Namespace | OnConnect Event (SocketTools.FtpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ConnectEventArgs Properties

Gets the address of the client establishing the connection.

[Visual Basic]
Public ReadOnly Property ClientAddress As String

[C#]
public string ClientAddress {get;}

Property Value
A string that specifies the Internet Protocol address of the client.

See Also
FtpServer.ConnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ConnectEventArgs.ClientAddress Property

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
FtpServer.ConnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ConnectEventArgs.ClientId Property

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnDownload As OnDownloadEventHandler

[C#]
public event OnDownloadEventHandler OnDownload;

Event Data
The event handler receives an argument of type FtpServer.DownloadEventArgs containing data related to
this event. The following FtpServer.DownloadEventArgs properties provide information specific to this
event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

FileName Gets a value that specifies the file being
downloaded.

FileSize Gets a value that specifies the size of the file.

Remarks
The OnDownload event occurs after the client has successfully downloaded a file from the server using
the RETR command. If the file transfer fails or is aborted, this event will not occur.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnDownload Event

Provides data for the OnDownload event.

For a list of all members of this type, see FtpServer.DownloadEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpServer.DownloadEventArgs

[Visual Basic]
Public Class FtpServer.DownloadEventArgs
 Inherits EventArgs

[C#]
public class FtpServer.DownloadEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer.DownloadEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DownloadEventArgs Class

Initializes a new instance of the FtpServer.DownloadEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer.DownloadEventArgs();

See Also
FtpServer.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DownloadEventArgs Constructor

FtpServer.DownloadEventArgs overview

Public Instance Constructors

 FtpServer.DownloadEventArgs Constructor Initializes a new instance of the
FtpServer.DownloadEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

FileName Gets a value that specifies the file being
downloaded.

FileSize Gets a value that specifies the size of the file.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DownloadEventArgs Members

The properties of the FtpServer.DownloadEventArgs class are listed below. For a complete list of
FtpServer.DownloadEventArgs class members, see the FtpServer.DownloadEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

FileName Gets a value that specifies the file being
downloaded.

FileSize Gets a value that specifies the size of the file.

See Also
FtpServer.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DownloadEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
FtpServer.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DownloadEventArgs.ClientId Property

Gets a value that specifies the file being downloaded.

[Visual Basic]
Public ReadOnly Property FileName As String

[C#]
public string FileName {get;}

Property Value
A string that specifies the full path to a file on the local system.

See Also
FtpServer.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DownloadEventArgs.FileName Property

Gets a value that specifies the size of the file.

[Visual Basic]
Public ReadOnly Property FileSize As Long

[C#]
public long FileSize {get;}

Property Value
A long integer value that specifies the size of the file in bytes.

See Also
FtpServer.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DownloadEventArgs.FileSize Property

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As OnDisconnectEventHandler

[C#]
public event OnDisconnectEventHandler OnDisconnect;

Event Data
The event handler receives an argument of type FtpServer.DisconnectEventArgs containing data related to
this event. The following FtpServer.DisconnectEventArgs property provides information specific to this
event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

Remarks
The OnDisconnect event is generated when the connection is terminated by the client and there is no
more data available to be read.

It is not necessary to call the Disconnect method inside the OnDisconnect event handler because the
client session is already in the process of disconnecting from the server.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnDisconnect Event

Provides data for the OnDisconnect event.

For a list of all members of this type, see FtpServer.DisconnectEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpServer.DisconnectEventArgs

[Visual Basic]
Public Class FtpServer.DisconnectEventArgs
 Inherits EventArgs

[C#]
public class FtpServer.DisconnectEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer.DisconnectEventArgs Members | SocketTools Namespace | OnDisconnect Event
(SocketTools.FtpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DisconnectEventArgs Class

Initializes a new instance of the FtpServer.DisconnectEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer.DisconnectEventArgs();

See Also
FtpServer.DisconnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DisconnectEventArgs Constructor

FtpServer.DisconnectEventArgs overview

Public Instance Constructors

 FtpServer.DisconnectEventArgs Constructor Initializes a new instance of the
FtpServer.DisconnectEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer.DisconnectEventArgs Class | SocketTools Namespace | OnDisconnect Event
(SocketTools.FtpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DisconnectEventArgs Members

The properties of the FtpServer.DisconnectEventArgs class are listed below. For a complete list of
FtpServer.DisconnectEventArgs class members, see the FtpServer.DisconnectEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

See Also
FtpServer.DisconnectEventArgs Class | SocketTools Namespace | OnDisconnect Event
(SocketTools.FtpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DisconnectEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
FtpServer.DisconnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.DisconnectEventArgs.ClientId Property

Occurs when an network operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type FtpServer.ErrorEventArgs containing data related to this
event. The following FtpServer.ErrorEventArgs properties provide information specific to this event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a network operation fails.

This event handler may be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see FtpServer.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpServer.ErrorEventArgs

[Visual Basic]
Public Class FtpServer.ErrorEventArgs
 Inherits EventArgs

[C#]
public class FtpServer.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ErrorEventArgs Class

Initializes a new instance of the FtpServer.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer.ErrorEventArgs();

See Also
FtpServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ErrorEventArgs Constructor

FtpServer.ErrorEventArgs overview

Public Instance Constructors

 FtpServer.ErrorEventArgs Constructor Initializes a new instance of the
FtpServer.ErrorEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ErrorEventArgs Members

The properties of the FtpServer.ErrorEventArgs class are listed below. For a complete list of
FtpServer.ErrorEventArgs class members, see the FtpServer.ErrorEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
FtpServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ErrorEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
FtpServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ErrorEventArgs.ClientId Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
FtpServer.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public FtpServer.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
FtpServer.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ErrorEventArgs.Error Property

Occurs when the client has executed an external program on the server.

[Visual Basic]
Public Event OnExecute As OnExecuteEventHandler

[C#]
public event OnExecuteEventHandler OnExecute;

Event Data
The event handler receives an argument of type FtpServer.ExecuteEventArgs containing data related to
this event. The following FtpServer.ExecuteEventArgs properties provide information specific to this
event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

ExitCode Gets a value that specifies the exit code for the
external program.

Output Gets the output of the external command
executed by the client.

Program Gets the name of the external program executed
by the client.

Remarks
The OnExecute event occurs after the client has successfully executed an external program using the SITE
EXEC command.

This event will only be generated if the client has the ftpAccessExecute permission. Clients are not
granted this permission by default, and must be explicitly permitted to execute external programs. If the
client does have this permission, it can only execute specific programs that have been registered by the
server application using the RegisterProgram method.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnExecute Event

Provides data for the OnExecute event.

For a list of all members of this type, see FtpServer.ExecuteEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpServer.ExecuteEventArgs

[Visual Basic]
Public Class FtpServer.ExecuteEventArgs
 Inherits EventArgs

[C#]
public class FtpServer.ExecuteEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer.ExecuteEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ExecuteEventArgs Class

Initializes a new instance of the FtpServer.ExecuteEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer.ExecuteEventArgs();

See Also
FtpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ExecuteEventArgs Constructor

FtpServer.ExecuteEventArgs overview

Public Instance Constructors

 FtpServer.ExecuteEventArgs Constructor Initializes a new instance of the
FtpServer.ExecuteEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

ExitCode Gets a value that specifies the exit code for the
external program.

Output Gets the output of the external command
executed by the client.

Program Gets the name of the external program executed
by the client.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ExecuteEventArgs Members

The properties of the FtpServer.ExecuteEventArgs class are listed below. For a complete list of
FtpServer.ExecuteEventArgs class members, see the FtpServer.ExecuteEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

ExitCode Gets a value that specifies the exit code for the
external program.

Output Gets the output of the external command
executed by the client.

Program Gets the name of the external program executed
by the client.

See Also
FtpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ExecuteEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
FtpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ExecuteEventArgs.ClientId Property

Gets a value that specifies the exit code for the external program.

[Visual Basic]
Public ReadOnly Property ExitCode As Integer

[C#]
public int ExitCode {get;}

Property Value
An integer value that specifies an exit code.

See Also
FtpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ExecuteEventArgs.ExitCode Property

Gets the output of the external command executed by the client.

[Visual Basic]
Public ReadOnly Property Output As String

[C#]
public string Output {get;}

Property Value
A string that contains the output of the external program executed by the client.

See Also
FtpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ExecuteEventArgs.Output Property

Gets the name of the external program executed by the client.

[Visual Basic]
Public ReadOnly Property Program As String

[C#]
public string Program {get;}

Property Value
A string that identifies the external program executed by the client.

See Also
FtpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ExecuteEventArgs.Program Property

Occurs when the there are no clients connected to the server.

[Visual Basic]
Public Event OnIdle As EventHandler

[C#]
public event EventHandler OnIdle;

Remarks
This event will only occur after at least one client has connected to the server and then closes its
connection or is disconnected. This event will not occur immediately after the server has started using the
Start method, and will not occur when the server is stopped using the Stop method. Your application
should implement an OnStart event handler for when the server first starts, and an OnStop event handler
for when the server is stopped.

If one or more new client connections are accepted after this event occurs, the event will be generated
again when those clients disconnect and the active client count drops to zero. Therefore it is to be
expected that this event will occur multiple times over the lifetime of the server as it continues to listen for
connections

This event handler will be invoked in the context of the worker thread that is managing the server, not the
thread that created an instance of the class. Because UI components should only be modified by the
thread that created them, the event handler should never attempt to update the user interface directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnIdle Event

Occurs when the client has successfully authenticated the session.

[Visual Basic]
Public Event OnLogin As OnLoginEventHandler

[C#]
public event OnLoginEventHandler OnLogin;

Event Data
The event handler receives an argument of type FtpServer.LoginEventArgs containing data related to this
event. The following FtpServer.LoginEventArgs properties provide information specific to this event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

Directory Gets the home directory of the user that has
logged into the server.

UserName Gets the username associated with the client that
logged into the server.

Remarks
The OnLogin event occurs after the client has successfully authenticated itself using the USER and PASS
commands.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnLogin Event

Provides data for the OnLogin event.

For a list of all members of this type, see FtpServer.LoginEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpServer.LoginEventArgs

[Visual Basic]
Public Class FtpServer.LoginEventArgs
 Inherits EventArgs

[C#]
public class FtpServer.LoginEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer.LoginEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LoginEventArgs Class

Initializes a new instance of the FtpServer.LoginEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer.LoginEventArgs();

See Also
FtpServer.LoginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LoginEventArgs Constructor

FtpServer.LoginEventArgs overview

Public Instance Constructors

 FtpServer.LoginEventArgs Constructor Initializes a new instance of the
FtpServer.LoginEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Directory Gets the home directory of the user that has
logged into the server.

UserName Gets the username associated with the client that
logged into the server.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer.LoginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LoginEventArgs Members

The properties of the FtpServer.LoginEventArgs class are listed below. For a complete list of
FtpServer.LoginEventArgs class members, see the FtpServer.LoginEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Directory Gets the home directory of the user that has
logged into the server.

UserName Gets the username associated with the client that
logged into the server.

See Also
FtpServer.LoginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LoginEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
FtpServer.LoginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LoginEventArgs.ClientId Property

Gets the home directory of the user that has logged into the server.

[Visual Basic]
Public ReadOnly Property Directory As String

[C#]
public string Directory {get;}

Property Value
A string that specifies the full path to a local directory on the server.

See Also
FtpServer.LoginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LoginEventArgs.Directory Property

Gets the username associated with the client that logged into the server.

[Visual Basic]
Public ReadOnly Property UserName As String

[C#]
public string UserName {get;}

Property Value
A string that specifies the username associated with the client session.

See Also
FtpServer.LoginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LoginEventArgs.UserName Property

Occurs when the client has logged out or reinitialized the session.

[Visual Basic]
Public Event OnLogout As OnLogoutEventHandler

[C#]
public event OnLogoutEventHandler OnLogout;

Event Data
The event handler receives an argument of type FtpServer.LogoutEventArgs containing data related to this
event. The following FtpServer.LogoutEventArgs properties provide information specific to this event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

UserName Gets the username associated with the client that
logged out from the server.

Remarks
The OnLogout event occurs after the client has successfully logged out using the QUIT command or
reinitialized the session using the REIN command.

The application should not depend on this event handler always being invoked when a client is
disconnected from the server. This event only occurs when the client sends the QUIT or REIN commands
and will not be invoked if the client connection is aborted or disconnected for some other reason, such as
exceeding the idle timeout period. If the application needs to update data structures or perform some
cleanup when a client disconnects, that should be done in the OnDisconnect event handler.

The application should not call the Disconnect method in the handler for this event because the client is
either in the process of disconnecting or expects that it can submit new credentials to the server.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnLogout Event

Provides data for the OnLogout event.

For a list of all members of this type, see FtpServer.LogoutEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpServer.LogoutEventArgs

[Visual Basic]
Public Class FtpServer.LogoutEventArgs
 Inherits EventArgs

[C#]
public class FtpServer.LogoutEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer.LogoutEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LogoutEventArgs Class

Initializes a new instance of the FtpServer.LogoutEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer.LogoutEventArgs();

See Also
FtpServer.LogoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LogoutEventArgs Constructor

FtpServer.LogoutEventArgs overview

Public Instance Constructors

 FtpServer.LogoutEventArgs Constructor Initializes a new instance of the
FtpServer.LogoutEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

UserName Gets the username associated with the client that
logged out from the server.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer.LogoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LogoutEventArgs Members

The properties of the FtpServer.LogoutEventArgs class are listed below. For a complete list of
FtpServer.LogoutEventArgs class members, see the FtpServer.LogoutEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

UserName Gets the username associated with the client that
logged out from the server.

See Also
FtpServer.LogoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LogoutEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
FtpServer.LogoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LogoutEventArgs.ClientId Property

Gets the username associated with the client that logged out from the server.

[Visual Basic]
Public ReadOnly Property UserName As String

[C#]
public string UserName {get;}

Property Value
A string that specifies the username associated with the client session.

See Also
FtpServer.LogoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.LogoutEventArgs.UserName Property

Occurs when the command issued by the client has been processed by the server.

[Visual Basic]
Public Event OnResult As OnResultEventHandler

[C#]
public event OnResultEventHandler OnResult;

Event Data
The event handler receives an argument of type FtpServer.ResultEventArgs containing data related to this
event. The following FtpServer.ResultEventArgs properties provide information specific to this event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

Command Gets a value that specifies the command issued by
the client.

ResultCode Gets the result code associated with the last
command issued by the client.

Remarks
The OnResult event occurs after the server has processed a command issued by the client. This event will
inform the application whether the command that was issued by the client was successful or not. If the
command was successful, then other related events such as OnDownload may also fire after this event.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnResult Event

Provides data for the OnResult event.

For a list of all members of this type, see FtpServer.ResultEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpServer.ResultEventArgs

[Visual Basic]
Public Class FtpServer.ResultEventArgs
 Inherits EventArgs

[C#]
public class FtpServer.ResultEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer.ResultEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ResultEventArgs Class

Initializes a new instance of the FtpServer.ResultEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer.ResultEventArgs();

See Also
FtpServer.ResultEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ResultEventArgs Constructor

FtpServer.ResultEventArgs overview

Public Instance Constructors

 FtpServer.ResultEventArgs Constructor Initializes a new instance of the
FtpServer.ResultEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Command Gets a value that specifies the command issued by
the client.

ResultCode Gets the result code associated with the last
command issued by the client.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer.ResultEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ResultEventArgs Members

The properties of the FtpServer.ResultEventArgs class are listed below. For a complete list of
FtpServer.ResultEventArgs class members, see the FtpServer.ResultEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Command Gets a value that specifies the command issued by
the client.

ResultCode Gets the result code associated with the last
command issued by the client.

See Also
FtpServer.ResultEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ResultEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
FtpServer.ResultEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ResultEventArgs.ClientId Property

Gets a value that specifies the command issued by the client.

[Visual Basic]
Public ReadOnly Property Command As String

[C#]
public string Command {get;}

Property Value
A string that specifies the command sent by the client.

See Also
FtpServer.ResultEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ResultEventArgs.Command Property

Gets the result code associated with the last command issued by the client.

[Visual Basic]
Public ReadOnly Property ResultCode As Integer

[C#]
public int ResultCode {get;}

Property Value
An integer value that indicates if the command completed successfully.

Remarks
The ResultCode property is a three-digit numeric code that is used to indicate success or failure. These
codes are defined as part of the File Transfer Protocol standard, with values in the range of 200-299
indicating success. Values in the range of 400-499 and 500-599 indicate failure due to various error
conditions. Examples of such failures would be attempting to access a file that does not exist, issuing an
unrecognized command or attempting to perform a privileged operation

See Also
FtpServer.ResultEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.ResultEventArgs.ResultCode Property

Occurs when the server starts accepting connections.

[Visual Basic]
Public Event OnStart As EventHandler

[C#]
public event EventHandler OnStart;

Remarks
The OnStart event occurs after the Start method has been called and the server and begins listening for
connections from clients. An application can use this event to update the user interface and perform any
additional initialization functions that are required by the application

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnStart Event

Occurs when the server stops accepting connections.

[Visual Basic]
Public Event OnStop As EventHandler

[C#]
public event EventHandler OnStop;

Remarks
The OnStop event occurs after the Stop method has been called and all active client sessions have
terminated. An application can use this event to update the user interface and perform any additional
cleanup functions that are required by the application. If the server has a large number of active clients,
this event may not occur immediately. The OnDisconnect event will fire for each client as the server is in
the process of shutting down. During the shutdown process, the server is still considered to be active,
however it will not accept any further connections. When the OnStop event is fired, the server thread has
terminated and the listening socket has been closed.

This event will not occur if the server is forcibly stopped using the Reset method, or when the Uninitialize
method is called prior to disposing an instance of the control. Applications that depend on this event
should ensure that the server is shutdown gracefully using the Stop method prior to terminating the
application

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnStop Event

Occurs when the client has exceeded the maximum allowed idle time.

[Visual Basic]
Public Event OnTimeout As OnTimeoutEventHandler

[C#]
public event OnTimeoutEventHandler OnTimeout;

Event Data
The event handler receives an argument of type FtpServer.TimeoutEventArgs containing data related to
this event. The following FtpServer.TimeoutEventArgs properties provide information specific to this
event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

Elapsed Gets the amount of time that the client was idle.

Remarks
The OnTimeout event occurs after the client has has exceeded the maximum allowed idle time, and
immediately before the client is disconnected from the server. This event will never occur during a file
transfer or directory listing.

To change the default idle timeout period for all clients, set the IdleTime property prior to starting the
server. To set the idle timeout period for a specific client, set the ClientIdle property in an OnConnect or
OnLogin event handler.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnTimeout Event

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.TimeoutEventArgs.Elapsed.html

Provides data for the OnTimeout event.

For a list of all members of this type, see FtpServer.TimeoutEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpServer.TimeoutEventArgs

[Visual Basic]
Public Class FtpServer.TimeoutEventArgs
 Inherits EventArgs

[C#]
public class FtpServer.TimeoutEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer.TimeoutEventArgs Members | SocketTools Namespace | OnTimeout Event
(SocketTools.FtpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.TimeoutEventArgs Class

Initializes a new instance of the FtpServer.TimeoutEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer.TimeoutEventArgs();

See Also
FtpServer.TimeoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.TimeoutEventArgs Constructor

FtpServer.TimeoutEventArgs overview

Public Instance Constructors

 FtpServer.TimeoutEventArgs Constructor Initializes a new instance of the
FtpServer.TimeoutEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Elapsed Gets the amount of time that the client was idle.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer.TimeoutEventArgs Class | SocketTools Namespace | OnTimeout Event (SocketTools.FtpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.TimeoutEventArgs Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.TimeoutEventArgs.Elapsed.html

The properties of the FtpServer.TimeoutEventArgs class are listed below. For a complete list of
FtpServer.TimeoutEventArgs class members, see the FtpServer.TimeoutEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Elapsed Gets the amount of time that the client was idle.

See Also
FtpServer.TimeoutEventArgs Class | SocketTools Namespace | OnTimeout Event (SocketTools.FtpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.TimeoutEventArgs Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.FtpServer.TimeoutEventArgs.Elapsed.html

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
FtpServer.TimeoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.TimeoutEventArgs.ClientId Property

Occurs when the client has successfully uploaded a file to the server.

[Visual Basic]
Public Event OnUpload As OnUploadEventHandler

[C#]
public event OnUploadEventHandler OnUpload;

Event Data
The event handler receives an argument of type FtpServer.UploadEventArgs containing data related to
this event. The following FtpServer.UploadEventArgs properties provide information specific to this
event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

FileName Gets a value that specifies the file being uploaded.

FileSize Gets a value that specifies the size of the file.

Remarks
The OnUpload event occurs after the client has successfully uploaded a file to the server using the APPE,
STOR or STOU command. If the file transfer fails or is aborted, this event will not occur.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
FtpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnUpload Event

Provides data for the OnUpload event.

For a list of all members of this type, see FtpServer.UploadEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.FtpServer.UploadEventArgs

[Visual Basic]
Public Class FtpServer.UploadEventArgs
 Inherits EventArgs

[C#]
public class FtpServer.UploadEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
FtpServer.UploadEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.UploadEventArgs Class

Initializes a new instance of the FtpServer.UploadEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public FtpServer.UploadEventArgs();

See Also
FtpServer.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.UploadEventArgs Constructor

FtpServer.UploadEventArgs overview

Public Instance Constructors

 FtpServer.UploadEventArgs Constructor Initializes a new instance of the
FtpServer.UploadEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

FileName Gets a value that specifies the file being uploaded.

FileSize Gets a value that specifies the size of the file.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
FtpServer.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.UploadEventArgs Members

The properties of the FtpServer.UploadEventArgs class are listed below. For a complete list of
FtpServer.UploadEventArgs class members, see the FtpServer.UploadEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

FileName Gets a value that specifies the file being uploaded.

FileSize Gets a value that specifies the size of the file.

See Also
FtpServer.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.UploadEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
FtpServer.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.UploadEventArgs.ClientId Property

Gets a value that specifies the file being uploaded.

[Visual Basic]
Public ReadOnly Property FileName As String

[C#]
public string FileName {get;}

Property Value
A string that specifies the full path to a file on the local system.

See Also
FtpServer.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.UploadEventArgs.FileName Property

Gets a value that specifies the size of the file.

[Visual Basic]
Public ReadOnly Property FileSize As Long

[C#]
public long FileSize {get;}

Property Value
A long integer value that specifies the size of the file in bytes.

See Also
FtpServer.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.UploadEventArgs.FileSize Property

Represents the method that will handle the OnAuthenticate event.

[Visual Basic]
Public Delegate Sub FtpServer.OnAuthenticateEventHandler(_
 ByVal sender As Object, _
 ByVal e As AuthenticateEventArgs _
)

[C#]
public delegate void FtpServer.OnAuthenticateEventHandler(

 object sender,
 AuthenticateEventArgs e
);

Parameters
sender

The source of the event.

e
An AuthenticateEventArgs that contains the event data.

Remarks
When you create an OnAuthenticateEventHandler delegate, you identify the method that will handle
the event. To associate the event with your event handler, add an instance of the delegate to the event.
The event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnAuthenticateEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnAuthenticateEventHandler Delegate

Represents the method that will handle the OnCommand event.

[Visual Basic]
Public Delegate Sub FtpServer.OnCommandEventHandler(_
 ByVal sender As Object, _
 ByVal e As CommandEventArgs _
)

[C#]
public delegate void FtpServer.OnCommandEventHandler(

 object sender,
 CommandEventArgs e
);

Parameters
sender

The source of the event.

e
An CommandEventArgs that contains the event data.

Remarks
When you create an OnCommandEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnCommandEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnCommandEventHandler Delegate

Represents the method that will handle the OnConnect event.

[Visual Basic]
Public Delegate Sub FtpServer.OnConnectEventHandler(_
 ByVal sender As Object, _
 ByVal e As ConnectEventArgs _
)

[C#]
public delegate void FtpServer.OnConnectEventHandler(

 object sender,
 ConnectEventArgs e
);

Parameters
sender

The source of the event.

e
An ConnectEventArgs that contains the event data.

Remarks
When you create an OnConnectEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnConnectEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnConnectEventHandler Delegate

Represents the method that will handle the OnDisconnect event.

[Visual Basic]
Public Delegate Sub FtpServer.OnDisconnectEventHandler(_
 ByVal sender As Object, _
 ByVal e As DisconnectEventArgs _
)

[C#]
public delegate void FtpServer.OnDisconnectEventHandler(

 object sender,
 DisconnectEventArgs e
);

Parameters
sender

The source of the event.

e
An DisconnectEventArgs that contains the event data.

Remarks
When you create an OnDisconnectEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnDisconnectEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnDisconnectEventHandler Delegate

Represents the method that will handle the OnDownload event.

[Visual Basic]
Public Delegate Sub FtpServer.OnDownloadEventHandler(_
 ByVal sender As Object, _
 ByVal e As DownloadEventArgs _
)

[C#]
public delegate void FtpServer.OnDownloadEventHandler(

 object sender,
 DownloadEventArgs e
);

Parameters
sender

The source of the event.

e
An DownloadEventArgs that contains the event data.

Remarks
When you create an OnDownloadEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnDownloadEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnDownloadEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub FtpServer.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void FtpServer.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnErrorEventHandler Delegate

Represents the method that will handle the OnExecute event.

[Visual Basic]
Public Delegate Sub FtpServer.OnExecuteEventHandler(_
 ByVal sender As Object, _
 ByVal e As ExecuteEventArgs _
)

[C#]
public delegate void FtpServer.OnExecuteEventHandler(

 object sender,
 ExecuteEventArgs e
);

Parameters
sender

The source of the event.

e
An ExecuteEventArgs that contains the event data.

Remarks
When you create an OnExecuteEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnExecuteEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnExecuteEventHandler Delegate

Represents the method that will handle the OnLogin event.

[Visual Basic]
Public Delegate Sub FtpServer.OnLoginEventHandler(_
 ByVal sender As Object, _
 ByVal e As LoginEventArgs _
)

[C#]
public delegate void FtpServer.OnLoginEventHandler(

 object sender,
 LoginEventArgs e
);

Parameters
sender

The source of the event.

e
An LoginEventArgs that contains the event data.

Remarks
When you create an OnLoginEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnLoginEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnLoginEventHandler Delegate

Represents the method that will handle the OnLogout event.

[Visual Basic]
Public Delegate Sub FtpServer.OnLogoutEventHandler(_
 ByVal sender As Object, _
 ByVal e As LogoutEventArgs _
)

[C#]
public delegate void FtpServer.OnLogoutEventHandler(

 object sender,
 LogoutEventArgs e
);

Parameters
sender

The source of the event.

e
An LogoutEventArgs that contains the event data.

Remarks
When you create an OnLogoutEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnLogoutEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnLogoutEventHandler Delegate

Represents the method that will handle the OnResult event.

[Visual Basic]
Public Delegate Sub FtpServer.OnResultEventHandler(_
 ByVal sender As Object, _
 ByVal e As ResultEventArgs _
)

[C#]
public delegate void FtpServer.OnResultEventHandler(

 object sender,
 ResultEventArgs e
);

Parameters
sender

The source of the event.

e
An ResultEventArgs that contains the event data.

Remarks
When you create an OnResultEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnResultEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnResultEventHandler Delegate

Represents the method that will handle the OnTimeout event.

[Visual Basic]
Public Delegate Sub FtpServer.OnTimeoutEventHandler(_
 ByVal sender As Object, _
 ByVal e As TimeoutEventArgs _
)

[C#]
public delegate void FtpServer.OnTimeoutEventHandler(

 object sender,
 TimeoutEventArgs e
);

Parameters
sender

The source of the event.

e
An TimeoutEventArgs that contains the event data.

Remarks
When you create an OnTimeoutEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnTimeoutEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnTimeoutEventHandler Delegate

Represents the method that will handle the OnUpload event.

[Visual Basic]
Public Delegate Sub FtpServer.OnUploadEventHandler(_
 ByVal sender As Object, _
 ByVal e As UploadEventArgs _
)

[C#]
public delegate void FtpServer.OnUploadEventHandler(

 object sender,
 UploadEventArgs e
);

Parameters
sender

The source of the event.

e
An UploadEventArgs that contains the event data.

Remarks
When you create an OnUploadEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnUploadEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.OnUploadEventHandler Delegate

Specifies the error codes returned by the FtpServer class.

[Visual Basic]
Public Enum FtpServer.ErrorCode

[C#]
public enum FtpServer.ErrorCode

Remarks
The FtpServer class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

FtpServer.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logfile formats that the FtpServer class supports.

[Visual Basic]
Public Enum FtpServer.FormatType

[C#]
public enum FtpServer.FormatType

Members

Member Name Description

formatNone This value specifies that the server should not
create or update a log file. This is the default
property value.

formatCommon This value specifies that the log file should use the
common log format that records a subset of
information in a fixed format. This log format
usually only provides information about file
transfers.

formatExtended This value specifies that the log file should use the
standard W3C extended log file format. This is an
extensible format that can provide additional
information about the client session.

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

FtpServer.FormatType Enumeration

Specifies the security protocols that the FtpServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpServer.SecurityProtocols

[C#]
[Flags]
public enum FtpServer.SecurityProtocols

Remarks
The FtpServer class uses the SecurityProtocols enumeration to specify one or more security protocols to
be used when establishing a connection with a remote host. Multiple protocols may be specified if
necessary and the actual protocol used will be negotiated with the remote host. It is recommended that
most applications use protocolDefault when starting a secure server.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

FtpServer.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolDefault The default selection of security
protocols will be used when establishing
a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

16

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the options that the FtpServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpServer.ServerOptions

[C#]
[Flags]
public enum FtpServer.ServerOptions

Remarks
The FtpServer class uses the ServerOptions enumeration to specify one or more options to be used when
establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionMultiUser This option specifies the server should
be started in multi-user mode, where
users are provided with their own home
directories based on their username. If
this option is not specified, then all users
will share the server root directory by
default. This option does not affect the
maximum number of simultaneous
client connections to the server. To
isolate users to their own individual
home directory, combine this option
with the optionRestricted option

1

optionRestricted This option specifies the server should
be initialized in a restricted mode that
isolates the server and limits the ability
for clients to access files on the host
system. All file transfers are limited to
the user's home directory. This option
also disables certain site-specific
commands. This is a recommended
option for general purpose applications
designed to accept connections from
clients over the Internet. This option is
only meaningful if the optionMultiUser
option has also been specified. All
clients are restricted to the server root
directory and its subdirectories,
regardless of whether this option is
specified or not

2

FtpServer.ServerOptions Enumeration

optionLocalUser This option specifies the server should
perform user authentication using the
Windows local account database. This
option is useful if the server should
accept local usernames, or if the
application does not wish to implement
an event handler for user
authentication. If this option is not
specified, the application is responsible
for authenticating all users.

4

optionAnonymous This option specifies the server should
accept anonymous client connections.
This is typically used to provide public
access to files without requiring the
client to have valid credentials on the
server. Anonymous clients are
automatically authenticated by the
server, but are restricted to a public
directory and subdirectories. If this
option is enabled, it is recommended
that you also specify the
optionReadOnly option to prevent
anonymous clients from uploading files
to the server.

8

optionReadOnly This option specifies the server should
only allow read-only access to files by
default. If this option is enabled, it will
change the default permissions granted
to authenticated users. Anonymous
clients will not be able to upload,
rename or delete files and cannot
create subdirectories. It is
recommended that this option be
enabled if the server is publicly
accessible over the Internet and the
optionAnonymous option has been
specified.

16

optionLocalTime This option specifies the server should
return file and directory times adjusted
for the local timezone. By default, the
server will return all file times as UTC
values. This option affects the time
information sent to a client when a list
of files is requested, as well as when
status information is requested for a
specific file. This option will not affect
the MDTM and MFMT commands which
always use file times as UTC values.

32

optionLockFiles This option specifies that files should be
exclusively locked when a client

64

attempts to upload or download a file. If
another client attempts to access the
same file, the operation will fail. By
default, the server will permit multiple
clients to access the same file, although
it will still write-lock files that are in the
process of being uploaded.

optionHiddenFiles This option specifies that when a client
requests a list of files in a directory, the
server should include any hidden and
system files files or subdirectories. By
default, the server will not include
hidden or system files, although they
are still accessible to the client if it
knows the name of the file. File names
that begin with a period are also
considered to be hidden files and will
not normally be included in file listings.

128

optionUnixMode This option specifies the server should
impersonate a UNIX-based operating
system. The server will identify itself as
running on a UNIX system and directory
listings will be in a format commonly
used by UNIX. If this option is not
specified, the server will identify itself as
running on Windows NT and directory
listings will be in the same format used
by the Microsoft IIS FTP server. Note
that this option does not affect the path
delimiter used with file and directory
names.

256

optionExternal This option specifies the server is
listening for client connections from
behind a router that uses Network
Address Translation (NAT). If enabled,
the server will report its external IP
address rather than the address
assigned to it on the local network. For
the server to accept connections from
behind a NAT router, the router must
be configured to direct inbound traffic
to the specified port number on the
host system.

512

optionSecure This option specifies that secure
connections using SSL and/or TLS
should be enabled. If neither the
optionExplicitSSL or
optionImplicitSSL options are
specified, the server automatically
determines the appropriate type based

4096

on the port number. If the local port
number is 990, then implicit SSL will be
used, otherwise explicit SSL will be used.
This option requires that a valid SSL
certificate be installed on the local host.

optionExplicitSSL This option specifies the server will
accept the AUTH TLS command and
negotiate a secure connection with the
client after that command is issued. This
option implies the optionSecure option
and requires that a valid SSL certificate
be installed on the local host.

8192

optionImplicitSSL This option specifies the server should
negotiate a secure connection with the
client immediately after it connects to
the server. It is recommended that you
only use this option if the server is
listening for connections on port 990,
which is the standard port for FTP
servers using implicit SSL. This option
implies the optionSecure option and
requires that a valid SSL certificate be
installed on the local host.

16384

optionSecureFallback This option specifies the server should
permit the use of less secure cipher
suites for compatibility with legacy
clients. If this option is specified, the
server will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

32768

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the priorities that the FtpServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpServer.ServerPriority

[C#]
[Flags]
public enum FtpServer.ServerPriority

Members

Member Name Description Value

priorityBackground This priority significantly reduces the
memory, processor and network
resource utilization for the server. It is
typically used with lightweight services
running in the background that are
designed for few client connections.
Each client thread will be assigned a
lower scheduling priority and will be
frequently forced to yield execution to
other threads.

0

priorityLow This priority lowers the overall resource
utilization for the client session and
meters the processor utilization for the
client session. Each client thread will be
assigned a lower scheduling priority and
will occasionally be forced to yield
execution to other threads.

1

priorityNormal The default priority which balances
resource and processor utilization. It is
recommended that most applications
use this priority.

2

priorityHigh This priority increases the overall
resource utilization for each client
session and their threads will be given
higher scheduling priority. It is not
recommended that this priority be used
on a system with a single processor.

3

priorityCritical This priority can significantly increase
processor, memory and network
utilization. Each client thread will be
given higher scheduling priority and will
be more responsive to network events.
It is not recommended that this priority
be used on a system with a single

4

FtpServer.ServerPriority Enumeration

processor.

priorityInvalid An invalid transfer priority which
indicates an error condition.

-1

priorityDefault The default server priority. This is the
same as specifying priorityNormal.

2

priorityLowest The lowest valid server priority. This is
the same as specifying
priorityBackground.

0

priorityHighest The highest valid server priority. This is
the same as specifying priorityCritical.

4

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the FtpServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum FtpServer.TraceOptions

[C#]
[Flags]
public enum FtpServer.TraceOptions

Remarks
The FtpServer class uses the TraceOptions enumeration to specify what kind of debugging information is
written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.FtpServer (in SocketTools.FtpServer.dll)

See Also
SocketTools Namespace

FtpServer.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Implements the Hypertext Transfer Protocol.

For a list of all members of this type, see HttpClient Members.

System.Object
 SocketTools.HttpClient

[Visual Basic]
Public Class HttpClient
 Implements IDisposable

[C#]
public class HttpClient : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Example
The Hypertext Transfer Protocol (HTTP) is a lightweight, stateless application protocol that is used to
access resources on web servers, as well as send data to those servers for processing. The HttpClient class
provides direct, low-level access to the server and the commands that are used to retrieve resources (i.e.:
documents, images, etc.). The class also provides a simple interface for downloading resources to the local
host, similar to how the FtpClient class can be used to download files.

In a typical session, the class is used to establish a connection, send a request (to download a resource,
post data for processing, etc.), read the data returned by the server and then disconnect. It is the
responsibility of the client to process the data returned by the server, depending on the type of resource
that was requested. For example, if an HTML document was requested, the client may parse the contents
of the file, looking for specific information.

This class supports secure connections using the standard TLS protocols.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
HttpClient Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient Class

HttpClient overview

Public Static (Shared) Fields

httpPortDefault A constant value which specifies the default port
number.

httpPortSecure A constant value which specifies the default port
number for a secure connection.

httpTimeout A constant value which specifies the default
timeout period.

Public Static (Shared) Methods

ErrorText Returns the description of an error code.

Public Instance Constructors

 HttpClient Constructor Initializes a new instance of the HttpClient class.

Public Instance Fields

CookieName Gets a string which specifies the name of a cookie
returned by the server.

CookieValue Gets a string which specifies the value of a cookie
returned by the server.

Public Instance Properties

Authentication Gets and sets the method used to authenticate the
client session.

AutoRedirect Gets and sets a value that specifies if redirected
resources are handled automatically.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

BearerToken Gets and sets the bearer token used with OAuth
2.0 authentication.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

HttpClient Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.httpPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.httpPortSecure.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.httpTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.ErrorText.html

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

CodePage Gets and sets a value that specifies the code page
used to perform text conversions. enabled.

Compression Gets and sets a value that specifies if data
compression should be enabled.

ContentType Gets and sets a value that specifies the content
type for the current request.

CookieCount Gets the number of cookies set by the server in
response to a request for a resource.

Encoding Gets and sets the content encoding type.

FormAction Gets and sets the path to the script that will accept
the form data on the server.

FormMethod Gets and sets the method used to submit the form
data.

FormType Gets and sets the type of encoding used to submit
the form data.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HeaderField Gets and sets the name of the current header field.

HeaderValue Gets the value of a response header field or sets
the value of a request header field.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.CertificateUser.html

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

KeepAlive Gets and sets a Boolean value that specifies if the
connection to the server is persistent.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

Localize Gets and sets a value which specifies if date values
are localized to the current timezone.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client session.

Priority Gets and sets a value which specifies the priority of
data transfers.

ProtocolVersion Gets and sets a value which specifies the default
protocol version.

ProxyHost Gets and sets the hostname or IP address of a
proxy server.

ProxyPassword Gets and sets the password used to authenticate
the connection to a proxy server.

ProxyPort Gets and sets a value that specifies the proxy
server port number.

ProxyType Gets and sets the type of proxy server the client
will use to establish a connection.

ProxyUser Gets and sets the username used to authenticate
the connection to a proxy server.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

Resource Gets and sets a value which specifies a resource on
the server.

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the client.

TaskCount Get the number of active background file transfers.

TaskId Get the task identifier for the last background file
transfer.

TaskList Get an array of active background task identifiers.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

TransferBytes Gets a value which specifies the number of bytes
transferred to or from the server.

TransferRate Gets a value which specifies the data transfer rate

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.RemoteService.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.TransferBytes.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.TransferRate.html

in bytes per second.

TransferTime Gets a value which specifies the number of
seconds elapsed during a data transfer.

URL Gets and sets the current URL used to access a file
on the server.

UserAgent Gets and sets the current user agent value which
identifies the application.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the HttpClient class library.

Public Instance Methods

AddField Overloaded. Add the form field and its value to
the current form.

AddFile Append the contents of the file to the current
form.

AddHeaders Add one or more request headers.

AsyncGetFile Overloaded. Download a file from the server to
the local system in the background.

AsyncPutFile Overloaded. Upload a file from the local system to
the server in the background.

AttachThread Attach an instance of the class to the current
thread

Authenticate Overloaded. Authenticate the client session with a
username and password.

Cancel Cancel the current blocking client operation.

ClearForm Remove all defined fields from the current form.

ClearHeaders Clears the current request and response headers.

CloseFile Close the file that was opened on the server.

Command Overloaded. Send a custom command to the web
server.

Connect Overloaded. Establish a connection with a remote
host.

CreateFile Overloaded. Create a new file or overwrite an
existing file on the web server.

CreateForm Overloaded. Create a new virtual form.

DeleteField Delete a form field and its value from the current
form.

DeleteFile Remove a file on the web server.

Disconnect Terminate the connection with a remote host.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.TransferTime.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.UserAgent.html

Dispose Overloaded. Releases all resources used by
HttpClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetCookie Overloaded. Return information about the
specified cookie.

GetData Overloaded. Retrieve data from a web server and
store it in a byte array.

GetFile Overloaded. Transfer data from the web server
and store it in a file on the local system.

GetFileSize Overloaded. Return the size of the specified file on
the web server.

GetFileTime Overloaded. Return the modification date and
time for specified file on the web server.

GetFirstHeader Return the first response header field name and
value.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeader Return the value of the specified response header
field.

GetNextHeader Return the next response header field name and
value.

GetText Overloaded. Request content from the web server
and store it in a string buffer.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the HttpClient
class.

OpenFile Open a file on the web server for reading.

PatchData Overloaded. Submits patch data to the server and
returns the result in a string.

PostData Overloaded. Submits the contents of the specified
buffer to a resource on the server.

PostFile Overloaded. Upload the contents of a file to a
resource on the server.

PostJson Overloaded. Submits JSON formatted data to the
server and returns the result in a string.

PostXml Overloaded. Submits XML formatted data to the
server and returns the result in a string.

PutData Overloaded. Transfer the contents of a byte array
to the server.

PutFile Overloaded. Transfer a file from the local system

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.PostJson_overloads.html

to the web server.

PutText Overloaded. Submits text in a string buffer to the
server using the PUT command.

Read Overloaded. Read data from the server and store
it in a byte array.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SetCookie Send the specified cookie to the server when a
resource is requested.

SetHeader Set the value of a request header field.

SubmitForm Overloaded. Submits the current form data to the
server for processing.

TaskAbort Overloaded. Abort the specified asynchronous
task.

TaskDone Overloaded. Determine if an asynchronous task
has completed.

TaskResume Overloaded. Resume execution of an
asynchronous task.

TaskSuspend Overloaded. Suspend execution of an
asynchronous task.

TaskWait Overloaded. Wait for an asynchronous task to
complete.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the server.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnCommand Occurs when the client sends a command to the
remote host and receives a reply indicating the
result of that command.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnRead Occurs when data is available to be read from the

client.

OnRedirect Occurs when the server indicates a resource has
been moved.

OnTaskBegin Occurs when an asynchronous task begins
execution.

OnTaskEnd Occurs when an asynchronous task completes.

OnTaskRun Occurs while a background task is active.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the HttpClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the HttpClient class.

[Visual Basic]
Public Sub New()

[C#]
public HttpClient();

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient Constructor

The fields of the HttpClient class are listed below. For a complete list of HttpClient class members, see
the HttpClient Members topic.

Public Static (Shared) Fields

httpPortDefault A constant value which specifies the default port
number.

httpPortSecure A constant value which specifies the default port
number for a secure connection.

httpTimeout A constant value which specifies the default
timeout period.

Public Instance Fields

CookieName Gets a string which specifies the name of a cookie
returned by the server.

CookieValue Gets a string which specifies the value of a cookie
returned by the server.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient Fields

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.httpPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.httpPortSecure.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.httpTimeout.html

Gets a string which specifies the name of a cookie returned by the server.

[Visual Basic]
Public ReadOnly CookieName As CookieNameArray

[C#]
public readonly CookieNameArray CookieName;

Remarks
The CookieName array returns a string which identifies the cookie specified by the index argument. The
array is zero based, which means the name of the first available cookie is read by using an index value of
zero. The CookieCount property indicates the total number of cookies that have been returned by the
server.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CookieName Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.CookieNameArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.CookieNameArray.html

Gets a string which specifies the value of a cookie returned by the server.

[Visual Basic]
Public ReadOnly CookieValue As CookieValueArray

[C#]
public readonly CookieValueArray CookieValue;

Remarks
The CookieValue array returns a string which contains the value for the cookie specified by the index
argument. The array is zero based, which means the value of the first available cookie is read by using an
index value of zero. The CookieCount property indicates the total number of cookies that have been
returned by the server.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CookieValue Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.CookieValueArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.CookieValueArray.html

This structure is used by the GetCookie method to return information about a cookie set by the server.

For a list of all members of this type, see HttpClient.HttpCookie Members.

System.Object
 System.ValueType
 SocketTools.HttpClient.HttpCookie

[Visual Basic]
Public Structure HttpClient.HttpCookie

[C#]
public struct HttpClient.HttpCookie

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
HttpClient.HttpCookie Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpCookie Structure

HttpClient.HttpCookie overview

Public Instance Fields

Domain Gets a value which specifies the cookie domain.

Expires Gets a value which specifies the date and time the
cookie expires.

Flags Gets a value which specifies one or more cookie
flags.

Name Gets a value which specifies the name of the
cookie.

Path Gets a value which specifies the cookie path.

Value Gets a value which specifies the contents of the
cookie.

Public Instance Methods

Equals (inherited from ValueType) Indicates whether this instance and a specified
object are equal.

GetHashCode (inherited from ValueType) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from ValueType) Returns the fully qualified type name of this
instance.

See Also
HttpClient.HttpCookie Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpCookie Members

The fields of the HttpClient.HttpCookie structure are listed below. For a complete list of
HttpClient.HttpCookie structure members, see the HttpClient.HttpCookie Members topic.

Public Instance Fields

Domain Gets a value which specifies the cookie domain.

Expires Gets a value which specifies the date and time the
cookie expires.

Flags Gets a value which specifies one or more cookie
flags.

Name Gets a value which specifies the name of the
cookie.

Path Gets a value which specifies the cookie path.

Value Gets a value which specifies the contents of the
cookie.

See Also
HttpClient.HttpCookie Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpCookie Fields

Gets a value which specifies the cookie domain.

[Visual Basic]
Public Domain As String

[C#]
public string Domain;

Remarks
The cookie domain specifies the domain for which the cookie should be used. Matches are made by
comparing the name of the remote host against the domain name specified in the cookie. If the domain is
example.com, then any server in the example.com domain would match; for example, both
shipping.example.com and orders.example.com would match the domain value. However, if the cookie
domain was orders.example.com, then the cookie would only be sent if the resource was requested from
orders.example.com, not if the resource was located on shipping.example.com or www.example.com.

See Also
HttpClient.HttpCookie Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpCookie.Domain Field

Gets a value which specifies the date and time the cookie expires.

[Visual Basic]
Public Expires As Date

[C#]
public DateTime Expires;

Remarks
If the cookie expiration value is later than the current date and time, the cookie should not be provided to
the server when a resource is requested. This is only valid for persistent cookies, since session cookies are
automatically deleted when the client application terminates. The time is always expressed as Coordinated
Universal Time.

See Also
HttpClient.HttpCookie Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpCookie.Expires Field

Gets a value which specifies one or more cookie flags.

[Visual Basic]
Public Flags As CookieFlags

[C#]
public CookieFlags Flags;

Remarks
The cookie flags value provides additional information about the cookie. In some cases, a cookie should
only be submitted to the server if the resource is requested using a secure connection. In this case, the bit
flag cookieSecure will be set

See Also
HttpClient.HttpCookie Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpCookie.Flags Field

Gets a value which specifies the name of the cookie.

[Visual Basic]
Public Name As String

[C#]
public string Name;

See Also
HttpClient.HttpCookie Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpCookie.Name Field

Gets a value which specifies the cookie path.

[Visual Basic]
Public Path As String

[C#]
public string Path;

Remarks
The cookie path specifies a path for the resources where the cookie should be used. For example, a path
of "/" indicates that the cookie should be provided for all resources requested from the server. A path of
"/data" would mean that the cookie should be included if the resource is found in the /data folder or a
sub-folder, such as /data/projections.asp. However, the cookie would not be provided if the resource
/info/status.asp was requested, since it is not in the /data path.

See Also
HttpClient.HttpCookie Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpCookie.Path Field

Gets a value which specifies the contents of the cookie.

[Visual Basic]
Public Value As String

[C#]
public string Value;

See Also
HttpClient.HttpCookie Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpCookie.Value Field

The properties of the HttpClient class are listed below. For a complete list of HttpClient class members,
see the HttpClient Members topic.

Public Instance Properties

Authentication Gets and sets the method used to authenticate the
client session.

AutoRedirect Gets and sets a value that specifies if redirected
resources are handled automatically.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

BearerToken Gets and sets the bearer token used with OAuth
2.0 authentication.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

CodePage Gets and sets a value that specifies the code page
used to perform text conversions. enabled.

Compression Gets and sets a value that specifies if data
compression should be enabled.

ContentType Gets and sets a value that specifies the content

HttpClient Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.CertificateUser.html

type for the current request.

CookieCount Gets the number of cookies set by the server in
response to a request for a resource.

Encoding Gets and sets the content encoding type.

FormAction Gets and sets the path to the script that will accept
the form data on the server.

FormMethod Gets and sets the method used to submit the form
data.

FormType Gets and sets the type of encoding used to submit
the form data.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HeaderField Gets and sets the name of the current header field.

HeaderValue Gets the value of a response header field or sets
the value of a request header field.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

KeepAlive Gets and sets a Boolean value that specifies if the
connection to the server is persistent.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

Localize Gets and sets a value which specifies if date values

are localized to the current timezone.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client session.

Priority Gets and sets a value which specifies the priority of
data transfers.

ProtocolVersion Gets and sets a value which specifies the default
protocol version.

ProxyHost Gets and sets the hostname or IP address of a
proxy server.

ProxyPassword Gets and sets the password used to authenticate
the connection to a proxy server.

ProxyPort Gets and sets a value that specifies the proxy
server port number.

ProxyType Gets and sets the type of proxy server the client
will use to establish a connection.

ProxyUser Gets and sets the username used to authenticate
the connection to a proxy server.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

Resource Gets and sets a value which specifies a resource on
the server.

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.RemoteService.html

Status Gets a value which specifies the current status of
the client.

TaskCount Get the number of active background file transfers.

TaskId Get the task identifier for the last background file
transfer.

TaskList Get an array of active background task identifiers.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

TransferBytes Gets a value which specifies the number of bytes
transferred to or from the server.

TransferRate Gets a value which specifies the data transfer rate
in bytes per second.

TransferTime Gets a value which specifies the number of
seconds elapsed during a data transfer.

URL Gets and sets the current URL used to access a file
on the server.

UserAgent Gets and sets the current user agent value which
identifies the application.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the HttpClient class library.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.TransferBytes.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.TransferRate.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.TransferTime.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.UserAgent.html

Gets and sets the method used to authenticate the client session.

[Visual Basic]
Public Property Authentication As HttpAuthentication

[C#]
public HttpClient.HttpAuthentication Authentication {get; set;}

Property Value
A HttpAuthentication enumeration value which specifies the authentication method.

Remarks
By default, no authentication is used when accessing a resource on the web server. Setting the UserName
or Password property will automatically set the authentication type to use authBasic unless a different
method has already been specified.

Changing the value of the BearerToken property will automatically set the current authentication method
to use authBearer.

You should only use the authBearer authentication method if you understand the process of how to
request the access token. Obtaining an access token requires registering your application with the web
service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your application and
then requesting the access token using the appropriate scope for the service. Obtaining the initial token
will typically involve interactive confirmation on the part of the user, requiring they grant permission to
your application to access the service.

See Also
HttpClient Class | SocketTools Namespace | BearerToken Poperty | Password Property | UserName
Property | Connect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Authentication Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpAuthentication.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpAuthentication.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpAuthentication.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.Connect_overload_9.html

Gets and sets a value that specifies if redirected resources are handled automatically.

[Visual Basic]
Public Property AutoRedirect As Boolean

[C#]
public bool AutoRedirect {get; set;}

Property Value
A boolean value. A value of true specifies that requests for resources that have moved will automatically
redirect the client to the new location for that resource. A value of false specifies that the client is
responsible for requesting the resource from the new location.

Remarks
When the server indicates that a resource has been redirected, the OnRedirect event will fire and will
provide the new location for the resource as an argument to the event handler. It is permissible for the
application to change the value of the AutoRedirect property inside the event handler to determine
whether or not the class will automatically access the resource from the new location.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.AutoRedirect Property

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.AutoResolve Property

Gets and sets the bearer token used with OAuth 2.0 authentication.

[Visual Basic]
Public Property BearerToken As String

[C#]
public string BearerToken {get; set;}

Property Value
Returns a string which contains the OAuth 2.0 bearer token. Assigning a value to this property sets the
curent authentication type to use OAuth 2.0 and updates the bearer token.

Remarks
Assigning a value to the BearerToken property will automatically change the current authentication
method to use HttpAuthentication.authBearer if necessary.

Obtaining a bearer token requires registering your application with the web service provider (e.g.:
Microsoft or Google), getting a unique client ID associated with your application and then requesting the
bearer token using the appropriate scope for the service. Obtaining the initial token will typically involve
interactive confirmation on the part of the user, requiring they grant permission to your application to
access the service.

Your application should not store the bearer token for later use. They have a relatively short lifespan,
typically about an hour, and are designed to be used with the current client session. You should specify
offline access as part of the OAuth 2.0 scope if necessary and store the refresh token provided by the
service. The refresh token has a much longer validity period and can be used to obtain a new access token
when needed.

If the current authentication method does not use OAuth 2.0, this property will return an empty string and
you should use the Password property to obtain the current user password.

See Also
HttpClient Class | SocketTools Namespace | Authentication Property | Password Property | UserName
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.BearerToken Property

Gets and sets a value which indicates if the client is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the client is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if client operations complete synchronously or asynchronously.
If set to true, then each client operation (such as sending or receiving data) will return when the operation
has completed or timed-out. If set to false, client operations will return immediately. If the operation
would result in the client blocking (such as attempting to read data when no data has been sent by the
remote host), an error is generated.

It is important to note that certain events, such as OnDisconnect, OnRead and OnWrite are only fired if
the client is in non-blocking mode.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Blocking Property

Get a value that specifies the date that the security certificate expires.

[Visual Basic]
Public ReadOnly Property CertificateExpires As String

[C#]
public string CertificateExpires {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateExpires property returns a string that specifies the date and time that the security
certificate expires. This property will return an empty string if a secure connection has not been
established with the remote host.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CertificateExpires Property

Get a value that specifies the date that the security certificate was issued.

[Visual Basic]
Public ReadOnly Property CertificateIssued As String

[C#]
public string CertificateIssued {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateIssued property returns a string that specifies the date and time that the security certificate
was issued. This property will return an empty string if a secure connection has not been established with
the remote host.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CertificateIssued Property

Get a value that provides information about the organization that issued the certificate.

[Visual Basic]
Public ReadOnly Property CertificateIssuer As String

[C#]
public string CertificateIssuer {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateIssuer property returns a string that contains information about the organization that
issued the server certificate. The string value is a comma separated list of tagged name and value pairs. In
the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CertificateIssuer Property

Gets and sets a value that specifies the name of the client certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the certificate name.

Remarks
The CertificateName property is used to specify the name of a client certificate to use when establishing
a secure connection. It is only required that you set this property value if the server requires a client
certificate for authentication. If this property is not set, a client certificate will not be provided to the server.
If a certificate name is specified, the certificate must have a private key associated with it, otherwise the
connection attempt will fail because the control will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
HttpClient Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CertificateName Property

Gets a value which indicates the status of the security certificate returned by the remote host.

[Visual Basic]
Public ReadOnly Property CertificateStatus As SecurityCertificate

[C#]
public HttpClient.SecurityCertificate CertificateStatus {get;}

Property Value
A SecurityCertificate enumeration value which specifies the status of the certificate.

Remarks
The CertificateStatus property is used to determine the status of the security certificate returned by the
remote host when a secure connection has been established. This property value should be checked after
the connection to the server has completed, but prior to beginning a transaction.

Note that if the certificate cannot be validated, the secure connection will not be automatically terminated.
It is the responsibility of your application to determine the best course of action to take if the certificate is
invalid. Even if the security certificate cannot be validated, the data exchanged with the remote host will
still be encrypted.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CertificateStatus Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when establishing a secure connection. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and therefore it is
not necessary to set this property value because that is the default location that will be used to search for
the certificate. This property is only used if the CertificateName property is also set to a valid certificate
name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the property
should specify the full path to the file and must contain both the certificate and private key in PKCS #12

HttpClient.CertificateStore Property

format. If the file is protected by a password, the CertificatePassword property must also be set to
specify the password.

See Also
HttpClient Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.CertificatePassword.html

Gets a value that provides information about the organization that the server certificate was issued to.

[Visual Basic]
Public ReadOnly Property CertificateSubject As String

[C#]
public string CertificateSubject {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateSubject property returns a string that contains information about the organization that the
server certificate was issued to. The string value is a comma separated list of tagged name and value pairs.
In the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CertificateSubject Property

Gets a value that indicates the length of the key used by the encryption algorithm for a secure connection.

[Visual Basic]
Public ReadOnly Property CipherStrength As Integer

[C#]
public int CipherStrength {get;}

Property Value
An integer value which specifies the encryption key length if a secure connection has been established;
otherwise a value of 0 is returned.

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure data
stream. Common values returned by this property are 128 and 256. A key length of 40 or 56 bits is
considered insecure and subject to brute force attacks. 128-bit and 256-bit keys are considered secure. If
this property returns a value of 0, this means that a secure connection has not been established with the
remote host.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CipherStrength Property

Gets and sets a value that specifies the code page used to perform text conversions. enabled.

[Visual Basic]
Public Property CodePage As Integer

[C#]
public int CodePage {get; set;}

Property Value
Returns an integer value which identifies the default code page used for text conversions.

Remarks
The CodePage property specifies the code page used when converting text to native Unicode strings.
Text returned by a web server will be handled as UTF-8 encoded characters by default. Changing this
property value will change how the text is converted. If a value of zero is specified, the active code page
for the current locale will be used.

Most modern web servers will always return text using UTF-8 encoding to ensure the broadest compability
with character sets in multiple languages. However, some servers may return text based on their current
locale. Changing this property will enable your application to override the default code page.

This value must specify a valid code page. Code page numbers range from 0 through 65535 and if an
invalid code page is specified a NotSupportedException exception will be thrown.

See Also
HttpClient Class | SocketTools Namespace | GetText

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CodePage Property

Gets and sets a value that specifies if data compression should be enabled.

[Visual Basic]
Public Property Compression As Boolean

[C#]
public bool Compression {get; set;}

Property Value
Returns true if a data compression is enabled; otherwise returns false. The default value is false.

Remarks
The Compression property is used to indicate to the server whether or not it is acceptable to compress
the data that is returned to the client. If compression is enabled, the client will advertise that it will accept
compressed data by setting the Accept-Encoding request header. The server will decide whether a
resource being requested can be compressed. If the data is compressed, the control will automatically
expand the data before returning it to the caller.

Enabling compression does not guarantee that the data returned by the server will actually be
compressed, it only informs the server that the client is willing to accept compressed data. Whether or not
a particular resource is compressed depends on the server configuration, and the server may decide to
only compress certain types of resources, such as text files. Disabling compression informs the server that
the client is not willing to accept compressed data; this is the default.

If the SetHeader method is used to explicitly set the Accept-Encoding header to request compressed
data and compression is not enabled, the class will not attempt to automatically expand the data returned
by the server. In this case, the raw compressed data will be returned and the application is responsible for
processing it. This behavior is by design to maintain backwards compatibility with previous versions of the
control that did not have internal support for compression.

To determine if the server compressed the data returned to the client, use the GetHeader method to get
the value of the Content-Encoding header. If the header is defined, the value specifies the compression
method used, otherwise the data was not compressed.

This property value is only meaningful when downloading files from a server that supports file
compression. It has no effect on file uploads.

See Also
HttpClient Class | SocketTools Namespace | GetData Method | GetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Compression Property

Gets and sets a value that specifies the content type for the current request.

[Visual Basic]
Public Property ContentType As String

[C#]
public string ContentType {get; set;}

Property Value
Returns a string which identifies the MIME content type of the resource requested from the server.

Remarks
The ContentType property is used to determine the type of content returned with the previous request.
This value is based on the response from the server and the actual contents of the payload are not
examined. If the server does not recognize the format of the data it is returning, it should identify the
content type as application/octet-stream, which is a general-purpose decriptor for binary data.

Some servers will return a content tyoe of text/plain for JSON responses and others will use the IANA
standard type of application/json. If the data format is unknown, a server may incorrectly report the
content type as text/plain, indicating the data is human-readable text. This generally indicates a server
configuration error.

See Also
HttpClient Class | SocketTools Namespace | GetHeader Method | SetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ContentType Property

Gets the number of cookies set by the server in response to a request for a resource.

[Visual Basic]
Public ReadOnly Property CookieCount As Integer

[C#]
public int CookieCount {get;}

Property Value
An integer value which specifies the number of available cookies.

Remarks
This value can be used in conjunction with the CookieName and CookieValue properties to enumerate
all of the available cookies and their values.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CookieCount Property

Gets and sets the content encoding type.

[Visual Basic]
Public Property Encoding As HttpEncoding

[C#]
public HttpClient.HttpEncoding Encoding {get; set;}

Property Value
An HttpEncoding enumeration value which specifies the current encoding type.

Remarks
The Encoding property explicitly sets the type of encoding used when optional parameter data is
submitted with a request for a resource. By default, data is URL encoded and the content type will be
designated as application/x-www-form-urlencoded.

If an application must specify its own Content-Type header, this property must be set to
HttpEncoding.encodingNone to prevent the control from replacing the header value when the request
is sent to the server. Changes to this property and any calls to the SetHeader method should be made
after the connection to the server has been established, immediately before the resource is requested.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Encoding Property

Gets and sets the path to the script that will accept the form data on the server.

[Visual Basic]
Public Property FormAction As String

[C#]
public string FormAction {get; set;}

Property Value
A string which specifies a script on the server.

Remarks
The FormAction property is used to specify the name of the script that will process the form data
submitted by the control. This property is only used by the SubmitForm method and changing the
property value does not change the current resource.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.FormAction Property

Gets and sets the method used to submit the form data.

[Visual Basic]
Public Property FormMethod As HttpFormMethod

[C#]
public HttpClient.HttpFormMethod FormMethod {get; set;}

Property Value
An HttpFormMethod enumeration which specifies the method used to submit the form data.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.FormMethod Property

Gets and sets the type of encoding used to submit the form data.

[Visual Basic]
Public Property FormType As HttpFormType

[C#]
public HttpClient.HttpFormType FormType {get; set;}

Property Value
An HttpFormType enumeration value which specifies the form type and encoding method.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.FormType Property

Gets a value that specifies the client handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current client session.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Handle Property

Gets a value which specifies the length of the message digest that was selected for a secure connection.

[Visual Basic]
Public ReadOnly Property HashStrength As Integer

[C#]
public int HashStrength {get;}

Property Value
An integer value which specifies the length of the message digest if a secure connection has been
established; otherwise a value of 0 is returned.

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that was
selected. Common values returned by this property are 128 and 160. If this property returns a value of 0,
this means that a secure connection has not been established with the remote host.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HashStrength Property

Gets and sets the name of the current header field.

[Visual Basic]
Public Property HeaderField As String

[C#]
public string HeaderField {get; set;}

Property Value
A string which specifies the current header field.

Remarks
The HeaderField property is used in conjunction with the HeaderValue property to set and/or get the
values of specific fields in the HTTP request header. For example, setting this property to the value
"Content-Length" and then reading the value of the HeaderValue property would cause the class to
return length (in bytes) of the specified resource.

Note that the control automatically generates a default request header, and it is not required that the
client use the HeaderField and HeaderValue properties unless it has a specific need to do so

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HeaderField Property

Gets the value of a response header field or sets the value of a request header field.

[Visual Basic]
Public Property HeaderValue As String

[C#]
public string HeaderValue {get; set;}

Property Value
A string which specifies the header field value.

Remarks
The HeaderValue property is used in conjunction with the HeaderField property to set or get the values
of specific fields in the HTTP request and response headers. When the property is set to a value, then the
specified request header field is set to this value. When the property is read, then the value associated
with the specified response header field is returned.

Note that the control automatically generates a default request header, and it is not required that the
client use the HeaderField and HeaderValue properties unless it has a specific need to do so.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HeaderValue Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HostAddress Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HostName Property

Gets a value which indicates if the current thread is performing a blocking client operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next client operation will not fail. An application
should always check the return value from a client operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.IsBlocked Property

Gets a value which indicates if a connection to the remote host has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the remote
host. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.IsInitialized Property

Gets a value which indicates if there is data available to be read from the socket connection to the server.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to read the client. Note
that even if this property does return true indicating that there is data available to be read, applications
should always check the return value from the Read method.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.IsReadable Property

Gets a value which indicates if data can be written to the client without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the client; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to write data to the client.
Note that even if this property does return true indicating that data can be written to the client,
applications should always check the return value from the Write method.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.IsWritable Property

Gets and sets a Boolean value that specifies if the connection to the server is persistent.

[Visual Basic]
Public Property KeepAlive As Boolean

[C#]
public bool KeepAlive {get; set;}

Property Value
A boolean value that specifies if the connection to the server is persistent.

Remarks
Setting the KeepAlive property to a value of true indicates that the client wishes to maintain a persistent
connection with the server. For those clients who wish to retrieve a number of documents, this is more
efficient because the client does not need to connect, retrieve the document and disconnect each time.
Instead, the client can connect, retrieve each document and then disconnect when it is finished. If the
property value is false, a persistent connection is not maintained, and the client must establish a
connection for each document that it wishes to retrieve. This property should be set to the desired value
before establishing a connection with the remote server.

Note that this option is only available for those servers which support version 1.0 or later of the HTTP
protocol. For version 1.0 servers, the connection header field is set to the value 'keep-alive', which instructs
compliant servers to maintain a persistent connection. For version 1.1 and later, persistent connections are
the default. In this case, if the property value is set to false, the connection header field will be set to the
value 'close', telling the server that you wish to close the connection after the document has been
retrieved. It is possible that the server may choose to close the connection itself, even if it supports
persistent connections. If the server does not support persistent connections and the KeepAlive property
is set to true, the client will attempt to simulate a persistent connection by automatically reconnecting for
each request.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.KeepAlive Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public HttpClient.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.LastErrorString Property

Gets the local Internet address that the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local Internet address that the client is bound to when a
connection is established with a remote host. This property may return either an IPv4 or IPv6 formatted
address, depending on the type of connection that was established.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.LocalAddress Property

Gets and sets a value which specifies if date values are localized to the current timezone.

[Visual Basic]
Public Property Localize As Boolean

[C#]
public bool Localize {get; set;}

Property Value
A boolean value which specifies if date values are localized to the current timezone.

Remarks
Setting the Localize property controls how remote file date and time values are localized when the
GetFileTime method is called. If the property is set to true, then the file date and time will be adjusted to
the current timezone. If the property is set to false, which is the default value, then the file date and time
are returned as UTC (Coordinated Universal Time) values.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Localize Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.LocalName Property

Gets the local port number the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalPort As Integer

[C#]
public int LocalPort {get;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to identify the local port number that the client is bound to to when a
connection is established with a remote host.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.LocalPort Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As HttpOptions

[C#]
public HttpClient.HttpOptions Options {get; set;}

Property Value
Returns one or more HttpOptions enumeration flags which specify the options for the client. The default
value for this property is httpOptionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Options Property

Gets and sets the password used to authenticate the client session.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password.

Remarks
The Password property specifies the password used to authenticate the client session. This property is
used as the default value for the Connect method if no password is specified as an argument.

Refer to the Authentication property for more information on the available authentication methods. If
you are using the authBearer authentication method, this property should not be set to the user's
password. Instead, you should set the BearerToken property to the access token issued by the mail
service provider. Note that these tokens can be much larger than your typical password and are only valid
for a limited period of time.

You can use the Password property to specify a bearer token. However, it is recommended that you use
the BearerToken property instead of assigning it to this property. It will ensure compatibility with future
versions of the class and make it clear in your code you are using an OAuth 2.0 bearer token and not a
password. If the Authentication property specifies the authBearer authentication method, this property
will return the bearer token.

See Also
HttpClient Class | SocketTools Namespace | Authentication Property | BearerToken Property | UserName
Property | Connect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Password Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.Connect_overload_9.html

Gets and sets a value which specifies the priority of data transfers.

[Visual Basic]
Public Property Priority As HttpPriority

[C#]
public HttpClient.HttpPriority Priority {get; set;}

Property Value
Returns a HttpPriority enumeration value which specify the current data transfer priority. The default value
for this property is priorityNormal.

Remarks
The Priority property can be used to control the processor usage, memory and network bandwidth
allocated for data transfers. The default priority balances resource utilization and transfer speed while
ensuring that a single-threaded application remains responsive to the user. Lower priorities reduce the
overall resource utilization at the expense of transfer speed. For example, if you create a worker thread to
download a file in the background and want to ensure that it has a minimal impact on the process, the
priorityBackground value can be used.

Higher priority values increase the memory allocated for the transfers and increases processor utilization
for the transfer. The priorityCritical priority maximizes transfer speed at the expense of system resources.
It is not recommended that you increase the data transfer priority unless you understand the implications
of doing so and have thoroughly tested your application. If the data transfer is being performed in the
main UI thread, increasing the priority may interfere with the normal processing of Windows messages
and cause the application to appear to become non-responsive. It is also important to note that when the
priority is set to priorityCritical, normal progress events will not be generated during the transfer.

See Also
HttpClient Class | SocketTools Namespace | HttpPriority Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Priority Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpPriority.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpPriority.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpPriority.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpPriority.html

Gets and sets a value which specifies the default protocol version.

[Visual Basic]
Public Property ProtocolVersion As HttpVersion

[C#]
public HttpClient.HttpVersion ProtocolVersion {get; set;}

Property Value
An HttpVersion enumeration which specifies the protocol version.

Remarks
The ProtocolVersion property sets or returns the current HTTP version number. It is used to determine
how requests are submitted to the server, as well as what header fields are required. The default value for
this property is HttpVersion.version10, and should be changed before any connection attempt is made
by the client.

Note that setting the property value to HttpVersion.version09 tells the client to use the preliminary
protocol specification which only supported a basic version of the GET command, and did not have any
provisions for features such as user authentication, virtual hosting, etc. Header fields are not supported in
this version of the protocol.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProtocolVersion Property

Gets and sets the hostname or IP address of a proxy server.

[Visual Basic]
Public Property ProxyHost As String

[C#]
public string ProxyHost {get; set;}

Property Value
A string which specifies the hostname or IP address of the proxy server that will be used when establishing
a connection.

Remarks
The ProxyHost property should be set to the name of the proxy server that you want to connect to. This
property may be set to either a fully qualified domain name, or an IP address. This property is only used if
the ProxyType property specifies a proxy server type other than proxyNone.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProxyHost Property

Gets and sets the password used to authenticate the connection to a proxy server.

[Visual Basic]
Public Property ProxyPassword As String

[C#]
public string ProxyPassword {get; set;}

Property Value
A string which specifies a password.

Remarks
The ProxyPassword property specifies the password used to authenticate the user to the proxy server. If
a password is not required by the server, this property is ignored.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProxyPassword Property

Gets and sets a value that specifies the proxy server port number.

[Visual Basic]
Public Property ProxyPort As Integer

[C#]
public int ProxyPort {get; set;}

Property Value
An integer value which specifies the proxy port number.

Remarks
The ProxyPort property is used to set the port number that the control will use to establish a connection
with the proxy server. A value of zero specifies that the client will connect to the proxy server using the
standard HTTP service port.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProxyPort Property

Gets and sets the type of proxy server the client will use to establish a connection.

[Visual Basic]
Public Property ProxyType As HttpProxyType

[C#]
public HttpClient.HttpProxyType ProxyType {get; set;}

Property Value
An HttpProxyType enumeration which specifies the type of proxy that the client will connect through.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProxyType Property

Gets and sets the username used to authenticate the connection to a proxy server.

[Visual Basic]
Public Property ProxyUser As String

[C#]
public string ProxyUser {get; set;}

Property Value
A string which specifies the username.

Remarks
The ProxyUser property specifies the user that is logging in to the proxy server. If the proxy server does
not require the user to login, then this property is ignored.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProxyUser Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.RemotePort Property

Gets and sets a value which specifies a resource on the server.

[Visual Basic]
Public Property Resource As String

[C#]
public string Resource {get; set;}

Property Value
A string which specifies a resource.

Remarks
The Resource property is used to specify the name of a resource on the server. The resource may be a
file, such as an HTML document or an image, or it may be a script used to process data submitted by the
client. Note that this property specifies the name of the resource only, not a complete URL. To specify a
complete URL, set the URL property and the control will automatically set the Resource property to the
correct value.

In most cases, the resource name should be specified using an absolute path that begins with a leading
slash character.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Resource Property

Gets a value which specifies the last result code returned by the server.

[Visual Basic]
Public ReadOnly Property ResultCode As Integer

[C#]
public int ResultCode {get;}

Property Value
An integer value which specifies the last result code returned by the server.

Remarks
Result codes are three-digit numeric values returned by the remote server and may be broken down into
the following ranges:

ResultCode Description

100-199 Positive preliminary result. This indicates that the
requested action is being initiated, and the client
should expect another reply from the server
before proceeding.

200-299 Positive completion result. This indicates that the
server has successfully completed the requested
action.

300-399 Positive intermediate result. This indicates that the
requested action cannot complete until additional
information is provided to the server.

400-499 Transient negative completion result. This indicates
that the requested action did not take place, but
the error condition is temporary and may be
attempted again.

500-599 Permanent negative completion result. This
indicates that the requested action did not take
place.

It is important to note that while some result codes have become standardized, not all servers respond to
commands using the same result codes. It is recommended that applications check for ranges of values to
determine if a command was successful, not a specific value.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ResultCode Property

Gets a string value which describes the result of the previous command.

[Visual Basic]
Public ReadOnly Property ResultString As String

[C#]
public string ResultString {get;}

Property Value
A string which describes the result of the previous command executed on the server.

Remarks
The ResultString property returns the result string from the last action taken by the client. This string is
generated by the remote server, and typically is used to describe the result code. For example, if an error
is indicated by the result code, the result string may describe the condition that caused the error.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ResultString Property

Gets and sets a value which specifies if a secure connection is established.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connection is established; otherwise returns false. The default value is false.

Remarks
The Secure property determines if a secure connection is established with the remote host. The default
value for this property is false, which specifies that a standard connection to the server is used. To
establish a secure connection, the application should set this property value to true prior to calling the
Connect method. Once the connection has been established, the client may exchange data with the
server as with standard connections.

It is strongly recommended that any application that sets this property true use error handling to trap an
errors that may occur. If the control is unable to initialize the security libraries, or otherwise cannot create
a secure session for the client, an exception may be generated when this property value is set.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Secure Property

Gets a value that specifies the encryption algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureCipher As SecureCipherAlgorithm

[C#]
public HttpClient.SecureCipherAlgorithm SecureCipher {get;}

Property Value
A SecureCipherAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureCipher property returns a value which identifies the algorithm used to encrypt the data
stream. If a secure connection has not been established, this property will return a value of cipherNone.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SecureCipher Property

Gets a value that specifies the message digest algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureHash As SecureHashAlgorithm

[C#]
public HttpClient.SecureHashAlgorithm SecureHash {get;}

Property Value
A SecureHashAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureHash property returns a value which identifies the message digest (hash) algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of hashNone.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SecureHash Property

Gets a value that specifies the key exchange algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureKeyExchange As SecureKeyAlgorithm

[C#]
public HttpClient.SecureKeyAlgorithm SecureKeyExchange {get;}

Property Value
A SecureKeyAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureKeyExchange property returns a value which identifies the key exchange algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of keyExchangeNone.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SecureKeyExchange Property

Gets and sets a value which specifies the protocol used for a secure connection.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public HttpClient.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when establishing a secure
connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when establishing a
secure connection with a server or accepting a secure connection from a client. By default, the class will
attempt to use either SSL v3 or TLS v1 to establish the connection, with the appropriate protocol
automatically selected based on the capabilities of the remote host. It is recommended that you only
change this property value if you fully understand the implications of doing so. Assigning a value to this
property will override the default protocol and force the class to attempt to use only the protocol
specified.

Multiple security protocols may be specified by combining them using a bitwise or operator. After a
connection has been established, this property will identify the protocol that was selected. Attempting to
set this property after a connection has been established will result in an exception being thrown. This
property should only be set after setting the Secure property to true and before calling the Accept or
Connect methods.

In some cases, a server may only accept a secure connection if the TLS v1 protocol is specified. If the
security protocol is not compatible with the server, then the connection will fail with an error indicating
that the control is unable to establish a security context for the session. In this case, try assigning the
property to protocolTLS1 and attempt the connection again.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SecureProtocol Property

Gets a value which specifies the current status of the client.

[Visual Basic]
Public ReadOnly Property Status As HttpStatus

[C#]
public HttpClient.HttpStatus Status {get;}

Property Value
A HttpStatus enumeration value which specifies the current client status.

Remarks
The Status property returns the current status of the client. This property can be used to check on
blocking connections to determine if the client is interacting with the remote host before taking some
action.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Status Property

Get the number of active background file transfers.

[Visual Basic]
Public ReadOnly Property TaskCount As Integer

[C#]
public int TaskCount {get;}

Property Value
An integer value that specifies the number of background file transfers that are currently in progress.

Remarks
The TaskCount property returns the number of background file transfers that are currently in progress.
One common use for this property is to create a timer that periodically checks this value when a series of
background transfers are started. When the property returns a value of zero, that indicates all of the
background transfers have completed. This property can also be used to enumerate the active
background tasks in conjunction with the TaskList property.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskCount Property

Get the task identifier for the last background file transfer.

[Visual Basic]
Public ReadOnly Property TaskId As Integer

[C#]
public int TaskId {get;}

Property Value
An integer value the uniquely identifies the current background task.

Remarks
The TaskId property returns the task ID associated with the current background task. This identifies the
last background file transfer that was initiated with a call to the AsyncGetFile or AsyncPutFile methods.
This property value will change with each subsequent background transfer that is performed. If this
property returns a value of zero, that indicates that no background tasks have been started for this
instance of the class.

To enumerate the active background tasks, use the TaskCount property and the TaskList array.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskId Property

Get an array of active background task identifiers.

[Visual Basic]
Public ReadOnly Property TaskList As ArrayList

[C#]
public System.Collections.ArrayList TaskList {get;}

Property Value
An ArrayList object that contains a list of integer values that uniquely identify the active background tasks
that have been started by this instance of the class.

Remarks
The TaskList property returns a read-only ArrayList object that is popularted with the task identifiers for
all active background tasks that have been created by this instance of the class. The current number of
active tasks can be determined using the TaskCount property.

As background tasks complete and additional tasks are started, the values stored in this array will change.
The application should never make any assumptions about the numeric values stored in the array or the
order they are returned. Task IDs should be considered opaque values that are unique to the process.
When a background task completes, its corresponding ID is removed from the list of active tasks and this
can potentially change the task ID values associated with each index into the array.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskList Property

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public HttpClient.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
HttpClient Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Timeout Property

Gets and sets the current timezone offset in seconds.

[Visual Basic]
Public Property TimeZone As Integer

[C#]
public int TimeZone {get; set;}

Property Value
An integer value which specifies the current timezone offset in seconds.

Remarks
The TimeZone property returns the current offset from UTC in seconds. Setting the property changes the
current timezone offset to the specified value. The value of this property is initially determined by the date
and time settings on the local system.

This property value is used in conjunction with the Localize property to control how date and time
localization is handled.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TimeZone Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public HttpClient.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TraceFlags Property

Gets and sets the current URL used to access a file on the server.

[Visual Basic]
Public Property URL As String

[C#]
public string URL {get; set;}

Property Value
A string which specifies the current URL.

Remarks
The URL property returns the current Uniform Resource Locator string which is used by the control to
access a resource on the server. URLs have a specific format which provides information about the remote
host, port, resource, as well as optional information such as a username and password for authentication:

 http://[username : [password] @] hostname [:port] / resource [?
parameters]

The first part of the URL is the protocol and in this case will always be "http", or "https" if a secure
connection is being used. If a username and password is required for authentication, then this will be
included in the URL before the name of the remote host. Next, there is the name of the remote host to
connect to, optionally followed by a port number. If no port number is given, then the default port for the
protocol will be used. This is followed by the resource, which is usually a path to a file or script on the
server. Parameters to the resource may also be specified, which are typically used as arguments to a script
that is executed on the server.

Here are some common examples of URLs used to access resources on an HTTP server:

 http://www.example.com/products/index.html

In this example, the remote host is www.example.com and the resource is
/products/index.html. The default port will be used to access the resource, and no username
and password is provided for authentication.

 http://www.example.com:8080/index.html

In this example, the remote host is www.example.com and the resource is
/products/index.html. However, the client should connect to an alternative port number, in
this case 8080.

 https://www.example.com/order/confirm.asp

In this example, the remote host is www.example.com and the resource is the script
/order/confirm.asp. Because the protocol is https, a secure connection on port 443 will be
established.

 http://jsmith:secret@www.example.com:8080/~jsmith/personal/index.html

HttpClient.URL Property

In this example, the remote host is www.example.com and the resource is
/~jsmith/personal/index.html. The port 8080 will be used to access the resource, and access
to the resource will be authenticated with the username "jsmith" and the password "secret".

When setting the URL property, the control will parse the string and automatically update the HostName,
RemotePort, UserName, Password and Resource properties according to the values specified in the
URL. This enables an application to simply provide the URL and then call the Connect method to establish
the connection.

Note that if this property is assigned a value which cannot be parsed, the control will throw an error that
indicates that the property value is invalid. In a language like Visual Basic it is important that you
implement an error handler, particularly if you are assigning a value to the property based on user input. If
the user enters an invalid URL and there is no error handler, it could result in an exception which
terminates the application.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets the username used to authenticate the client session.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username.

Remarks
If a username is not specified when the Connect method is called, the value of this property will be used
as the default username when establishing a connection with the server.

See Also
HttpClient Class | SocketTools Namespace | Authentication Property | BearerToken Property | Password
Property | Connect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.UserName Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.Connect_overload_9.html

Gets a value which returns the current version of the HttpClient class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the HttpClient class
library. This value can be used by an application for validation and debugging purposes.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Version Property

The methods of the HttpClient class are listed below. For a complete list of HttpClient class members,
see the HttpClient Members topic.

Public Static (Shared) Methods

ErrorText Returns the description of an error code.

Public Instance Methods

AddField Overloaded. Add the form field and its value to
the current form.

AddFile Append the contents of the file to the current
form.

AddHeaders Add one or more request headers.

AsyncGetFile Overloaded. Download a file from the server to
the local system in the background.

AsyncPutFile Overloaded. Upload a file from the local system to
the server in the background.

AttachThread Attach an instance of the class to the current
thread

Authenticate Overloaded. Authenticate the client session with a
username and password.

Cancel Cancel the current blocking client operation.

ClearForm Remove all defined fields from the current form.

ClearHeaders Clears the current request and response headers.

CloseFile Close the file that was opened on the server.

Command Overloaded. Send a custom command to the web
server.

Connect Overloaded. Establish a connection with a remote
host.

CreateFile Overloaded. Create a new file or overwrite an
existing file on the web server.

CreateForm Overloaded. Create a new virtual form.

DeleteField Delete a form field and its value from the current
form.

DeleteFile Remove a file on the web server.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
HttpClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

HttpClient Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.ErrorText.html

GetCookie Overloaded. Return information about the
specified cookie.

GetData Overloaded. Retrieve data from a web server and
store it in a byte array.

GetFile Overloaded. Transfer data from the web server
and store it in a file on the local system.

GetFileSize Overloaded. Return the size of the specified file on
the web server.

GetFileTime Overloaded. Return the modification date and
time for specified file on the web server.

GetFirstHeader Return the first response header field name and
value.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeader Return the value of the specified response header
field.

GetNextHeader Return the next response header field name and
value.

GetText Overloaded. Request content from the web server
and store it in a string buffer.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the HttpClient
class.

OpenFile Open a file on the web server for reading.

PatchData Overloaded. Submits patch data to the server and
returns the result in a string.

PostData Overloaded. Submits the contents of the specified
buffer to a resource on the server.

PostFile Overloaded. Upload the contents of a file to a
resource on the server.

PostJson Overloaded. Submits JSON formatted data to the
server and returns the result in a string.

PostXml Overloaded. Submits XML formatted data to the
server and returns the result in a string.

PutData Overloaded. Transfer the contents of a byte array
to the server.

PutFile Overloaded. Transfer a file from the local system
to the web server.

PutText Overloaded. Submits text in a string buffer to the
server using the PUT command.

Read Overloaded. Read data from the server and store

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.PostJson_overloads.html

it in a byte array.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SetCookie Send the specified cookie to the server when a
resource is requested.

SetHeader Set the value of a request header field.

SubmitForm Overloaded. Submits the current form data to the
server for processing.

TaskAbort Overloaded. Abort the specified asynchronous
task.

TaskDone Overloaded. Determine if an asynchronous task
has completed.

TaskResume Overloaded. Resume execution of an
asynchronous task.

TaskSuspend Overloaded. Suspend execution of an
asynchronous task.

TaskWait Overloaded. Wait for an asynchronous task to
complete.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the server.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the HttpClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add the form field and its value to the current form.

Overload List
Add the form field and its value to the current form.

public bool AddField(string,byte[],int);

Add the form field and its value to the current form.

public bool AddField(string,string);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.AddField Method

Add the form field and its value to the current form.

[Visual Basic]
Overloads Public Function AddField(_
 ByVal fieldName As String, _
 ByVal fieldData As Byte(), _
 ByVal fieldLength As Integer _
) As Boolean

[C#]
public bool AddField(
 string fieldName,
 byte[] fieldData,
 int fieldLength
);

Parameters
fieldName

A string which specifies the name of the field to add to the form.

fieldData
A byte array which specifies the data for the form field.

fieldLength
An integer value which specifies the length of the field data in bytes. This value cannot be larger than
the size of the byte array passed to this method.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AddField method is used to add a field and its associated value to a form created using the
CreateForm method. If the field name has already been added to the form, the previous value is deleted
and replaced by the new value.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.AddField Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.AddField Method (String, Byte[], Int32)

Add the form field and its value to the current form.

[Visual Basic]
Overloads Public Function AddField(_
 ByVal fieldName As String, _
 ByVal fieldData As String _
) As Boolean

[C#]
public bool AddField(
 string fieldName,
 string fieldData
);

Parameters
fieldName

A string which specifies the name of the field to add to the form.

fieldData
A string which specifies the data for the form field.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AddField method is used to add a field and its associated value to a form created using the
CreateForm method. If the field name has already been added to the form, the previous value is deleted
and replaced by the new value.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.AddField Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.AddField Method (String, String)

Append the contents of the file to the current form.

[Visual Basic]
Public Function AddFile(_
 ByVal fieldName As String, _
 ByVal fileName As String _
) As Boolean

[C#]
public bool AddFile(
 string fieldName,
 string fileName
);

Parameters
fieldName

A string which specifies the name of the field to add to the form.

fileName
A string which specifies the name of the file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AddFile method is used to add the contents of a file to a form created using the CreateForm
method. If the field name has already been added to the form, the previous value is deleted and replaced
by the new value.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.AddFile Method

Add one or more request headers.

[Visual Basic]
Public Function AddHeaders(_
 ByVal headerList As String _
) As Boolean

[C#]
public bool AddHeaders(
 string headerList
);

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false.

Remarks
The AddHeaders method enables your application to set multiple header values by providing a list of
name/value pairs separated by a colon, with each pair separated with a newline character. This function is
similar to calling the SetHeader method for each value. When the list of header values is parsed,
extraneous whitespace is ignored.

Exercise caution when providing a header list created directly from user input, such as a list of values input
using a textbox control. Any header values which have been previously set by your application can be
overridden by this method and may yield unpredictable results. If the service you are using requires a
custom authorization header, such as an API token or other user credentials, allowing users to directly
modify request header values this way can present a security risk.

See Also
HttpClient Class | SocketTools Namespace | GetHeader Method | SetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.AddHeaders Method

Download a file from the server to the local system in the background.

Overload List
Download a file from the server to the local system in the background.

public bool AsyncGetFile(string);

Download a file from the server to the local system in the background.

public bool AsyncGetFile(string,string);

Download a file from the server to the local system in the background.

public bool AsyncGetFile(string,string,HttpTransferOptions);

Download a file from the server to the local system in the background.

public bool AsyncGetFile(string,string,HttpTransferOptions,long);

See Also
HttpClient Class | SocketTools Namespace | AsyncPutFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.AsyncGetFile Method

Download a file from the server to the local system in the background.

[Visual Basic]
Overloads Public Function AsyncGetFile(_
 ByVal localFile As String _
) As Boolean

[C#]
public bool AsyncGetFile(
 string localFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local system. It is
similar to the GetFile method, however it retrieves the file using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other operations
while the file is being downloaded from the server. This method requires that you explicitly establish a
connection using the Connect method. All background tasks will duplicate the active connection and use
it establish a secondary connection with the server to perform the file transfer. If you wish to perform
multiple asynchronous file transfers from different servers, you must create a new instance of this class for
each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is downloaded,
the class will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to download more than one file in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP address.
The application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.AsyncGetFile Overload List | AsyncPutFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.AsyncGetFile Method (String)

Download a file from the server to the local system in the background.

[Visual Basic]
Overloads Public Function AsyncGetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool AsyncGetFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be transferred to the local system. The file pathing
and name conventions must be that of the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local system. It is
similar to the GetFile method, however it retrieves the file using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other operations
while the file is being downloaded from the server. This method requires that you explicitly establish a
connection using the Connect method. All background tasks will duplicate the active connection and use
it establish a secondary connection with the server to perform the file transfer. If you wish to perform
multiple asynchronous file transfers from different servers, you must create a new instance of this class for
each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is downloaded,
the class will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to download more than one file in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP address.
The application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

HttpClient.AsyncGetFile Method (String, String)

See Also
HttpClient Class | SocketTools Namespace | HttpClient.AsyncGetFile Overload List | AsyncPutFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Download a file from the server to the local system in the background.

[Visual Basic]
Overloads Public Function AsyncGetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As HttpTransferOptions _
) As Boolean

[C#]
public bool AsyncGetFile(
 string localFile,
 string remoteFile,
 HttpTransferOptions options
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be transferred to the local system. The file pathing
and name conventions must be that of the server.

options
An HttpTransferOptions enumeration value which specifies one or more file transfer options.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local system. It is
similar to the GetFile method, however it retrieves the file using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other operations
while the file is being downloaded from the server. This method requires that you explicitly establish a
connection using the Connect method. All background tasks will duplicate the active connection and use
it establish a secondary connection with the server to perform the file transfer. If you wish to perform
multiple asynchronous file transfers from different servers, you must create a new instance of this class for
each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is downloaded,
the class will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to download more than one file in the background; however,

HttpClient.AsyncGetFile Method (String, String, HttpTransferOptions)

most servers limit the number of simultaneous connections that can originate from a single IP address.
The application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.AsyncGetFile Overload List | AsyncPutFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Download a file from the server to the local system in the background.

[Visual Basic]
Overloads Public Function AsyncGetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As HttpTransferOptions, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool AsyncGetFile(
 string localFile,
 string remoteFile,
 HttpTransferOptions options,
 long offset
);

Parameters
localFile

A string that specifies the file on the local system that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be transferred to the local system. The file pathing
and name conventions must be that of the server.

options
An HttpTransferOptions enumeration value which specifies one or more file transfer options.

offset
A byte offset which specifies where the file transfer should begin. The default value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the REST command to restart transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local system. It is
similar to the GetFile method, however it retrieves the file using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other operations
while the file is being downloaded from the server. This method requires that you explicitly establish a
connection using the Connect method. All background tasks will duplicate the active connection and use
it establish a secondary connection with the server to perform the file transfer. If you wish to perform
multiple asynchronous file transfers from different servers, you must create a new instance of this class for
each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is downloaded,

HttpClient.AsyncGetFile Method (String, String, HttpTransferOptions,
Int64)

the class will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to download more than one file in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP address.
The application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.AsyncGetFile Overload List | AsyncPutFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a file from the local system to the server in the background.

Overload List
Upload a file from the local system to the server in the background.

public bool AsyncPutFile(string);

Upload a file from the local system to the server in the background.

public bool AsyncPutFile(string,string);

Upload a file from the local system to the server in the background.

public bool AsyncPutFile(string,string,HttpTransferOptions);

Upload a file from the local system to the server in the background.

public bool AsyncPutFile(string,string,HttpTransferOptions,long);

See Also
HttpClient Class | SocketTools Namespace | AsyncGetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.AsyncPutFile Method

Upload a file from the local system to the server in the background.

[Visual Basic]
Overloads Public Function AsyncPutFile(_
 ByVal localFile As String _
) As Boolean

[C#]
public bool AsyncPutFile(
 string localFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is similar
to the PutFile method, however it retrieves the file using a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations while the
file is being uploaded to the server. This method requires that you explicitly establish a connection using
the Connect method. All background tasks will duplicate the active connection and use it establish a
secondary connection with the server to perform the file transfer. If you wish to perform multiple
asynchronous file transfers from different servers, you must create an instance of the control for each
server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is uploaded, the
control will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background; however, most
servers limit the number of simultaneous connections that can originate from a single IP address. The
application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.AsyncPutFile Overload List | AsyncGetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.AsyncPutFile Method (String)

Upload a file from the local system to the server in the background.

[Visual Basic]
Overloads Public Function AsyncPutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool AsyncPutFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is similar
to the PutFile method, however it retrieves the file using a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations while the
file is being uploaded to the server. This method requires that you explicitly establish a connection using
the Connect method. All background tasks will duplicate the active connection and use it establish a
secondary connection with the server to perform the file transfer. If you wish to perform multiple
asynchronous file transfers from different servers, you must create an instance of the control for each
server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is uploaded, the
control will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background; however, most
servers limit the number of simultaneous connections that can originate from a single IP address. The
application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

HttpClient.AsyncPutFile Method (String, String)

See Also
HttpClient Class | SocketTools Namespace | HttpClient.AsyncPutFile Overload List | AsyncGetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a file from the local system to the server in the background.

[Visual Basic]
Overloads Public Function AsyncPutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As HttpTransferOptions _
) As Boolean

[C#]
public bool AsyncPutFile(
 string localFile,
 string remoteFile,
 HttpTransferOptions options
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the server.

options
An HttpTransferOptions enumeration value which specifies one or more file transfer options.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is similar
to the PutFile method, however it retrieves the file using a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations while the
file is being uploaded to the server. This method requires that you explicitly establish a connection using
the Connect method. All background tasks will duplicate the active connection and use it establish a
secondary connection with the server to perform the file transfer. If you wish to perform multiple
asynchronous file transfers from different servers, you must create an instance of the control for each
server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is uploaded, the
control will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background; however, most

HttpClient.AsyncPutFile Method (String, String, HttpTransferOptions)

servers limit the number of simultaneous connections that can originate from a single IP address. The
application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.AsyncPutFile Overload List | AsyncGetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a file from the local system to the server in the background.

[Visual Basic]
Overloads Public Function AsyncPutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As HttpTransferOptions, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool AsyncPutFile(
 string localFile,
 string remoteFile,
 HttpTransferOptions options,
 long offset
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will be created, overwritten or appended to. The file
pathing and name conventions must be that of the server.

options
An HttpTransferOptions enumeration value which specifies one or more file transfer options.

offset
A byte offset which specifies where the file transfer should begin. The default value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the REST command to restart transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is similar
to the PutFile method, however it retrieves the file using a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations while the
file is being uploaded to the server. This method requires that you explicitly establish a connection using
the Connect method. All background tasks will duplicate the active connection and use it establish a
secondary connection with the server to perform the file transfer. If you wish to perform multiple
asynchronous file transfers from different servers, you must create an instance of the control for each
server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background task has
begun the process of connecting to the server and performing the file transfer. As the file is uploaded, the

HttpClient.AsyncPutFile Method (String, String, HttpTransferOptions,
Int64)

control will periodically invoke the OnTaskRun event handler. When the transfer has completed, the
OnTaskEnd event will be fired. It is not required that you implement handlers for these events.

To determine when a transfer has completed without implementing any event handlers, periodically call
the TaskDone method. If you wish to block the current thread and wait for the transfer to complete, call
the TaskWait method. To stop a background file transfer that is in progress, call the TaskAbort method.
This will signal the background worker thread to cancel the transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background; however, most
servers limit the number of simultaneous connections that can originate from a single IP address. The
application should not make any assumptions about the sequence in which background transfers are
performed or the order in which they may complete.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.AsyncPutFile Overload List | AsyncGetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the client could be attached to the current thread. If this method returns
false, the client could not be attached to the thread and the application should check the value of the
LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.AttachThread Method

Authenticate the client session with a username and password.

Overload List
Authenticate the client session with a username and password.

public bool Authenticate(string,string);

Authenticate the client session with a username and password.

public bool Authenticate(string,string,HttpAuthentication);

See Also
HttpClient Class | SocketTools Namespace | Authentication Property | BearerToken Property | Password
Property | UserName Property | SetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Authenticate Method

Authenticate the client session with a username and password.

[Visual Basic]
Overloads Public Function Authenticate(_
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Authenticate(
 string userName,
 string userPassword
);

Parameters
userName

A string which specifies the username used to authenticate the client session.

userPassword
A string which specifies the password which will be used to authenticate the client session with the
remote host. Not all server resources require the client to authenticate the session. If you are using
OAuth 2.0 authentication, this parameter specifies the bearer token.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will set the Authorization request header for the client session using the credentials provided
by the caller. It will always override any custom Authorization header value which may have been
previously set using the SetHeader method.

If both the userName and userPassword parameters specify empty strings, the current authentication
type will always be set to HttpAuthentication.authNone, effectively clearing the current user credentials
for the client session.

If you provide a username and password, and the Authentication property has not been explicitly set, it
will automatically default to using the HttpAuthentication.authBasic authentication type.

If you provide a user name and password to the Connect method, or you set the UserName property
and either the Password or BearerToken property prior to calling the Connect method, authentication
will be automatically attempted at the time the connection is made. This method is only required if you do
not provide user credentials when the connection is established and wish to authenticate the client session
at a later time.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Authenticate Overload List | Authentication
Property | BearerToken Property | Password Property | UserName Property | SetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Authenticate Method (String, String)

Authenticate the client session with a username and password.

[Visual Basic]
Overloads Public Function Authenticate(_
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal authType As HttpAuthentication _
) As Boolean

[C#]
public bool Authenticate(
 string userName,
 string userPassword,
 HttpAuthentication authType
);

Parameters
userName

A string which specifies the username used to authenticate the client session.

userPassword
A string which specifies the password which will be used to authenticate the client session with the
remote host. Not all server resources require the client to authenticate the session. If you are using
OAuth 2.0 authentication, this parameter specifies the bearer token.

authType
A HttpAuthentication enumeration value which specifies the authentication method.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will set the Authorization request header for the client session using the credentials provided
by the caller. This method will always override any custom Authorization header value which may have
been previously set using the SetHeader method.

If both the userName and userPassword parameters specify empty strings, the current authentication
type will always be set to HttpAuthentication.authNone regardless of the value of the authType
parameter. This effectively clears the current user credentials for the client session.

If you provide a user name and password to the Connect method, or you set the UserName property
and either the Password or BearerToken property prior to calling the Connect method, authentication
will be automatically attempted at the time the connection is made. This method is only required if you do
not provde user credentials when the connection is established and wish to authenticate the client session
at a later time.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Authenticate Overload List | Authentication
Property | BearerToken Property | Password Property | UserName Property | SetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Authenticate Method (String, String, HttpAuthentication)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpAuthentication.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpAuthentication.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpAuthentication.html

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Cancel Method

Remove all defined fields from the current form.

[Visual Basic]
Public Sub ClearForm()

[C#]
public void ClearForm();

Remarks
The ClearForm deletes all form fields, releasing the memory allocated for the field data and resetting the
internal state of the current form.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ClearForm Method

Clears the current request and response headers.

[Visual Basic]
Public Sub ClearHeaders()

[C#]
public void ClearHeaders();

Remarks
The ClearHeaders method clears the request and response headers for the current session, including any
cookies which may have been set. This method can be useful in persistent connections, where the client
wishes to clear any previously set header values without disconnecting from the server.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ClearHeaders Method

Close the file that was opened on the server.

[Visual Basic]
Public Function CloseFile() As Boolean

[C#]
public bool CloseFile();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CloseFile method is used to close a file that was opened using the OpenFile method, or created
using the CreateFile method. It should be called before the client disconnects from the server.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CloseFile Method

Send a custom command to the web server.

Overload List
Send a custom command to the web server.

public bool Command(string,string);

Send a custom command to the web server.

public bool Command(string,string,byte[],int);

Send a custom command to the web server.

public bool Command(string,string,string);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Command Method

Send a custom command to the web server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal resource As String _
) As Boolean

[C#]
public bool Command(
 string command,
 string resource
);

Parameters
command

A string which specifies the command to send.

resource
A string which specifies the resource that the command will be performed upon. The resource may be
a file, such as an HTML document or an image, or it may be a script used to process data submitted
by the client. Note that this argument specifies the name of the resource only, not a complete URL. In
most cases, the resource name should be specified using an absolute path (a path that begins with a
leading slash character).

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
There are a number of standard commands which may be used, and there are extended commands
which depend on the type of server that the client is connected to. Consult the protocol standard and/or
the technical reference documentation for the server to determine what commands may be issued by a
client application. An example of some common HTTP commands are:

Command Description

GET Return the contents of the specified resource. This
command is recognized by all servers.

HEAD Return only header information for the specified
resource. This command is recognized by servers
that support at least version 1.0 of the protocol.

POST Post data to the specified resource. This command
is recognized by servers that support at least
version 1.0 of the protocol.

PUT Create or replace the specified resource on the
server. This command is recognized by servers
that support at least version 1.0 of the protocol.
Not all servers support this command.

HttpClient.Command Method (String, String)

DELETE Delete the specified resource from the server. This
command is recognized by servers that support at
least version 1.1 of the protocol. Not all servers
support this command.

Not all servers support all of the listed commands, and some commands may require specific changes to
the server configuration. In particular, the PUT and DELETE commands typically require that configuration
changes be made by the site administrator. All servers will support the use of the GET command, and all
servers that support at least version 1.0 of the protocol will support the POST command.

Only one request may be in progress at one time for each client session. Use the CloseFile method to
terminate the request after all of the data has been read from the server.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Send a custom command to the web server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal resource As String, _
 ByVal parameter As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool Command(
 string command,
 string resource,
 byte[] parameter,
 int length
);

Parameters
command

A string which specifies the command to send.

resource
A string which specifies the resource that the command will be performed upon. The resource may be
a file, such as an HTML document or an image, or it may be a script used to process data submitted
by the client. Note that this argument specifies the name of the resource only, not a complete URL. In
most cases, the resource name should be specified using an absolute path (a path that begins with a
leading slash character).

parameter
A byte array which specifies one or more parameters to be sent along with the command. The
parameter data is encoded according to the encoding type specified by the Encoding property. If the
resource does not require any parameters, this argument should be omitted.

length
An integer value which specifies the length of the parameter data in bytes. This value cannot be larger
than the size of the byte array passed to this method.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
There are a number of standard commands which may be used, and there are extended commands
which depend on the type of server that the client is connected to. Consult the protocol standard and/or
the technical reference documentation for the server to determine what commands may be issued by a
client application. An example of some common HTTP commands are:

Command Description

GET Return the contents of the specified resource. This
command is recognized by all servers.

HttpClient.Command Method (String, String, Byte[], Int32)

HEAD Return only header information for the specified
resource. This command is recognized by servers
that support at least version 1.0 of the protocol.

POST Post data to the specified resource. This command
is recognized by servers that support at least
version 1.0 of the protocol.

PUT Create or replace the specified resource on the
server. This command is recognized by servers
that support at least version 1.0 of the protocol.
Not all servers support this command.

DELETE Delete the specified resource from the server. This
command is recognized by servers that support at
least version 1.1 of the protocol. Not all servers
support this command.

Not all servers support all of the listed commands, and some commands may require specific changes to
the server configuration. In particular, the PUT and DELETE commands typically require that configuration
changes be made by the site administrator. All servers will support the use of the GET command, and all
servers that support at least version 1.0 of the protocol will support the POST command.

The parameter argument is used to pass additional information to the server when a resource is
requested. This is most commonly used to provide information to scripts, similar to how arguments are
used when executing a program from the command line. Unless the POST command is being executed,
the data in the buffer will automatically be encoded using the current encoding mechanism specified for
the client.

By default, the parameter data is URL encoded, which means that any spaces and non-printable
characters are converted to printable characters before submitted to the server. The type of encoding that
is performed can be changed by setting the Encoding property. Although the default encoding is
appropriate for most applications, those that submit XML formatted data may need to change the
encoding type.

Only one request may be in progress at one time for each client session. Use the CloseFile method to
terminate the request after all of the data has been read from the server.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Send a custom command to the web server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal resource As String, _
 ByVal parameter As String _
) As Boolean

[C#]
public bool Command(
 string command,
 string resource,
 string parameter
);

Parameters
command

A string which specifies the command to send.

resource
A string which specifies the resource that the command will be performed upon. The resource may be
a file, such as an HTML document or an image, or it may be a script used to process data submitted
by the client. Note that this argument specifies the name of the resource only, not a complete URL. In
most cases, the resource name should be specified using an absolute path (a path that begins with a
leading slash character).

parameter
A string specifies one or more parameters to be sent along with the command. The parameter data is
encoded according to the encoding type specified by the Encoding property. If the resource does not
require any parameters, this argument should be omitted.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
There are a number of standard commands which may be used, and there are extended commands
which depend on the type of server that the client is connected to. Consult the protocol standard and/or
the technical reference documentation for the server to determine what commands may be issued by a
client application. An example of some common HTTP commands are:

Command Description

GET Return the contents of the specified resource. This
command is recognized by all servers.

HEAD Return only header information for the specified
resource. This command is recognized by servers
that support at least version 1.0 of the protocol.

POST Post data to the specified resource. This command
is recognized by servers that support at least

HttpClient.Command Method (String, String, String)

version 1.0 of the protocol.

PUT Create or replace the specified resource on the
server. This command is recognized by servers
that support at least version 1.0 of the protocol.
Not all servers support this command.

DELETE Delete the specified resource from the server. This
command is recognized by servers that support at
least version 1.1 of the protocol. Not all servers
support this command.

Not all servers support all of the listed commands, and some commands may require specific changes to
the server configuration. In particular, the PUT and DELETE commands typically require that configuration
changes be made by the site administrator. All servers will support the use of the GET command, and all
servers that support at least version 1.0 of the protocol will support the POST command.

The parameter argument is used to pass additional information to the server when a resource is
requested. This is most commonly used to provide information to scripts, similar to how arguments are
used when executing a program from the command line. Unless the POST command is being executed,
the data in the buffer will automatically be encoded using the current encoding mechanism specified for
the client.

By default, the parameter data is URL encoded, which means that any spaces and non-printable
characters are converted to printable characters before submitted to the server. The type of encoding that
is performed can be changed by setting the Encoding property. Although the default encoding is
appropriate for most applications, those that submit XML formatted data may need to change the
encoding type.

Only one request may be in progress at one time for each client session. Use the CloseFile method to
terminate the request after all of the data has been read from the server.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

Overload List
Establish a connection with a remote host.

public bool Connect();

Establish a connection with a remote host.

public bool Connect(string);

Establish a connection with a remote host.

public bool Connect(string,int);

Establish a connection with a remote host.

public bool Connect(string,int,int);

Establish a connection with a remote host.

public bool Connect(string,int,int,HttpOptions);

Establish a connection with a remote host.

public bool Connect(string,int,int,HttpOptions,HttpVersion);

Establish a connection with a remote host.

public bool Connect(string,int,string,string);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int,HttpOptions,HttpVersion);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Connect Method

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.Connect_overload_9.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.Connect_overload_8.html

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the UserName property will be used to determine the username if authentication is required.

The value of the Password property will be used to determine the username if authentication is required.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

The value of the ProtocolVersion property will be used to specify the protocol version.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Connect Method (String, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the UserName property will be used to determine the username if authentication is required.

The value of the Password property will be used to determine the username if authentication is required.

The value of the Options property will be used to specify the default options for the connection.

The value of the ProtocolVersion property will be used to specify the protocol version.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Connect Overload List

HttpClient.Connect Method (String, Int32, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer, _
 ByVal options As HttpOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout,
 HttpOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the HttpOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the UserName property will be used to determine the username if authentication is required.

The value of the Password property will be used to determine the username if authentication is required.

The value of the Timeout property will be used to specify the timeout period.

See Also

HttpClient.Connect Method (String, Int32, Int32, HttpOptions)

HttpClient Class | SocketTools Namespace | HttpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies a username used to authenticate the client session. This argument is only
required if access to the resource requires authentication.

userPassword
A string which specifies the password used to authenticate the client session. This argument is only
required if access to the resource requires authentication.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

The value of the ProtocolVersion property will be used to specify the protocol version.

See Also

HttpClient.Connect Method (String, Int32, String, String)

HttpClient Class | SocketTools Namespace | HttpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies a username used to authenticate the client session. This argument is only
required if access to the resource requires authentication.

userPassword
A string which specifies the password used to authenticate the client session. This argument is only
required if access to the resource requires authentication.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

HttpClient.Connect Method (String, Int32, String, String, Int32)

The value of the Options property will be used to specify the default options for the connection.

The value of the ProtocolVersion property will be used to specify the protocol version.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer, _
 ByVal options As HttpOptions, _
 ByVal version As HttpVersion _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout,
 HttpOptions options,
 HttpVersion version
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the HttpOptions enumeration flags.

version
One of the HttpVersion enumeration values.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

HttpClient.Connect Method (String, Int32, Int32, HttpOptions,
HttpVersion)

The value of the UserName property will be used to determine the username if authentication is required.

The value of the Password property will be used to determine the username if authentication is required.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer, _
 ByVal options As HttpOptions, _
 ByVal version As HttpVersion _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout,
 HttpOptions options,
 HttpVersion version
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies a username used to authenticate the client session. This argument is only
required if access to the resource requires authentication.

userPassword
A string which specifies the password used to authenticate the client session. This argument is only
required if access to the resource requires authentication.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the HttpOptions enumeration flags.

version
One of the HttpVersion enumeration values.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a

HttpClient.Connect Method (String, Int32, String, String, Int32,
HttpOptions, HttpVersion)

return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Create a new file or overwrite an existing file on the web server.

Overload List
Create a new file or overwrite an existing file on the web server.

public bool CreateFile(string);

Create a new file or overwrite an existing file on the web server.

public bool CreateFile(string,int);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CreateFile Method

Create a new file or overwrite an existing file on the web server.

[Visual Basic]
Overloads Public Function CreateFile(_
 ByVal resourceName As String _
) As Boolean

[C#]
public bool CreateFile(
 string resourceName
);

Parameters
resourceName

A string which specifies the name of the file being created on the server. The client must have the
appropriate access rights to create the file or an error will be returned.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the PUT command to create the file. The server must support this command and the
user must have the appropriate permission to create the specified file. If this method is successful, the
client should then use the Write method to send the contents of the file to the server. Once all of the data
has been written, the CloseFile method should be called to close the file and complete the operation.
Note that this method is typically only accepted by servers that support version 1.1 of the protocol or
later.

When using Write to send the contents of the file to the server, it is recommended that the data be
written in logical blocks that are no larger than 8,192 bytes in size. Attempting to write very large amounts
of data in a single call can either cause the current thread to block or, in the case of an asynchronous
connection, return an error if the internal buffers cannot accommodate all of the data. To send the entire
contents of a file at once, use the PutData method instead of calling CreateFile.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.CreateFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CreateFile Method (String)

Create a new file or overwrite an existing file on the web server.

[Visual Basic]
Overloads Public Function CreateFile(_
 ByVal resourceName As String, _
 ByVal fileSize As Integer _
) As Boolean

[C#]
public bool CreateFile(
 string resourceName,
 int fileSize
);

Parameters
resourceName

A string which specifies the name of the file being created on the server. The client must have the
appropriate access rights to create the file or an error will be returned.

fileSize
A number which specifies the size of the file in bytes. This value must be greater than zero.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the PUT command to create the file. The server must support this command and the
user must have the appropriate permission to create the specified file. If this method is successful, the
client should then use the Write method to send the contents of the file to the server. Once all of the data
has been written, the CloseFile method should be called to close the file and complete the operation.
Note that this method is typically only accepted by servers that support version 1.1 of the protocol or
later.

When using Write to send the contents of the file to the server, it is recommended that the data be
written in logical blocks that are no larger than 8,192 bytes in size. Attempting to write very large amounts
of data in a single call can either cause the current thread to block or, in the case of an asynchronous
connection, return an error if the internal buffers cannot accommodate all of the data. To send the entire
contents of a file at once, use the PutData method instead of calling CreateFile.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.CreateFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CreateFile Method (String, Int32)

Create a new virtual form.

Overload List
Create a new virtual form.

public bool CreateForm();

Create a new virtual form.

public bool CreateForm(string);

Create a new virtual form.

public bool CreateForm(string,HttpFormMethod);

Create a new virtual form.

public bool CreateForm(string,HttpFormMethod,HttpFormType);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CreateForm Method

Create a new virtual form.

[Visual Basic]
Overloads Public Function CreateForm() As Boolean

[C#]
public bool CreateForm();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateForm method is used to create a new form that will be populated with values and then
submitted to the server for processing. Any previously defined form data will be deleted when this method
is called.

This method creates the form using assigned property values.

The value of the FormAction property will be used to determine the script that will accept the form data
on the server.

The value of the FormMethod property will be used to determine the method used to submit the form
data.

The value of the FormType property will be used to specify the form type and encoding method.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.CreateForm Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CreateForm Method ()

Create a new virtual form.

[Visual Basic]
Overloads Public Function CreateForm(_
 ByVal formAction As String _
) As Boolean

[C#]
public bool CreateForm(
 string formAction
);

Parameters
formAction

A string which specifies the name of the resource that the form data will be submitted to. Typically this
is the name of a script that is executed on the server. If this argument is omitted, the value of the
FormAction property is used as the default value. If the FormAction property is undefined, the value
of the Resource property will be used as the default value.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateForm method is used to create a new form that will be populated with values and then
submitted to the server for processing. Any previously defined form data will be deleted when this method
is called.

This method creates the form using assigned property values.

The value of the FormMethod property will be used to determine the method used to submit the form
data.

The value of the FormType property will be used to specify the form type and encoding method.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.CreateForm Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CreateForm Method (String)

Create a new virtual form.

[Visual Basic]
Overloads Public Function CreateForm(_
 ByVal formAction As String, _
 ByVal formMethod As HttpFormMethod _
) As Boolean

[C#]
public bool CreateForm(
 string formAction,
 HttpFormMethod formMethod
);

Parameters
formAction

A string which specifies the name of the resource that the form data will be submitted to. Typically this
is the name of a script that is executed on the server. If this argument is omitted, the value of the
FormAction property is used as the default value. If the FormAction property is undefined, the value
of the Resource property will be used as the default value.

formMethod
An HttpFormMethod enumeration value which specifies how the form data will be submitted to the
server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateForm method is used to create a new form that will be populated with values and then
submitted to the server for processing. Any previously defined form data will be deleted when this method
is called.

This method creates the form using assigned property values.

The value of the FormType property will be used to specify the form type and encoding method.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.CreateForm Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CreateForm Method (String, HttpFormMethod)

Create a new virtual form.

[Visual Basic]
Overloads Public Function CreateForm(_
 ByVal formAction As String, _
 ByVal formMethod As HttpFormMethod, _
 ByVal formType As HttpFormType _
) As Boolean

[C#]
public bool CreateForm(
 string formAction,
 HttpFormMethod formMethod,
 HttpFormType formType
);

Parameters
formAction

A string which specifies the name of the resource that the form data will be submitted to. Typically this
is the name of a script that is executed on the server. If this argument is omitted, the value of the
FormAction property is used as the default value. If the FormAction property is undefined, the value
of the Resource property will be used as the default value.

formMethod
An HttpFormMethod enumeration value which specifies how the form data will be submitted to the
server.

formType
An HttpFormType enumeration value which specifies the type of form and how the form data will be
encoded.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateForm method is used to create a new form that will be populated with values and then
submitted to the server for processing. Any previously defined form data will be deleted when this method
is called.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.CreateForm Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CreateForm Method (String, HttpFormMethod,
HttpFormType)

Delete a form field and its value from the current form.

[Visual Basic]
Public Function DeleteField(_
 ByVal fieldName As String _
) As Boolean

[C#]
public bool DeleteField(
 string fieldName
);

Parameters
fieldName

A string which specifies the name of the field to remove from the form.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The DeleteField method is used to remove a field and its associated value from the current form. The
memory allocated for the field data will be released.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.DeleteField Method

Remove a file on the web server.

[Visual Basic]
Public Function DeleteFile(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool DeleteFile(
 string fileName
);

Parameters
fileName

A string which specifies the name of the file to delete.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The DeleteFile method deletes an existing file or resource from the web server using the DELETE
command. This command is typically only accepted by servers that support version 1.1 of the protocol or
later. This method requires the user have the appropriate permissions to remove the file or resource.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.DeleteFile Method

Terminate the connection with a remote host.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and releases the client handle
allocated by the class. Note that the socket is not immediately released when the connection is terminated
and will enter a wait state for two minutes. After the time wait period has elapsed, the client will be
released by the operating system. This is a normal safety mechanism to handle any packets that may
arrive after the connection has been closed.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Disconnect Method

Releases all resources used by HttpClient.

Overload List
Releases all resources used by HttpClient.

public void Dispose();

Releases the unmanaged resources allocated by the HttpClient class and optionally releases the managed
resources.

protected virtual void Dispose(bool);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Dispose Method

Releases all resources used by HttpClient.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Dispose Method ()

Releases the unmanaged resources allocated by the HttpClient class and optionally releases the managed
resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the HttpClient class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Finalize Method

Return information about the specified cookie.

Overload List
Return information about the specified cookie.

public bool GetCookie(string,ref HttpCookie);

Return information about the specified cookie.

public bool GetCookie(string,ref string);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetCookie Method

Return information about the specified cookie.

[Visual Basic]
Overloads Public Function GetCookie(_
 ByVal cookieName As String, _
 ByRef cookieInfo As HttpCookie _
) As Boolean

[C#]
public bool GetCookie(
 string cookieName,
 ref HttpCookie cookieInfo
);

Parameters
cookieName

A string which specifies the name of the cookie to return information about. To obtain a list of cookies
which have been set by the server, use the CookieCount and CookieName properties.

cookieInfo
An HttpCookie structure which will contain information about the cookie when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Hypertext Transfer Protocol uses special tokens called "cookies" to maintain persistent state
information between requests for a resource. These cookies are exchanged between the client and server
by setting specific header fields. When a server wants the client to use a cookie, it will include a header
field named Set-Cookie in the response header when the client requests a resource. The client can then
take this cookie and store it, either temporarily in memory or permanently in a file on the local system. The
next time that the client requests a resource from that server, it can send the cookie back to the server by
setting the Cookie header field. The GetCookie method searches for a cookie set by the server in the Set-
Cookie header field. The SetCookie method creates or modifies the Cookie header field for the next
resource requested by the client.

There are two general types of cookies that are used by servers. Session cookies exist only for the duration
of the client session; they are stored in memory and not saved in any kind of permanent storage. When
the client application terminates, session cookies are deleted and no longer used. Persistent cookies are
stored on the local system and are used by the client until their expiration time. It is the responsibility of
the client application to store persistent cookies; applications may use a flat text file, a database or any
other storage method available.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetCookie Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetCookie Method (String, HttpCookie)

Return information about the specified cookie.

[Visual Basic]
Overloads Public Function GetCookie(_
 ByVal cookieName As String, _
 ByRef cookieValue As String _
) As Boolean

[C#]
public bool GetCookie(
 string cookieName,
 ref string cookieValue
);

Parameters
cookieName

A string which specifies the name of the cookie to return information about. To obtain a list of cookies
which have been set by the server, use the CookieCount and CookieName properties.

cookieValue
A string passed by reference which will contain the value of the specified cookie when the method
returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Hypertext Transfer Protocol uses special tokens called "cookies" to maintain persistent state
information between requests for a resource. These cookies are exchanged between the client and server
by setting specific header fields. When a server wants the client to use a cookie, it will include a header
field named Set-Cookie in the response header when the client requests a resource. The client can then
take this cookie and store it, either temporarily in memory or permanently in a file on the local system. The
next time that the client requests a resource from that server, it can send the cookie back to the server by
setting the Cookie header field. The GetCookie method searches for a cookie set by the server in the Set-
Cookie header field. The SetCookie method creates or modifies the Cookie header field for the next
resource requested by the client.

There are two general types of cookies that are used by servers. Session cookies exist only for the duration
of the client session; they are stored in memory and not saved in any kind of permanent storage. When
the client application terminates, session cookies are deleted and no longer used. Persistent cookies are
stored on the local system and are used by the client until their expiration time. It is the responsibility of
the client application to store persistent cookies; applications may use a flat text file, a database or any
other storage method available.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetCookie Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetCookie Method (String, String)

Transfer data from the web server and store it in a local buffer.

Overload List
Transfer data from the web server and store it in a local buffer.

public bool GetData(byte[],ref int);

Retrieve data from a web server and store it in a byte array.

public bool GetData(string,byte[],ref int);

Retrieve data from a web server and store it in a byte array.

public bool GetData(string,byte[],ref int,HttpTransferOptions);

Retrieve data from a web server and store it in a MemoryStream.

public bool GetData(string,MemoryStream);

Retrieve data from a web server and store it in a MemoryStream.

public bool GetData(string,MemoryStream,HttpTransferOptions);

Retrieve data from a web server and store it in a string buffer.

public bool GetData(string,ref string);

Retrieve data from a web server and store it in a string buffer.

public bool GetData(string,ref string,HttpTransferOptions);

Retrieve data from a web server and store it in a string buffer.

public bool GetData(ref string);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetData Method

Retrieve data from a web server and store it in a string buffer.

[Visual Basic]
Overloads Public Function GetData(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetData(
 ref string buffer
);

Parameters
buffer

A string passed by reference the data will be stored in.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetData method transfers data from the server to the local system, storing it in a string buffer. This
method will cause the current thread to block until the file transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

This version of the method should only be used when the data returned by the server contains readable
text. By default, the text will be automatically converted to Unicode characters using UTF-8 encoding. The
CodePage property can used to change how the text is converted.

The value of the Resource property specifies the resource on the server that will be accessed. If the
resource specifies a file, the contents of the file will be returned by the server. If the resource specifies a
script or other executable content, it will be executed and the output will be returned to the local system.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetData Method (String)

Retrieve data from a web server and store it in a string buffer.

[Visual Basic]
Overloads Public Function GetData(_
 ByVal resourceName As String, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetData(
 string resourceName,
 ref string buffer
);

Parameters
resourceName

A string that specifies the resource on the server that will be accessed. If the resource specifies a file,
then the contents of the file will be returned by the server. If the resource specifies a script or other
executable content, it will be executed and the output will be transferred to the local system. The
resource name should be specified using an absolute path that begins with a leading slash character.

buffer
A string passed by reference the data will be stored in.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetData method transfers data from the server to the local system, storing it in a string buffer. This
method will cause the current thread to block until the file transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

This version of the method should only be used when the data returned by the server contains readable
text. By default, the text will be automatically converted to Unicode characters using UTF-8 encoding. The
CodePage property can used to change how the text is converted.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetData Method (String, String)

Retrieve data from a web server and store it in a string buffer.

[Visual Basic]
Overloads Public Function GetData(_
 ByVal resourceName As String, _
 ByRef buffer As String, _
 ByVal options As HttpTransferOptions _
) As Boolean

[C#]
public bool GetData(
 string resourceName,
 ref string buffer,
 HttpTransferOptions options
);

Parameters
resourceName

A string that specifies the resource on the server that will be accessed. If the resource specifies a file,
then the contents of the file will be returned by the server. If the resource specifies a script or other
executable content, it will be executed and the output will be transferred to the local system. The
resource name should be specified using an absolute path that begins with a leading slash character.

buffer
A string passed by reference the data will be stored in.

options
An HttpTransferOptions enumeration value which specifies one or more options when transferring the
data from the server to the local system.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetData method transfers data from the server to the local system, storing it in a string buffer. This
method will cause the current thread to block until the file transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

This version of the method should only be used when the data returned by the server contains readable
text. By default, the text will be automatically converted to Unicode characters using UTF-8 encoding. The
CodePage property can used to change how the text is converted.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetData Method (String, String, HttpTransferOptions)

Transfer data from the web server and store it in a local buffer.

[Visual Basic]
Overloads Public Function GetData(_
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetData(
 byte[] buffer,
 ref int length
);

Parameters
buffer

A byte array the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetData method transfers data from the server to the local system, storing it in the specified buffer.
This method will cause the current thread to block until the file transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetData Method (Byte[], Int32)

Retrieve data from a web server and store it in a byte array.

[Visual Basic]
Overloads Public Function GetData(_
 ByVal resourceName As String, _
 ByVal buffer As Byte(), _
 ByRef length As Integer, _
 ByVal options As HttpTransferOptions _
) As Boolean

[C#]
public bool GetData(
 string resourceName,
 byte[] buffer,
 ref int length,
 HttpTransferOptions options
);

Parameters
resourceName

A string that specifies the resource on the server that will be accessed. If the resource specifies a file,
then the contents of the file will be returned by the server. If the resource specifies a script or other
executable content, it will be executed and the output will be transferred to the local system. The
resource name should be specified using an absolute path that begins with a leading slash character.

buffer
A byte array the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

options
An HttpTransferOptions enumeration value which specifies one or more options when transferring the
data from the server to the local system.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetData method transfers data from the server to the local system, storing it in the specified buffer.
This method will cause the current thread to block until the file transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetData Method (String, Byte[], Int32, HttpTransferOptions)

Retrieve data from a web server and store it in a byte array.

[Visual Basic]
Overloads Public Function GetData(_
 ByVal resourceName As String, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetData(
 string resourceName,
 byte[] buffer,
 ref int length
);

Parameters
resourceName

A string that specifies the resource on the server that will be accessed. If the resource specifies a file,
then the contents of the file will be returned by the server. If the resource specifies a script or other
executable content, it will be executed and the output will be transferred to the local system. The
resource name should be specified using an absolute path that begins with a leading slash character.

buffer
A byte array the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetData method transfers data from the server to the local system, storing it in the specified buffer.
This method will cause the current thread to block until the file transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetData Method (String, Byte[], Int32)

Retrieve data from a web server and store it in a MemoryStream.

[Visual Basic]
Overloads Public Function GetData(_
 ByVal resourceName As String, _
 ByVal memStream As MemoryStream, _
 ByVal options As HttpTransferOptions _
) As Boolean

[C#]
public bool GetData(
 string resourceName,
 MemoryStream memStream,
 HttpTransferOptions options
);

Parameters
resourceName

A string that specifies the resource on the server that will be accessed. If the resource specifies a file,
then the contents of the file will be returned by the server. If the resource specifies a script or other
executable content, it will be executed and the output will be transferred to the local system. The
resource name should be specified using an absolute path that begins with a leading slash character.

memStream
A System.IO.MemoryStream object that will contain the file data when the method returns. This stream
must be open and writable.

options
An HttpTransferOptions enumeration value which specifies one or more options when transferring the
data from the server to the local system.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetData method transfers data from a file on the server to the local system, storing it in the specified
MemoryStream. This method will cause the calling current thread to block until the file transfer completes,
a timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire
periodically, enabling the application to update any user interface objects such as a progress bar.

The contents of the MemoryStream will be replaced by the contents of the file and the current position
will be reset to the beginning of the stream. The stream must be open and writable, otherwise this method
will throw System.NotSupportedException.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetData Method (String, MemoryStream,
HttpTransferOptions)

Retrieve data from a web server and store it in a MemoryStream.

[Visual Basic]
Overloads Public Function GetData(_
 ByVal resourceName As String, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool GetData(
 string resourceName,
 MemoryStream memStream
);

Parameters
resourceName

A string that specifies the resource on the server that will be accessed. If the resource specifies a file,
then the contents of the file will be returned by the server. If the resource specifies a script or other
executable content, it will be executed and the output will be transferred to the local system. The
resource name should be specified using an absolute path that begins with a leading slash character.

memStream
A System.IO.MemoryStream object that will contain the file data when the method returns. This stream
must be open and writable.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetData method transfers data from a file on the server to the local system, storing it in the specified
MemoryStream. This method will cause the calling current thread to block until the file transfer completes,
a timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire
periodically, enabling the application to update any user interface objects such as a progress bar.

The contents of the MemoryStream will be replaced by the contents of the file and the current position
will be reset to the beginning of the stream. The stream must be open and writable, otherwise this method
will throw System.NotSupportedException.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetData Method (String, MemoryStream)

Transfer data from the web server and store it in a file on the local system.

Overload List
Transfer data from the web server and store it in a file on the local system.

public bool GetFile(string);

Transfer data from the web server and store it in a file on the local system.

public bool GetFile(string,HttpTransferOptions);

Transfer data from the web server and store it in a file on the local system.

public bool GetFile(string,string);

Transfer data from the web server and store it in a file on the local system.

public bool GetFile(string,string,HttpTransferOptions);

Transfer data from the web server and store it in a file on the local system.

public bool GetFile(string,string,HttpTransferOptions,long);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetFile Method

Transfer data from the web server and store it in a file on the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String _
) As Boolean

[C#]
public bool GetFile(
 string localFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created. If the file already exists, it will be
overwritten. The file pathing and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method downloads a file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetFile Method (String)

Transfer data from the web server and store it in a file on the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool GetFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string that specifies the file on the local system that will be created. If the file already exists, it will be
overwritten. The file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the resource on the server that will be accessed. If the resource specifies a file,
then the contents of the file will be returned by the server. If the resource specifies a script or other
executable content, it will be executed and the output will be transferred to the local system. The
resource name should be specified using an absolute path that begins with a leading slash character.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method downloads a file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetFile Method (String, String)

Transfer data from the web server and store it in a file on the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String, _
 ByVal options As HttpTransferOptions _
) As Boolean

[C#]
public bool GetFile(
 string localFile,
 HttpTransferOptions options
);

Parameters
localFile

A string that specifies the file on the local system that will be created. If the file already exists, it will be
overwritten. The file pathing and name conventions must be that of the local host.

options
An HttpTransferOptions enumeration value which specifies one or more options when transferring the
data from the server to the local system.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method downloads a file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetFile Method (String, HttpTransferOptions)

Transfer data from the web server and store it in a file on the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As HttpTransferOptions _
) As Boolean

[C#]
public bool GetFile(
 string localFile,
 string remoteFile,
 HttpTransferOptions options
);

Parameters
localFile

A string that specifies the file on the local system that will be created. If the file already exists, it will be
overwritten. The file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the resource on the server that will be accessed. If the resource specifies a file,
then the contents of the file will be returned by the server. If the resource specifies a script or other
executable content, it will be executed and the output will be transferred to the local system. The
resource name should be specified using an absolute path that begins with a leading slash character.

options
An HttpTransferOptions enumeration value which specifies one or more options when transferring the
data from the server to the local system.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method downloads a file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetFile Method (String, String, HttpTransferOptions)

Transfer data from the web server and store it in a file on the local system.

[Visual Basic]
Overloads Public Function GetFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As HttpTransferOptions, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool GetFile(
 string localFile,
 string remoteFile,
 HttpTransferOptions options,
 long offset
);

Parameters
localFile

A string that specifies the file on the local system that will be created. If the file already exists, it will be
overwritten. The file pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the resource on the server that will be accessed. If the resource specifies a file,
then the contents of the file will be returned by the server. If the resource specifies a script or other
executable content, it will be executed and the output will be transferred to the local system. The
resource name should be specified using an absolute path that begins with a leading slash character.

options
An HttpTransferOptions enumeration value which specifies one or more options when transferring the
data from the server to the local system.

offset
A integer value which specifies the offset where the file transfer should begin. A value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the option to restart file transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFile method downloads a file from the server to the local system. This method will cause the
current thread to block until the file transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetFile Overload List

HttpClient.GetFile Method (String, String, HttpTransferOptions, Int64)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Return the size of the specified file on the web server.

Overload List
Return the size of the specified file on the web server.

public bool GetFileSize(string,ref int);

Return the size of the specified file on the web server.

public bool GetFileSize(string,ref long);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetFileSize Method

Return the size of the specified file on the web server.

[Visual Basic]
Overloads Public Function GetFileSize(_
 ByVal fileName As String, _
 ByRef fileSize As Integer _
) As Boolean

[C#]
public bool GetFileSize(
 string fileName,
 ref int fileSize
);

Parameters
fileName

A string that specifies a file on the server. The file name should be specified using an absolute path
that begins with a leading slash character.

fileSize
An integer passed by reference which will contain the size of the file in bytes when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the HEAD command to retrieve header information about the file without downloading
the contents of the file itself. This requires that the server support at least version 1.0 of the protocol
standard, or an error will be returned.

The server may not return a file size for some resources. This is typically the case with scripts that generate
dynamic content because the server has no way of determining the size of the output generated by the
script without actually executing it. The server may also not provide a file size for HTML documents which
use server side includes (SSI) because that content is also dynamically created by the server. If the request
to the server was successful and the file exists, but the server does not return a file size, the method will
succeed but the file size returned to the caller will be zero.

When a request is made to the server for information about the file, the class library will attempt to keep
the connection alive, even if the KeepAlive property has not been set to true. This allows an application
to request the file size and then download the file without having to write additional code to re-establish
the connection. However, it is possible that the attempt to keep the connection open will fail. In that case,
an error will be returned and the session will no longer be valid. If this happens, the method may still
return a valid file size. To determine if an error occurred, check the value of the LastError property.

Note that if the file on the server is a text file, it is possible that the value returned by this method will not
match the size of the file when it is downloaded to the local system. This is because different operating
systems use different sequences of characters to mark the end of a line of text, and when a file is
transferred in text mode, the end of line character sequence is automatically converted to a carriage
return-linefeed, which is the convention used by the Windows platform.

See Also

HttpClient.GetFileSize Method (String, Int32)

HttpClient Class | SocketTools Namespace | HttpClient.GetFileSize Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Return the size of the specified file on the web server.

[Visual Basic]
Overloads Public Function GetFileSize(_
 ByVal fileName As String, _
 ByRef fileSize As Long _
) As Boolean

[C#]
public bool GetFileSize(
 string fileName,
 ref long fileSize
);

Parameters
fileName

A string that specifies a file on the server. The file name should be specified using an absolute path
that begins with a leading slash character.

fileSize
A long integer passed by reference which will contain the size of the file in bytes when the method
returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the HEAD command to retrieve header information about the file without downloading
the contents of the file itself. This requires that the server support at least version 1.0 of the protocol
standard, or an error will be returned.

The server may not return a file size for some resources. This is typically the case with scripts that generate
dynamic content because the server has no way of determining the size of the output generated by the
script without actually executing it. The server may also not provide a file size for HTML documents which
use server side includes (SSI) because that content is also dynamically created by the server. If the request
to the server was successful and the file exists, but the server does not return a file size, the method will
succeed but the file size returned to the caller will be zero.

When a request is made to the server for information about the file, the class library will attempt to keep
the connection alive, even if the KeepAlive property has not been set to true. This allows an application
to request the file size and then download the file without having to write additional code to re-establish
the connection. However, it is possible that the attempt to keep the connection open will fail. In that case,
an error will be returned and the session will no longer be valid. If this happens, the method may still
return a valid file size. To determine if an error occurred, check the value of the LastError property.

Note that if the file on the server is a text file, it is possible that the value returned by this method will not
match the size of the file when it is downloaded to the local system. This is because different operating
systems use different sequences of characters to mark the end of a line of text, and when a file is
transferred in text mode, the end of line character sequence is automatically converted to a carriage
return-linefeed, which is the convention used by the Windows platform.

HttpClient.GetFileSize Method (String, Int64)

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetFileSize Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Return the modification date and time for specified file on the web server.

Overload List
Return the modification date and time for specified file on the web server.

public bool GetFileTime(string,ref DateTime);

Return the modification date and time for specified file on the web server.

public bool GetFileTime(string,ref DateTime,bool);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetFileTime Method

Return the modification date and time for specified file on the web server.

[Visual Basic]
Overloads Public Function GetFileTime(_
 ByVal fileName As String, _
 ByRef fileDate As Date _
) As Boolean

[C#]
public bool GetFileTime(
 string fileName,
 ref DateTime fileDate
);

Parameters
fileName

A string that specifies a file on the server. The file name should be specified using an absolute path
that begins with a leading slash character.

fileDate
A System.DateTime structure passed by reference which will contain the file modification date and
time when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the HEAD command to retrieve header information about the file without downloading
the contents of the file itself. This requires that the server support at least version 1.0 of the protocol
standard, or an error will be returned.

When a request is made to the server for information about the file, the class library will attempt to keep
the connection alive, even if the KeepAlive property has not been set to true. This allows an application
to request the modification time and then download the file without having to write additional code to re-
establish the connection. However, it is possible that the attempt to keep the connection open will fail. In
that case, an error will be returned and the session will no longer be valid. If this happens, the method
may still return a valid date and time. To determine if an error occurred, check the value of the LastError
property.

The Localize property will determine if the returned file time is adjusted for the local timezone.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetFileTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetFileTime Method (String, DateTime)

Return the modification date and time for specified file on the web server.

[Visual Basic]
Overloads Public Function GetFileTime(_
 ByVal fileName As String, _
 ByRef fileDate As Date, _
 ByVal localDate As Boolean _
) As Boolean

[C#]
public bool GetFileTime(
 string fileName,
 ref DateTime fileDate,
 bool localDate
);

Parameters
fileName

A string that specifies a file on the server. The file name should be specified using an absolute path
that begins with a leading slash character.

fileDate
A System.DateTime structure passed by reference which will contain the file modification date and
time when the method returns.

localDate
A boolean value which specifies if the date and time value should be localized for the current
timezone.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the HEAD command to retrieve header information about the file without downloading
the contents of the file itself. This requires that the server support at least version 1.0 of the protocol
standard, or an error will be returned.

When a request is made to the server for information about the file, the class library will attempt to keep
the connection alive, even if the KeepAlive property has not been set to true. This allows an application
to request the modification time and then download the file without having to write additional code to re-
establish the connection. However, it is possible that the attempt to keep the connection open will fail. In
that case, an error will be returned and the session will no longer be valid. If this happens, the method
may still return a valid date and time. To determine if an error occurred, check the value of the LastError
property.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetFileTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetFileTime Method (String, DateTime, Boolean)

Return the first response header field name and value.

[Visual Basic]
Public Function GetFirstHeader(_
 ByRef headerField As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetFirstHeader(
 ref string headerField,
 ref string headerValue
);

Parameters
headerField

A string passed by reference that will contain the name of the first header field returned by the server.

headerValue
A string passed by reference that will contain the value of the specified header field.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFirstHeader method is used get the first header field name and value from the response header
returned by the server. This method should only be called after the client has requested the resource. This
method is typically used in conjunction with the GetNextHeader method to enumerate all of the
response header fields returned by the server.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetFirstHeader Method

Return the value of the specified response header field.

[Visual Basic]
Public Function GetHeader(_
 ByVal headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetHeader(
 string headerName,
 ref string headerValue
);

Parameters
headerName

A string that specifies the name of the header field.

headerValue
A string passed by reference that will contain the value of the specified header field.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeader method is used get the value of a specific header field from the response headers
returned by the server. This method should only be called after the client has requested the resource. To
enumerate all of the header fields returned by the server, use the GetFirstHeader and GetNextHeader
methods.

See Also
HttpClient Class | SocketTools Namespace | AddHeaders Method | SetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetHeader Method

Return the next response header field name and value.

[Visual Basic]
Public Function GetNextHeader(_
 ByRef headerField As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetNextHeader(
 ref string headerField,
 ref string headerValue
);

Parameters
headerField

A string passed by reference that will contain the name of the first header field returned by the server.

headerValue
A string passed by reference that will contain the value of the specified header field.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetNextHeader method is used get the next header field name and value from the response header
returned by the server. This method should only be called after the client has requested the resource. This
method is used in conjunction with the GetFirstHeader method to enumerate all of the response header
fields returned by the server.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetNextHeader Method

Request content from the web server and store it in a string buffer..

Overload List
Request content from the web server and store it in a string buffer..

public bool GetText(string,ref string);

Request content from the web server and store it in a string buffer.

public bool GetText(string,ref string,int);

Request content from the web server and store it in a string buffer..

public bool GetText(string,ref string,string);

Request content from the web server and store it in a string buffer..

public bool GetText(ref string);

See Also
HttpClient Class | SocketTools Namespace | CodePage Property | URL Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetText Method

Request content from the web server and store it in a string buffer..

[Visual Basic]
Overloads Public Function GetText(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetText(
 ref string buffer
);

Parameters
buffer

A string the content will be stored in. This parameter is passed by reference and if the request fails an
empty string will be returned.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetText method requests data from the server and returns the response in a string buffer. This
method will cause the current thread to block until the all of the data is returned, a timeout occurs or the
operation is canceled.

Unlike the general purpose GetData method, this method should only be used for content that contains
readable text. The server will be informed that only textual content is acceptable as a response to the
request.

This version of the method uses the resource specified by the Resource property. The value of the
CodePage property will used to convert the text to Unicode. Overloaded versions of this method allow for
selecting an alternate code page.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetText Overload List | CodePage Property |
Resource Property | URL Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetText Method (String)

Request content from the web server and store it in a string buffer..

[Visual Basic]
Overloads Public Function GetText(_
 ByVal resourceName As String, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetText(
 string resourceName,
 ref string buffer
);

Parameters
resourceName

A string that specifies the resource on the server that will be accessed. If the resource specifies a file,
then the contents of the file will be returned by the server. If the resource specifies a script or other
executable content, it will be executed and the output will be return. The resource may be a complete
URL.

buffer
A string the content will be stored in. This parameter is passed by reference and if the request fails an
empty string will be returned.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetText method requests data from the server and returns the response in a string buffer. This
method will cause the current thread to block until the all of the data is returned, a timeout occurs or the
operation is canceled.

Unlike the general purpose GetData method, this method should only be used for content contains
readable text. The server will be informed that only textual content is acceptable as a response to the
request.

This version of the method uses the value of the CodePage property to convert the text to Unicode.
Overloaded versions of this method allow for selecting an alternate code page.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetText Overload List | CodePage Property | URL
Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetText Method (String, String)

Request content from the web server and store it in a string buffer..

[Visual Basic]
Overloads Public Function GetText(_
 ByVal resourceName As String, _
 ByRef buffer As String, _
 ByVal codePage As String _
) As Boolean

[C#]
public bool GetText(
 string resourceName,
 ref string buffer,
 string codePage
);

Parameters
resourceName

A string that specifies the resource on the server that will be accessed. If the resource specifies a file,
then the contents of the file will be returned by the server. If the resource specifies a script or other
executable content, it will be executed and the output will be return. The resource may be a complete
URL.

buffer
A string the content will be stored in. This parameter is passed by reference and if the request fails an
empty string will be returned.

codePage
A string which specifies the code page which should be used to convert the text to Unicode. If this
value is an empty string or zero the active code page for the current locale will be used. An exception
will be thrown if an invalid code page is specified.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetText method requests data from the server and returns the response in a string buffer. This
method will cause the current thread to block until the all of the data is returned, a timeout occurs or the
operation is canceled.

Unlike the general purpose GetData method, this method should only be used for content contains
readable text. The server will be informed that only textual content is acceptable as a response to the
request.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetText Overload List | CodePage Property |
GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetText Method (String, String, String)

Request content from the web server and store it in a string buffer.

[Visual Basic]
Overloads Public Function GetText(_
 ByVal resourceName As String, _
 ByRef buffer As String, _
 ByVal codePage As Integer _
) As Boolean

[C#]
public bool GetText(
 string resourceName,
 ref string buffer,
 int codePage
);

Parameters
resourceName

A string that specifies the resource on the server that will be accessed. If the resource specifies a file,
then the contents of the file will be returned by the server. If the resource specifies a script or other
executable content, it will be executed and the output will be return. The resource may be a complete
URL.

buffer
A string the content will be stored in. This parameter is passed by reference and if the request fails an
empty string will be returned.

codePage
An integer value which specifies the code page which should be used to convert the text to Unicode. If
this value is zero, the active code page for the current locale will be used. An exception will be thrown
if an invalid code page is specified.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetText method requests data from the server and returns the response in a string buffer. This
method will cause the current thread to block until the all of the data is returned, a timeout occurs or the
operation is canceled.

Unlike the general purpose GetData method, this method should only be used for content contains
readable text. The server will be informed that only textual content is acceptable as a response to the
request.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.GetText Overload List | CodePage Property |
GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.GetText Method (String, String, Int32)

Initialize an instance of the HttpClient class.

Overload List
Initialize an instance of the HttpClient class.

public bool Initialize();

Initialize an instance of the HttpClient class.

public bool Initialize(string);

See Also
HttpClient Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Initialize Method

Initialize an instance of the HttpClient class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the HttpClient class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Initialize Method ()

Initialize an instance of the HttpClient class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the HttpClient class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the HttpClient class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.HttpClient httpClient = new SocketTools.HttpClient();

if (httpClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(httpClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim httpClient As New SocketTools.HttpClient

If httpClient.Initialize(strLicenseKey) = False Then
 MsgBox(httpClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Initialize Method (String)

Open a file on the web server for reading.

[Visual Basic]
Public Function OpenFile(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool OpenFile(
 string fileName
);

Parameters
fileName

A string which specifies the name of the file being opened on the server. The file name should be
specified using an absolute path that begins with a leading slash character.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method uses the GET command to retrieve the file. If this method is successful, the client should then
use the Read method to read the contents of the file from the server. Once all of the data has been read,
the CloseFile method should be called to close the file and complete the operation. If the file being
opened is not an HTML or text document, then it's recommended that you read the data into a byte
array.

This method should not be used to post data to a script or other executable resource on the server. If you
wish to post data to a script, then the PostData method should be used instead.

The client must have the appropriate access rights to open the file for reading or an error will be returned.
It may be required that the UserName and Password properties be set to authenticate the client session
so that access to the resource is permitted.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OpenFile Method

Submits patch data to the server and returns the result in a string.

Overload List
Submits patch data to the server and returns the result in a string.

public bool PatchData(string,string,ref string);

Submits patch data to the server and returns the result in a string.

public bool PatchData(string,string,ref string,HttpPatchOptions);

Submits patch data to the server and returns the result in a string.

public bool PatchData(string,ref string);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PatchData Method

Submits patch data to the server and returns the result in a string.

[Visual Basic]
Overloads Public Function PatchData(_
 ByVal resourceName As String, _
 ByVal patchData As String, _
 ByRef responseData As String, _
 ByVal options As HttpPatchOptions _
) As Boolean

[C#]
public bool PatchData(
 string resourceName,
 string patchData,
 ref string responseData,
 HttpPatchOptions options
);

Parameters
resourceName

A string that specifies the resource on the server that the data will be posted to. Typically this is the
name of an executable script on the server. The resource name should be specified using an absolute
path that begins with a leading slash character.

patchData
A string that contains the patch data which will be provided to the server.

responseData
A string passed by reference which will contain the reponse from the server when the method returns.

options
An HttpPatchOptions enumeration that specifies one or more options when posting data to the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PatchData method is used to submit XML or JSON formatted patch data to a service, and then
returns a copy of the response from the server into a string buffer. This method will not perform any
encoding and will not automatically define the type of patch data being submitted. Your application is
responsible for specifying the content type for the patch data and ensuring that the XML or JSON data
being submitted to the server is formatted correctly.

This method sends a PATCH command to the server, which is similar to a POST or PUT request. It is used
to make partial updates to a resource, rather than creating or replacing it entirely. The format of the patch
data is specific to the service being used. If the resource being patched does not exist, the behavior is
defined by the server. If enough information is provided, it may choose to create the resource just as if a
PUT command was used, or it may return an error.

Your application should use the SetHeader method to define the Content-Type header prior to calling
the PatchData method. One of the most common formats used is the JSON Merge Patch which is

HttpClient.PatchData Method (String, String, String,
HttpPatchOptions)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpPatchOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpPatchOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.HttpPatchOptions.html

defined in RFC 7396. The value for the Content-Type header for this patch format is "application/merge-
patch+json". Refer to your service API documentation to determine what patch formats are acceptable,
along with any additional header values which must be defined.

This method will cause the current thread to block until the operation completes, a timeout occurs or the
post is canceled. During the operation, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PatchData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submits patch data to the server and returns the result in a string.

[Visual Basic]
Overloads Public Function PatchData(_
 ByVal resourceName As String, _
 ByVal patchData As String, _
 ByRef responseData As String _
) As Boolean

[C#]
public bool PatchData(
 string resourceName,
 string patchData,
 ref string responseData
);

Parameters
resourceName

A string that specifies the resource on the server that the data will be posted to. Typically this is the
name of an executable script on the server. The resource name should be specified using an absolute
path that begins with a leading slash character.

patchData
A string that contains the patch data which will be provided to the server.

responseData
A string passed by reference which will contain the reponse from the server when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PatchData method is used to submit XML or JSON formatted patch data to a service, and then
returns a copy of the response from the server into a string buffer. This method will not perform any
encoding and will not automatically define the type of patch data being submitted. Your application is
responsible for specifying the content type for the patch data and ensuring that the XML or JSON data
being submitted to the server is formatted correctly.

This method sends a PATCH command to the server, which is similar to a POST or PUT request. It is used
to make partial updates to a resource, rather than creating or replacing it entirely. The format of the patch
data is specific to the service being used. If the resource being patched does not exist, the behavior is
defined by the server. If enough information is provided, it may choose to create the resource just as if a
PUT command was used, or it may return an error.

Your application should use the SetHeader method to define the Content-Type header prior to calling
the PatchData method. One of the most common formats used is the JSON Merge Patch which is
defined in RFC 7396. The value for the Content-Type header for this patch format is "application/merge-
patch+json". Refer to your service API documentation to determine what patch formats are acceptable,
along with any additional header values which must be defined.

This method will cause the current thread to block until the operation completes, a timeout occurs or the
post is canceled. During the operation, the OnProgress event will fire periodically, enabling the

HttpClient.PatchData Method (String, String, String)

application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PatchData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submits patch data to the server and returns the result in a string.

[Visual Basic]
Overloads Public Function PatchData(_
 ByVal patchData As String, _
 ByRef responseData As String _
) As Boolean

[C#]
public bool PatchData(
 string patchData,
 ref string responseData
);

Parameters
patchData

A string that contains the patch data which will be provided to the server.

responseData
A string passed by reference which will contain the reponse from the server when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PatchData method is used to submit XML or JSON formatted patch data to a service, and then
returns a copy of the response from the server into a string buffer. This method will not perform any
encoding and will not automatically define the type of patch data being submitted. Your application is
responsible for specifying the content type for the patch data and ensuring that the XML or JSON data
being submitted to the server is formatted correctly.

This method sends a PATCH command to the server, which is similar to a POST or PUT request. It is used
to make partial updates to a resource, rather than creating or replacing it entirely. The format of the patch
data is specific to the service being used. If the resource being patched does not exist, the behavior is
defined by the server. If enough information is provided, it may choose to create the resource just as if a
PUT command was used, or it may return an error.

Your application should use the SetHeader method to define the Content-Type header prior to calling
the PatchData method. One of the most common formats used is the JSON Merge Patch which is
defined in RFC 7396. The value for the Content-Type header for this patch format is "application/merge-
patch+json". Refer to your service API documentation to determine what patch formats are acceptable,
along with any additional header values which must be defined.

This version of the method submits the patch data to the resourse specified by the Resource property.

This method will cause the current thread to block until the operation completes, a timeout occurs or the
post is canceled. During the operation, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PatchData Overload List

HttpClient.PatchData Method (String, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submits the contents of the specified buffer to a resource on the server.

Overload List
Submits the contents of the specified buffer to a resource on the server.

public bool PostData(byte[],int,byte[],ref int);

Submits the contents of the specified MemoryStream to a resource on the server.

public bool PostData(MemoryStream,MemoryStream);

Submits the contents of the specified buffer to a resource on the server.

public bool PostData(string,byte[],int,byte[],ref int);

Submits the contents of the specified buffer to a resource on the server.

public bool PostData(string,byte[],int,byte[],ref int,HttpPostOptions);

Submits the contents of the specified MemoryStream to a resource on the server.

public bool PostData(string,MemoryStream,MemoryStream);

Submits the contents of the specified MemoryStream to a resource on the server.

public bool PostData(string,MemoryStream,MemoryStream,HttpPostOptions);

Submits the contents of the specified buffer to a resource on the server.

public bool PostData(string,string,ref string);

Submits the contents of the specified buffer to a resource on the server.

public bool PostData(string,string,ref string,HttpPostOptions);

Submits the contents of the specified buffer to a script on the server.

public bool PostData(string,ref string);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PostData Method

Submits the contents of the specified buffer to a script on the server.

[Visual Basic]
Overloads Public Function PostData(_
 ByVal requestData As String, _
 ByRef responseData As String _
) As Boolean

[C#]
public bool PostData(
 string requestData,
 ref string responseData
);

Parameters
requestData

A string which contains the data that will be sent to the server. Unicode strings are automatically UTF-8
encoded prior to being submitted.

responseData
A string passed by reference that will contain the output generated by the script. Typically this is HTML
content which is generated by the script as a result of processing the data that was posted to it.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostData method submits the contents of the specified buffer to a script on the remote server and
returns the result in a string provided by the caller. This method will cause the current thread to block until
the operation completes, a timeout occurs or the post is canceled. During the operation, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PostData Method (String, String)

Submits the contents of the specified buffer to a resource on the server.

[Visual Basic]
Overloads Public Function PostData(_
 ByVal resourceName As String, _
 ByVal requestData As String, _
 ByRef responseData As String _
) As Boolean

[C#]
public bool PostData(
 string resourceName,
 string requestData,
 ref string responseData
);

Parameters
resourceName

A string that specifies the resource on the server that the data will be posted to. Typically this is the
name of an executable script on the server. The resource name should be specified using an absolute
path that begins with a leading slash character.

requestData
A string which contains the data which will be sent to the server. Unicode strings are automatically
UTF-8 encoded prior to being submitted.

responseData
A string passed by reference that will contain the output generated by the script. Typically this is HTML
content which is generated by the script as a result of processing the data that was posted to it.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostData method submits the contents of the specified buffer to a script on the remote server and
returns the result in a string provided by the caller. This method will cause the current thread to block until
the operation completes, a timeout occurs or the post is canceled. During the operation, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PostData Method (String, String, String)

Submits the contents of the specified buffer to a resource on the server.

[Visual Basic]
Overloads Public Function PostData(_
 ByVal resourceName As String, _
 ByVal requestData As String, _
 ByRef responseData As String, _
 ByVal options As HttpPostOptions _
) As Boolean

[C#]
public bool PostData(
 string resourceName,
 string requestData,
 ref string responseData,
 HttpPostOptions options
);

Parameters
resourceName

A string that specifies the resource on the server that the data will be posted to. Typically this is the
name of an executable script on the server. The resource name should be specified using an absolute
path that begins with a leading slash character.

requestData
A string which contains the data which will be sent to the server. Unicode strings are automatically
UTF-8 encoded prior to being submitted.

responseData
A string passed by reference that will contain the output generated by the script. Typically this is HTML
content which is generated by the script as a result of processing the data that was posted to it.

options
An HttpPostOptions enumeration that specifies one or more options when posting data to the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostData method submits the contents of the specified buffer to a script on the remote server and
returns the result in a string provided by the caller. This method will cause the current thread to block until
the operation completes, a timeout occurs or the post is canceled. During the operation, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PostData Method (String, String, String, HttpPostOptions)

Submits the contents of the specified MemoryStream to a resource on the server.

[Visual Basic]
Overloads Public Function PostData(_
 ByVal requestStream As MemoryStream, _
 ByVal responseStream As MemoryStream _
) As Boolean

[C#]
public bool PostData(
 MemoryStream requestStream,
 MemoryStream responseStream
);

Parameters
requestStream

A MemoryStream object which contains the data to be submitted to the server. This stream must be
readable, otherwise a NotSupported exception will be thrown.

responseStream
A MemoryStream object which will contain the output from the server when the method returns. This
stream must be readable and seekable, otherwise a NotSupported exception will be thrown.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostData method submits the contents of the specified MemoryStream to the web server and returns
the result in a MemoryStream object provided by the caller. This method will cause the current thread to
block until the operation completes, a timeout occurs or the post is canceled. During the operation, the
OnProgress event will fire periodically, enabling the application to update any user interface objects.

This version of the method submits the data to the resource specified by the Resource property.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PostData Method (MemoryStream, MemoryStream)

Submits the contents of the specified MemoryStream to a resource on the server.

[Visual Basic]
Overloads Public Function PostData(_
 ByVal resourceName As String, _
 ByVal requestStream As MemoryStream, _
 ByVal responseStream As MemoryStream _
) As Boolean

[C#]
public bool PostData(
 string resourceName,
 MemoryStream requestStream,
 MemoryStream responseStream
);

Parameters
resourceName

A string which specifies the resource on the server. The resource name should be specified using an
absolute path which begins with a leading slash. character.

requestStream
A MemoryStream object which contains the data to be submitted to the server. This stream must be
readable, otherwise a NotSupported exception will be thrown.

responseStream
A MemoryStream object which will contain the output from the server when the method returns. This
stream must be readable and seekable, otherwise a NotSupported exception will be thrown.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostData method submits the contents of the specified MemoryStream to the web server and returns
the result in a MemoryStream object provided by the caller. This method will cause the current thread to
block until the operation completes, a timeout occurs or the post is canceled. During the operation, the
OnProgress event will fire periodically, enabling the application to update any user interface objects.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PostData Method (String, MemoryStream, MemoryStream)

Submits the contents of the specified MemoryStream to a resource on the server.

[Visual Basic]
Overloads Public Function PostData(_
 ByVal resourceName As String, _
 ByVal requestStream As MemoryStream, _
 ByVal responseStream As MemoryStream, _
 ByVal options As HttpPostOptions _
) As Boolean

[C#]
public bool PostData(
 string resourceName,
 MemoryStream requestStream,
 MemoryStream responseStream,
 HttpPostOptions options
);

Parameters
resourceName

A string which specifies the resource on the server. The resource name should be specified using an
absolute path which begins with a leading slash. character.

requestStream
A MemoryStream object which contains the data to be submitted to the server. This stream must be
readable, otherwise a NotSupported exception will be thrown.

responseStream
A MemoryStream object which will contain the output from the server when the method returns. This
stream must be readable and seekable, otherwise a NotSupported exception will be thrown.

options
An HttpPostOptions enumeration which specifies one or more options when submitting data to the
server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostData method submits the contents of the specified MemoryStream to the web server and returns
the result in a MemoryStream object provided by the caller. This method will cause the current thread to
block until the operation completes, a timeout occurs or the post is canceled. During the operation, the
OnProgress event will fire periodically, enabling the application to update any user interface objects.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PostData Method (String, MemoryStream, MemoryStream,
HttpPostOptions)

Submits the contents of the specified buffer to a resource on the server.

[Visual Basic]
Overloads Public Function PostData(_
 ByVal requestData As Byte(), _
 ByVal requestLength As Integer, _
 ByVal responseData As Byte(), _
 ByRef responseLength As Integer _
) As Boolean

[C#]
public bool PostData(
 byte[] requestData,
 int requestLength,
 byte[] responseData,
 ref int responseLength
);

Parameters
requestData

A byte array which contains the data to be submitted to the server.

requestLength
An integer value which specifies the size of the input buffer byte array. This value cannot be larger
than the size of the buffer specified by the caller.

responseData
A byte array that will contain the output generated by the script. Typically this is HTML content which is
generated by the script as a result of processing the data that was posted to it.

responseLength
An integer value which specifies the maximum number of bytes of data to store in the output buffer.
This value cannot be larger than the size of the buffer specified by the caller

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostData method submits the contents of the specified buffer to a script on the remote server and
returns the result in a byte array provided by the caller. This method will cause the current thread to block
until the operation completes, a timeout occurs or the post is canceled. During the operation, the
OnProgress event will fire periodically, enabling the application to update any user interface objects such
as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PostData Method (Byte[], Int32, Byte[], Int32)

Submits the contents of the specified buffer to a resource on the server.

[Visual Basic]
Overloads Public Function PostData(_
 ByVal resourceName As String, _
 ByVal requestData As Byte(), _
 ByVal requestLength As Integer, _
 ByVal responseData As Byte(), _
 ByRef responseLength As Integer _
) As Boolean

[C#]
public bool PostData(
 string resourceName,
 byte[] requestData,
 int requestLength,
 byte[] responseData,
 ref int responseLength
);

Parameters
resourceName

A string that specifies the resource on the server that the data will be posted to. Typically this is the
name of an executable script on the server. The resource name should be specified using an absolute
path that begins with a leading slash character.

requestData
A byte array which contains the data to be submitted to the server.

requestLength
An integer value which specifies the size of the input buffer byte array. This value cannot be larger
than the size of the buffer specified by the caller.

responseData
A byte array that will contain the output generated by the script. Typically this is HTML content which is
generated by the script as a result of processing the data that was posted to it.

responseLength
An integer value which specifies the maximum number of bytes of data to store in the output buffer.
This value cannot be larger than the size of the buffer specified by the caller

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostData method submits the contents of the specified buffer to a script on the remote server and
returns the result in a byte array provided by the caller. This method will cause the current thread to block
until the operation completes, a timeout occurs or the post is canceled. During the operation, the
OnProgress event will fire periodically, enabling the application to update any user interface objects such
as a progress bar.

See Also

HttpClient.PostData Method (String, Byte[], Int32, Byte[], Int32)

HttpClient Class | SocketTools Namespace | HttpClient.PostData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submits the contents of the specified buffer to a resource on the server.

[Visual Basic]
Overloads Public Function PostData(_
 ByVal resourceName As String, _
 ByVal requestData As Byte(), _
 ByVal requestLength As Integer, _
 ByVal responseData As Byte(), _
 ByRef responseLength As Integer, _
 ByVal options As HttpPostOptions _
) As Boolean

[C#]
public bool PostData(
 string resourceName,
 byte[] requestData,
 int requestLength,
 byte[] responseData,
 ref int responseLength,
 HttpPostOptions options
);

Parameters
resourceName

A string that specifies the resource on the server that the data will be posted to. Typically this is the
name of an executable script on the server. The resource name should be specified using an absolute
path that begins with a leading slash character.

requestData
A byte array which contains the data to be submitted to the server.

requestLength
An integer value which specifies the size of the input buffer byte array. This value cannot be larger
than the size of the buffer specified by the caller.

responseData
A byte array that will contain the output generated by the script. Typically this is HTML content which is
generated by the script as a result of processing the data that was posted to it.

responseLength
An integer value which specifies the maximum number of bytes of data to store in the output buffer.
This value cannot be larger than the size of the buffer specified by the caller

options
An HttpPostOptions enumeration that specifies one or more options when posting data to the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostData method submits the contents of the specified buffer to a script on the remote server and
returns the result in a byte array provided by the caller. This method will cause the current thread to block

HttpClient.PostData Method (String, Byte[], Int32, Byte[], Int32,
HttpPostOptions)

until the operation completes, a timeout occurs or the post is canceled. During the operation, the
OnProgress event will fire periodically, enabling the application to update any user interface objects such
as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Post the contents of the specified file to a script executed on the remote server.

Overload List
Post the contents of the specified file to a script executed on the remote server.

public bool PostFile(string);

Upload the contents of a file to a resource on the server.

public bool PostFile(string,string);

Upload the contents of a file to a resource on the server.

public bool PostFile(string,string,string);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PostFile Method

Post the contents of the specified file to a script executed on the remote server.

[Visual Basic]
Overloads Public Function PostFile(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool PostFile(
 string fileName
);

Parameters
fileName

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostFile method posts the contents of a file to a script that is executed on the server. This method will
cause the current thread to block until the file transfer completes, a timeout occurs or the transfer is
canceled. During the transfer, the OnProgress event will fire periodically, enabling the application to
update any user interface objects such as a progress bar.

The PostFile method is similar to the PutFile method in that it can be used to upload the contents of a
local file to a remote server. However, instead of using the PUT command, the POST command is used to
send the file data to a script that is executed on the server. This method has the advantage of not
requiring any special configuration settings on the server, however it does require that the script be able
to process multipart/form-data as defined in RFC 2388.

To support uploading files from a form on a webpage, the FILE input type is used along with the action
that specifies the script that will accept the file data and process it. For example, the HTML code could
look like this:

 <form action="/upload.php" method="post" enctype="multipart/form-data">
<input type="file" name="datafile" size="20"> <input type="submit">
</form>

In this example, the script /upload.php is responsible for processing the file data that is posted by the
client, and the form field name "datafile" is used. The user can select a file, and when the Submit button is
clicked, the file data is posted to the script. To simulate this using the PostFile method, the LocalFile
argument should be set to the name of the local file that is to be posted to the server. The Resource
argument should be the name of the script, in this case "/upload.php". The FieldName argument should
be specified as the string "datafile" to match the name of the field used by the form.

Note that the PostFile function always submits the file contents as multipart/form-data with the content
type set to application/octet-stream. The script that accepts the posted data must be able to parse the
multipart header block and correctly process 8-bit data. If the script assumes that the data will be posted
using a specific encoding type such as base64, then the file data may not be accepted or may be

HttpClient.PostFile Method (String)

corrupted by the script.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the contents of a file to a resource on the server.

[Visual Basic]
Overloads Public Function PostFile(_
 ByVal fileName As String, _
 ByVal resourceName As String _
) As Boolean

[C#]
public bool PostFile(
 string fileName,
 string resourceName
);

Parameters
fileName

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

resourceName
A string that specifies the resource on the server that the data will be posted to. Typically this is the
name of an executable script on the server. The resource name should be specified using an absolute
path that begins with a leading slash character.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostFile method posts the contents of a file to a script that is executed on the server. This method will
cause the current thread to block until the file transfer completes, a timeout occurs or the transfer is
canceled. During the transfer, the OnProgress event will fire periodically, enabling the application to
update any user interface objects such as a progress bar.

The PostFile method is similar to the PutFile method in that it can be used to upload the contents of a
local file to a remote server. However, instead of using the PUT command, the POST command is used to
send the file data to a script that is executed on the server. This method has the advantage of not
requiring any special configuration settings on the server, however it does require that the script be able
to process multipart/form-data as defined in RFC 2388.

To support uploading files from a form on a webpage, the FILE input type is used along with the action
that specifies the script that will accept the file data and process it. For example, the HTML code could
look like this:

 <form action="/upload.php" method="post" enctype="multipart/form-data">
<input type="file" name="datafile" size="20"> <input type="submit">
</form>

In this example, the script /upload.php is responsible for processing the file data that is posted by the
client, and the form field name "datafile" is used. The user can select a file, and when the Submit button is
clicked, the file data is posted to the script. To simulate this using the PostFile method, the LocalFile
argument should be set to the name of the local file that is to be posted to the server. The Resource

HttpClient.PostFile Method (String, String)

argument should be the name of the script, in this case "/upload.php". The FieldName argument should
be specified as the string "datafile" to match the name of the field used by the form.

Note that the PostFile function always submits the file contents as multipart/form-data with the content
type set to application/octet-stream. The script that accepts the posted data must be able to parse the
multipart header block and correctly process 8-bit data. If the script assumes that the data will be posted
using a specific encoding type such as base64, then the file data may not be accepted or may be
corrupted by the script.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the contents of a file to a resource on the server.

[Visual Basic]
Overloads Public Function PostFile(_
 ByVal fileName As String, _
 ByVal resourceName As String, _
 ByVal fieldName As String _
) As Boolean

[C#]
public bool PostFile(
 string fileName,
 string resourceName,
 string fieldName
);

Parameters
fileName

A string that specifies the file on the local system that will be transferred to the server. The file pathing
and name conventions must be that of the local host.

resourceName
A string that specifies the resource on the server that the data will be posted to. Typically this is the
name of an executable script on the server. The resource name should be specified using an absolute
path that begins with a leading slash character.

fieldName
A string argument that specifies the form field name that the script expects. If this argument is omitted
or is an empty string, a default field name of "File1" is used.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostFile method posts the contents of a file to a script that is executed on the server. This method will
cause the current thread to block until the file transfer completes, a timeout occurs or the transfer is
canceled. During the transfer, the OnProgress event will fire periodically, enabling the application to
update any user interface objects such as a progress bar.

The PostFile method is similar to the PutFile method in that it can be used to upload the contents of a
local file to a remote server. However, instead of using the PUT command, the POST command is used to
send the file data to a script that is executed on the server. This method has the advantage of not
requiring any special configuration settings on the server, however it does require that the script be able
to process multipart/form-data as defined in RFC 2388.

To support uploading files from a form on a webpage, the FILE input type is used along with the action
that specifies the script that will accept the file data and process it. For example, the HTML code could
look like this:

 <form action="/upload.php" method="post" enctype="multipart/form-data">
<input type="file" name="datafile" size="20"> <input type="submit">
</form>

HttpClient.PostFile Method (String, String, String)

In this example, the script /upload.php is responsible for processing the file data that is posted by the
client, and the form field name "datafile" is used. The user can select a file, and when the Submit button is
clicked, the file data is posted to the script. To simulate this using the PostFile method, the LocalFile
argument should be set to the name of the local file that is to be posted to the server. The Resource
argument should be the name of the script, in this case "/upload.php". The FieldName argument should
be specified as the string "datafile" to match the name of the field used by the form.

Note that the PostFile function always submits the file contents as multipart/form-data with the content
type set to application/octet-stream. The script that accepts the posted data must be able to parse the
multipart header block and correctly process 8-bit data. If the script assumes that the data will be posted
using a specific encoding type such as base64, then the file data may not be accepted or may be
corrupted by the script.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Transfer the contents of a byte array to the server.

Overload List
Transfer the contents of a byte array to the server.

public bool PutData(byte[],int);

Transfer the contents of a string to the server.

public bool PutData(string);

Transfer the contents of a byte array to the server.

public bool PutData(string,byte[],int);

Transfer the contents of a MemoryStream to the server.

public bool PutData(string,MemoryStream);

Transfer the contents of a string to the server.

public bool PutData(string,string);

Transfer the contents of a string to the server.

public bool PutData(string,string,int);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutData Method

Transfer the contents of a string to the server.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool PutData(
 string buffer
);

Parameters
buffer

A string which contains the data to be uploaded. Unicode strings are automatically UTF-8 encoded
prior to being submitted.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutData method transfers data in a string buffer and submits it to the server using the PUT
command. This may be used to create a new file, replace the contents of an file which alread exists, or a
request to submit data to a service API.

If you are using this method to upload the contents of a file, check to make sure the service allows the use
of the PUT command. Not all servers permit files to be created using this method, and some may require
specific configuration changes be made to the server to support this functionality.

The value of the Resource property will specify the resource path which will be used to submit the data.

This version of the method will always convert the Unicode string to UTF-8 encoded text prior to being
submitted to the server. If the server requires a different text encoding, use the PutText method which will
allow you to specify a code page.

It may be required for the client authenticate itself by setting the UserName and Password properties
prior to submitting the data.

This method will cause the current thread to block until the data transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutData Overload List | PutText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutData Method (String)

Transfer the contents of a string to the server.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal resourceName As String, _
 ByVal buffer As String _
) As Boolean

[C#]
public bool PutData(
 string resourceName,
 string buffer
);

Parameters
resourceName

A string that specifies the resource on the server that will receive the data being submitted. Depending
on usage, this may be the name of a file or a URL which is used with an API.

buffer
A string which contains the data to be uploaded. Unicode strings are automatically UTF-8 encoded
prior to being submitted.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutData method transfers data in a string buffer and submits it to the server using the PUT
command. This may be used to create a new file, replace the contents of an file which alread exists, or a
request to submit data to a service API.

If you are using this method to upload the contents of a file, check to make sure the service allows the use
of the PUT command. Not all servers permit files to be created using this method, and some may require
specific configuration changes be made to the server to support this functionality.

This version of the method will always convert the Unicode string to UTF-8 encoded text prior to being
submitted to the server. If the server requires a different text encoding, use the PutText method which will
allow you to specify a code page.

It may be required for the client authenticate itself by setting the UserName and Password properties
prior to submitting the data.

This method will cause the current thread to block until the data transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutData Overload List | PutText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutData Method (String, String)

Transfer the contents of a string to the server.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal resourceName As String, _
 ByVal buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutData(
 string resourceName,
 string buffer,
 int length
);

Parameters
resourceName

A string that specifies the resource on the server that will receive the data being submitted. Depending
on usage, this may be the name of a file or a URL which is used with an API.

buffer
A string which contains the data to be uploaded. Unicode strings are automatically UTF-8 encoded
prior to being submitted.

length
An integer value which specifies the maximum number of bytes of data to sent. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutData method transfers data in a string buffer and submits it to the server using the PUT
command. This may be used to create a new file, replace the contents of an file which alread exists, or a
request to submit data to a service API.

If you are using this method to upload the contents of a file, check to make sure the service allows the use
of the PUT command. Not all servers permit files to be created using this method, and some may require
specific configuration changes be made to the server to support this functionality.

This version of the method will always convert the Unicode string to UTF-8 encoded text prior to being
submitted to the server. If the server requires a different text encoding, use the PutText method which will
allow you to specify a code page.

It may be required for the client authenticate itself by setting the UserName and Password properties
prior to submitting the data.

This method will cause the current thread to block until the data transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also

HttpClient.PutData Method (String, String, Int32)

HttpClient Class | SocketTools Namespace | HttpClient.PutData Overload List | PutText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Transfer the contents of a MemoryStream to the server.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal resourceName As String, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool PutData(
 string resourceName,
 MemoryStream memStream
);

Parameters
resourceName

A string that specifies the resource on the server that will receive the data being submitted. Depending
on usage, this may be the name of a file or a URL which is used with an API.

memStream
A MemoryStream object which contains the data to be uploaded to the server. This stream must be
open and readable.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutData method transfers the data in a MemoryStream object and submits it to the server using the
PUT command. This may be used to create a new file, replace the contents of an file which alread exists,
or a request to submit data to a service API.

If you are using this method to upload the contents of a file, check to make sure the service allows the use
of the PUT command. Not all servers permit files to be created using this method, and some may require
specific configuration changes be made to the server to support this functionality.

It may be required for the client authenticate itself by setting the UserName and Password properties
prior to submitting the data.

This method will cause the current thread to block until the data transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutData Method (String, MemoryStream)

Transfer the contents of a byte array to the server.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal resourceName As String, _
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutData(
 string resourceName,
 byte[] buffer,
 int length
);

Parameters
resourceName

A string that specifies the resource on the server that will receive the data being submitted. Depending
on usage, this may be the name of a file or a URL which is used with an API.

buffer
A byte array which contains the data to be submitted.

length
An integer value which specifies the maximum number of bytes of data to sent. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutData method transfers the data in a byte array and submits it to the server using the PUT
command. This may be used to create a new file, replace the contents of an file which alread exists, or a
request to submit data to a service API.

If you are using this method to upload the contents of a file, check to make sure the service allows the use
of the PUT command. Not all servers permit files to be created using this method, and some may require
specific configuration changes be made to the server to support this functionality.

It may be required for the client authenticate itself by setting the UserName and Password properties
prior to submitting the data.

This method will cause the current thread to block until the data transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutData Method (String, Byte[], Int32)

Transfer the contents of a byte array to the server.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutData(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array which contains the data to be submitted.

length
An integer value which specifies the maximum number of bytes of data to sent. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutData method transfers the data in a byte array and submits it to the server using the PUT
command. This may be used to create a new file, replace the contents of an file which alread exists, or a
request to submit data to a service API.

If you are using this method to upload the contents of a file, check to make sure the service allows the use
of the PUT command. Not all servers permit files to be created using this method, and some may require
specific configuration changes be made to the server to support this functionality.

The value of the Resource property will specify the resource path which will be used to submit the data.

It may be required for the client authenticate itself by setting the UserName and Password properties
prior to submitting the data.

This method will cause the current thread to block until the data transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutData Method (Byte[], Int32)

Submits XML formatted data to the server and returns the result in a string.

Overload List
Submits XML formatted data to the server and returns the result in a string.

public bool PostXml(string,string,ref string);

Submits XML formatted data to the server and returns the result in a string.

public bool PostXml(string,string,ref string,HttpPostOptions);

Submits XML formatted data to the server and returns the result in a string.

public bool PostXml(string,ref string);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PostXml Method

Submits XML formatted data to the server and returns the result in a string.

[Visual Basic]
Overloads Public Function PostXml(_
 ByVal xmlData As String, _
 ByRef reponseData As String _
) As Boolean

[C#]
public bool PostXml(
 string xmlData,
 ref string reponseData
);

Parameters
xmlData

A string that contains the XML formatted data which will be provided to the script.

reponseData
A string passed by reference that will contain the output generated by the script. Typically this is HTML
content which is generated by the script as a result of processing the data that was posted to it.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostXml method is used to submit XML formatted data to a script that executes on the server and
then copy the output from that script into a local buffer. This function automatically sets the correct
content type and encoding required for submitting XML data to a server, however it does not parse the
XML data itself to ensure that it is well-formed. Your application is responsible for ensuring that the XML
data that is being submitted to the server is formatted correctly.

This method will cause the current thread to block until the operation completes, a timeout occurs or the
post is canceled. During the operation, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The XML data will be submitted to the server using the value of the Resource property to specify the
script that will process the data.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostXml Overload List | Resource Property | URL
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PostXml Method (String, String)

Submits XML formatted data to the server and returns the result in a string.

[Visual Basic]
Overloads Public Function PostXml(_
 ByVal resourceName As String, _
 ByVal xmlData As String, _
 ByRef reponseData As String _
) As Boolean

[C#]
public bool PostXml(
 string resourceName,
 string xmlData,
 ref string reponseData
);

Parameters
resourceName

A string that specifies the resource on the server that the data will be posted to. Typically this is the
name of an executable script on the server. The resource name should be specified using an absolute
path that begins with a leading slash character.

xmlData
A string that contains the XML formatted data which will be provided to the script.

reponseData
A string passed by reference that will contain the output generated by the script. Typically this is HTML
content which is generated by the script as a result of processing the data that was posted to it.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostXml method is used to submit XML formatted data to a script that executes on the server and
then copy the output from that script into a local buffer. This function automatically sets the correct
content type and encoding required for submitting XML data to a server, however it does not parse the
XML data itself to ensure that it is well-formed. Your application is responsible for ensuring that the XML
data that is being submitted to the server is formatted correctly.

This method will cause the current thread to block until the operation completes, a timeout occurs or the
post is canceled. During the operation, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostXml Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PostXml Method (String, String, String)

Submits XML formatted data to the server and returns the result in a string.

[Visual Basic]
Overloads Public Function PostXml(_
 ByVal resourceName As String, _
 ByVal xmlData As String, _
 ByRef reponseData As String, _
 ByVal options As HttpPostOptions _
) As Boolean

[C#]
public bool PostXml(
 string resourceName,
 string xmlData,
 ref string reponseData,
 HttpPostOptions options
);

Parameters
resourceName

A string that specifies the resource on the server that the data will be posted to. Typically this is the
name of an executable script on the server. The resource name should be specified using an absolute
path that begins with a leading slash character.

xmlData
A string that contains the XML formatted data which will be provided to the script.

reponseData
A string passed by reference that will contain the output generated by the script. Typically this is HTML
content which is generated by the script as a result of processing the data that was posted to it.

options
An HttpPostOptions enumeration that specifies one or more options when posting data to the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostXml method is used to submit XML formatted data to a script that executes on the server and
then copy the output from that script into a local buffer. This function automatically sets the correct
content type and encoding required for submitting XML data to a server, however it does not parse the
XML data itself to ensure that it is well-formed. Your application is responsible for ensuring that the XML
data that is being submitted to the server is formatted correctly.

This method will cause the current thread to block until the operation completes, a timeout occurs or the
post is canceled. During the operation, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PostXml Overload List

HttpClient.PostXml Method (String, String, String, HttpPostOptions)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Transfer a file from the local system to the web server.

Overload List
Transfer a file from the local system to the web server.

public bool PutFile(string);

Transfer a file from the local system to the web server.

public bool PutFile(string,HttpTransferOptions);

Transfer a file from the local system to the web server.

public bool PutFile(string,string);

Transfer a file from the local system to the web server.

public bool PutFile(string,string,HttpTransferOptions);

Transfer a file from the local system to the web server.

public bool PutFile(string,string,HttpTransferOptions,int);

Transfer a file from the local system to the web server.

public bool PutFile(string,string,HttpTransferOptions,long);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutFile Method

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.PutFile_overload_6.html

Transfer a file from the local system to the web server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string remoteFile
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will contain the data being transferred. If the file
already exists, it will be overwritten. The file name should be specified using an absolute path that
begins with a leading slash character.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method is used to transfer a file from the local system to a remote server. Not all servers
permit files to be uploaded using this method, and some may require that specific configuration changes
be made to the server in order to support this functionality. Consult your server's technical reference
documentation to see if it supports the PUT command, and if so, what must be done to enable it. It may
be required that the client authenticate itself by setting the UserName and Password properties prior to
uploading the file.

This method will cause the current thread to block until the file transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutFile Method (String, String)

Transfer a file from the local system to the web server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal options As HttpTransferOptions _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 HttpTransferOptions options
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

options
An HttpTransferOptions enumeration value which specifies one or more file transfer options.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method is used to transfer a file from the local system to a remote server. Not all servers
permit files to be uploaded using this method, and some may require that specific configuration changes
be made to the server in order to support this functionality. Consult your server's technical reference
documentation to see if it supports the PUT command, and if so, what must be done to enable it. It may
be required that the client authenticate itself by setting the UserName and Password properties prior to
uploading the file.

This method will cause the current thread to block until the file transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutFile Method (String, HttpTransferOptions)

Transfer a file from the local system to the web server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As HttpTransferOptions _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string remoteFile,
 HttpTransferOptions options
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will contain the data being transferred. If the file
already exists, it will be overwritten. The file name should be specified using an absolute path that
begins with a leading slash character.

options
An HttpTransferOptions enumeration value which specifies one or more file transfer options.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method is used to transfer a file from the local system to a remote server. Not all servers
permit files to be uploaded using this method, and some may require that specific configuration changes
be made to the server in order to support this functionality. Consult your server's technical reference
documentation to see if it supports the PUT command, and if so, what must be done to enable it. It may
be required that the client authenticate itself by setting the UserName and Password properties prior to
uploading the file.

This method will cause the current thread to block until the file transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutFile Method (String, String, HttpTransferOptions)

Transfer a file from the local system to the web server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As HttpTransferOptions, _
 ByVal offset As Long _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string remoteFile,
 HttpTransferOptions options,
 long offset
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will contain the data being transferred. If the file
already exists, it will be overwritten. The file name should be specified using an absolute path that
begins with a leading slash character.

options
An HttpTransferOptions enumeration value which specifies one or more file transfer options.

offset
A integer value which specifies the offset where the file transfer should begin. A value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the option to restart file transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method is used to transfer a file from the local system to a remote server. Not all servers
permit files to be uploaded using this method, and some may require that specific configuration changes
be made to the server in order to support this functionality. Consult your server's technical reference
documentation to see if it supports the PUT command, and if so, what must be done to enable it. It may
be required that the client authenticate itself by setting the UserName and Password properties prior to
uploading the file.

This method will cause the current thread to block until the file transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

HttpClient.PutFile Method (String, String, HttpTransferOptions, Int64)

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Transfer a file from the local system to the web server.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal remoteFile As String, _
 ByVal options As HttpTransferOptions, _
 ByVal offset As Integer _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string remoteFile,
 HttpTransferOptions options,
 int offset
);

Parameters
localFile

A string that specifies the file on the local system that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

remoteFile
A string that specifies the file on the server that will contain the data being transferred. If the file
already exists, it will be overwritten. The file name should be specified using an absolute path that
begins with a leading slash character.

options
An HttpTransferOptions enumeration value which specifies one or more file transfer options.

offset
A integer value which specifies the offset where the file transfer should begin. A value of zero specifies
that the file transfer should start at the beginning of the file. A value greater than zero is typically used
to restart a transfer that has not completed successfully. Note that specifying a non-zero offset
requires that the server support the option to restart file transfers.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PutFile method is used to transfer a file from the local system to a remote server. Not all servers
permit files to be uploaded using this method, and some may require that specific configuration changes
be made to the server in order to support this functionality. Consult your server's technical reference
documentation to see if it supports the PUT command, and if so, what must be done to enable it. It may
be required that the client authenticate itself by setting the UserName and Password properties prior to
uploading the file.

This method will cause the current thread to block until the file transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

HttpClient.PutFile Method (String, String, HttpTransferOptions, Int32)

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submits text in a string buffer to the server using the PUT command.

Overload List
Submits text in a string buffer to the server using the PUT command.

public bool PutText(string);

Submits text in a string buffer to the server using the PUT command.

public bool PutText(string,int);

Submits text in a string buffer to the server using the PUT command.

public bool PutText(string,string);

Submits text in a string buffer to the server using the PUT command.

public bool PutText(string,string,int);

Submits text in a string buffer to the server using the PUT command.

public bool PutText(string,string,int,int);

Submits text in a string buffer to the server using the PUT command.

public bool PutText(string,string,int,string);

See Also
HttpClient Class | SocketTools Namespace | CodePage Property | URL Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutText Method

Submits text in a string buffer to the server using the PUT command.

[Visual Basic]
Overloads Public Function PutText(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool PutText(
 string buffer
);

Parameters
buffer

A string which contains the text to be submitted. If this parameter is null or an empty string, an empty
payload will be submitted with the PUT request.

Remarks
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

The PutText method submits text in a string buffer to the server. This method will cause the current
thread to block until the data transfer completes, a timeout occurs or the transfer is canceled.

This method should only be used to submit readable text to the server. Because the text will be converted
from Unicode using the encoding method specified by the CodePage property, the actual number of
bytes stored in the file may differ from the length specified.

This version of the method uses the value of Resource parameter to specify the name of the resource on
the web server. This property may be set directly or when the URL property is assigned a value.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutText Overload List | CodePage Property | URL
Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutText Method (String)

Submits text in a string buffer to the server using the PUT command.

[Visual Basic]
Overloads Public Function PutText(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutText(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the text to be submitted. If this parameter is null or an empty string, an empty
payload will be submitted with the PUT request.

length
An integer value which specifies the maximum number of characters of data to write. This value cannot
be larger than the length of the string buffer.

Remarks
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

The PutText method submits text in a string buffer to the server. This method will cause the current
thread to block until the data transfer completes, a timeout occurs or the transfer is canceled.

This method should only be used to submit readable text to the server. Because the text will be converted
from Unicode using the encoding method specified by the CodePage property, the actual number of
bytes stored in the file may differ from the length specified.

This version of the method uses the value of Resource parameter to specify the name of the resource on
the web server. This property may be set directly or when the URL property is assigned a value.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutText Overload List | CodePage Property | URL
Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutText Method (String, Int32)

Submits text in a string buffer to the server using the PUT command.

[Visual Basic]
Overloads Public Function PutText(_
 ByVal resourceName As String, _
 ByVal buffer As String _
) As Boolean

[C#]
public bool PutText(
 string resourceName,
 string buffer
);

Parameters
resourceName

A string that specifies the name of the resource on the server which will receive the text.

buffer
A string which contains the text to be submitted. If this parameter is null or an empty string, an empty
payload will be submitted with the PUT request.

Remarks
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

The PutText method submits text in a string buffer to the server. This method will cause the current
thread to block until the data transfer completes, a timeout occurs or the transfer is canceled.

This method should only be used to submit readable text to the server. Because the text will be converted
from Unicode using the encoding method specified by the CodePage property, the actual number of
bytes stored in the file may differ from the length specified.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutText Overload List | CodePage Property | URL
Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutText Method (String, String)

Submits text in a string buffer to the server using the PUT command.

[Visual Basic]
Overloads Public Function PutText(_
 ByVal resourceName As String, _
 ByVal buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutText(
 string resourceName,
 string buffer,
 int length
);

Parameters
resourceName

A string that specifies the name of the resource on the server which will receive the text.

buffer
A string which contains the text to be submitted. If this parameter is null or an empty string, an empty
payload will be submitted with the PUT request.

length
An integer value which specifies the maximum number of characters of data to write. This value cannot
be larger than the length of the string buffer.

Remarks
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

The PutText method submits text in a string buffer to the server. This method will cause the current
thread to block until the data transfer completes, a timeout occurs or the transfer is canceled.

This method should only be used to submit readable text to the server. Because the text will be converted
from Unicode using the encoding method specified by the CodePage property, the actual number of
bytes stored in the file may differ from the length specified.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutText Overload List | CodePage Property | URL
Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutText Method (String, String, Int32)

Submits text in a string buffer to the server using the PUT command.

[Visual Basic]
Overloads Public Function PutText(_
 ByVal resourceName As String, _
 ByVal buffer As String, _
 ByVal length As Integer, _
 ByVal codePage As String _
) As Boolean

[C#]
public bool PutText(
 string resourceName,
 string buffer,
 int length,
 string codePage
);

Parameters
resourceName

A string that specifies the name of the resource on the server which will receive the text.

buffer
A string which contains the text to be submitted. If this parameter is null or an empty string, an empty
payload will be submitted with the PUT request.

length
An integer value which specifies the maximum number of characters of data to write. This value cannot
be larger than the length of the string buffer.

codePage
An string which specifies the name of the code page which should be used to convert the text to
Unicode. If this value is an empty string or zero the active code page for the current locale will be
used. An exception will be thrown if an invalid code page is specified.

Remarks
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

The PutText method submits text in a string buffer to the server. This method will cause the current
thread to block until the data transfer completes, a timeout occurs or the transfer is canceled.

This method should only be used to submit readable text to the server. Because the text will be converted
from Unicode using the encoding method specified by the codePage parameter, the actual number of
bytes stored in the file may differ from the length specified.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutText Overload List | CodePage Property | URL
Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutText Method (String, String, Int32, String)

Submits text in a string buffer to the server using the PUT command.

[Visual Basic]
Overloads Public Function PutText(_
 ByVal resourceName As String, _
 ByVal buffer As String, _
 ByVal length As Integer, _
 ByVal codePage As Integer _
) As Boolean

[C#]
public bool PutText(
 string resourceName,
 string buffer,
 int length,
 int codePage
);

Parameters
resourceName

A string that specifies the name of the resource on the server which will receive the text. ///

buffer
A string which contains the text to be submitted. If this parameter is null or an empty string, an empty
payload will be submitted with the PUT request.

length
An integer value which specifies the maximum number of characters of data to write. This value cannot
be larger than the length of the string buffer.

codePage
An integer value which specifies the code page which should be used to convert the text to Unicode. If
this value is zero the active code page for the current locale will be used. An exception will be thrown
if an invalid code page is specified.

Remarks
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

The PutText method submits text in a string buffer to the server. This method will cause the current
thread to block until the data transfer completes, a timeout occurs or the transfer is canceled.

This method should only be used to submit readable text to the server. Because the text will be converted
from Unicode using the encoding method specified by the codePage parameter, the actual number of
bytes stored in the file may differ from the length specified.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.PutText Overload List | CodePage Property | URL
Property | GetText Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.PutText Method (String, String, Int32, Int32)

Read data from the server and store it in a byte array.

Overload List
Read data from the server and store it in a byte array.

public int Read(byte[]);

Read data from the server and store it in a byte array.

public int Read(byte[],int);

Read data from the server and store it in a string.

public int Read(ref string);

Read data from the server and store it in a string.

public int Read(ref string,int);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Read Method

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the size of the byte array passed
to the method. If no data is available to be read, an error will be generated if the client is in non-blocking
mode. If the client is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Read Method (Byte[])

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Read Method (Byte[], Int32)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the client.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to a maximum of 4096 bytes. If no
data is available to be read, an error will be generated if the client is in non-blocking mode. If the client is
in blocking mode, the program will stop until data is received from the server or the connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Read Method (String)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Read Method (String, Int32)

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Reset Method

Send the specified cookie to the server when a resource is requested.

[Visual Basic]
Public Function SetCookie(_
 ByVal cookieName As String, _
 ByVal cookieValue As String _
) As Boolean

[C#]
public bool SetCookie(
 string cookieName,
 string cookieValue
);

Parameters
cookieName

A string which specifies the name of the cookie that will be sent to the server when the next resource is
requested.

cookieValue
A string which specifies the value of the cookie. To delete a cookie that has been previously set, this
parameter should be an empty string.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SetCookie method submits the cookie name and value to the server when a resource is requested or
data is posted to a script. For more information about cookies and how they are used, refer to the
GetCookie method.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SetCookie Method

Set the value of a request header field.

[Visual Basic]
Public Function SetHeader(_
 ByVal headerName As String, _
 ByVal headerValue As String _
) As Boolean

[C#]
public bool SetHeader(
 string headerName,
 string headerValue
);

Parameters
headerName

A string that specifies the name of the request header.

headerValue
A string that specifies the value associated with the request header. If this argument is set to an empty
string, the request header is and its previous value are deleted.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SetHeader method is used to set the values of specific fields in the HTTP request header. This
method should be called before the client has requested the resource.

Some headers are generated by methods that send resource requests. Some of these are supplied by the
requesting methods only if the application has not previously defined the header. For others, the
requesting method overrides what the application may have defined. The affected headers include:

Header Description

Accept This header field specifies the type of content that
the client will accept. By default, all content types
will be accepted by the client.

Authorization This header field specifies the authentication
information required to access the resource. By
default, this header field is only defined if the client
specifies a username and password.

Connection This header field is automatically defined based on
the value specified by the KeepAlive property.

Content-Length This header field is automatically defined when
data is being posted to the server or a file is being
uploaded.

Content-Type This header field is automatically defined when
data is being posted to the server or a file is being

HttpClient.SetHeader Method

uploaded.

Host This header field defines the hostname of the
server. By default, the hostname provided to the
Connect method will be used.

Proxy-Authorization This header field specifies the proxy authentication
information required to access the resource. By
default, this header field is only defined if a proxy
server has been specified, along with a username
and password.

See Also
HttpClient Class | SocketTools Namespace | AddHeaders Method | GetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submits the current form data to the server for processing.

Overload List
Submits the current form data to the server for processing.

public bool SubmitForm();

Submits the current form data to the server for processing.

public bool SubmitForm(byte[],ref int);

Submits the current form data to the server for processing.

public bool SubmitForm(byte[],ref int,HttpSubmitOptions);

Submits the current form data to the server for processing.

public bool SubmitForm(ref string);

Submits the current form data to the server for processing.

public bool SubmitForm(ref string,ref int);

Submits the current form data to the server for processing.

public bool SubmitForm(ref string,ref int,HttpSubmitOptions);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SubmitForm Method

Submits the current form data to the server for processing.

[Visual Basic]
Overloads Public Function SubmitForm() As Boolean

[C#]
public bool SubmitForm();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SubmitForm method submits the current form data to a script on the remote server and returns the
result in a byte array provided by the caller. This method will cause the current thread to block until the
operation completes, a timeout occurs or the post is canceled. During the operation, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

Any data returned by the server will be discarded.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.SubmitForm Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SubmitForm Method ()

Submits the current form data to the server for processing.

[Visual Basic]
Overloads Public Function SubmitForm(_
 ByVal responseData As Byte(), _
 ByRef responseLength As Integer _
) As Boolean

[C#]
public bool SubmitForm(
 byte[] responseData,
 ref int responseLength
);

Parameters
responseData

A byte array which will contain the data returned by the server.

responseLength
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SubmitForm method submits the current form data to a script on the remote server and returns the
result in a byte array provided by the caller. This method will cause the current thread to block until the
operation completes, a timeout occurs or the post is canceled. During the operation, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.SubmitForm Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SubmitForm Method (Byte[], Int32)

Submits the current form data to the server for processing.

[Visual Basic]
Overloads Public Function SubmitForm(_
 ByVal responseData As Byte(), _
 ByRef responseLength As Integer, _
 ByVal options As HttpSubmitOptions _
) As Boolean

[C#]
public bool SubmitForm(
 byte[] responseData,
 ref int responseLength,
 HttpSubmitOptions options
);

Parameters
responseData

A byte array which will contain the data returned by the server.

responseLength
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

options
An HttpSubmitOptions enumeration value which specifies one or more options for submitting form
data to the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SubmitForm method submits the current form data to a script on the remote server and returns the
result in a byte array provided by the caller. This method will cause the current thread to block until the
operation completes, a timeout occurs or the post is canceled. During the operation, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.SubmitForm Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SubmitForm Method (Byte[], Int32, HttpSubmitOptions)

Submits the current form data to the server for processing.

[Visual Basic]
Overloads Public Function SubmitForm(_
 ByRef responseData As String _
) As Boolean

[C#]
public bool SubmitForm(
 ref string responseData
);

Parameters
responseData

A string passed by reference which will contain the data returned by the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SubmitForm method submits the current form data to a script on the remote server and returns the
result in a string provided by the caller. This method will cause the current thread to block until the
operation completes, a timeout occurs or the post is canceled. During the operation, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.SubmitForm Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SubmitForm Method (String)

Submits the current form data to the server for processing.

[Visual Basic]
Overloads Public Function SubmitForm(_
 ByRef responseData As String, _
 ByRef responseLength As Integer _
) As Boolean

[C#]
public bool SubmitForm(
 ref string responseData,
 ref int responseLength
);

Parameters
responseData

A string passed by reference which will contain the data returned by the server.

responseLength
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SubmitForm method submits the current form data to a script on the remote server and returns the
result in a string provided by the caller. This method will cause the current thread to block until the
operation completes, a timeout occurs or the post is canceled. During the operation, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.SubmitForm Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SubmitForm Method (String, Int32)

Submits the current form data to the server for processing.

[Visual Basic]
Overloads Public Function SubmitForm(_
 ByRef responseData As String, _
 ByRef responseLength As Integer, _
 ByVal options As HttpSubmitOptions _
) As Boolean

[C#]
public bool SubmitForm(
 ref string responseData,
 ref int responseLength,
 HttpSubmitOptions options
);

Parameters
responseData

A string passed by reference which will contain the data returned by the server.

responseLength
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

options
An HttpSubmitOptions enumeration value which specifies one or more options for submitting form
data to the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SubmitForm method submits the current form data to a script on the remote server and returns the
result in a string provided by the caller. This method will cause the current thread to block until the
operation completes, a timeout occurs or the post is canceled. During the operation, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.SubmitForm Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SubmitForm Method (String, Int32, HttpSubmitOptions)

Abort all asynchronous tasks that are currently active.

Overload List
Abort all asynchronous tasks that are currently active.

public bool TaskAbort();

Abort the specified asynchronous task.

public bool TaskAbort(int);

Abort the specified asynchronous task.

public bool TaskAbort(int,int);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskAbort Method

Abort all asynchronous tasks that are currently active.

[Visual Basic]
Overloads Public Function TaskAbort() As Boolean

[C#]
public bool TaskAbort();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskAbort method signals all background worker threads created by this instance of the class to
abort their current operation and terminate as soon as possible. This version of the method will signal
each active task and return immediately to the caller.

The Reset and Uninitialize methods will abort all active background transfers and wait for those tasks to
complete before returning to the caller. It is recommended that your application explicitly wait for
background transfers to complete or abort them using this method before allowing the program to
terminate. This will ensure that your program can perform any necessary cleanup operations. If there are
active background tasks running at the time that the class instance is disposed, it can force the instance to
stop those worker threads immediately without waiting for them to terminate gracefully.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskAbort Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskAbort Method ()

Abort the specified asynchronous task.

[Visual Basic]
Overloads Public Function TaskAbort(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskAbort(
 int taskId
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskAbort method signals the background worker thread associated with the task ID to abort the
current operation and terminate as soon as possible. This version of the method returns immediately after
the background thread has been signaled.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskAbort Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskAbort Method (Int32)

Abort the specified asynchronous task.

[Visual Basic]
Overloads Public Function TaskAbort(_
 ByVal taskId As Integer, _
 ByVal timeWait As Integer _
) As Boolean

[C#]
public bool TaskAbort(
 int taskId,
 int timeWait
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

timeWait
An integer value that specifies the number of milliseconds to wait for the background task to abort.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskAbort method signals the background worker thread associated with the task ID to abort the
current operation and terminate as soon as possible. If the timeWait parameter has a value of zero, the
method returns immediately after the background thread has been signaled. If the timeWait parameter is
non-zero, the method will wait that amount of time for the background thread to terminate.

The Reset and Uninitialize methods will abort all active background transfers and wait for those tasks to
complete before returning to the caller. It is recommended that your application explicitly wait for
background transfers to complete or abort them using this method before allowing the program to
terminate. This will ensure that your program can perform any necessary cleanup operations. If there are
active background tasks running at the time that the class instance is disposed, it can force the instance to
stop those worker threads immediately without waiting for them to terminate gracefully.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskAbort Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskAbort Method (Int32, Int32)

Determine if the current asynchronous task has completed.

Overload List
Determine if the current asynchronous task has completed.

public bool TaskDone();

Determine if an asynchronous task has completed.

public bool TaskDone(int);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskDone Method

Determine if the current asynchronous task has completed.

[Visual Basic]
Overloads Public Function TaskDone() As Boolean

[C#]
public bool TaskDone();

Return Value
This method returns a Boolean value. If the task has finished, the return value is true. If the background
task is still active, the return value is false.

Remarks
The TaskDone method is used to determine if the current asynchronous task has completed. This
overloaded version of the method is functionally equivalent to providing the value of the TaskId property
as the unique task identifier.

If you use this method to poll the status of a background task from within the main UI thread, you must
ensure that Windows messages are processed so that the application remains responsive to the end-user.
To check if a background transfer has completed, it is recommended that you use a timer to periodically
call this method rather than calling it repeatedly within a loop.

To determine if the task completed successfully, the TaskWait method will provide the last error code
associated with the task. Note that if this method returns true, it is guaranteed that calling TaskWait using
the same task ID will return the error code to the caller immediately without causing the current thread to
block.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskDone Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskDone Method ()

Determine if an asynchronous task has completed.

[Visual Basic]
Overloads Public Function TaskDone(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskDone(
 int taskId
);

Parameters
taskId

An optional integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the task has finished, the return value is true. If the background
task is still active, the return value is false.

Remarks
The TaskDone method is used to determine if the specified asynchronous task has completed.

If you use this method to poll the status of a background task from within the main UI thread, you must
ensure that Windows messages are processed so that the application remains responsive to the end-user.
To check if a background transfer has completed, it is recommended that you use a timer to periodically
call this method rather than calling it repeatedly within a loop.

To determine if the task completed successfully, the TaskWait method will provide the last error code
associated with the task. Note that if this method returns true, it is guaranteed that calling TaskWait using
the same task ID will return the error code to the caller immediately without causing the current thread to
block.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskDone Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskDone Method (Int32)

Resume execution of the current asynchronous task.

Overload List
Resume execution of the current asynchronous task.

public bool TaskResume();

Resume execution of an asynchronous task.

public bool TaskResume(int);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskResume Method

Resume execution of the current asynchronous task.

[Visual Basic]
Overloads Public Function TaskResume() As Boolean

[C#]
public bool TaskResume();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskResume method resumes execution of the current background task that was previously
suspended using the TaskSuspend method. This overloaded version of the method is functionally
equivalent to providing the value of the TaskId property as the unique task identifier.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskResume Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskResume Method ()

Resume execution of an asynchronous task.

[Visual Basic]
Overloads Public Function TaskResume(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskResume(
 int taskId
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskResume method resumes execution of the background worker thread that was previously
suspended using the TaskSuspend method.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskResume Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskResume Method (Int32)

Suspend execution of the current asynchronous task.

Overload List
Suspend execution of the current asynchronous task.

public bool TaskSuspend();

Suspend execution of an asynchronous task.

public bool TaskSuspend(int);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskSuspend Method

Suspend execution of the current asynchronous task.

[Visual Basic]
Overloads Public Function TaskSuspend() As Boolean

[C#]
public bool TaskSuspend();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskSuspend method will suspend execution of the background worker thread associated with the
current task. This overloaded version of the method is functionally equivalent to providing the value of the
TaskId property as the unique task identifier.

Once the task has been suspended, it will no longer be scheduled for execution, however the client
session will remain active and the task may be resumed using the TaskResume method. Note that if a
task is suspended for a long period of time, the background operation may fail because it has exceeded
the timeout period imposed by the server.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskSuspend Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskSuspend Method ()

Suspend execution of an asynchronous task.

[Visual Basic]
Overloads Public Function TaskSuspend(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskSuspend(
 int taskId
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskSuspend method will suspend execution of the background worker thread associated with the
task.

Once the task has been suspended, it will no longer be scheduled for execution, however the client
session will remain active and the task may be resumed using the TaskResume method. Note that if a
task is suspended for a long period of time, the background operation may fail because it has exceeded
the timeout period imposed by the server.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskSuspend Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskSuspend Method (Int32)

Wait for all asynchronous tasks to complete.

Overload List
Wait for all asynchronous tasks to complete.

public bool TaskWait();

Wait for an asynchronous task to complete.

public bool TaskWait(int);

Wait for an asynchronous task to complete.

public bool TaskWait(int,int);

Wait for an asynchronous task to complete.

public bool TaskWait(int,int,ref ErrorCode);

Wait for an asynchronous task to complete.

public bool TaskWait(int,int,ref int,ref ErrorCode);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskWait Method

Wait for all asynchronous tasks to complete.

[Visual Basic]
Overloads Public Function TaskWait() As Boolean

[C#]
public bool TaskWait();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This overloaded version of the TaskWait method will cause the current working thread to block until all
background tasks created by this instance of the class have completed. If there are no active background
tasks, this method will return to the caller immediately.

You should not call this version of the method from the main UI thread. Windows messages will not be
processed while this method is blocked waiting for the background tasks to complete, and this can cause
your application to appear non-responsive to the end-user. If you have a GUI application and you need to
determine if all tasks have completed, create a timer to periodically check the value of the TaskCount
property. When it returns zero, there are no active background tasks executing.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskWait Method ()

Wait for an asynchronous task to complete.

[Visual Basic]
Overloads Public Function TaskWait(_
 ByVal taskId As Integer _
) As Boolean

[C#]
public bool TaskWait(
 int taskId
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskWait method waits for the specified task to complete. This method will cause the current working
thread to block for an indefinite period of time until the task completes. If the specified task has already
completed at the time this method is called, the method will return immediately without causing the
current thread to block.

You should not call this overloaded version of the method from the main UI thread. Windows messages
will not be processed while this method is blocked waiting for the background task to complete, and this
can cause your application to appear non-responsive to the end-user. If you have a GUI application and
you need to determine if a background task has finished, create a timer to periodically call the TaskDone
method. When it returns true (indicating that the task has completed), you can safely call TaskWait to
obtain the elapsed time and last error code without blocking the current thread.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskWait Method (Int32)

Wait for an asynchronous task to complete.

[Visual Basic]
Overloads Public Function TaskWait(_
 ByVal taskId As Integer, _
 ByVal timeWait As Integer _
) As Boolean

[C#]
public bool TaskWait(
 int taskId,
 int timeWait
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

timeWait
An integer value that specifies the number of milliseconds to wait for the background task to
complete.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskWait method waits for the specified task to complete. This method will cause the current working
thread to block until the task completes or the amount of time exceeds the number of milliseconds
specified by the caller. If the timeWait parameter is zero, then this method will poll the status of the task
and return immediately to the caller. If the specified task has already completed at the time this method is
called, the method will return immediately without causing the current thread to block.

You should not call this method from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this method is blocked
waiting for the background task to complete, and this can cause your application to appear non-
responsive to the end-user. If you have a GUI application and you need to determine if a background task
has finished, create a timer to periodically call the TaskDone method. When it returns true (indicating that
the task has completed), you can safely call TaskWait to obtain the elapsed time and last error code
without blocking the current thread.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskWait Method (Int32, Int32)

Wait for an asynchronous task to complete.

[Visual Basic]
Overloads Public Function TaskWait(_
 ByVal taskId As Integer, _
 ByVal timeWait As Integer, _
 ByRef taskError As ErrorCode _
) As Boolean

[C#]
public bool TaskWait(
 int taskId,
 int timeWait,
 ref ErrorCode taskError
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

timeWait
An integer value that specifies the number of milliseconds to wait for the background task to
complete.

taskError
An ErrorCode value passed by reference that will contain the last error code set by the asynchronous
task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskWait method waits for the specified task to complete. This method will cause the current working
thread to block until the task completes or the amount of time exceeds the number of milliseconds
specified by the caller. If the timeWait parameter is zero, then this method will poll the status of the task
and return immediately to the caller.

If the specified task has already completed at the time this method is called, the method will return
immediately without causing the current thread to block. The taskError parameter will contain the last
error code value that was set by the worker thread before it terminated. If the taskError value is zero, that
means that the background task was successful and no error occurred. A non-zero value will indicate that
the background task has failed.

You should not call this method from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this method is blocked
waiting for the background task to complete, and this can cause your application to appear non-
responsive to the end-user. If you have a GUI application and you need to determine if a background task
has finished, create a timer to periodically call the TaskDone method. When it returns true (indicating that
the task has completed), you can safely call TaskWait to obtain the elapsed time and last error code
without blocking the current thread.

HttpClient.TaskWait Method (Int32, Int32, ErrorCode)

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Wait for an asynchronous task to complete.

[Visual Basic]
Overloads Public Function TaskWait(_
 ByVal taskId As Integer, _
 ByVal timeWait As Integer, _
 ByRef timeElapsed As Integer, _
 ByRef taskError As ErrorCode _
) As Boolean

[C#]
public bool TaskWait(
 int taskId,
 int timeWait,
 ref int timeElapsed,
 ref ErrorCode taskError
);

Parameters
taskId

An integer value that specifies the unique identifier associated with a background task.

timeWait
An integer value that specifies the number of milliseconds to wait for the background task to
complete.

timeElapsed
An integer value passed by reference that will contain the elapsed time for the task in milliseconds
when the method returns.

taskError
An ErrorCode value passed by reference that will contain the last error code set by the asynchronous
task.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The TaskWait method waits for the specified task to complete. This method will cause the current working
thread to block until the task completes or the amount of time exceeds the number of milliseconds
specified by the caller. If the timeWait parameter is zero, then this method will poll the status of the task
and return immediately to the caller.

If the specified task has already completed at the time this method is called, the method will return
immediately without causing the current thread to block. The timeElapsed parameter contain the number
of milliseconds that it took for the task to complete. The taskError parameter will contain the last error
code value that was set by the worker thread before it terminated. If the taskError value is zero, that
means that the background task was successful and no error occurred. A non-zero value will indicate that
the background task has failed.

You should not call this method from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this method is blocked

HttpClient.TaskWait Method (Int32, Int32, Int32, ErrorCode)

waiting for the background task to complete, and this can cause your application to appear non-
responsive to the end-user. If you have a GUI application and you need to determine if a background task
has finished, create a timer to periodically call the TaskDone method. When it returns true (indicating that
the task has completed), you can safely call TaskWait to obtain the elapsed time and last error code
without blocking the current thread.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.TaskWait Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
HttpClient Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Uninitialize Method

Write one or more bytes of data to the server.

Overload List
Write one or more bytes of data to the server.

public int Write(byte[]);

Write one or more bytes of data to the server.

public int Write(byte[],int);

Write a string of characters to the server.

public int Write(string);

Write a string of characters to the server.

public int Write(string,int);

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Write Method

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the server.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Write Method (Byte[])

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the server.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Write Method (Byte[], Int32)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Write Method (String)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the server.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
HttpClient Class | SocketTools Namespace | HttpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.Write Method (String, Int32)

The events of the HttpClient class are listed below. For a complete list of HttpClient class members, see
the HttpClient Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnCommand Occurs when the client sends a command to the
remote host and receives a reply indicating the
result of that command.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnRead Occurs when data is available to be read from the
client.

OnRedirect Occurs when the server indicates a resource has
been moved.

OnTaskBegin Occurs when an asynchronous task begins
execution.

OnTaskEnd Occurs when an asynchronous task completes.

OnTaskRun Occurs while a background task is active.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnCancel Event

Occurs when the client sends a command to the remote host and receives a reply indicating the result of
that command.

[Visual Basic]
Public Event OnCommand As OnCommandEventHandler

[C#]
public event OnCommandEventHandler OnCommand;

Event Data
The event handler receives an argument of type HttpClient.CommandEventArgs containing data related to
this event. The following HttpClient.CommandEventArgs properties provide information specific to this
event.

Property Description

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Remarks
The OnCommand event is generated when the client receives a reply from the server after some action
has been taken.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnCommand Event

Provides data for the OnCommand event.

For a list of all members of this type, see HttpClient.CommandEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpClient.CommandEventArgs

[Visual Basic]
Public Class HttpClient.CommandEventArgs
 Inherits EventArgs

[C#]
public class HttpClient.CommandEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
CommandEventArgs specifies the result code and result string for the last command executed by the
server.

The OnCommand event occurs whenever a command is executed on the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
HttpClient.CommandEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CommandEventArgs Class

HttpClient.CommandEventArgs overview

Public Instance Constructors

 HttpClient.CommandEventArgs Constructor Initializes a new instance of the
HttpClient.CommandEventArgs class.

Public Instance Properties

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CommandEventArgs Members

Initializes a new instance of the HttpClient.CommandEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpClient.CommandEventArgs();

See Also
HttpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CommandEventArgs Constructor

The properties of the HttpClient.CommandEventArgs class are listed below. For a complete list of
HttpClient.CommandEventArgs class members, see the HttpClient.CommandEventArgs Members topic.

Public Instance Properties

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

See Also
HttpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CommandEventArgs Properties

Gets a value which specifies the last result code returned by the server.

[Visual Basic]
Public ReadOnly Property ResultCode As Integer

[C#]
public int ResultCode {get;}

Property Value
An integer value which specifies the last result code returned by the server.

Remarks
This property should be checked after the Command method is used to execute a command on the
server to determine if the operation was successful. Result codes are three-digit numeric values returned
by the remote server and may be broken down into the following ranges:

ResultCode Description

100-199 Positive preliminary result. This indicates that the
requested action is being initiated, and the client
should expect another reply from the server
before proceeding.

200-299 Positive completion result. This indicates that the
server has successfully completed the requested
action.

300-399 Positive intermediate result. This indicates that the
requested action cannot complete until additional
information is provided to the server.

400-499 Transient negative completion result. This indicates
that the requested action did not take place, but
the error condition is temporary and may be
attempted again.

500-599 Permanent negative completion result. This
indicates that the requested action did not take
place.

It is important to note that while some result codes have become standardized, not all servers respond to
commands using the same result codes. For example, one server may respond with a result code of 221
to indicate success, while another may respond with a value of 235. It is recommended that applications
check for ranges of values to determine if a command was successful, not a specific value.

See Also
HttpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CommandEventArgs.ResultCode Property

Gets a string value which describes the result of the previous command.

[Visual Basic]
Public ReadOnly Property ResultString As String

[C#]
public string ResultString {get;}

Property Value
A string which describes the result of the previous command executed on the server.

Remarks
This string is generated by the remote server, and typically is used to describe the result code. For
example, if an error is indicated by the result code, the result string may describe the condition that
caused the error.

See Also
HttpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CommandEventArgs.ResultString Property

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a remote host as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a socket is
created but the connection is not actually established until after this event occurs. Between the time
connection process is started and this event fires, no operation may be performed on the client other than
calling the Disconnect method.

This event is only generated if the client is in non-blocking mode.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnConnect Event

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the remote host closes its connection, terminating the client
session with the application. Because there may still be data in the client receive buffers, you should
continue to read data from the client until the Read method returns a value of 0. Once all of the data has
been read, you should call the Disconnect method to close the local socket and release the resources
allocated for the client.

This event is only generated if the client is in non-blocking mode.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnDisconnect Event

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type HttpClient.ErrorEventArgs containing data related to this
event. The following HttpClient.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see HttpClient.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpClient.ErrorEventArgs

[Visual Basic]
Public Class HttpClient.ErrorEventArgs
 Inherits EventArgs

[C#]
public class HttpClient.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
HttpClient.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ErrorEventArgs Class

HttpClient.ErrorEventArgs overview

Public Instance Constructors

 HttpClient.ErrorEventArgs Constructor Initializes a new instance of the
HttpClient.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ErrorEventArgs Members

Initializes a new instance of the HttpClient.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpClient.ErrorEventArgs();

See Also
HttpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ErrorEventArgs Constructor

The properties of the HttpClient.ErrorEventArgs class are listed below. For a complete list of
HttpClient.ErrorEventArgs class members, see the HttpClient.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
HttpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
HttpClient.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public HttpClient.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
HttpClient.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ErrorEventArgs.Error Property

Occurs as a data stream is being read or written to the client.

[Visual Basic]
Public Event OnProgress As OnProgressEventHandler

[C#]
public event OnProgressEventHandler OnProgress;

Event Data
The event handler receives an argument of type HttpClient.ProgressEventArgs containing data related to
this event. The following HttpClient.ProgressEventArgs properties provide information specific to this
event.

Property Description

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Resource Gets a value which specifies the resource or file
name.

Remarks
The OnProgress event occurs as a data stream is being read or written to the client. If large amounts of
data are being read or written, this event can be used to update a progress bar or other user-interface
component to provide the user with some visual feedback on the progress of the operation.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnProgress Event

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.ProgressEventArgs.Resource.html

Provides data for the OnProgress event.

For a list of all members of this type, see HttpClient.ProgressEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpClient.ProgressEventArgs

[Visual Basic]
Public Class HttpClient.ProgressEventArgs
 Inherits EventArgs

[C#]
public class HttpClient.ProgressEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ProgressEventArgs specifies the number of bytes copied from the data stream, the total number of bytes
in the data stream and a completion percentage.

The OnProgress event occurs as a data stream is being read or written to the client. This event only occurs
when the GetData, GetFile, PostData, PostFile, PutData, PutFile or SubmitForm methods are called.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
HttpClient.ProgressEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProgressEventArgs Class

HttpClient.ProgressEventArgs overview

Public Instance Constructors

 HttpClient.ProgressEventArgs Constructor Initializes a new instance of the
HttpClient.ProgressEventArgs class.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Resource Gets a value which specifies the resource or file
name.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProgressEventArgs Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.ProgressEventArgs.Resource.html

Initializes a new instance of the HttpClient.ProgressEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpClient.ProgressEventArgs();

See Also
HttpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProgressEventArgs Constructor

The properties of the HttpClient.ProgressEventArgs class are listed below. For a complete list of
HttpClient.ProgressEventArgs class members, see the HttpClient.ProgressEventArgs Members topic.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Resource Gets a value which specifies the resource or file
name.

See Also
HttpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProgressEventArgs Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.ProgressEventArgs.Resource.html

Gets a value which specifies the number of bytes of data that has been read or written.

[Visual Basic]
Public ReadOnly Property BytesCopied As Long

[C#]
public long BytesCopied {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesCopied property specifies the number of bytes that have been read from the client and stored
in the local stream buffer, or written from the stream buffer to the client.

See Also
HttpClient.ProgressEventArgs Class | SocketTools Namespace | BytesTotal Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProgressEventArgs.BytesCopied Property

Gets a value which specifies the total number of bytes in the data stream.

[Visual Basic]
Public ReadOnly Property BytesTotal As Long

[C#]
public long BytesTotal {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesTotal property specifies the total amount of data being read from the client and stored in the
data stream, or written from the data stream to the client. If the amount of data was unknown or
unspecified at the time the method call was made, then this value will always be the same as the
BytesCopied property.

See Also
HttpClient.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProgressEventArgs.BytesTotal Property

Gets a value which specifies the percentage of data that has been read or written.

[Visual Basic]
Public ReadOnly Property Percent As Integer

[C#]
public int Percent {get;}

Property Value
An integer value which specifies a percentage.

Remarks
The Percent property specifies the percentage of data that has been transmitted, expressed as an integer
value between 0 and 100, inclusive. If the maximum size of the data stream was not specified by the caller,
this value will always be 100.

See Also
HttpClient.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | BytesTotal Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.ProgressEventArgs.Percent Property

Occurs when data is available to be read from the client.

[Visual Basic]
Public Event OnRead As EventHandler

[C#]
public event EventHandler OnRead;

Remarks
The OnRead event occurs when data is available to be read from the client. This event is level-triggered,
which means that once this event fires, it will not occur again until some data has been read from the
client. This design prevents an application from being flooded with event notifications. It is recommended
that your application read all of the available data from the server and store it in a local buffer for
processing. See the example below.

This event is only generated if the client is in non-blocking mode.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnRead Event

Occurs when the server indicates a resource has been moved.

[Visual Basic]
Public Event OnRedirect As OnRedirectEventHandler

[C#]
public event OnRedirectEventHandler OnRedirect;

Event Data
The event handler receives an argument of type HttpClient.RedirectEventArgs containing data related to
this event. The following HttpClient.RedirectEventArgs property provides information specific to this
event.

Property Description

Location Gets the location of the redirected resource.

Remarks
The OnRedirect event is generated when the server indicates that the requested resource has been
moved to a new location. This new location is typically on the same server, however it may specify another
server.

If the AutoRedirect property is set to true, then the class will automatically retrieve the resource from its
new location. If the property is set to false, then the application is responsible for handling the redirection.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnRedirect Event

Provides data for the OnRedirect event.

For a list of all members of this type, see HttpClient.RedirectEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpClient.RedirectEventArgs

[Visual Basic]
Public Class HttpClient.RedirectEventArgs
 Inherits EventArgs

[C#]
public class HttpClient.RedirectEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
RedirectEventArgs provides the location of the redirected resource.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
HttpClient.RedirectEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.RedirectEventArgs Class

HttpClient.RedirectEventArgs overview

Public Instance Constructors

 HttpClient.RedirectEventArgs Constructor Initializes a new instance of the
HttpClient.RedirectEventArgs class.

Public Instance Properties

Location Gets the location of the redirected resource.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpClient.RedirectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.RedirectEventArgs Members

Initializes a new instance of the HttpClient.RedirectEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpClient.RedirectEventArgs();

See Also
HttpClient.RedirectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.RedirectEventArgs Constructor

The properties of the HttpClient.RedirectEventArgs class are listed below. For a complete list of
HttpClient.RedirectEventArgs class members, see the HttpClient.RedirectEventArgs Members topic.

Public Instance Properties

Location Gets the location of the redirected resource.

See Also
HttpClient.RedirectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.RedirectEventArgs Properties

Gets the location of the redirected resource.

[Visual Basic]
Public ReadOnly Property Location As String

[C#]
public string Location {get;}

Property Value
A string which specifies the new location for the resource.

See Also
HttpClient.RedirectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.RedirectEventArgs.Location Property

Occurs when an asynchronous task begins execution.

[Visual Basic]
Public Event OnTaskBegin As OnTaskBeginEventHandler

[C#]
public event OnTaskBeginEventHandler OnTaskBegin;

Event Data
The event handler receives an argument of type HttpClient.TaskBeginEventArgs containing data related to
this event. The following HttpClient.TaskBeginEventArgs property provides information specific to this
event.

Property Description

TaskId Get the unique task identifier associated with the
event.

Remarks
The OnTaskBegin event occurs when a background task associated with an asynchronous file transfer
begins executing. This event can be used in conjunction with the OnTaskEnd event to monitor one or
more background tasks that are created to perform asynchronous file transfers.

This event and the related asynchronous task events are invoked from the context of the thread that is
managing the background task, and not the thread that created the class instance. If a handler is
implemented for this event, its code will be executing in a different thread than the main UI thread. You
should never attempt to update your application's user interface directly from within this event handler.
Instead, you must create a delegate and use the Invoke method to ensure that any changes to the user
interface are done within the context of the main UI thread.

Because background tasks are managed in separate threads, this has the effect of making your application
multi-threaded, even if you do not explicitly create any worker threads in your own code. If the code in
your event handler modifies a public member variable or shared object, you must ensure that access to
that object is synchronized. For example, if your event handler updates a shared instance of a Hashtable
object, you should ensure that all operations are performed through the thread-safe wrapper returned by
the Synchronized method for that class. Refer to the MSDN documentation for more information about
creating thread-safe applications.

See Also
HttpClient Class | SocketTools Namespace | OnTaskEnd Event | OnTaskRun Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnTaskBegin Event

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.OnTaskBeginEventHandler.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.OnTaskBeginEventHandler.html

Provides data for the OnTaskBegin event.

For a list of all members of this type, see HttpClient.TaskBeginEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpClient.TaskBeginEventArgs

[Visual Basic]
Public Class HttpClient.TaskBeginEventArgs
 Inherits EventArgs

[C#]
public class HttpClient.TaskBeginEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
HttpClient.TaskBeginEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskBeginEventArgs Class

Initializes a new instance of the HttpClient.TaskBeginEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpClient.TaskBeginEventArgs();

See Also
HttpClient.TaskBeginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskBeginEventArgs Constructor

HttpClient.TaskBeginEventArgs overview

Public Instance Constructors

 HttpClient.TaskBeginEventArgs Constructor Initializes a new instance of the
HttpClient.TaskBeginEventArgs class.

Public Instance Properties

TaskId Get the unique task identifier associated with the
event.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpClient.TaskBeginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskBeginEventArgs Members

The properties of the HttpClient.TaskBeginEventArgs class are listed below. For a complete list of
HttpClient.TaskBeginEventArgs class members, see the HttpClient.TaskBeginEventArgs Members topic.

Public Instance Properties

TaskId Get the unique task identifier associated with the
event.

See Also
HttpClient.TaskBeginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskBeginEventArgs Properties

Get the unique task identifier associated with the event.

[Visual Basic]
Public ReadOnly Property TaskId As Integer

[C#]
public int TaskId {get;}

Property Value
An integer value that uniquely identifies the task that invoked the event handler.

See Also
HttpClient.TaskBeginEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskBeginEventArgs.TaskId Property

Occurs when an asynchronous task completes.

[Visual Basic]
Public Event OnTaskEnd As OnTaskEndEventHandler

[C#]
public event OnTaskEndEventHandler OnTaskEnd;

Event Data
The event handler receives an argument of type HttpClient.TaskEndEventArgs containing data related to
this event. The following HttpClient.TaskEndEventArgs properties provide information specific to this
event.

Property Description

Error Get the last error code for the background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

Remarks
The OnTaskEnd event occurs when a file transfer completes and the background task has terminated.
Refer to the OnTaskBegin event for additional information about implementing a handler for this event.

See Also
HttpClient Class | SocketTools Namespace | OnTaskBegin Event | OnTaskRun Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnTaskEnd Event

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.OnTaskEndEventHandler.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.OnTaskEndEventHandler.html

Provides data for the OnTaskEnd event.

For a list of all members of this type, see HttpClient.TaskEndEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpClient.TaskEndEventArgs

[Visual Basic]
Public Class HttpClient.TaskEndEventArgs
 Inherits EventArgs

[C#]
public class HttpClient.TaskEndEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
HttpClient.TaskEndEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskEndEventArgs Class

Initializes a new instance of the HttpClient.TaskEndEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpClient.TaskEndEventArgs();

See Also
HttpClient.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskEndEventArgs Constructor

HttpClient.TaskEndEventArgs overview

Public Instance Constructors

 HttpClient.TaskEndEventArgs Constructor Initializes a new instance of the
HttpClient.TaskEndEventArgs class.

Public Instance Properties

Error Get the last error code for the background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpClient.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskEndEventArgs Members

The properties of the HttpClient.TaskEndEventArgs class are listed below. For a complete list of
HttpClient.TaskEndEventArgs class members, see the HttpClient.TaskEndEventArgs Members topic.

Public Instance Properties

Error Get the last error code for the background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

See Also
HttpClient.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskEndEventArgs Properties

Get the last error code for the background task.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public HttpClient.ErrorCode Error {get;}

Property Value
An ErrorCode enumeration that specifies the last error code set by the background task.

See Also
HttpClient.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskEndEventArgs.Error Property

Get the unique task identifier associated with the event.

[Visual Basic]
Public ReadOnly Property TaskId As Integer

[C#]
public int TaskId {get;}

Property Value
An integer value that uniquely identifies the task that invoked the event handler.

See Also
HttpClient.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskEndEventArgs.TaskId Property

Gets the amount of time that has elapsed in milliseconds.

[Visual Basic]
Public ReadOnly Property TimeElapsed As Integer

[C#]
public int TimeElapsed {get;}

Property Value
An integer value that specifies the number of milliseconds that the background task has executed.

See Also
HttpClient.TaskEndEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskEndEventArgs.TimeElapsed Property

Occurs while a background task is active.

[Visual Basic]
Public Event OnTaskRun As OnTaskRunEventHandler

[C#]
public event OnTaskRunEventHandler OnTaskRun;

Event Data
The event handler receives an argument of type HttpClient.TaskRunEventArgs containing data related to
this event. The following HttpClient.TaskRunEventArgs properties provide information specific to this
event.

Property Description

Completed Gets an estimate of the progress of the
background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

Remarks
The OnTaskRun event is generated periodically during a file transfer while the background task is active.
The rate and number of times that this event will be generated depends on the task being performed. This
event is generally analogous to the OnProgress event for file transfers that are performed in the current
working thread, however the OnTaskRun event will occur for each individual background task that is
active.

Refer to the OnTaskBegin event for additional information about implementing a handler for this event.

See Also
HttpClient Class | SocketTools Namespace | OnTaskBegin Event | OnTaskEnd Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnTaskRun Event

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.OnTaskRunEventHandler.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpClient.OnTaskRunEventHandler.html

Provides data for the OnTaskRun event.

For a list of all members of this type, see HttpClient.TaskRunEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpClient.TaskRunEventArgs

[Visual Basic]
Public Class HttpClient.TaskRunEventArgs
 Inherits EventArgs

[C#]
public class HttpClient.TaskRunEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
HttpClient.TaskRunEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskRunEventArgs Class

Initializes a new instance of the HttpClient.TaskRunEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpClient.TaskRunEventArgs();

See Also
HttpClient.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskRunEventArgs Constructor

HttpClient.TaskRunEventArgs overview

Public Instance Constructors

 HttpClient.TaskRunEventArgs Constructor Initializes a new instance of the
HttpClient.TaskRunEventArgs class.

Public Instance Properties

Completed Gets an estimate of the progress of the
background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpClient.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskRunEventArgs Members

The properties of the HttpClient.TaskRunEventArgs class are listed below. For a complete list of
HttpClient.TaskRunEventArgs class members, see the HttpClient.TaskRunEventArgs Members topic.

Public Instance Properties

Completed Gets an estimate of the progress of the
background task.

TaskId Get the unique task identifier associated with the
event.

TimeElapsed Gets the amount of time that has elapsed in
milliseconds.

See Also
HttpClient.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskRunEventArgs Properties

Gets an estimate of the progress of the background task.

[Visual Basic]
Public ReadOnly Property Completed As Integer

[C#]
public int Completed {get;}

Property Value
An integer value that returns a number between 0 and 100 inclusive that specifies the estimated
percentage of completion for the task. A value of zero indicates that the task has just begun executing,
while a value of 100 indicates that the task is at or near completion.

See Also
HttpClient.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskRunEventArgs.Completed Property

Get the unique task identifier associated with the event.

[Visual Basic]
Public ReadOnly Property TaskId As Integer

[C#]
public int TaskId {get;}

Property Value
An integer value that uniquely identifies the task that invoked the event handler.

See Also
HttpClient.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskRunEventArgs.TaskId Property

Gets the amount of time that has elapsed in milliseconds.

[Visual Basic]
Public ReadOnly Property TimeElapsed As Integer

[C#]
public int TimeElapsed {get;}

Property Value
An integer value that specifies the number of milliseconds that the background task has been executing.

See Also
HttpClient.TaskRunEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.TaskRunEventArgs.TimeElapsed Property

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnTimeout Event

Occurs when data can be written to the client.

[Visual Basic]
Public Event OnWrite As EventHandler

[C#]
public event EventHandler OnWrite;

Remarks
The OnWrite event occurs when the application can write data to the client. This event will typically occur
when a connection is first established with the remote host, and after the Write method has failed
because there was insufficient memory available in the client send buffers. In the second case, when some
of the buffered data has been successfully sent to the remote host and there is space available in the send
buffers, this event is used to signal the application that it may attempt to send more data.

This event is only generated if the client is in non-blocking mode.

See Also
HttpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnWrite Event

Specifies the cookie flags supported by the HttpClient class.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpClient.CookieFlags

[C#]
[Flags]
public enum HttpClient.CookieFlags

Remarks
The HttpClient class uses the CookieFlags enumeration to specify one or more cookie flags when a
cookie is set by the server. Multiple options may be specified.

Members

Member Name Description Value

cookieDefault This flag specifies that the cookie can be
stored on the local system and may be
provided to the server over a standard,
non-secure connection.

0

cookieSecure This flag specifies that the cookie should
only be provided to the server if the
connection is secure.

1

cookieSession This flag specifies that the cookie should
only be used for the current application
session and should not be stored
permanently on the local system.

2

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.CookieFlags Enumeration

Specifies the error codes returned by the HttpClient class.

[Visual Basic]
Public Enum HttpClient.ErrorCode

[C#]
public enum HttpClient.ErrorCode

Remarks
The HttpClient class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

HttpClient.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the methods supported by the HttpClient class when submitting form data to a server.

[Visual Basic]
Public Enum HttpClient.HttpFormMethod

[C#]
public enum HttpClient.HttpFormMethod

Remarks
The HttpClient class uses the HttpFormMethod enumeration to specify the method that should be used
when submitting form data to a server for processing.

Members

Member Name Description

methodDefault The form data should be submitted using the
default method, using the GET command.

methodGet The form data should be submitted using the GET
command. This method should be used when the
amount of form data is relatively small. If the total
amount of form data exceeds 2048 bytes, it is
recommended that the POST method be used
instead.

methodPost The form data should be submitted using the
POST command. This is the preferred method of
submitting larger amounts of form data. If the total
amount of form data exceeds 2048 bytes, it is
recommended that the POST method be used.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpFormMethod Enumeration

Specifies the encoding types supported by the HttpClient class.

[Visual Basic]
Public Enum HttpClient.HttpEncoding

[C#]
public enum HttpClient.HttpEncoding

Remarks
The HttpClient class uses the HttpEncoding enumeration to specify the type of encoding to be used
when data is submitted to the server for processing.

Members

Member Name Description

encodingNone No encoding will be applied to the content of a
request, and no Content-Type header will be
generated.

encodingURL Standard URL encoding will be applied to the
content of a request, and a Content-Type header
will be generated with the value "application/x-
www-form-urlencoded". This is the default
encoding type.

encodingXML Standard URL encoding will be applied to the
content of a request, except that spaces will not be
replaced by '+'. This encoding type is intended for
use with XML parsers that do not recognize '+' as
a space. A Content-Type header will be generated
with the value "application/x-www-form-
urlencoded".

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpEncoding Enumeration

Specifies the form types supported by the HttpClient class when submitting form data to a server.

[Visual Basic]
Public Enum HttpClient.HttpFormType

[C#]
public enum HttpClient.HttpFormType

Remarks
The HttpClient class uses the HttpFormType enumeration to specify how form data that should be
submitted to a server for processing.

Members

Member Name Description

formDefault The form data should be submitted using the
default encoding method.

formEncoded The form data should be submitted as URL
encoded values. This is typically used when the
GET method is used to submit the data to the
server.

formMultipart The form data should be submitted as multipart
form data. This is typically used when the POST
method is used to submit a file to the server. Note
that the script must understand how to process
multipart form data if this form type is specified.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpFormType Enumeration

Specifies the options that the HttpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpClient.HttpOptions

[C#]
[Flags]
public enum HttpClient.HttpOptions

Remarks
The HttpClient class uses the HttpOptions enumeration to specify one or more options to be used when
establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionNoCache This instructs the server to not return a
cached copy of the resource. When
connected to an HTTP 1.0 or earlier
server, this directive may be ignored.

1

optionKeepAlive This instructs the server to maintain a
persistent connection between requests.
This can improve performance because
it eliminates the need to establish a
separate connection for each resource
that is requested. If the server does not
support the keep-alive option, the client
will automatically reconnect when each
resource is requested. Although it will
not provide any performance benefits,
this allows the option to be used with all
servers.

2

optionRedirect This option specifies the client should
automatically handle resource
redirection. If the server indicates that
the requested resource has moved to a
new location, the client will close the
current connection and request the
resource from the new location. Note
that it is possible that the redirected
resource will be located on a different
server.

4

optionProxy This option specifies the client should
use the default proxy configuration for

8

HttpClient.HttpOptions Enumeration

the local system. If the system is
configured to use a proxy server, then
the connection will be automatically
established through that proxy;
otherwise, a direct connection to the
server is established. The local proxy
configuration can be changed using the
system Control Panel.

optionErrorData This option specifies the client should
return the content of an error response
from the server, rather than returning
an error code. Note that this option will
disable automatic resource redirection,
and should not be used with
optionRedirect.

16

optionTunnel This option specifies that a tunneled
TCP connection and/or port-forwarding
is being used to establish the
connection to the server. This changes
the behavior of the client with regards
to internal checks of the destination IP
address and remote port number,
default capability selection and how the
connection is established. This option
also forces all connections to be
outbound and enables the firewall
compatibility features in the client.

1024

optionTrustedSite This option specifies the server is
trusted. The server certificate will not be
validated and the connection will always
be permitted. This option only affects
connections using either the SSL or TLS
protocols.

2048

optionSecure This option specifies the client should
attempt to establish a secure
connection with the server. Note that
the server must support secure
connections using either the SSL or TLS
protocol.

4096

optionSecureFallback This option specifies the client should
permit the use of less secure cipher
suites for compatibility with legacy
servers. If this option is specified, the
client will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

32768

optionPreferIPv6 This option specifies the client should
prefer the use of IPv6 if the server
hostname can be resolved to both an

262144

IPv6 and IPv4 address. This option is
ignored if the local system does not
have IPv6 enabled, or when the
hostname can only be resolved to an
IPv4 address. If the server hostname can
only be resolved to an IPv6 address, the
client will attempt to establish a
connection using IPv6 regardless if this
option has been specified.

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

optionHiResTimer This option specifies that elapsed time
values should be returned in
milliseconds rather than seconds. This
option is intended to provide greater
accuracy with smaller data transfers
over a high speed network connection.

1048576

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies options that the HttpClient class supports when posting data to a server.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpClient.HttpPostOptions

[C#]
[Flags]
public enum HttpClient.HttpPostOptions

Remarks
The HttpClient class uses the HttpPostOptions enumeration to specify one or more options to be used
when posting data to the server. Multiple options may be specified if necessary.

Members

Member Name Description Value

postDefault The default post mode with appropriate
encoding used for the type of data
which is being submitted to the server.
The response from the server will be
returned in the result buffer without any
end-of-line text conversion.

0

postConvert If the data being returned from the
server is textual, it is automatically
converted so that the end of line
character sequence is compatible with
the Windows platform. Individual
carriage return or linefeed characters
are converted to carriage
return/linefeed character sequences.
Note that this option does not have any
effect on the data being submitted to
the server, only on the data returned by
the server.

1

postMultipart The contents of the buffer being sent to
the server consists of multipart form
data and will be sent as-is without any
encoding.

2

postErrorData This option causes the client to accept
error data from the server if the request
fails. If this option is specified, an error
response from the server will not cause
the method to fail. Instead, the response
is returned to the client and the method
will succeed. If this option is used, your
application should check the value of

4

HttpClient.HttpPostOptions Enumeration

the ResultCode property to obtain the
actual HTTP status code returned by the
server. This will enable you to determine
if the operation was successful.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the proxy server types supported by the HttpClient class.

[Visual Basic]
Public Enum HttpClient.HttpProxyType

[C#]
public enum HttpClient.HttpProxyType

Remarks
The HttpClient class uses the HttpProxyType enumeration to specify the type of proxy server the client is
connecting to.

Members

Member Name Description

proxyNone A direct connection will be established with the
remote host. When this value is specified the
proxy-related properties are ignored.

proxyStandard A standard connection is established through the
specified proxy server, and all resource requests
will be specified using a complete URL. This proxy
type should be used with standard connections.

proxySecure A secure connection is established through the
specified proxy server. This proxy type should only
be used with secure connections and the Secure
property should also be set to a value of true.

proxyWindows The configuration options for the current system
should be used. These options are the same proxy
server settings confgured in Windows.

proxyDefault The default proxy type. This value is the same as
the proxyWindows proxy type.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpProxyType Enumeration

Specifies the status values that may be returned by the HttpClient class.

[Visual Basic]
Public Enum HttpClient.HttpStatus

[C#]
public enum HttpClient.HttpStatus

Remarks
The HttpClient class uses the HttpStatus enumeration to identify the current status of the client.

Members

Member Name Description

statusUnused A client session has not been created. Attempts to
perform any network operations, such as sending
or receiving data, will generate an error.

statusIdle A client session has been created, but is not
currently in use. A blocking socket operation can
be executed at this point.

statusConnect The client is in the process of establishing a
connection with a remote host.

statusRead The client is in the process of receiving data from a
remote host.

statusWrite The client is in the process of sending data to a
remote host.

statusDisconnect The client session is being closed and subsequent
attempts to access the client will result in an error.

statusGetData The client is downloading data from the server to
the local system.

statusPutData The client is uploading data from the local system
to the server.

statusPostData The client is posting form data to the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpStatus Enumeration

Specifies the options that the HttpClient class supports when submitting form data to a server.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpClient.HttpSubmitOptions

[C#]
[Flags]
public enum HttpClient.HttpSubmitOptions

Remarks
The HttpClient class uses the HttpSubmitOptions enumeration to specify one or more options to be
used when submitting form data to a server for processing. Multiple options may be specified if necessary.

Members

Member Name Description Value

submitDefault The default post mode. The contents of
the buffer are encoded and sent as
standard form data. The response from
the server will be returned in the result
buffer without any end-of-line text
conversion.

0

submitConvert If the data being returned from the
server is textual, it is automatically
converted so that the end of line
character sequence is compatible with
the Windows platform. Individual
carriage return or linefeed characters
are converted to carriage
return/linefeed character sequences.
Note that this option does not have any
effect on the form data being submitted
to the server, only on the data returned
by the server.

1

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.HttpSubmitOptions Enumeration

Specifies the data transfer options that the HttpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpClient.HttpTransferOptions

[C#]
[Flags]
public enum HttpClient.HttpTransferOptions

Remarks
The HttpClient class uses the HttpTransferOptions enumeration to specify one or more options to be
used when transferring data between the local system and the server. Multiple options may be specified if
necessary.

Members

Member Name Description Value

transferDefault The default transfer mode. The resource
data is copied to the local system
exactly as it is stored on the server.

0

transferConvert If the resource being downloaded from
the server is textual, the data is
automatically converted so that the end
of line character sequence is compatible
with the Windows platform. Individual
carriage return or linefeed characters
are converted to carriage
return/linefeed character sequences.

1

transferCompress This option informs the server that the
client is willing to accept compressed
data. If the server supports compression
for the specified resource, then the data
will be automatically expanded before
being returned to the caller. This option
is selected by default if compression has
been enabled by setting the
Compression property to True.

2

transferErrorData This option causes the client to accept
error data from the server if the request
fails. If this option is specified, an error
response from the server will not cause
the method to fail. Instead, the response
is returned to the client and the method
will succeed. If this option is used, your
application should check the value of
the ResultCode property to obtain the

4

HttpClient.HttpTransferOptions Enumeration

actual HTTP status code returned by the
server. This will enable you to determine
if the operation was successful.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the protocol versions supported by the HttpClient class.

[Visual Basic]
Public Enum HttpClient.HttpVersion

[C#]
public enum HttpClient.HttpVersion

Remarks
The HttpClient class uses the HttpVersion enumeration to specify the protocol version to be used when
establishing a connection to the server.

Members

Member Name Description

version09 The client should use the original one-line
protocol which includes no version number and no
request header block. This version has been
deprecated and should only be used with legacy
servers which do not support the protocol
standard. This version of the protocol does not
support virtual hosts and is not supported by most
modern web services.

version10 The client should use the HTTP/1.0 protocol
standard originally defined in RFC 1945. This
version of the protocol supports the use of request
header blocks, however it does not support
persistent connections or chunked data and has
limited cache control mechanisms.

version11 The client should use the HTTP/1.1 protocol
standard defined in RFC 2616 and RFC 7230. This
is the most widely used version of the protocol
and is the default for client connections. It is
recommended most applications use this version.

version20 The client should use the HTTP/2 protocol
standard defined in RFC 7540. This protocol
version is a significant change from previous
versions and can provide improved performance
with header compression and optimizing how
requests are serviced. If the client or server does
not support HTTP/2, the client will automatically
attempt to use an earlier version of the protocol.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

HttpClient.HttpVersion Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the encryption algorithms that the HttpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpClient.SecureCipherAlgorithm

[C#]
[Flags]
public enum HttpClient.SecureCipherAlgorithm

Remarks
The HttpClient class uses the SecureCipherAlgorithm enumeration to identify which encryption
algorithm was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

cipherNone No cipher has been selected. A secure
connection has not been established
with the remote host.

0

cipherRC2 The RC2 block cipher was selected. This
is a variable key length cipher which
supports keys between 40- and 128-bits
in length, in 8-bit increments.

1

cipherRC4 The RC4 stream cipher was selected.
This is a variable key length cipher
which supports keys between 40- and
128-bits in length, in 8-bit increments.

2

cipherRC5 The RC5 block cipher was selected. This
is a variable key length cipher which
supports keys up to 2040 bits, in 8-bit
increments.

4

cipherDES The DES (Data Encryption Standard)
block cipher was selected. This is a fixed
key length cipher using 56-bit keys.

8

cipherDES3 The Triple DES block cipher was
selected. This cipher encrypts the data
three times using different keys,
effectively using a 168-bit key length.

16

cipherDESX A variant of the DES block cipher which
XORs an extra 64-bits of the key before
and after the plaintext has been
encrypted, increasing the key size to
184 bits.

32

cipherAES The Advanced Encryption Standard 64

HttpClient.SecureCipherAlgorithm Enumeration

cipher (also known as the Rijndael
cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits.
This cipher is supported on Windows XP
SP3 SP3 and later versions of the
operating system.

cipherSkipjack The Skipjack block cipher was selected.
This is a fixed key length cipher, using
80-bit keys.

128

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the hash algorithms that the HttpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpClient.SecureHashAlgorithm

[C#]
[Flags]
public enum HttpClient.SecureHashAlgorithm

Remarks
The HttpClient class uses the SecureHashAlgorithm enumeration to identify the message digest (hash)
algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

hashNone No hash algorithm has been selected.
This is not a secure connection with the
server.

0

hashMD5 The MD5 algorithm was selected. This
algorithm produces a 128-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

1

hashSHA The SHA-1 algorithm was selected. This
algorithm produces a 160-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

2

hashSHA256 The SHA-256 algorithm was selected.
This algorithm produces a 256-bit
message digest.

4

hashSHA384 The SHA-384 algorithm was selected.
This algorithm produces a 384-bit
message digest.

8

hashSHA512 The SHA-512 algorithm was selected.
This algorithm produces a 512-bit
message digest.

16

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also

HttpClient.SecureHashAlgorithm Enumeration

SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the key exchange algorithms that the HttpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpClient.SecureKeyAlgorithm

[C#]
[Flags]
public enum HttpClient.SecureKeyAlgorithm

Remarks
The HttpClient class uses the SecureKeyAlgorithm enumeration to identify the key exchange algorithm
that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

keyExchangeNone No key exchange algorithm has been
selected. This is not a secure connection
with the server.

0

keyExchangeRSA The RSA public key exchange algorithm
has been selected.

1

keyExchangeKEA The KEA public key exchange algorithm
has been selected. This is an improved
version of the Diffie-Hellman public key
algorithm.

2

keyExchangeDH The Diffie-Hellman public key exchange
algorithm has been selected.

4

keyExchangeECDH The Elliptic Curve Diffie-Hellman key
exchange algorithm was selected. This is
a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography.
This key exchange algorithm is only
supported on Windows XP SP3 SP3 and
later versions of the operating system.

8

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.SecureKeyAlgorithm Enumeration

Specifies the security certificate status values that may be returned by the HttpClient class.

[Visual Basic]
Public Enum HttpClient.SecurityCertificate

[C#]
public enum HttpClient.SecurityCertificate

Remarks
The HttpClient class uses the SecurityCertificate enumeration to identify the current status of the
certificate that was provided by the remote host when a secure connection was established.

Members

Member Name Description

certificateNone No certificate information is available. A secure
connection was not established with the server.

certificateValid The certificate is valid.

certificateNoMatch The certificate is valid, however the domain name
specified in the certificate does not match the
domain name of the remote host. The application
can examine the CertificateSubject property to
determine the site the certificate was issued to.

certificateExpired The certificate has expired and is no longer valid.
The application can examine the
CertificateExpires property to determine when
the certificate expired.

certificateRevoked The certificate has been revoked and is no longer
valid. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateUntrusted The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the
local host. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateInvalid The certificate is invalid. This typically indicates that
the internal structure of the certificate is damaged.
It is recommended that the application
immediately terminate the connection if this status
is returned.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

HttpClient.SecurityCertificate Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the security protocols that the HttpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpClient.SecurityProtocols

[C#]
[Flags]
public enum HttpClient.SecurityProtocols

Remarks
The HttpClient class uses the SecurityProtocols enumeration to specify one or more security protocols to
be used when establishing a connection with a remote host. Multiple protocols may be specified if
necessary and the actual protocol used will be negotiated with the remote host. It is recommended that
most applications use protocolDefault when creating a secure connection.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

HttpClient.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolDefault The default selection of security
protocols will be used when establishing
a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

16

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the HttpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpClient.TraceOptions

[C#]
[Flags]
public enum HttpClient.TraceOptions

Remarks
The HttpClient class uses the TraceOptions enumeration to specify what kind of debugging information is
written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

HttpClient.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnCommand event.

[Visual Basic]
Public Delegate Sub HttpClient.OnCommandEventHandler(_
 ByVal sender As Object, _
 ByVal e As CommandEventArgs _
)

[C#]
public delegate void HttpClient.OnCommandEventHandler(

 object sender,
 CommandEventArgs e
);

Parameters
sender

The source of the event.

e
A CommandEventArgs object that contains the event data.

Remarks
When you create an OnCommandEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnCommandEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnCommandEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub HttpClient.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void HttpClient.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnErrorEventHandler Delegate

Represents the method that will handle the OnProgress event.

[Visual Basic]
Public Delegate Sub HttpClient.OnProgressEventHandler(_
 ByVal sender As Object, _
 ByVal e As ProgressEventArgs _
)

[C#]
public delegate void HttpClient.OnProgressEventHandler(

 object sender,
 ProgressEventArgs e
);

Parameters
sender

The source of the event.

e
A ProgressEventArgs that contains the event data.

Remarks
When you create an OnProgressEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnProgressEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnProgressEventHandler Delegate

Represents the method that will handle the OnRedirect event.

[Visual Basic]
Public Delegate Sub HttpClient.OnRedirectEventHandler(_
 ByVal sender As Object, _
 ByVal e As RedirectEventArgs _
)

[C#]
public delegate void HttpClient.OnRedirectEventHandler(

 object sender,
 RedirectEventArgs e
);

Parameters
sender

The source of the event.

e
A RedirectEventArgs that contains the event data.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.OnRedirectEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see HttpClient.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.HttpClient.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class HttpClient.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class HttpClient.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the HttpClient class.

Example

<Assembly: SocketTools.HttpClient.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.HttpClient.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
HttpClient.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.RuntimeLicenseAttribute Class

HttpClient.RuntimeLicenseAttribute overview

Public Instance Constructors

 HttpClient.RuntimeLicenseAttribute Constructor Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public HttpClient.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the HttpClient class.

See Also
HttpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.RuntimeLicenseAttribute Constructor

The properties of the HttpClient.RuntimeLicenseAttribute class are listed below. For a complete list of
HttpClient.RuntimeLicenseAttribute class members, see the HttpClient.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
HttpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
HttpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClient.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see HttpClientException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.HttpClientException

[Visual Basic]
Public Class HttpClientException
 Inherits ApplicationException

[C#]
public class HttpClientException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A HttpClientException is thrown by the HttpClient class when an error occurs.

The default constructor for the HttpClientException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpClient (in SocketTools.HttpClient.dll)

See Also
HttpClientException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClientException Class

HttpClientException overview

Public Instance Constructors

 HttpClientException Overloaded. Initializes a new instance of the
HttpClientException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

HttpClientException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the HttpClientException class with the last network error code.

Overload List
Initializes a new instance of the HttpClientException class with the last network error code.

public HttpClientException();

Initializes a new instance of the HttpClientException class with a specified error number.

public HttpClientException(int);

Initializes a new instance of the HttpClientException class with a specified error message.

public HttpClientException(string);

Initializes a new instance of the HttpClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

public HttpClientException(string,Exception);

See Also
HttpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClientException Constructor

Initializes a new instance of the HttpClientException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public HttpClientException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the HttpClient.ErrorCode enumeration.

See Also
HttpClientException Class | SocketTools Namespace | HttpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClientException Constructor ()

Initializes a new instance of the HttpClientException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public HttpClientException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
HttpClientException Class | SocketTools Namespace | HttpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClientException Constructor (String)

Initializes a new instance of the HttpClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public HttpClientException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
HttpClientException Class | SocketTools Namespace | HttpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClientException Constructor (String, Exception)

Initializes a new instance of the HttpClientException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public HttpClientException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the HttpClient.ErrorCode enumeration.

See Also
HttpClientException Class | SocketTools Namespace | HttpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClientException Constructor (Int32)

The properties of the HttpClientException class are listed below. For a complete list of
HttpClientException class members, see the HttpClientException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
HttpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClientException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public HttpClient.ErrorCode ErrorCode {get;}

Property Value
Returns a HttpClient.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the HttpClientException class sets the error code to the last network error that
occurred. For more information about the errors that may occur, refer to the HttpClient.ErrorCode
enumeration.

See Also
HttpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClientException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
HttpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClientException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
HttpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClientException.Number Property

The methods of the HttpClientException class are listed below. For a complete list of
HttpClientException class members, see the HttpClientException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClientException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
HttpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpClientException.ToString Method

Implements a server that enables the application to send and receive files using the Hypertext Transfer
Protocol.

For a list of all members of this type, see HttpServer Members.

System.Object
 SocketTools.HttpServer

[Visual Basic]
Public Class HttpServer
 Implements IDisposable

[C#]
public class HttpServer : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The SocketTools.HttpServer class provides an interface for implementing an embedded, lightweight
server that can be used to provide access to documents and other resources using the Hypertext Transfer
Protocol. The server can accept connections from any standard web browser, third-party applications or
programs developed using the SocketTools.HttpClient class.

The application specifies an initial server configuration and then responds to events that are generated
when the client sends a request to the server. An application may implement only minimal handlers for
most events, in which case the default actions are performed for most standard HTTP commands.
However, an application may also use the event mechanism to filter specific commands or to extend the
protocol by providing custom implementations of existing commands or add entirely new commands.

The server includes support for CGI scripting, virtual hosting, client authentication and the creation of
virtual directories and files. The server also supports secure connections using TLS 1.2. Secure connections
require that a valid server certificate be installed on the system.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
HttpServer Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer Class

HttpServer overview

Public Static (Shared) Fields

defaultHost Defines the ID used to specify the default virtual
host.

invalidHost Defines an invalid virtual host identifier.

Public Static (Shared) Methods

ErrorText Returns the description of an error code.

Public Instance Constructors

 HttpServer Constructor Initializes a new instance of the HttpServer class.

Public Instance Fields

AdapterAddress Returns the IP address associated with the
specified network adapter.

Public Instance Properties

AdapterCount Get the number of available local and remote
network adapters.

CacheTime Gets and sets a value that specifies the current
cache time period.

CertificateName Gets and sets a value that specifies the name of
the server certificate.

CertificatePassword Gets and sets the password associated with the
server certificate.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateUser Gets and sets the user that owns the server
certificate.

ClientAccess Gets and sets the access rights that have been
granted to the client session.

ClientAddress Return the Internet address of the current client
connection.

ClientCount Return the number of active client sessions
connected to the server.

ClientDirectory Return the current working directory for the active
client session.

ClientHost Return the host name that the client used to
establish the connection.

ClientId Gets the unique client identifier for the current

HttpServer Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.defaultHost.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.invalidHost.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ErrorText.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.CacheTime.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.CertificateUser.html

client session.

ClientIdle Gets and sets the maximum number of seconds a
client can be idle before the server terminates the
session.

ClientPort Gets a value that specifies the port number used
by the current client session.

ClientThread Gets the thread ID for the current client session.

ClientUser Return the user name associated with the specified
client session.

CommandLine Return the complete command line issued by the
client.

Directory Get and set the full path to the root directory
assigned to the server.

ExecTime Get and set maximum number of seconds that the
server will permit an external script handler to
execute.

ExternalAddress Return the external IP address for the local system.

HiddenFiles Determine if the server should permit access to
hidden files.

Identity Gets and sets a string that identifies the server to
the client.

IdleTime Gets and sets the maximum number of seconds a
client can be idle before the server terminates the
session.

IsActive Gets a value which indicates if the server is active.

IsAuthenticated Determine if the active client session has been
authenticated.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsListening Gets a value which indicates if the server is
listening for client connections.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalPath Return the full path to the local file or directory
that is the target of the current command.

LocalUser Determines if the server should perform user
authentication using the Windows local account
database.

LockFiles Determines if files should be exclusively locked
when a client attempts to upload or download a
file.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.CommandLine.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ExecTime.html

LogFile Gets and sets the name of the server log file.

LogFormat Gets and sets the format used when updating the
server log file.

LogLevel Gets and sets the level of detail included in the
server log file.

MaxClients Gets and sets the maximum number of clients that
can connect to the server.

MemoryUsage Gets the amount of unmanaged memory currently
allocated by the server.

MultiUser Determine if the server should be started in multi-
user mode.

NoIndex Determine if the server should search for a default
index page.

Options Gets and sets the options that may be specified for
the server instance.

Priority Gets and sets a value which specifies the server
priority.

ReadOnly Determine if the server should prevent clients from
uploading files.

Restricted Determine if the server should be started in
restricted mode, limiting client access to the server.

Secure Determine if the server should accept secure client
connections.

ServerAddress Gets and sets the address that will be used by the
server to listen for connections.

ServerHandle Gets the handle to the server created to listen for
client connections.

ServerName Gets a value which specifies the host name for the
local system.

ServerPort Gets and sets the port number that will be used by
the server to listen for connections.

ServerThread Gets the thread ID for the current server.

ServerUuid Gets and sets the Universally Unique Identifier
(UUID) associated with the server.

StackSize Gets and sets the size of the stack allocated for
threads created by the server.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ServerHandle.html

the network function tracing logfile.

TraceFlags Gets and sets a value which specifies the network
function tracing flags.

Version Gets a value which returns the current version of
the HttpServer class library.

VirtualPath Return the virtual path to the local file or directory
that is the target of the current command.

Public Instance Methods

AddHost Overloaded. Add a new virtual host to the server
virtual host table.

AddPath Overloaded. Add a new virtual path for the
specified host.

AddUser Overloaded. Add a new virtual user to the
specified host.

Authenticate Overloaded. Authenticate the client and assign
access rights for the session.

CheckPath Overloaded. Determine if the client has permission
to access the specified virtual path.

ClearHeaders Overloaded. Delete all of the response headers for
the specified client session.

DeleteHost Overloaded. Delete a virtual host associated with
the specified server.

DeletePath Overloaded. Delete a virtual path from the
specified virtual host.

DeleteUser Overloaded. Remove a virtual user from the
server.

Disconnect Overloaded. Disconnect the specified client session
from the server.

Dispose Overloaded. Releases all resources used by
HttpServer.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetAllHeaders Overloaded. Return all of the request header
values in the specified string buffer.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeader Overloaded. Return the value of a request header
for the specified client session.

GetType (inherited from Object) Gets the Type of the current instance.

GetVariable Overloaded. Return the value of a CGI
environment variable for the specified client.

Initialize Overloaded. Initialize an instance of the HttpServer
class.

ReceiveRequest Overloaded. Receive the request that was sent by
the client to the server.

RedirectRequest Overloaded. Redirect the request from the client
to another URL.

RegisterHandler Overloaded. Register a CGI program for use and
associate it with a file name extension.

RegisterProgram Overloaded. Register a CGI program for use and
associate it with a virtual path on the server.

RequireAuthentication Overloaded. Send a response to the client
indicating that authentication is required.

Reset Reset the internal state of the object, resetting all
properties to their default values.

ResolvePath Overloaded. Resolve a path to its full virtual or
local file name.

Restart Restarts the server and terminates all active client
connections.

Resume Resume accepting new client connections.

SendError Overloaded. Send an error result code and
message to the client in response to a command.

SendResponse Overloaded. Send a result code and message to
the client in response to a command.

SetHeader Overloaded. Create or change the value of a
response header for the client session.

SetVariable Overloaded. Create or change the value of a CGI
environment variable for the specified client.

Start Overloaded. Start listening for client connections
on the specified IP address and port number.

Stop Stop listening for new client connections and
terminate all active clients already connected to
the server.

Suspend Suspend accepting new client connections.

Throttle Overloaded. Limit the maximum number of client
connections, connections per IP address and
connection rate.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the server.

Public Instance Events

OnAuthenticate Occurs when the client has requested

authentication with the specified username and
password.

OnCommand Occurs when a client has issued a command to the
server.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnDownload Occurs when a connection is established with the
remote host.

OnError Occurs when an network operation fails.

OnExecute Occurs when the client has executed an external
script handler on the server.

OnIdle Occurs when the there are no clients connected to
the server.

OnResult Occurs when the command issued by the client
has been processed by the server.

OnStart Occurs when the server starts accepting
connections.

OnStop Occurs when the server stops accepting
connections.

OnTimeout Occurs when the client has exceeded the
maximum allowed idle time.

OnUpload Occurs when the client has successfully uploaded a
file to the server.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the HttpServer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the HttpServer class.

[Visual Basic]
Public Sub New()

[C#]
public HttpServer();

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer Constructor

The fields of the HttpServer class are listed below. For a complete list of HttpServer class members, see
the HttpServer Members topic.

Public Static (Shared) Fields

defaultHost Defines the ID used to specify the default virtual
host.

invalidHost Defines an invalid virtual host identifier.

Public Instance Fields

AdapterAddress Returns the IP address associated with the
specified network adapter.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer Fields

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.defaultHost.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.invalidHost.html

Returns the IP address associated with the specified network adapter.

[Visual Basic]
Public ReadOnly AdapterAddress As AdapterAddressArray

[C#]
public readonly AdapterAddressArray AdapterAddress;

Remarks
The AdapterAddress array returns the IP addresses that are associated with the local network or remote
dial-up network adapters configured on the system. The AdapterCount property can be used to
determine the number of adapters that are available.

Multihomed systems with more than one local network adapter, or a combination of local and dial-up
adapters will not be listed in a specific order. An application should not make the assumption that the first
address returned by AdapterAddress always refers to a local network adapter.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress will return an
empty string. This indicates that the system does not have a physical network adapter with an assigned IP
address, and there are no dial-up networking connections currently active. If a dial-up networking
connection is established at some later point, the AdapterCount property will change to 1, and the
AdapterAddress property will return the IP address allocated for that connection.

See Also
HttpServer Class | SocketTools Namespace | AdapterAddressArray Class | AdapterCount Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AdapterAddress Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.AdapterAddressArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.AdapterAddressArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.AdapterAddressArray.html

The properties of the HttpServer class are listed below. For a complete list of HttpServer class members,
see the HttpServer Members topic.

Public Instance Properties

AdapterCount Get the number of available local and remote
network adapters.

CacheTime Gets and sets a value that specifies the current
cache time period.

CertificateName Gets and sets a value that specifies the name of
the server certificate.

CertificatePassword Gets and sets the password associated with the
server certificate.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateUser Gets and sets the user that owns the server
certificate.

ClientAccess Gets and sets the access rights that have been
granted to the client session.

ClientAddress Return the Internet address of the current client
connection.

ClientCount Return the number of active client sessions
connected to the server.

ClientDirectory Return the current working directory for the active
client session.

ClientHost Return the host name that the client used to
establish the connection.

ClientId Gets the unique client identifier for the current
client session.

ClientIdle Gets and sets the maximum number of seconds a
client can be idle before the server terminates the
session.

ClientPort Gets a value that specifies the port number used
by the current client session.

ClientThread Gets the thread ID for the current client session.

ClientUser Return the user name associated with the specified
client session.

CommandLine Return the complete command line issued by the
client.

Directory Get and set the full path to the root directory
assigned to the server.

HttpServer Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.CacheTime.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.CertificateUser.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.CommandLine.html

ExecTime Get and set maximum number of seconds that the
server will permit an external script handler to
execute.

ExternalAddress Return the external IP address for the local system.

HiddenFiles Determine if the server should permit access to
hidden files.

Identity Gets and sets a string that identifies the server to
the client.

IdleTime Gets and sets the maximum number of seconds a
client can be idle before the server terminates the
session.

IsActive Gets a value which indicates if the server is active.

IsAuthenticated Determine if the active client session has been
authenticated.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsListening Gets a value which indicates if the server is
listening for client connections.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalPath Return the full path to the local file or directory
that is the target of the current command.

LocalUser Determines if the server should perform user
authentication using the Windows local account
database.

LockFiles Determines if files should be exclusively locked
when a client attempts to upload or download a
file.

LogFile Gets and sets the name of the server log file.

LogFormat Gets and sets the format used when updating the
server log file.

LogLevel Gets and sets the level of detail included in the
server log file.

MaxClients Gets and sets the maximum number of clients that
can connect to the server.

MemoryUsage Gets the amount of unmanaged memory currently
allocated by the server.

MultiUser Determine if the server should be started in multi-
user mode.

NoIndex Determine if the server should search for a default
index page.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ExecTime.html

Options Gets and sets the options that may be specified for
the server instance.

Priority Gets and sets a value which specifies the server
priority.

ReadOnly Determine if the server should prevent clients from
uploading files.

Restricted Determine if the server should be started in
restricted mode, limiting client access to the server.

Secure Determine if the server should accept secure client
connections.

ServerAddress Gets and sets the address that will be used by the
server to listen for connections.

ServerHandle Gets the handle to the server created to listen for
client connections.

ServerName Gets a value which specifies the host name for the
local system.

ServerPort Gets and sets the port number that will be used by
the server to listen for connections.

ServerThread Gets the thread ID for the current server.

ServerUuid Gets and sets the Universally Unique Identifier
(UUID) associated with the server.

StackSize Gets and sets the size of the stack allocated for
threads created by the server.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the network function tracing logfile.

TraceFlags Gets and sets a value which specifies the network
function tracing flags.

Version Gets a value which returns the current version of
the HttpServer class library.

VirtualPath Return the virtual path to the local file or directory
that is the target of the current command.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ServerHandle.html

Get the number of available local and remote network adapters.

[Visual Basic]
Public ReadOnly Property AdapterCount As Integer

[C#]
public int AdapterCount {get;}

Property Value
Returns the number of available local and remote network adapters.

Remarks
The AdapterCount property returns the number of local and remote dial-up networking adapters
available on the local system. This value can be used in conjunction with the AdapterAddress array to
enumerate the IP addresses assigned to the various network adapters.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress will return an
empty string. This indicates that the system does not have a physical network adapter with an assigned IP
address, and there are no dial-up networking connections currently active. If a dial-up networking
connection is established at some later point, the AdapterCount property will change to 1, and the
AdapterAddress property will return the IP address allocated for that connection.

See Also
HttpServer Class | SocketTools Namespace | AdapterAddress Field

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AdapterCount Property

Gets and sets a value that specifies the name of the server certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the server certificate name.

Remarks
The CertificateName property sets the common name or friendly name of the certificate that should be
used when starting a secure server. If the Secure property is set to True, this property must be specify a
valid certificate name. The certificate must have a private key associated with it, otherwise client
connections will fail because the class will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
HttpServer Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CertificateName Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when security is enabled for the server. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the server certificate will be installed in the user's personal certificate store, and therefore it
is not necessary to set this property value because that is the default location that will be used to search
for the certificate. This property is only used if the CertificateName property is also set to a valid
certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the server certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private key in

HttpServer.CertificateStore Property

PKCS #12 format. If the file is protected by a password, the CertificatePassword property must also be
set to specify the password.

See Also
HttpServer Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.CertificatePassword.html

Gets and sets the access rights that have been granted to the client session.

[Visual Basic]
Public Property ClientAccess As UserAccess

[C#]
public HttpServer.UserAccess ClientAccess {get; set;}

Property Value
A UserAccess enumeration that specifies on or more user access permissions.

Remarks
The ClientAccess property is used to determine all of the access permissions that are currently granted to
an authenticated client session and optionally change those permissions. For a list of user access rights
that can be granted to the client, see the UserAccess enumeration.

When modifying the value of this property, it is recommended that you use bitwise OR and AND
operands to set and clear specific bitflags. The exception is when using the httpAccessDefault
permission. If you wish to reset the client session to use the default permissions based on the server
configuration and client authentication, then you should assign this value directly to the ClientAccess
property.

This property should only be accessed within an event handler such as OnCommand because its value is
specific to the client session that raised the event. This property will always return a value of zero outside
of an event handler, and an exception will be raised if you attempt to modify this property outside of an
event handler.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClientAccess Property

Return the Internet address of the current client connection.

[Visual Basic]
Public ReadOnly Property ClientAddress As String

[C#]
public string ClientAddress {get;}

Property Value
A string that specifies the client Internet Protocol address.

Remarks
The ClientAddress property returns the address of the current client session which has connected to the
server. This property should only be accessed within an event handler such as OnConnect because its
value is specific to the client session that raised the event. This property will always return an empty string
when accessed outside of an event handler.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClientAddress Property

Return the number of active client sessions connected to the server.

[Visual Basic]
Public ReadOnly Property ClientCount As Integer

[C#]
public int ClientCount {get;}

Property Value
An integer value that specifies the number of active client sessions.

Remarks
The ClientCount read-only property returns the number of active client sessions that have been
established with the server. The value includes both authenticated and unauthenticated client sessions.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClientCount Property

Return the current working directory for the active client session.

[Visual Basic]
Public ReadOnly Property ClientDirectory As String

[C#]
public string ClientDirectory {get;}

Property Value
A string that specifies the full path to a local directory on the server.

Remarks
The ClientDirectory property returns the current working directory for the active client session. Initially
this value will be the absolute path on the local system that maps to an authenticated client's home
directory. The client can change its current working directory using the CWD command. The ClientHome
property will return the home directory that has been assigned to the client.

It is important to note that the current working directory for client sessions is virtual, and does not reflect
the current working directory for the server process. This property should only be accessed within an
event handler after the client session has been authenticated. Unauthenticated clients are not assigned a
current working directory. This property will always return an empty string when accessed outside of an
event handler.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClientDirectory Property

Return the host name that the client used to establish the connection.

[Visual Basic]
Public ReadOnly Property ClientHost As String

[C#]
public string ClientHost {get;}

Property Value
A string that specifies the host name used by the client to connect to the server.

Remarks
The ClientHost property returns the host name that the client used to establish the connection. If the
client does not explicitly specify the host name, then this property will return the same host name that was
assigned to the server when it started.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClientHost Property

Gets the unique client identifier for the current client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which uniquely identifies the client session.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This value can be
used by the application to identify that client session, and is different than the socket handle allocated for
the client. While it is possible for a client socket handle to be reused by the operating system, client IDs are
unique throughout the life of the server session and are never duplicated.

It is important to note that the actual value of the client ID should be considered opaque. It is only
guaranteed that the value will be greater than zero, and that it will be unique to the client session.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClientId Property

Gets and sets the maximum number of seconds a client can be idle before the server terminates the
session.

[Visual Basic]
Public Property ClientIdle As Integer

[C#]
public int ClientIdle {get; set;}

Property Value
An integer value that specifies the idle timeout period in seconds.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClientIdle Property

Gets a value that specifies the port number used by the current client session.

[Visual Basic]
Public ReadOnly Property ClientPort As Integer

[C#]
public int ClientPort {get;}

Property Value
An integer value which specifies the peer port number.

Remarks
The ClientPort property returns the port number that the current client has used when establishing a
connection with the server. This property value is only meaningful when accessed within an event handler
such as the OnConnect event.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClientPort Property

Gets the thread ID for the current client session.

[Visual Basic]
Public ReadOnly Property ClientThread As Integer

[C#]
public int ClientThread {get;}

Property Value
An integer value which identifies the client thread that was created to manage the client session.

Remarks
Until the thread terminates, the thread identifier uniquely identifies the thread throughout the system.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClientThread Property

Return the user name associated with the specified client session.

[Visual Basic]
Public ReadOnly Property ClientUser As String

[C#]
public string ClientUser {get;}

Property Value
A string that specifies the user name associated with the active client session.

Remarks
The ClientUser property returns the user name that the client used to authenticate the client session. This
property should only be accessed within an event handler after the client session has been authenticated.
Unauthenticated clients are not assigned a user name. This property will always return an empty string
when accessed outside of an event handler.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClientUser Property

Get and set the full path to the root directory assigned to the server.

[Visual Basic]
Public Property Directory As String

[C#]
public string Directory {get; set;}

Property Value
A string that specifies the full path to a local directory on the server.

Remarks
The Directory property returns the path to the root directory for the server. If this property is set to the
name of a valid directory before the server is started, that directory will be considered the root directory
for the server. If this property is not set, or is set to an empty string, then the server will use the current
working directory as its root directory, however this is not recommended. It is recommended that you
specify an absolute path to the directory, otherwise the path will be relative to the current working
directory. You may include environment variables in the path surrounded by percent (%) symbols and
they will be expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

If the MultiUser property is False, all authenticated clients will have their current working directory
initialized to the server root directory. If the MultiUser property is True, then the Public and User
subdirectories will be created in the root directory, and each authenticated client will have their current
working directory initialized to their individual home directory.

This property can be read after the server has started and it will return the full path to the root directory.
However, attempting to change the value of this property after the server has started will cause an
exception to be raised. To change the root directory for the server, you must first call the Stop method
which will terminate all active client connections.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Directory Property

Return the external IP address for the local system.

[Visual Basic]
Public ReadOnly Property ExternalAddress As String

[C#]
public string ExternalAddress {get;}

Property Value
A string that specifies the external Internet Protocol address for the local system.

Remarks
The ExternalAddress property returns the IP address assigned to the router that connects the local host
to the Internet. This is typically used by an application executing on a system in a local network that uses a
router which performs Network Address Translation (NAT). In that network configuration, the
ServerAddress property will only return the IP address for the local system on the LAN side of the
network. The ExternalAddress property can be used to determine the IP address assigned to the router
on the Internet side of the connection and can be particularly useful for servers running on a system
behind a NAT router. Note that you should not assign the ServerAddress property to the value returned
by the ExternalAddress property. If the server is running behind a NAT router, the router must be
configured to forward incoming connections to the appropriate address on the LAN.

Using this property requires that you have an active connection to the Internet; checking the value of this
property on a system that uses dial-up networking may cause the operating system to automatically
connect to the Internet service provider. The control may be unable to determine the external IP address
for the local host for a number of reasons, particularly if the system is behind a firewall or uses a proxy
server that restricts access to external sites on the Internet. If the external address for the local host cannot
be determined, the property will return an empty string.

If the control is able to obtain a valid external address for the local host, that address will be cached for
sixty minutes. Because dial-up connections typically have different IP addresses assigned to them each
time the system is connected to the Internet, it is recommended that this property only be used in
conjunction with persistent broadband connections.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ExternalAddress Property

Determine if the server should permit access to hidden files.

[Visual Basic]
Public Property HiddenFiles As Boolean

[C#]
public bool HiddenFiles {get; set;}

Property Value
A Boolean value that specifies if hidden files can be accessed by clients.

Remarks
The HiddenFiles property determines if the server should allow clients to access files with the hidden
and/or system attribute. If this property is True, then hidden files are included in directory listings and
clients may download or replace hidden files. If the property is False, hidden files are not included in
directory listings and any attempt to access, delete or modify a hidden file will result in an error.

The default value for this property is False.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.HiddenFiles Property

Gets and sets a string that identifies the server to the client.

[Visual Basic]
Public Property Identity As String

[C#]
public string Identity {get; set;}

Property Value
A string that identifies the server instance.

Remarks
The Identity property returns a string that is used to identify the server. It is used for informational
purposes only and does not affect the operation of the server. Typically the string specifies the name of
the application and a version number, and is displayed whenever a client establishes its initial connection
to the server. This property can be set to assign an identity to the server, however after the server has
started this property becomes read-only.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Identity Property

Gets and sets the maximum number of seconds a client can be idle before the server terminates the
session.

[Visual Basic]
Public Property IdleTime As Integer

[C#]
public int IdleTime {get; set;}

Property Value
An integer value that specifies the idle timeout period in seconds.

Remarks
The IdleTime property specifies the maximum number of seconds that a client session may be idle before
the server closes the control connection to the client. A value of zero specifies the default value of 60
seconds. If the value is non-zero, the minimum value is 10 seconds and the maximum value is 300
seconds (5 minutes). This value is used to initialize the default idle timeout period for each client session.
The server determines if a client is idle based on the time the last command was issued and whether or
not a data transfer is in progress.

The ClientIdle property can be used to determine the idle timeout period for a specific client. When the
timeout period for the client has elapsed, the OnTimeout event will fire prior to the client being
disconnected from the server.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.IdleTime Property

Gets a value which indicates if the server is active.

[Visual Basic]
Public ReadOnly Property IsActive As Boolean

[C#]
public bool IsActive {get;}

Property Value
A Boolean value that specifies if the server instance is currently active.

Remarks
The IsActive property returns True if the server has been started using the Start method. If the server has
not been started, the property will return False.

To determine if the server is accepting client connections, use the IsListening property. This property will
only indicate if the server has been started. For example, if the server has been suspended using the
Suspend method, this property will return a value of True, while the IsListening property will return a
value of False.

An application should not depend on this property returning False immediately after the Stop method
has been called to shutdown the server. This property will continue to return True until all clients have
disconnected from the server and the server thread has terminated. To determine when the server has
stopped, implement a handler for the OnStop event.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.IsActive Property

Determine if the active client session has been authenticated.

[Visual Basic]
Public ReadOnly Property IsAuthenticated As Boolean

[C#]
public bool IsAuthenticated {get;}

Property Value
A Boolean value that specifies if the active client session has been authenticated.

Remarks
The IsAuthenticated property returns True if the active client session has successfully authenticated with
a valid username and password. This property should only be accessed within an event handler such as
OnCommand because its value is specific to the client session that raised the event. This property will
always return a value of False outside of an event handler.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.IsAuthenticated Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.IsInitialized Property

Gets a value which indicates if the server is listening for client connections.

[Visual Basic]
Public ReadOnly Property IsListening As Boolean

[C#]
public bool IsListening {get;}

Property Value
Returns true if the server is listening for client connections; otherwise returns false.

Remarks
The IsListening property will return true if the Start method was called and the server is currently
accepting incoming client connections. In all other situations, this property will return false.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.IsListening Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public HttpServer.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.LastErrorString Property

Return the full path to the local file or directory that is the target of the current command.

[Visual Basic]
Public Property LocalPath As String

[C#]
public string LocalPath {get; set;}

Property Value
A string that specifies the full path to a local file or directory on the server.

Remarks
The LocalPath property returns the full path to a local file name or directory specified by the client as an
argument to a standard HTTP command. For example, if the client sends the GET command to the server,
this property will return the complete path to the local file that the client wants to download. This property
will only return a value for those standard commands that perform some action on a file or directory,
otherwise it will return an empty string.

Setting this property allows you to effectively redirect the client to use a different file than the one that was
actually requested. If the path is absolute, then it will be used as-is. If the path is relative, it will be relative
to the current working directory for the active client session. The full path to this file is not limited to the
server root directory or its subdirectory, it can specify a file anywhere on the local system. If this property is
set to an empty string, then the server will revert to using the actual file or directory name specified by the
command.

This property should only be set within an OnCommand event handler, and only for those commands
that perform an action on a file or directory. If the current command does not target a file or directory,
setting this property will cause an exception to be raised by the control. Exercise caution when using this
property to redirect the server to use a different file than the one requested by the client; changing the
target file may cause the client to behave in unexpected ways.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.LocalPath Property

Determines if the server should perform user authentication using the Windows local account database.

[Visual Basic]
Public Property LocalUser As Boolean

[C#]
public bool LocalUser {get; set;}

Property Value
A Boolean value that specifies if the server should authenticate local users.

Remarks
The LocalUser property determines if the server should perform user authentication using the Windows
local account database. If this option is not specified, the application is responsible for creating virtual
users using the AddUser method or implementing an OnAuthenticate event handler and authenticating
client sessions individually.

If this property is set to True, a client can authenticate as a local user, however the session will not inherit
that user's access rights. All files that are accessed or created by the server will continue to use the
permissions of the process that started the server. For example, consider a server application that was
started by local user A. Next, a client connects to the server and authenticates itself as local user B. When
that client uploads a file to the server, the file that is created will be owned by user A, not user B. This
ensures that the server application retains ownership and control of the files that have been created or
modified.

The default value for this property is False.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.LocalUser Property

Determines if files should be exclusively locked when a client attempts to upload or download a file.

[Visual Basic]
Public Property LockFiles As Boolean

[C#]
public bool LockFiles {get; set;}

Property Value
A Boolean value that specifies if files should be locked during file transfers.

Remarks
The LocalTime property determines if files should be exclusively locked when a client attempts to upload
or download a file. If another client attempts to access the same file, the operation will fail. By default, the
server will permit multiple clients to access the same file, although it will still write-lock files that are in the
process of being uploaded..

The default value for this property is False.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.LockFiles Property

Gets and sets the name of the server log file.

[Visual Basic]
Public Property LogFile As String

[C#]
public string LogFile {get; set;}

Property Value
A string that specifies the full path to a local log file.

Remarks
The LogFile property is used to specify the name of a file that will contain a log of all client activity. The
LogFormat and LogLevel properties affect the specific format for the file and the level of detail included
in the log. It is recommended that you specify an absolute path to the log file, otherwise the path will be
relative to the current working directory. You may include environment variables in the path surrounded
by percent (%) symbols and they will be expanded.

If the log file does not exist it will be created when the server is started. If file already exists, the server will
append the new logging data to the file. The server must have permission to create and/or modify the
specified file.

Setting this property to an empty string after the server has been started will have the effect of disabling
logging, setting the logging level to 0 and the logging format to FormatType.formatNone.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.LogFile Property

Gets and sets the format used when updating the server log file.

[Visual Basic]
Public Property LogFormat As FormatType

[C#]
public HttpServer.FormatType LogFormat {get; set;}

Property Value
A FormatType enumeration that specifies the log file format.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.LogFormat Property

Gets and sets the level of detail included in the server log file.

[Visual Basic]
Public Property LogLevel As Integer

[C#]
public int LogLevel {get; set;}

Property Value
An integer value that specifies the amount of information the server writes to the log file.

Remarks
The LogLevel property is used to specify the level of detail that should generated in the log file. The
minimum value is 1 and the maximum value is 10. If this parameter is zero, it is the same as specifying a
log file format of httpLogNone and will disable logging by the server.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.LogLevel Property

Gets and sets the maximum number of clients that can connect to the server.

[Visual Basic]
Public Property MaxClients As Integer

[C#]
public int MaxClients {get; set;}

Property Value
An integer value which specifies the maximum number of client sessions that will be accepted by the
server. A value of zero specifies that there is no fixed limit to the maximum number of clients.

Remarks
The MaxClients property specifies the maximum number of client connections that will be accepted by
the server. Once the maximum number of connections has been established, the server will reject any
subsequent connections until the number of active client connections drops below the specified value. A
value of zero specifies that there should be no limit on the number of clients.

Changing the value of this property while a server is actively listening for connections will modify the
maximum number of client connections permitted, but it will not affect connections that have already
been established.

By default, there are no limits on the number of client connections or the connection rate when a server is
started. Use the Throttle method to change the maximum number of client connections per IP address or
the overall connection rate threshold for the server.

It is important to note that regardless of the maximum number of clients specified by this property, the
actual number of client connections that can be managed by the server depends on the number of
sockets that can be allocated from the operating system. The amount of physical memory installed on the
system affects the number of connections that can be maintained because each connection allocates
memory for the socket context from the non-paged memory pool.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.MaxClients Property

Gets the amount of unmanaged memory currently allocated by the server.

[Visual Basic]
Public ReadOnly Property MemoryUsage As Long

[C#]
public long MemoryUsage {get;}

Property Value
A long integer which specifies the number of bytes of memory allocated.

Remarks
This read-only property returns the amount of memory allocated by the server and all active client
sessions. It enumerates all unmanaged memory allocations made by the server process and client session
threads, returning the total number of bytes allocated for the server. This value reflects the amount of
memory explicitly allocated by the class and does not reflect the total working set size of the process, or
the memory allocated on the managed heap which is used by the .NET garbage collector.

Getting the value of this property forces the server into a locked state, and all client sessions will block
while the memory usage is being calculated. Because this enumerates all unmanaged heaps allocated for
the server process, it can be an expensive operation, particularly when there are a large number of active
clients connected to the server. Frequently checking the value of this property can significantly degrade
the performance of the server. It is primarily intended for use as a debugging tool to determine if memory
usage is the result of an increase in active client sessions. If the value returned by this property remains
reasonably constant, but the amount of memory allocated for the process continues to grow, it could
indicate a memory leak in some other area of the application.

See Also
HttpServer Class | SocketTools Namespace | StackSize Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.MemoryUsage Property

Determine if the server should be started in multi-user mode.

[Visual Basic]
Public Property MultiUser As Boolean

[C#]
public bool MultiUser {get; set;}

Property Value
A Boolean value that specifies if the server should be started in multi-user mode.

Remarks
The MultiUser property determines if the server should be started in multi-user mode. If this property is
set to True, each user will be assigned their own home directory which will be based on their user name.
When a client authenticates as that user, its current working directory is set to the user's home directory. If
this property is set to False, then all users will share the server root directory by default. This property
does not affect the maximum number of simultaneous client connections to the server. To isolate users to
their own individual home directory, set the Restricted property to True.

Setting this property to True will cause the server to create two subdirectories under the server root
directory named Public and Users. The Public subdirectory is where public files should be stored, and also
serves as the home directory for anonymous (guest) users. The Users subdirectory is where the home
directories for each user will be created.

Attempting to change the value of this property after the server has started will cause an exception to be
raised. To change this property value, you must first call the Stop method which will terminate all active
client connections.

The default value for this property is False.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.MultiUser Property

Determine if the server should search for a default index page.

[Visual Basic]
Public Property NoIndex As Boolean

[C#]
public bool NoIndex {get; set;}

Property Value
A boolean value that specifies if the server should search for default index pages. The default value for this
property is false.

Remarks
The NoIndex property determines if the server should should search for a default index file if the client
requests a resource that maps to a local directory on the server. If this property is set to true, the server
will not search for an index file. If this property is set to false, the server will search for a file named
index.htm, index.html, default.htm, default.html or index.txt in the directory. If a file by one of those names
is found, it will return the contents of that file rather than a list of files in the directory.

Attempting to change the value of this property after the server has started will cause an exception to be
raised. To change this property value, you must first call the Stop method which will terminate all active
client connections.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.NoIndex Property

Gets and sets the options that may be specified for the server instance.

[Visual Basic]
Public Property Options As ServerOptions

[C#]
public HttpServer.ServerOptions Options {get; set;}

Property Value
A ServerOptions enumeration that specifies one or more server options.

Remarks
The Options property is used to specify one or more server options as bitflags using the ServerOptions
enumeration. Each option has a corresponding property, and it is recommended that you use those
properties, such as LocalUser and UnixMode, to specify whether a particular server option should be
enabled or disabled. Using the class properties will make your code more readable and ensure forward
compatibility.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Options Property

Gets and sets a value which specifies the server priority.

[Visual Basic]
Public Property Priority As ServerPriority

[C#]
public HttpServer.ServerPriority Priority {get; set;}

Property Value
Returns a ServerPriority enumeration value which specifies the current server priority. The default value for
this property is priorityNormal.

Remarks
The Priority property can be used to control the processor usage, memory and network bandwidth
allocated by the server for client sessions. The default priority balances resource utilization and client
throughput while ensuring that the user interface remains responsive to the user. Lower priorities reduce
the overall resource utilization at the expense of throughput.

Higher priority values increases the thread priority and processor utilization for the client sessions. It is not
recommended that you increase the server priority unless you understand the implications of doing so
and have thoroughly tested your application. Raising the priority of the server can have a negative impact
on the responsiveness of the user interface.

See Also
HttpServer Class | SocketTools Namespace | ServerPriority Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Priority Property

Determine if the server should prevent clients from uploading files.

[Visual Basic]
Public Property ReadOnly As Boolean

[C#]
public bool ReadOnly {get; set;}

Property Value
A Boolean value that specifies if clients have read-only access to the server.

Remarks
The ReadOnly property determines if the server should only allow read-only access to files by default,
changing the default permissions granted to authenticated users. If this property is set to True,
anonymous users will not be able to upload, rename or delete files and cannot create subdirectories. This
is recommended if the server is publicly accessible over the Internet and guest logins are permitted.

Attempting to change the value of this property after the server has started will cause an exception to be
raised. To change this property value, you must first call the Stop method which will terminate all active
client connections.

The default value for this property is False.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ReadOnly Property

Determine if the server should be started in restricted mode, limiting client access to the server.

[Visual Basic]
Public Property Restricted As Boolean

[C#]
public bool Restricted {get; set;}

Property Value
A boolean value that specifies if the server should be started in restricted mode. The default value for this
property is false.

Remarks
The Restricted property determines if the server should be initialized in a restricted mode that isolates the
server and limits the ability for clients to access files on the host system. If this property is set to True, the
only commands accepted by the server will be the GET and HEAD commands. The server will never return
a list of files if the client provides a URL that maps to a local directory and there is no default index page.
Clients will not be able to execute CGI programs or scripts, and cannot access files outside of the server
root directory or its subdirectories.

Attempting to change the value of this property after the server has started will cause an exception to be
raised. To change this property value, you must first call the Stop method which will terminate all active
client connections.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Restricted Property

Determine if the server should accept secure client connections.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
A Boolean value that specifies if the server should accept secure connections.

Remarks
The Secure property determines if client connections are encrypted using the standard SSL or TLS security
protocols. The default value for this property is False, which specifies that clients will use a standard,
unencrypted connection to the server. To enable secure connections, the application should set this
property value to True prior to calling the Start method.

When secure connections are enabled, the server will accept the client connection and then wait for the
client to initiate the handshake where both the client and server negotiate the various encryption options
available. This process is handled automatically by the server, and all that is required is that the application
specify the server certificate which should be used. This is done by setting the CertificateName property,
and optionally the CertificateStore property if required.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Secure Property

Gets and sets the address that will be used by the server to listen for connections.

[Visual Basic]
Public Property ServerAddress As String

[C#]
public string ServerAddress {get; set;}

Property Value
A string which specifies the IP address that the server will use to listen for incoming client connections. An
empty string indicates that the server will accept connections on any valid network interface configured for
the local system.

Remarks
The ServerAddress property is used to specify the default address that the server will use when listening
for connections. Setting this property to the value 0.0.0.0 or an empty string indicates that the server
should listen for client connections using any valid network interface. If an address is specified, it must be a
valid Internet address that is bound to a network adapter configured on the local system. Clients will only
be able to connect to the server using that specific address.

It is common to set this property to the value 127.0.0.1 for testing purposes. It is a non-routable address
that specifies the local system, and most software firewalls are configured so they do not block
applications using this address.

See Also
HttpServer Class | SocketTools Namespace | ServerName Property | ServerPort Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ServerAddress Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public Property ServerName As String

[C#]
public string ServerName {get; set;}

Property Value
A string which specifies the local host name.

Remarks
The ServerName property returns the fully-qualified host name assigned to the local system. This consists
of the local computer name and its domain name. The actual value returned depends on the system
configuration. If no domain has been specified for the system, then only the machine name will be
returned.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ServerName Property

Gets and sets the port number that will be used by the server to listen for connections.

[Visual Basic]
Public Property ServerPort As Integer

[C#]
public int ServerPort {get; set;}

Property Value
An integer value which specifies the port number.

Remarks
The ServerPort property is used to set the port number that server will use to listen for incoming client
connections. Valid port numbers are in the range of 1 to 65535. It is recommended that most custom
servers specify a port number larger than 5000 to avoid potential conflicts with standard Internet services
and ephemeral ports used by client applications.

If a port number is specified that is already in use by another application, the OnError event will fire and
the background server thread will terminate. To enable a server to be stopped and immediately restarted
using the same address and port number, make sure that the ReuseAddress property is set to a value of
true.

See Also
HttpServer Class | SocketTools Namespace | ServerAddress Property | ServerName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ServerPort Property

Gets the thread ID for the current server.

[Visual Basic]
Public ReadOnly Property ServerThread As Integer

[C#]
public int ServerThread {get;}

Property Value
An integer value which identifies the server thread that was created. A return value of zero specifies that
no server has been started.

Remarks
Until the thread terminates, the thread identifier uniquely identifies the thread throughout the system.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ServerThread Property

Gets and sets the Universally Unique Identifier (UUID) associated with the server.

[Visual Basic]
Public Property ServerUuid As String

[C#]
public string ServerUuid {get; set;}

Property Value
A string that specifies the UUID assigned to the server instance.

Remarks
The ServerUuid property returns the UUID that uniquely identifies this instance of the server. If the
application does not set this property, a temporary UUID will be assigned to the server. If a value is
assigned to this property, it must be a valid UUID string. A permanent UUID can be generated using a
utility such as uuidgen which is included with Visual Studio.

Attempting to change the value of this property after the server has started will cause an exception to be
raised. To change this property value, you must first call the Stop method which will terminate all active
client connections.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ServerUuid Property

Gets and sets the size of the stack allocated for threads created by the server.

[Visual Basic]
Public Property StackSize As Integer

[C#]
public int StackSize {get; set;}

Property Value
An integer value that specifies the initial amount of memory that is committed to the stack for each thread
created by the server.

Remarks
The default stack size for each thread is set to 256K for 32-bit processes and 512K for 64-bit processes.
Increasing or decreasing the stack size will only affect new threads that are created by the server, it will not
affect those threads that have already been created to manage active client sessions. It is recommended
that most applications use the default stack size.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.StackSize Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ThrowError Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the method parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the method
calls made by the process using any of the SocketTools classes will be logged. For example, if you have an
application using both the File Transfer Protocol and Post Office Protocol classes, and you set the Trace
property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Trace Property

Gets and sets a value which specifies the name of the network function tracing logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the method
being called, the arguments passed to the method and the method's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.TraceFile Property

Gets and sets a value which specifies the network function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public HttpServer.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.TraceFlags Property

Gets a value which returns the current version of the HttpServer class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the HttpServer class
library. This value can be used by an application for validation and debugging purposes.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Version Property

Return the virtual path to the local file or directory that is the target of the current command.

[Visual Basic]
Public Property VirtualPath As String

[C#]
public string VirtualPath {get; set;}

Property Value
A string that specifies the virtual path to the local file accessed by the active client session.

Remarks
The VirtualPath property returns the virtual path to a local file name or directory specified by the client as
an argument to a standard HTTP command. For example, if the client sends the GET command to the
server, this property will return the complete virtual path to the resource that the client wants to access.
This property will only return a value for those standard commands that perform some action on a file or
directory, otherwise it will return an empty string.

Setting this property allows you to effectively redirect the client to use a different file than the one that was
actually requested. If the path is absolute, then it will be used as-is. If the path is relative, it will be relative
to the current working directory for the active client session. If this property is set to an empty string, then
the server will revert to using the actual file or directory name specified by the command.

This property should only be set within an OnCommand event handler, and only for those commands
that perform an action on a file or directory. If the current command does not target a file or directory,
setting this property will cause an exception to be raised by the control. Exercise caution when using this
property to redirect the server to use a different file than the one requested by the client; changing the
target file may cause the client to behave in unexpected ways.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.VirtualPath Property

The methods of the HttpServer class are listed below. For a complete list of HttpServer class members,
see the HttpServer Members topic.

Public Static (Shared) Methods

ErrorText Returns the description of an error code.

Public Instance Methods

AddHost Overloaded. Add a new virtual host to the server
virtual host table.

AddPath Overloaded. Add a new virtual path for the
specified host.

AddUser Overloaded. Add a new virtual user to the
specified host.

Authenticate Overloaded. Authenticate the client and assign
access rights for the session.

CheckPath Overloaded. Determine if the client has permission
to access the specified virtual path.

ClearHeaders Overloaded. Delete all of the response headers for
the specified client session.

DeleteHost Overloaded. Delete a virtual host associated with
the specified server.

DeletePath Overloaded. Delete a virtual path from the
specified virtual host.

DeleteUser Overloaded. Remove a virtual user from the
server.

Disconnect Overloaded. Disconnect the specified client session
from the server.

Dispose Overloaded. Releases all resources used by
HttpServer.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetAllHeaders Overloaded. Return all of the request header
values in the specified string buffer.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeader Overloaded. Return the value of a request header
for the specified client session.

GetType (inherited from Object) Gets the Type of the current instance.

GetVariable Overloaded. Return the value of a CGI
environment variable for the specified client.

HttpServer Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ErrorText.html

Initialize Overloaded. Initialize an instance of the HttpServer
class.

ReceiveRequest Overloaded. Receive the request that was sent by
the client to the server.

RedirectRequest Overloaded. Redirect the request from the client
to another URL.

RegisterHandler Overloaded. Register a CGI program for use and
associate it with a file name extension.

RegisterProgram Overloaded. Register a CGI program for use and
associate it with a virtual path on the server.

RequireAuthentication Overloaded. Send a response to the client
indicating that authentication is required.

Reset Reset the internal state of the object, resetting all
properties to their default values.

ResolvePath Overloaded. Resolve a path to its full virtual or
local file name.

Restart Restarts the server and terminates all active client
connections.

Resume Resume accepting new client connections.

SendError Overloaded. Send an error result code and
message to the client in response to a command.

SendResponse Overloaded. Send a result code and message to
the client in response to a command.

SetHeader Overloaded. Create or change the value of a
response header for the client session.

SetVariable Overloaded. Create or change the value of a CGI
environment variable for the specified client.

Start Overloaded. Start listening for client connections
on the specified IP address and port number.

Stop Stop listening for new client connections and
terminate all active clients already connected to
the server.

Suspend Suspend accepting new client connections.

Throttle Overloaded. Limit the maximum number of client
connections, connections per IP address and
connection rate.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the server.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources

allocated by the HttpServer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual host to the server virtual host table.

Overload List
Add a new virtual host to the server virtual host table.

public int AddHost(string);

Add a new virtual host to the server virtual host table.

public int AddHost(string,string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AddHost Method

Add a new virtual host to the server virtual host table.

[Visual Basic]
Overloads Public Function AddHost(_
 ByVal hostName As String, _
 ByVal rootDirectory As String _
) As Integer

[C#]
public int AddHost(
 string hostName,
 string rootDirectory
);

Parameters
hostName

A string which specifies the hostname that will be added to the virtual host table. This parameter must
specify a valid hostname and cannot be a zero-length string.

rootDirectory
An optional string that specifies the root document directory for the virtual host. If this parameter is
omitted or a zero-length string, the virtual host will use the same root directory that was specified
when the server was started. This parameter may contain environment variables enclosed in %
symbols.

Return Value
An integer value that uniquely identifies the virtual host that was added to the server. This value may be
used with other methods that require a virtual host identifier. If the method fails, the return value will be -1
and the LastError property will be updated to indicate the cause of the failure.

Remarks
Virtual hosting is a method for sharing multiple domain names on a single instance of a server. The client
provides the server with the hostname that it has used to establish the connection, and that name is
compared against a table of virtual hosts configured for the server. If the hostname matches a virtual host,
the client will use the root directory and any virtual paths that have been assigned to that host.

When the server is first started, a default virtual host with an ID of zero is automatically created and is
identified as httpHostDefault. This virtual host uses the same hostname, port number and root directory
that the server instance was created with. The application should treat all other host IDs as opaque values
and never make assumptions about how they are allocated.

The virtual host ID returned by this method can be used with the AddPath method to create a virtual path
assigned to the host, the AddUser to create a virtual user, and the RegisterHandler and
RegisterProgram methods which are used to register script handlers and CGI programs.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.AddHost Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AddHost Method (String, String)

Add a new virtual host to the server virtual host table.

[Visual Basic]
Overloads Public Function AddHost(_
 ByVal hostName As String _
) As Integer

[C#]
public int AddHost(
 string hostName
);

Parameters
hostName

A string which specifies the hostname that will be added to the virtual host table. This parameter must
specify a valid hostname and cannot be a zero-length string.

Return Value
An integer value that uniquely identifies the virtual host that was added to the server. This value may be
used with other methods that require a virtual host identifier. If the method fails, the return value will be -1
and the LastError property will be updated to indicate the cause of the failure.

Remarks
Virtual hosting is a method for sharing multiple domain names on a single instance of a server. The client
provides the server with the hostname that it has used to establish the connection, and that name is
compared against a table of virtual hosts configured for the server. If the hostname matches a virtual host,
the client will use the root directory and any virtual paths that have been assigned to that host.

When the server is first started, a default virtual host with an ID of zero is automatically created and is
identified as httpHostDefault. This virtual host uses the same hostname, port number and root directory
that the server instance was created with. The application should treat all other host IDs as opaque values
and never make assumptions about how they are allocated.

The virtual host ID returned by this method can be used with the AddPath method to create a virtual path
assigned to the host, the AddUser to create a virtual user, and the RegisterHandler and
RegisterProgram methods which are used to register script handlers and CGI programs.

This version of the method will share the same root directory that was specified when this instance of the
server was started.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.AddHost Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AddHost Method (String)

Add a new virtual path for the specified host.

Overload List
Add a new virtual path for the specified host.

public bool AddPath(int,string,string);

Add a new virtual path for the specified host.

public bool AddPath(int,string,string,FileAccess);

Add a new virtual path for the default host.

public bool AddPath(string,string);

Add a new virtual path for the default host.

public bool AddPath(string,string,FileAccess);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AddPath Method

Add a new virtual path for the specified host.

[Visual Basic]
Overloads Public Function AddPath(_
 ByVal hostId As Integer, _
 ByVal virtualPath As String, _
 ByVal localPath As String, _
 ByVal accessFlags As FileAccess _
) As Boolean

[C#]
public bool AddPath(
 int hostId,
 string virtualPath,
 string localPath,
 FileAccess accessFlags
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

virtualPath
A string which specifies the virtual path that will be created. This parameter cannot be an empty string
and the maximum length of the virtual path is 1024 characters.

localPath
A string which specifies the local directory or file name that the virtual path will be mapped to. This
path must exist and can be no longer than 260 characters. This parameter cannot be an empty string.

accessFlags
One or more FileAccess enumeration values which designates the access clients will be given to the
virtual path.

Return Value
A boolean value which specifies if the virtual path was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The AddPath method maps a virtual path name to a directory or file name on the local system. Virtual
paths are assigned to specific hosts and if multiple virtual hosts are created for the server, each can have
its own virtual paths which map to different files. To create a virtual path for the default server, the caller
should specify the HostId parameter as HttpServer.hostDefault which has a value of zero.

It is recommended that the localPath parameter always specify the full path to the local file or directory. If
the path is relative, it will be considered relative to the current working directory for the process and
expanded to its full path name. The local path can include environment variables surrounded by %
symbols. For example, if the value %ProgramData% is included in the path, it will be expanded to the full
path for the common application data folder. The local path cannot specify a Windows system folder or
the root directory of a mounted drive volume.

HttpServer.AddPath Method (Int32, String, String, FileAccess)

The local file or directory does not need to located in the document root directory for the server or virtual
host. It can specify any valid local path that the server process has the appropriate permissions to access.
You should exercise caution when creating virtual paths to files or directories outside of the server root
directory. If the LocalPath parameter specifies a directory, clients will have access to that directory and all
subdirectories using its virtual path.

If you wish to password protect the virtual file or directory, include the accessProtected flag in the file
permissions. The default command handlers will recognize this flag and require that the client authenticate
itself to grant access to the resource. If the server application implements a custom command handler, it is
responsible for checking for the presence of this flag and perform the appropriate checks to ensure that
the client session has been authenticated.

If the server was started in restricted mode, the client will be unable to access documents outside of the
server root directory and its subdirectories. This restriction also applies to virtual paths that reference
documents or other resources outside of the root directory. To allow a client to access a document
outside of the server root directory, the ClientAccess property should be used to grant the client
accessRead permission.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.AddPath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual path for the specified host.

[Visual Basic]
Overloads Public Function AddPath(_
 ByVal hostId As Integer, _
 ByVal virtualPath As String, _
 ByVal localPath As String _
) As Boolean

[C#]
public bool AddPath(
 int hostId,
 string virtualPath,
 string localPath
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

virtualPath
A string which specifies the virtual path that will be created. This parameter cannot be an empty string
and the maximum length of the virtual path is 1024 characters.

localPath
A string which specifies the local directory or file name that the virtual path will be mapped to. This
path must exist and can be no longer than 260 characters. This parameter cannot be an empty string.

Return Value
A boolean value which specifies if the virtual path was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The AddPath method maps a virtual path name to a directory or file name on the local system. Virtual
paths are assigned to specific hosts and if multiple virtual hosts are created for the server, each can have
its own virtual paths which map to different files. To create a virtual path for the default server, the caller
should specify the HostId parameter as HttpServer.hostDefault which has a value of zero.

It is recommended that the localPath parameter always specify the full path to the local file or directory. If
the path is relative, it will be considered relative to the current working directory for the process and
expanded to its full path name. The local path can include environment variables surrounded by %
symbols. For example, if the value %ProgramData% is included in the path, it will be expanded to the full
path for the common application data folder. The local path cannot specify a Windows system folder or
the root directory of a mounted drive volume.

The local file or directory does not need to located in the document root directory for the server or virtual
host. It can specify any valid local path that the server process has the appropriate permissions to access.
You should exercise caution when creating virtual paths to files or directories outside of the server root
directory. If the LocalPath parameter specifies a directory, clients will have access to that directory and all
subdirectories using its virtual path.

HttpServer.AddPath Method (Int32, String, String)

If you wish to password protect the virtual file or directory, include the accessProtected flag in the file
permissions. The default command handlers will recognize this flag and require that the client authenticate
itself to grant access to the resource. If the server application implements a custom command handler, it is
responsible for checking for the presence of this flag and perform the appropriate checks to ensure that
the client session has been authenticated.

If the server was started in restricted mode, the client will be unable to access documents outside of the
server root directory and its subdirectories. This restriction also applies to virtual paths that reference
documents or other resources outside of the root directory. To allow a client to access a document
outside of the server root directory, the ClientAccess property should be used to grant the client
accessRead permission.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.AddPath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual path for the default host.

[Visual Basic]
Overloads Public Function AddPath(_
 ByVal virtualPath As String, _
 ByVal localPath As String, _
 ByVal accessFlags As FileAccess _
) As Boolean

[C#]
public bool AddPath(
 string virtualPath,
 string localPath,
 FileAccess accessFlags
);

Parameters
virtualPath

A string which specifies the virtual path that will be created. This parameter cannot be an empty string
and the maximum length of the virtual path is 1024 characters.

localPath
A string which specifies the local directory or file name that the virtual path will be mapped to. This
path must exist and can be no longer than 260 characters. This parameter cannot be an empty string.

accessFlags
One or more FileAccess enumeration values which designates the access clients will be given to the
virtual path.

Return Value
A boolean value which specifies if the virtual path was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The AddPath method maps a virtual path name to a directory or file name on the local system. Virtual
paths are assigned to specific hosts and if multiple virtual hosts are created for the server, each can have
its own virtual paths which map to different files. To create a virtual path for the default server, the caller
should specify the HostId parameter as HttpServer.hostDefault which has a value of zero.

It is recommended that the localPath parameter always specify the full path to the local file or directory. If
the path is relative, it will be considered relative to the current working directory for the process and
expanded to its full path name. The local path can include environment variables surrounded by %
symbols. For example, if the value %ProgramData% is included in the path, it will be expanded to the full
path for the common application data folder. The local path cannot specify a Windows system folder or
the root directory of a mounted drive volume.

The local file or directory does not need to located in the document root directory for the server or virtual
host. It can specify any valid local path that the server process has the appropriate permissions to access.
You should exercise caution when creating virtual paths to files or directories outside of the server root
directory. If the LocalPath parameter specifies a directory, clients will have access to that directory and all
subdirectories using its virtual path.

HttpServer.AddPath Method (String, String, FileAccess)

If you wish to password protect the virtual file or directory, include the accessProtected flag in the file
permissions. The default command handlers will recognize this flag and require that the client authenticate
itself to grant access to the resource. If the server application implements a custom command handler, it is
responsible for checking for the presence of this flag and perform the appropriate checks to ensure that
the client session has been authenticated.

If the server was started in restricted mode, the client will be unable to access documents outside of the
server root directory and its subdirectories. This restriction also applies to virtual paths that reference
documents or other resources outside of the root directory. To allow a client to access a document
outside of the server root directory, the ClientAccess property should be used to grant the client
accessRead permission.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.AddPath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual path for the default host.

[Visual Basic]
Overloads Public Function AddPath(_
 ByVal virtualPath As String, _
 ByVal localPath As String _
) As Boolean

[C#]
public bool AddPath(
 string virtualPath,
 string localPath
);

Parameters
virtualPath

A string which specifies the virtual path that will be created. This parameter cannot be an empty string
and the maximum length of the virtual path is 1024 characters.

localPath
A string which specifies the local directory or file name that the virtual path will be mapped to. This
path must exist and can be no longer than 260 characters. This parameter cannot be an empty string.

Return Value
A boolean value which specifies if the virtual path was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The AddPath method maps a virtual path name to a directory or file name on the local system. Virtual
paths are assigned to specific hosts and if multiple virtual hosts are created for the server, each can have
its own virtual paths which map to different files. To create a virtual path for the default server, the caller
should specify the HostId parameter as HttpServer.hostDefault which has a value of zero.

It is recommended that the localPath parameter always specify the full path to the local file or directory. If
the path is relative, it will be considered relative to the current working directory for the process and
expanded to its full path name. The local path can include environment variables surrounded by %
symbols. For example, if the value %ProgramData% is included in the path, it will be expanded to the full
path for the common application data folder. The local path cannot specify a Windows system folder or
the root directory of a mounted drive volume.

The local file or directory does not need to located in the document root directory for the server or virtual
host. It can specify any valid local path that the server process has the appropriate permissions to access.
You should exercise caution when creating virtual paths to files or directories outside of the server root
directory. If the LocalPath parameter specifies a directory, clients will have access to that directory and all
subdirectories using its virtual path.

If you wish to password protect the virtual file or directory, include the accessProtected flag in the file
permissions. The default command handlers will recognize this flag and require that the client authenticate
itself to grant access to the resource. If the server application implements a custom command handler, it is
responsible for checking for the presence of this flag and perform the appropriate checks to ensure that
the client session has been authenticated.

HttpServer.AddPath Method (String, String)

If the server was started in restricted mode, the client will be unable to access documents outside of the
server root directory and its subdirectories. This restriction also applies to virtual paths that reference
documents or other resources outside of the root directory. To allow a client to access a document
outside of the server root directory, the ClientAccess property should be used to grant the client
accessRead permission.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.AddPath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual user to the specified host.

Overload List
Add a new virtual user to the specified host.

public bool AddUser(int,string,string);

Add a new virtual user to the specified host.

public bool AddUser(int,string,string,UserAccess,string);

Add a new virtual user to the specified host.

public bool AddUser(int,string,string,string);

Add a new virtual user to the default host.

public bool AddUser(string,string);

Add a new virtual user to the default host.

public bool AddUser(string,string,UserAccess,string);

Add a new virtual user to the default host.

public bool AddUser(string,string,string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AddUser Method

Add a new virtual user to the default host.

[Visual Basic]
Overloads Public Function AddUser(_
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool AddUser(
 string userName,
 string userPassword
);

Parameters
userName

A string which specifies the user name. The maximum length of a username is 63 characters and it is
recommended that names be limited to alphanumeric characters. Whitespace, control characters and
certain symbols such as path delimiters and wildcard characters are not permitted. If an invalid
character is included in the name, the method will fail with an error indicating the username is invalid.
The username must be at least three characters in length. Usernames are not case sensitive.

userPassword
A string which specifies the user password. The maximum length of a password is 63 characters and is
limited to printable characters. Whitespace and control characters are not permitted. If an invalid
character is included in the password, the method will fail with an error indicating the password is
invalid. The password must be at least one character in length. Passwords are case sensitive.

Return Value
A boolean value which specifies if the virtual user was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The AddUser method creates a virtual user that is associated with the server. When a client connects with
the server and provides authentication credentials, the server will check if the username has been created
using this method. If a match is found, the client access rights will be updated.

If you wish to modify the information for an existing user, it is not necessary to delete the username first. If
this method is called with a username that already exists, that record is replaced with the values passed to
this method.

The virtual users created by this method exist only as long as the server is active. If you wish to maintain a
persistent database of users and passwords, you are responsible for its implementation based on the
requirements of your specific application. For example, a simple implementation would be to store the
user information in a local XML or INI file and then read that configuration file after the server has started,
calling this method for each user that is listed.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.AddUser Overload List

HttpServer.AddUser Method (String, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual user to the default host.

[Visual Basic]
Overloads Public Function AddUser(_
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal homeDirectory As String _
) As Boolean

[C#]
public bool AddUser(
 string userName,
 string userPassword,
 string homeDirectory
);

Parameters
userName

A string which specifies the user name. The maximum length of a username is 63 characters and it is
recommended that names be limited to alphanumeric characters. Whitespace, control characters and
certain symbols such as path delimiters and wildcard characters are not permitted. If an invalid
character is included in the name, the method will fail with an error indicating the username is invalid.
The username must be at least three characters in length. Usernames are not case sensitive.

userPassword
A string which specifies the user password. The maximum length of a password is 63 characters and is
limited to printable characters. Whitespace and control characters are not permitted. If an invalid
character is included in the password, the method will fail with an error indicating the password is
invalid. The password must be at least one character in length. Passwords are case sensitive.

homeDirectory
A string which specifies the directory that will be the virtual user's home directory. If the server was
started in multi-user mode, this directory will be relative to the user directory created by the server,
otherwise it will be relative to the server root directory. If the directory does not exist, it will be created
the first time that the virtual user successfully logs in to the server. If this parameter is an empty string,
a default home directory will be created for the virtual user.

Return Value
A boolean value which specifies if the virtual user was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The AddUser method creates a virtual user that is associated with the server. When a client connects with
the server and provides authentication credentials, the server will check if the username has been created
using this method. If a match is found, the client access rights will be updated.

If you wish to modify the information for an existing user, it is not necessary to delete the username first. If
this method is called with a username that already exists, that record is replaced with the values passed to
this method.

The virtual users created by this method exist only as long as the server is active. If you wish to maintain a

HttpServer.AddUser Method (String, String, String)

persistent database of users and passwords, you are responsible for its implementation based on the
requirements of your specific application. For example, a simple implementation would be to store the
user information in a local XML or INI file and then read that configuration file after the server has started,
calling this method for each user that is listed.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.AddUser Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual user to the default host.

[Visual Basic]
Overloads Public Function AddUser(_
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal accessFlags As UserAccess, _
 ByVal homeDirectory As String _
) As Boolean

[C#]
public bool AddUser(
 string userName,
 string userPassword,
 UserAccess accessFlags,
 string homeDirectory
);

Parameters
userName

A string which specifies the user name. The maximum length of a username is 63 characters and it is
recommended that names be limited to alphanumeric characters. Whitespace, control characters and
certain symbols such as path delimiters and wildcard characters are not permitted. If an invalid
character is included in the name, the method will fail with an error indicating the username is invalid.
The username must be at least three characters in length. Usernames are not case sensitive.

userPassword
A string which specifies the user password. The maximum length of a password is 63 characters and is
limited to printable characters. Whitespace and control characters are not permitted. If an invalid
character is included in the password, the method will fail with an error indicating the password is
invalid. The password must be at least one character in length. Passwords are case sensitive.

accessFlags
A UserAccess enumeration which specifies the access clients will be given when authenticated as this
user.

homeDirectory
A string which specifies the directory that will be the virtual user's home directory. If the server was
started in multi-user mode, this directory will be relative to the user directory created by the server,
otherwise it will be relative to the server root directory. If the directory does not exist, it will be created
the first time that the virtual user successfully logs in to the server. If this parameter is an empty string,
a default home directory will be created for the virtual user.

Return Value
A boolean value which specifies if the virtual user was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The AddUser method creates a virtual user that is associated with the server. When a client connects with
the server and provides authentication credentials, the server will check if the username has been created
using this method. If a match is found, the client access rights will be updated.

HttpServer.AddUser Method (String, String, UserAccess, String)

If you wish to modify the information for an existing user, it is not necessary to delete the username first. If
this method is called with a username that already exists, that record is replaced with the values passed to
this method.

The virtual users created by this method exist only as long as the server is active. If you wish to maintain a
persistent database of users and passwords, you are responsible for its implementation based on the
requirements of your specific application. For example, a simple implementation would be to store the
user information in a local XML or INI file and then read that configuration file after the server has started,
calling this method for each user that is listed.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.AddUser Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual user to the specified host.

[Visual Basic]
Overloads Public Function AddUser(_
 ByVal hostId As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool AddUser(
 int hostId,
 string userName,
 string userPassword
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

userName
A string which specifies the user name. The maximum length of a username is 63 characters and it is
recommended that names be limited to alphanumeric characters. Whitespace, control characters and
certain symbols such as path delimiters and wildcard characters are not permitted. If an invalid
character is included in the name, the method will fail with an error indicating the username is invalid.
The username must be at least three characters in length. Usernames are not case sensitive.

userPassword
A string which specifies the user password. The maximum length of a password is 63 characters and is
limited to printable characters. Whitespace and control characters are not permitted. If an invalid
character is included in the password, the method will fail with an error indicating the password is
invalid. The password must be at least one character in length. Passwords are case sensitive.

Return Value
A boolean value which specifies if the virtual user was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The AddUser method creates a virtual user that is associated with the server. When a client connects with
the server and provides authentication credentials, the server will check if the username has been created
using this method. If a match is found, the client access rights will be updated.

If you wish to modify the information for an existing user, it is not necessary to delete the username first. If
this method is called with a username that already exists, that record is replaced with the values passed to
this method.

The virtual users created by this method exist only as long as the server is active. If you wish to maintain a
persistent database of users and passwords, you are responsible for its implementation based on the
requirements of your specific application. For example, a simple implementation would be to store the
user information in a local XML or INI file and then read that configuration file after the server has started,

HttpServer.AddUser Method (Int32, String, String)

calling this method for each user that is listed.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.AddUser Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual user to the specified host.

[Visual Basic]
Overloads Public Function AddUser(_
 ByVal hostId As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal homeDirectory As String _
) As Boolean

[C#]
public bool AddUser(
 int hostId,
 string userName,
 string userPassword,
 string homeDirectory
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

userName
A string which specifies the user name. The maximum length of a username is 63 characters and it is
recommended that names be limited to alphanumeric characters. Whitespace, control characters and
certain symbols such as path delimiters and wildcard characters are not permitted. If an invalid
character is included in the name, the method will fail with an error indicating the username is invalid.
The username must be at least three characters in length. Usernames are not case sensitive.

userPassword
A string which specifies the user password. The maximum length of a password is 63 characters and is
limited to printable characters. Whitespace and control characters are not permitted. If an invalid
character is included in the password, the method will fail with an error indicating the password is
invalid. The password must be at least one character in length. Passwords are case sensitive.

homeDirectory
A string which specifies the directory that will be the virtual user's home directory. If the server was
started in multi-user mode, this directory will be relative to the user directory created by the server,
otherwise it will be relative to the server root directory. If the directory does not exist, it will be created
the first time that the virtual user successfully logs in to the server. If this parameter is an empty string,
a default home directory will be created for the virtual user.

Return Value
A boolean value which specifies if the virtual user was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The AddUser method creates a virtual user that is associated with the server. When a client connects with
the server and provides authentication credentials, the server will check if the username has been created
using this method. If a match is found, the client access rights will be updated.

HttpServer.AddUser Method (Int32, String, String, String)

If you wish to modify the information for an existing user, it is not necessary to delete the username first. If
this method is called with a username that already exists, that record is replaced with the values passed to
this method.

The virtual users created by this method exist only as long as the server is active. If you wish to maintain a
persistent database of users and passwords, you are responsible for its implementation based on the
requirements of your specific application. For example, a simple implementation would be to store the
user information in a local XML or INI file and then read that configuration file after the server has started,
calling this method for each user that is listed.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.AddUser Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add a new virtual user to the specified host.

[Visual Basic]
Overloads Public Function AddUser(_
 ByVal hostId As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal accessFlags As UserAccess, _
 ByVal homeDirectory As String _
) As Boolean

[C#]
public bool AddUser(
 int hostId,
 string userName,
 string userPassword,
 UserAccess accessFlags,
 string homeDirectory
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

userName
A string which specifies the user name. The maximum length of a username is 63 characters and it is
recommended that names be limited to alphanumeric characters. Whitespace, control characters and
certain symbols such as path delimiters and wildcard characters are not permitted. If an invalid
character is included in the name, the method will fail with an error indicating the username is invalid.
The username must be at least three characters in length. Usernames are not case sensitive.

userPassword
A string which specifies the user password. The maximum length of a password is 63 characters and is
limited to printable characters. Whitespace and control characters are not permitted. If an invalid
character is included in the password, the method will fail with an error indicating the password is
invalid. The password must be at least one character in length. Passwords are case sensitive.

accessFlags
A UserAccess enumeration which specifies the access clients will be given when authenticated as this
user.

homeDirectory
A string which specifies the directory that will be the virtual user's home directory. If the server was
started in multi-user mode, this directory will be relative to the user directory created by the server,
otherwise it will be relative to the server root directory. If the directory does not exist, it will be created
the first time that the virtual user successfully logs in to the server. If this parameter is an empty string,
a default home directory will be created for the virtual user.

Return Value
A boolean value which specifies if the virtual user was added to the server. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

HttpServer.AddUser Method (Int32, String, String, UserAccess, String)

Remarks
The AddUser method creates a virtual user that is associated with the server. When a client connects with
the server and provides authentication credentials, the server will check if the username has been created
using this method. If a match is found, the client access rights will be updated.

If you wish to modify the information for an existing user, it is not necessary to delete the username first. If
this method is called with a username that already exists, that record is replaced with the values passed to
this method.

The virtual users created by this method exist only as long as the server is active. If you wish to maintain a
persistent database of users and passwords, you are responsible for its implementation based on the
requirements of your specific application. For example, a simple implementation would be to store the
user information in a local XML or INI file and then read that configuration file after the server has started,
calling this method for each user that is listed.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.AddUser Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Authenticate the active client and assign access rights for the session.

Overload List
Authenticate the active client and assign access rights for the session.

public bool Authenticate(UserAccess);

Authenticate the client and assign access rights for the session.

public bool Authenticate(int,UserAccess);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Authenticate Method

Authenticate the client and assign access rights for the session.

[Visual Basic]
Overloads Public Function Authenticate(_
 ByVal clientId As Integer, _
 ByVal accessFlags As UserAccess _
) As Boolean

[C#]
public bool Authenticate(
 int clientId,
 UserAccess accessFlags
);

Parameters
clientId

An integer that identifies the client session.

accessFlags
One or more UserAccess enumeration values that specifies the access clients will be given when
authenticated as this user.

Return Value
A boolean value which specifies if the client session was authenticated. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The Authenticate method is used to authenticate a specific client session, typically in response to an
OnAuthenticate event that indicates a client has provided authentication credentials as part of the
request for a document or other resource.

To enable the server to automatically authenticate a client session, use the AddUser method to add one
or more virtual users. The server will search the list of virtual users for a match to the credentials provided
by the client and will set the appropriate permissions for the session without requiring a event handler to
manually authenticate the session using this method.

If the server was started with the LocalUser property set to True and the client session is not
authenticated using this method, the server will attempt to authenticate the client session using the local
Windows user database. Although this option can be convenient because it does not require the
implementation of an event handler for the OnAuthenticate event, it can be used by clients to attempt to
discover valid usernames and passwords for the local system. It is recommended that you use the
AddUser method to create virtual users rather than using the local user database.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Authenticate Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Authenticate Method (Int32, UserAccess)

Authenticate the active client and assign access rights for the session.

[Visual Basic]
Overloads Public Function Authenticate(_
 ByVal accessFlags As UserAccess _
) As Boolean

[C#]
public bool Authenticate(
 UserAccess accessFlags
);

Parameters
accessFlags

One or more UserAccess enumeration values that specifies the access clients will be given when
authenticated as this user.

Return Value
A boolean value which specifies if the client session was authenticated. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The Authenticate method is used to authenticate the active client session, typically in response to an
OnAuthenticate event that indicates a client has provided authentication credentials as part of the
request for a document or other resource.

To enable the server to automatically authenticate a client session, use the AddUser method to add one
or more virtual users. The server will search the list of virtual users for a match to the credentials provided
by the client and will set the appropriate permissions for the session without requiring a event handler to
manually authenticate the session using this method.

If the server was started with the LocalUser property set to True and the client session is not
authenticated using this method, the server will attempt to authenticate the client session using the local
Windows user database. Although this option can be convenient because it does not require the
implementation of an event handler for the OnAuthenticate event, it can be used by clients to attempt to
discover valid usernames and passwords for the local system. It is recommended that you use the
AddUser method to create virtual users rather than using the local user database.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Authenticate Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Authenticate Method (UserAccess)

Determine if the client has read access to the specified virtual path.

Overload List
Determine if the client has read access to the specified virtual path.

public bool CheckPath(int,string);

Determine if the client has permission to access the specified virtual path.

public bool CheckPath(int,string,FileAccess);

Determine if the active client has read access to the specified virtual path.

public bool CheckPath(string);

Determine if the active client has permission to access the specified virtual path.

public bool CheckPath(string,FileAccess);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CheckPath Method

Determine if the active client has read access to the specified virtual path.

[Visual Basic]
Overloads Public Function CheckPath(_
 ByVal virtualPath As String _
) As Boolean

[C#]
public bool CheckPath(
 string virtualPath
);

Parameters
virtualPath

A string which specifies the virtual path that will be created. The path must be absolute and cannot be
an empty string. The maximum length of the virtual path is 1024 characters.

Return Value
A boolean value which specifies if the virtual path can be accessed by the client. A return value of true
specifies that the file or directory can be accessed. If the file or directory cannot be accessed, the method
returns false and the application should check the value of the LastError property to determine the cause
of the failure.

Remarks
The CheckPath method is used to determine if the client has permission to read the virtual file or
directory. The method will return a non-zero value if the client does have the requested permission, or
zero if it does not.

Applications that implement their own custom handlers for standard HTTP commands should use this
method to ensure that the client has the appropriate permissions to access the requested resource. Failure
to check the access permissions for the client can result in the client being able to access restricted
documents and other resources. It is recommended that most applications use the default command
handlers.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

To obtain the path to the local file or directory that the virtual path is mapped to, use the ResolvePath
method.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.CheckPath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CheckPath Method (String)

Determine if the active client has permission to access the specified virtual path.

[Visual Basic]
Overloads Public Function CheckPath(_
 ByVal virtualPath As String, _
 ByVal accessFlags As FileAccess _
) As Boolean

[C#]
public bool CheckPath(
 string virtualPath,
 FileAccess accessFlags
);

Parameters
virtualPath

A string which specifies the virtual path that will be created. The path must be absolute and cannot be
an empty string. The maximum length of the virtual path is 1024 characters.

accessFlags
One or more FileAccess enumerations that specifies the access permissions that should be checked.

Return Value
A boolean value which specifies if the virtual path can be accessed by the client. A return value of true
specifies that the file or directory can be accessed with the requested permissions. If the file or directory
cannot be accessed, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The CheckPath method is used to determine if the client has permission to access the virtual file or
directory, based on the value of the accessFlags parameter. For example, if the accessFlags parameter has
the value accessWrite, this method will check if the client has write permission for the file or directory. The
method will return a non-zero value if the client does have the requested permission, or zero if it does
not.

Applications that implement their own custom handlers for standard HTTP commands should use this
method to ensure that the client has the appropriate permissions to access the requested resource. Failure
to check the access permissions for the client can result in the client being able to access restricted
documents and other resources. It is recommended that most applications use the default command
handlers.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

To obtain the path to the local file or directory that the virtual path is mapped to, use the ResolvePath
method.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.CheckPath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CheckPath Method (String, FileAccess)

Determine if the client has read access to the specified virtual path.

[Visual Basic]
Overloads Public Function CheckPath(_
 ByVal clientId As Integer, _
 ByVal virtualPath As String _
) As Boolean

[C#]
public bool CheckPath(
 int clientId,
 string virtualPath
);

Parameters
clientId

An integer value which identifies the client session.

virtualPath
A string which specifies the virtual path that will be created. The path must be absolute and cannot be
an empty string. The maximum length of the virtual path is 1024 characters.

Return Value
A boolean value which specifies if the virtual path can be accessed by the client. A return value of true
specifies that the file or directory can be accessed. If the file or directory cannot be accessed, the method
returns false and the application should check the value of the LastError property to determine the cause
of the failure.

Remarks
The CheckPath method is used to determine if the client has permission to read the virtual file or
directory. The method will return a non-zero value if the client does have the requested permission, or
zero if it does not.

Applications that implement their own custom handlers for standard HTTP commands should use this
method to ensure that the client has the appropriate permissions to access the requested resource. Failure
to check the access permissions for the client can result in the client being able to access restricted
documents and other resources. It is recommended that most applications use the default command
handlers.

To obtain the path to the local file or directory that the virtual path is mapped to, use the ResolvePath
method.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.CheckPath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CheckPath Method (Int32, String)

Determine if the client has permission to access the specified virtual path.

[Visual Basic]
Overloads Public Function CheckPath(_
 ByVal clientId As Integer, _
 ByVal virtualPath As String, _
 ByVal accessFlags As FileAccess _
) As Boolean

[C#]
public bool CheckPath(
 int clientId,
 string virtualPath,
 FileAccess accessFlags
);

Parameters
clientId

An integer value which identifies the client session.

virtualPath
A string which specifies the virtual path that will be created. The path must be absolute and cannot be
an empty string. The maximum length of the virtual path is 1024 characters.

accessFlags
One or more FileAccess enumerations that specifies the access permissions that should be checked.

Return Value
A boolean value which specifies if the virtual path can be accessed by the client. A return value of true
specifies that the file or directory can be accessed with the requested permissions. If the file or directory
cannot be accessed, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The CheckPath method is used to determine if the client has permission to access the virtual file or
directory, based on the value of the accessFlags parameter. For example, if the accessFlags parameter has
the value accessWrite, this method will check if the client has write permission for the file or directory. The
method will return a non-zero value if the client does have the requested permission, or zero if it does
not.

Applications that implement their own custom handlers for standard HTTP commands should use this
method to ensure that the client has the appropriate permissions to access the requested resource. Failure
to check the access permissions for the client can result in the client being able to access restricted
documents and other resources. It is recommended that most applications use the default command
handlers.

To obtain the path to the local file or directory that the virtual path is mapped to, use the ResolvePath
method.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.CheckPath Overload List

HttpServer.CheckPath Method (Int32, String, FileAccess)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Delete all of the response headers for the active client session.

Overload List
Delete all of the response headers for the active client session.

public bool ClearHeaders();

Delete all of the response headers for the specified client session.

public bool ClearHeaders(int);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClearHeaders Method

Delete all of the response headers for the specified client session.

[Visual Basic]
Overloads Public Function ClearHeaders(_
 ByVal clientId As Integer _
) As Boolean

[C#]
public bool ClearHeaders(
 int clientId
);

Parameters
clientId

An integer value which identifies the client session.

Return Value
A boolean value which specifies if the response headers were cleared. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The ClearHeaders method is used to delete all of the current response header values and automatically
generate a new set of default response headers. This method can be useful if the client application wants
to clear any custom headers that were specified prior to sending a response to the client. In most cases it
is not necessary to use this method because the server will automatically clear the response headers when
a session terminates.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.ClearHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClearHeaders Method (Int32)

Delete all of the response headers for the active client session.

[Visual Basic]
Overloads Public Function ClearHeaders() As Boolean

[C#]
public bool ClearHeaders();

Return Value
A boolean value which specifies if the response headers were cleared. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The ClearHeaders method is used to delete all of the current response header values and automatically
generate a new set of default response headers. This method can be useful if the client application wants
to clear any custom headers that were specified prior to sending a response to the client. In most cases it
is not necessary to use this method because the server will automatically clear the response headers when
a session terminates.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.ClearHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ClearHeaders Method ()

Delete a virtual host associated with the specified server.

Overload List
Delete a virtual host associated with the specified server.

public bool DeleteHost(int);

Delete a virtual host associated with the specified server.

public bool DeleteHost(string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DeleteHost Method

Delete a virtual host associated with the specified server.

[Visual Basic]
Overloads Public Function DeleteHost(_
 ByVal hostId As Integer _
) As Boolean

[C#]
public bool DeleteHost(
 int hostId
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

Return Value
A boolean value which specifies if the virtual host was deleted from the server. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The DeleteHost method removes a virtual host that was created by a previous call to the AddHost
method. All virtual paths and users associated with the specified host are no longer valid. It is not
necessary to call this method to delete any of the virtual hosts prior to stopping the server. Part of the
normal shutdown process is releasing the resources allocated for each virtual host that was added to the
server.

This method cannot be used to delete the virtual host with an ID of zero, which is the default virtual host
that is allocated when the server is started.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.DeleteHost Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DeleteHost Method (Int32)

Delete a virtual host associated with the specified server.

[Visual Basic]
Overloads Public Function DeleteHost(_
 ByVal hostName As String _
) As Boolean

[C#]
public bool DeleteHost(
 string hostName
);

Parameters
hostName

A string that specifies the name of the virtual host that was previous added to the server. This value
must match the complete virtual host name.

Return Value
A boolean value which specifies if the virtual host was removed from the server. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The DeleteHost method removes a virtual host that was created by a previous call to the AddHost
method. All virtual paths and users associated with the specified host are no longer valid. It is not
necessary to call this method to delete any of the virtual hosts prior to stopping the server. Part of the
normal shutdown process is releasing the resources allocated for each virtual host that was added to the
server.

This method cannot be used to delete the default virtual host that is created when the server is started.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.DeleteHost Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DeleteHost Method (String)

Delete a virtual path from the specified virtual host.

Overload List
Delete a virtual path from the specified virtual host.

public bool DeletePath(int,string);

Delete a virtual path from the default virtual host.

public bool DeletePath(string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DeletePath Method

Delete a virtual path from the specified virtual host.

[Visual Basic]
Overloads Public Function DeletePath(_
 ByVal hostId As Integer, _
 ByVal virtualPath As String _
) As Boolean

[C#]
public bool DeletePath(
 int hostId,
 string virtualPath
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

virtualPath
A string that specifies the virtual path to be removed. This path must be absolute and cannot be an
empty string.

Return Value
A boolean value which specifies if the virtual path was removed from the server. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.DeletePath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DeletePath Method (Int32, String)

Delete a virtual path from the default virtual host.

[Visual Basic]
Overloads Public Function DeletePath(_
 ByVal virtualPath As String _
) As Boolean

[C#]
public bool DeletePath(
 string virtualPath
);

Parameters
virtualPath

A string that specifies the virtual path to be removed. This path must be absolute and cannot be an
empty string.

Return Value
A boolean value which specifies if the virtual path was removed from the server. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.DeletePath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DeletePath Method (String)

Remove a virtual user from the server.

Overload List
Remove a virtual user from the server.

public bool DeleteUser(int,string);

Remove a virtual user from the server.

public bool DeleteUser(string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DeleteUser Method

Remove a virtual user from the server.

[Visual Basic]
Overloads Public Function DeleteUser(_
 ByVal hostId As Integer, _
 ByVal userName As String _
) As Boolean

[C#]
public bool DeleteUser(
 int hostId,
 string userName
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

userName
A string which specifies the user name to be deleted. Usernames are not case sensitive.

Return Value
A boolean value which specifies if the virtual user has been deleted. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The DeleteUser method removes a virtual user that was created by a previous call to the AddUser
method. This method will not match partial usernames and wildcard characters cannot be used to delete
multiple users. Usernames are not case sensitive. You cannot use this method to delete the "anonymous"
user.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.DeleteUser Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DeleteUser Method (Int32, String)

Remove a virtual user from the server.

[Visual Basic]
Overloads Public Function DeleteUser(_
 ByVal userName As String _
) As Boolean

[C#]
public bool DeleteUser(
 string userName
);

Parameters
userName

A string which specifies the user name to be deleted. Usernames are not case sensitive.

Return Value
A boolean value which specifies if the virtual user has been deleted. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The DeleteUser method removes a virtual user that was created by a previous call to the AddUser
method. This method will not match partial usernames and wildcard characters cannot be used to delete
multiple users. Usernames are not case sensitive. You cannot use this method to delete the "anonymous"
user.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.DeleteUser Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DeleteUser Method (String)

Disconnect the specified client session from the server.

Overload List
Disconnect the specified client session from the server.

public void Disconnect();

Disconnect the specified client session from the server.

public void Disconnect(int);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Disconnect Method

Disconnect the specified client session from the server.

[Visual Basic]
Overloads Public Sub Disconnect(_
 ByVal clientId As Integer _
)

[C#]
public void Disconnect(
 int clientId
);

Parameters
clientId

An integer that identifies the client session.

Return Value
A boolean value which specifies if the client has been signaled to disconnect from the server. A return
value of true specifies that the operation was successful. If an error occurs, the method returns false and
the application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Disconnect method terminates the specified client session, releasing the socket handle other
resources that were allocated for the session. It is only necessary to use this method if you want the server
to explicitly terminate a client connection. Normally the client will close its connection to the server, the
OnDisconnect event will fire and the server will automatically disconnect the client.

This method signals the thread that is managing the client that it should disconnect from the server, and it
will begin the process of terminating the session. This is an asynchronous process and it is not guaranteed
that the client will have actually disconnected from the server at the time that this method returns to the
caller.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Disconnect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Disconnect Method (Int32)

Disconnect the specified client session from the server.

[Visual Basic]
Overloads Public Sub Disconnect()

[C#]
public void Disconnect();

Return Value
A boolean value which specifies if the client has been signaled to disconnect from the server. A return
value of true specifies that the operation was successful. If an error occurs, the method returns false and
the application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Disconnect method terminates the active client session, releasing the socket handle other resources
that were allocated for the session. It is only necessary to use this method if you want the server to
explicitly terminate a client connection. Normally the client will close its connection to the server, the
OnDisconnect event will fire and the server will automatically disconnect the client.

This method signals the thread that is managing the client that it should disconnect from the server, and it
will begin the process of terminating the session. This is an asynchronous process and it is not guaranteed
that the client will have actually disconnected from the server at the time that this method returns to the
caller.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Disconnect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Disconnect Method ()

Releases all resources used by HttpServer.

Overload List
Releases all resources used by HttpServer.

public void Dispose();

Releases the unmanaged resources allocated by the HttpServer class and optionally releases the managed
resources.

protected void Dispose(bool);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Dispose Method

Releases the unmanaged resources allocated by the HttpServer class and optionally releases the managed
resources.

[Visual Basic]
Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the HttpServer class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Dispose Method (Boolean)

Releases all resources used by HttpServer.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method stops the server, terminates all active client sessions and explicitly releases the
resources allocated for this instance of the class. In some cases, better performance can be achieved if the
programmer explicitly releases resources when they are no longer being used. The Dispose method
provides explicit control over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Dispose Method ()

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Finalize Method

Return all of the request header values in the specified string buffer.

Overload List
Return all of the request header values in the specified string buffer.

public bool GetAllHeaders(int,ref string);

Return all of the request header values in the specified string buffer.

public bool GetAllHeaders(ref string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.GetAllHeaders Method

Return all of the request header values in the specified string buffer.

[Visual Basic]
Overloads Public Function GetAllHeaders(_
 ByVal clientId As Integer, _
 ByRef requestHeaders As String _
) As Boolean

[C#]
public bool GetAllHeaders(
 int clientId,
 ref string requestHeaders
);

Parameters
clientId

An integer that identifies the client session.

requestHeaders
A string variable that is passed by reference which will contain the request headers when the method
returns.

Return Value
A boolean value which specifies if the request headers were copied to the string buffer. A return value of
true specifies that the operation was successful. If an error occurs, the method returns false and the
application should check the value of the LastError property to determine the cause of the failure

Remarks
The GetAllHeaders method is used to obtain all of the request headers that were provided by the client.
Each header name is separated from its value by the colon (:) and each header is terminated with a
carriage return and linefeed (CRLF) sequence. Typically this method would be used within an
OnCommand event handler. To get the value of a specific request header, use the GetHeader method.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.GetAllHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.GetAllHeaders Method (Int32, String)

Return all of the request header values in the specified string buffer.

[Visual Basic]
Overloads Public Function GetAllHeaders(_
 ByRef requestHeaders As String _
) As Boolean

[C#]
public bool GetAllHeaders(
 ref string requestHeaders
);

Parameters
requestHeaders

A string variable that is passed by reference which will contain the request headers when the method
returns.

Return Value
A boolean value which specifies if the request headers were copied to the string buffer. A return value of
true specifies that the operation was successful. If an error occurs, the method returns false and the
application should check the value of the LastError property to determine the cause of the failure

Remarks
The GetAllHeaders method is used to obtain all of the request headers that were provided by the client.
Each header name is separated from its value by the colon (:) and each header is terminated with a
carriage return and linefeed (CRLF) sequence. Typically this method would be used within an
OnCommand event handler. To get the value of a specific request header, use the GetHeader method.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.GetAllHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.GetAllHeaders Method (String)

Return the value of a request header for the specified client session.

Overload List
Return the value of a request header for the specified client session.

public bool GetHeader(int,string,ref string);

Return the value of a request header for the active client session.

public bool GetHeader(string,ref string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.GetHeader Method

Return the value of a request header for the specified client session.

[Visual Basic]
Overloads Public Function GetHeader(_
 ByVal clientId As Integer, _
 ByVal headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetHeader(
 int clientId,
 string headerName,
 ref string headerValue
);

Parameters
clientId

An integer that identifies the client session.

headerName
A string that specifies the name of the header field. Header names are not case-sensitive and should
not include the colon which acts as a delimiter that separates the header name from its value.

headerValue
A string variable that is passed by reference which will contain the value of the header when the
method returns.

Return Value
A boolean value which specifies if the header value was copied to the string buffer. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The GetHeader method will return the value of a specific header field included in the request sent by the
client. Typically this is used within an OnCommand event handler when the server application needs to
process a custom command. The GetAllHeaders method can be used to obtain a copy of the complete
request header block submitted by the client.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.GetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.GetHeader Method (Int32, String, String)

Return the value of a request header for the active client session.

[Visual Basic]
Overloads Public Function GetHeader(_
 ByVal headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetHeader(
 string headerName,
 ref string headerValue
);

Parameters
headerName

A string that specifies the name of the header field. Header names are not case-sensitive and should
not include the colon which acts as a delimiter that separates the header name from its value.

headerValue
A string variable that is passed by reference which will contain the value of the header when the
method returns.

Return Value
A boolean value which specifies if the header value was copied to the string buffer. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The GetHeader method will return the value of a specific header field included in the request sent by the
client. Typically this is used within an OnCommand event handler when the server application needs to
process a custom command. The GetAllHeaders method can be used to obtain a copy of the complete
request header block submitted by the client.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.GetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.GetHeader Method (String, String)

Return the value of a CGI environment variable for the specified client.

Overload List
Return the value of a CGI environment variable for the specified client.

public bool GetVariable(int,string,ref string);

Return the value of a CGI environment variable for the active client.

public bool GetVariable(string,ref string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.GetVariable Method

Return the value of a CGI environment variable for the specified client.

[Visual Basic]
Overloads Public Function GetVariable(_
 ByVal clientId As Integer, _
 ByVal variableName As String, _
 ByRef variableValue As String _
) As Boolean

[C#]
public bool GetVariable(
 int clientId,
 string variableName,
 ref string variableValue
);

Parameters
clientId

An integer that identifies the client session.

variableName
A string that that specifies the name of the environment variable. Variable names are not case-
sensitive and should not include the equal sign which acts as a delimiter that separates the variable
name from its value.

variableValue
A string variable that is passed by reference which will contain the value of the environment variable
when the method returns.

Return Value
A boolean value which specifies if the header value was copied to the string buffer. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The GetVariable method will return the value of an environment variable that has been defined for the
client. Each client session inherits a copy of the process environment block, which is then modified to
define various environment variables that are used with CGI programs and scripts. The SetVariable
method can be used to change existing environment variables or create new variables.

The standard CGI environment variables that are defined by the server are not created until the client
request has been processed. This means that environment variables such as REMOTE_ADDR and
SERVER_NAME will not be defined inside an OnConnect event handler.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.GetVariable Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.GetVariable Method (Int32, String, String)

Return the value of a CGI environment variable for the active client.

[Visual Basic]
Overloads Public Function GetVariable(_
 ByVal variableName As String, _
 ByRef variableValue As String _
) As Boolean

[C#]
public bool GetVariable(
 string variableName,
 ref string variableValue
);

Parameters
variableName

A string that that specifies the name of the environment variable. Variable names are not case-
sensitive and should not include the equal sign which acts as a delimiter that separates the variable
name from its value.

variableValue
A string variable that is passed by reference which will contain the value of the environment variable
when the method returns.

Return Value
A boolean value which specifies if the header value was copied to the string buffer. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The GetVariable method will return the value of an environment variable that has been defined for the
client. Each client session inherits a copy of the process environment block, which is then modified to
define various environment variables that are used with CGI programs and scripts. The SetVariable
method can be used to change existing environment variables or create new variables.

The standard CGI environment variables that are defined by the server are not created until the client
request has been processed. This means that environment variables such as REMOTE_ADDR and
SERVER_NAME will not be defined inside an OnConnect event handler.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.GetVariable Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.GetVariable Method (String, String)

Initialize an instance of the HttpServer class.

Overload List
Initialize an instance of the HttpServer class.

public bool Initialize();

Initialize an instance of the HttpServer class.

public bool Initialize(string);

See Also
HttpServer Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Initialize Method

Initialize an instance of the HttpServer class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the HttpServer class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of HttpServer can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the HttpServer class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.HttpServer server = new SocketTools.HttpServer();

if (server.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(server.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim Server As New SocketTools.HttpServer

If Server.Initialize(strLicenseKey) = False Then
 MsgBox(Server.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Initialize Method (String)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.RuntimeLicenseAttribute.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.RuntimeLicenseAttribute.html

Initialize an instance of the HttpServer class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the HttpServer class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Initialize Method ()

Receive the request that was sent by the client to the server.

Overload List
Receive the request that was sent by the client to the server.

public bool ReceiveRequest(byte[],ref int);

Receive the request that was sent by the client to the server.

public bool ReceiveRequest(int,byte[],ref int);

Receive the request that was sent by the client to the server.

public bool ReceiveRequest(int,MemoryStream);

Receive the request that was sent by the client to the server.

public bool ReceiveRequest(int,ref string);

Receive the request that was sent by the client to the server.

public bool ReceiveRequest(MemoryStream);

Receive the request that was sent by the client to the server.

public bool ReceiveRequest(ref string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ReceiveRequest Method

Receive the request that was sent by the client to the server.

[Visual Basic]
Overloads Public Function ReceiveRequest(_
 ByVal clientId As Integer, _
 ByVal requestData As Byte(), _
 ByRef requestSize As Integer _
) As Boolean

[C#]
public bool ReceiveRequest(
 int clientId,
 byte[] requestData,
 ref int requestSize
);

Parameters
clientId

An integer that identifies the client session.

requestData
A byte array that will contain any data submitted by the client as part of the request.

requestSize
An integer value passed by reference that will contain the number of bytes copied into the byte array
when the method returns.

Return Value
A boolean value which specifies if the client request was received. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure

Remarks
The ReceiveRequest method is called within an OnCommand event handler to process the command
issued by the client and return information about the request to the server application. It is only necessary
for the application to call this method if it wants to implement its own custom handling for a command.

It is recommended that you only use this method to process custom commands and not standard
commands such as GET and POST. This ensures that the appropriate security checks are performed and
the response conforms to the protocol standard. After the request data has been processed, the
application should use the SendResponse or SendError method to send a response back to the client
indicating success or failure.

This method may only be called once per command issued by the client.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.ReceiveRequest Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ReceiveRequest Method (Int32, Byte[], Int32)

Receive the request that was sent by the client to the server.

[Visual Basic]
Overloads Public Function ReceiveRequest(_
 ByVal requestData As Byte(), _
 ByRef requestSize As Integer _
) As Boolean

[C#]
public bool ReceiveRequest(
 byte[] requestData,
 ref int requestSize
);

Parameters
requestData

A byte array that will contain any data submitted by the client as part of the request.

requestSize
An integer value passed by reference that will contain the number of bytes copied into the byte array
when the method returns.

Return Value
A boolean value which specifies if the client request was received. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure

Remarks
The ReceiveRequest method is called within an OnCommand event handler to process the command
issued by the client and return information about the request to the server application. It is only necessary
for the application to call this method if it wants to implement its own custom handling for a command.

It is recommended that you only use this method to process custom commands and not standard
commands such as GET and POST. This ensures that the appropriate security checks are performed and
the response conforms to the protocol standard. After the request data has been processed, the
application should use the SendResponse or SendError method to send a response back to the client
indicating success or failure.

This method may only be called once per command issued by the client.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.ReceiveRequest Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ReceiveRequest Method (Byte[], Int32)

Receive the request that was sent by the client to the server.

[Visual Basic]
Overloads Public Function ReceiveRequest(_
 ByVal clientId As Integer, _
 ByRef requestData As String _
) As Boolean

[C#]
public bool ReceiveRequest(
 int clientId,
 ref string requestData
);

Parameters
clientId

An integer that identifies the client session.

requestData
A string passed by reference that will contain any data submitted by the client as part of the request.

Return Value
A boolean value which specifies if the client request was received. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure

Remarks
The ReceiveRequest method is called within an OnCommand event handler to process the command
issued by the client and return information about the request to the server application. It is only necessary
for the application to call this method if it wants to implement its own custom handling for a command.

It is recommended that you only use this method to process custom commands and not standard
commands such as GET and POST. This ensures that the appropriate security checks are performed and
the response conforms to the protocol standard. After the request data has been processed, the
application should use the SendResponse or SendError method to send a response back to the client
indicating success or failure.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

This method may only be called once per command issued by the client.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.ReceiveRequest Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ReceiveRequest Method (Int32, String)

Receive the request that was sent by the client to the server.

[Visual Basic]
Overloads Public Function ReceiveRequest(_
 ByRef requestData As String _
) As Boolean

[C#]
public bool ReceiveRequest(
 ref string requestData
);

Parameters
requestData

A string passed by reference that will contain any data submitted by the client as part of the request.

Return Value
A boolean value which specifies if the client request was received. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure

Remarks
The ReceiveRequest method is called within an OnCommand event handler to process the command
issued by the client and return information about the request to the server application. It is only necessary
for the application to call this method if it wants to implement its own custom handling for a command.

It is recommended that you only use this method to process custom commands and not standard
commands such as GET and POST. This ensures that the appropriate security checks are performed and
the response conforms to the protocol standard. After the request data has been processed, the
application should use the SendResponse or SendError method to send a response back to the client
indicating success or failure.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

This method may only be called once per command issued by the client.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.ReceiveRequest Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ReceiveRequest Method (String)

Receive the request that was sent by the client to the server.

[Visual Basic]
Overloads Public Function ReceiveRequest(_
 ByVal clientId As Integer, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool ReceiveRequest(
 int clientId,
 MemoryStream memStream
);

Parameters
clientId

An integer that identifies the client session.

memStream
An instance of a MemoryStream object that will contain any data submitted by the client as part of the
request.

Return Value
A boolean value which specifies if the client request was received. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure

Remarks
The ReceiveRequest method is called within an OnCommand event handler to process the command
issued by the client and return information about the request to the server application. It is only necessary
for the application to call this method if it wants to implement its own custom handling for a command.

It is recommended that you only use this method to process custom commands and not standard
commands such as GET and POST. This ensures that the appropriate security checks are performed and
the response conforms to the protocol standard. After the request data has been processed, the
application should use the SendResponse or SendError method to send a response back to the client
indicating success or failure.

This method may only be called once per command issued by the client.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.ReceiveRequest Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ReceiveRequest Method (Int32, MemoryStream)

Receive the request that was sent by the client to the server.

[Visual Basic]
Overloads Public Function ReceiveRequest(_
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool ReceiveRequest(
 MemoryStream memStream
);

Parameters
memStream

An instance of a MemoryStream object that will contain any data submitted by the client as part of the
request.

Return Value
A boolean value which specifies if the client request was received. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure

Remarks
The ReceiveRequest method is called within an OnCommand event handler to process the command
issued by the client and return information about the request to the server application. It is only necessary
for the application to call this method if it wants to implement its own custom handling for a command.

It is recommended that you only use this method to process custom commands and not standard
commands such as GET and POST. This ensures that the appropriate security checks are performed and
the response conforms to the protocol standard. After the request data has been processed, the
application should use the SendResponse or SendError method to send a response back to the client
indicating success or failure.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

This method may only be called once per command issued by the client.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.ReceiveRequest Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ReceiveRequest Method (MemoryStream)

Redirect the request from the client to another URL.

Overload List
Redirect the request from the client to another URL.

public bool RedirectRequest(int,string);

Redirect the request from the client to another URL.

public bool RedirectRequest(int,string,bool);

Redirect the request from the client to another URL.

public bool RedirectRequest(string);

Redirect the request from the client to another URL.

public bool RedirectRequest(string,bool);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.RedirectRequest Method

Redirect the request from the client to another URL.

[Visual Basic]
Overloads Public Function RedirectRequest(_
 ByVal clientId As Integer, _
 ByVal locationUrl As String, _
 ByVal isPermanent As Boolean _
) As Boolean

[C#]
public bool RedirectRequest(
 int clientId,
 string locationUrl,
 bool isPermanent
);

Parameters
clientId

An integer that identifies the client session.

locationUrl
A string that specifies the new location for the requested resource. This value must be a complete URL,
including the http:// or https:// scheme.

isPermanent
A boolean value that specifies if the redirection should be considered temporary or permanent. If this
value is true, a brower will typically cache the response and use the new resource location for
subsequent requests. If this value is false, the redirection is considered to be temporary and a browser
will continue to use the original resource URI.

Return Value
A boolean value which specifies if the request has been redirected. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The RedirectRequest method can be used within an OnCommand event handler to redirect the client to
a new location for the resource that it has requested. This redirection can be permanent or temporary,
depending on whether the server expects the client to continue to use the original URL when requesting
the resource.

If the isPermanent parameter is false, the actual status code that is returned to the client depends on the
version of the protocol that is being used. If the client has issued the request using HTTP 1.0 then the
server will return a 302 code to the client. If the client used HTTP 1.1, the server will return a 307 code to
the client that indicates it should use the same command verb (GET, POST, etc.) when requesting the
resource at the new location.

This method provides a simplified interface for sending a redirection status code that also implicitly sets
the Location response header to the value of the location parameter. If the server application needs to
send alternate redirection codes such as 305 (Use Proxy) then it should use SetHeader method to set the
value of the Location response header, followed by the SendReponse method to send the redirection
status code.

HttpServer.RedirectRequest Method (Int32, String, Boolean)

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RedirectRequest Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Redirect the request from the client to another URL.

[Visual Basic]
Overloads Public Function RedirectRequest(_
 ByVal clientId As Integer, _
 ByVal locationUrl As String _
) As Boolean

[C#]
public bool RedirectRequest(
 int clientId,
 string locationUrl
);

Parameters
clientId

An integer that identifies the client session.

locationUrl
A string that specifies the new location for the requested resource. This value must be a complete URL,
including the http:// or https:// scheme.

Return Value
A boolean value which specifies if the request has been redirected. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The RedirectRequest method can be used within an OnCommand event handler to redirect the client to
a new location for the resource that it has requested. This redirection can be permanent or temporary,
depending on whether the server expects the client to continue to use the original URL when requesting
the resource.

If the isPermanent parameter is false, the actual status code that is returned to the client depends on the
version of the protocol that is being used. If the client has issued the request using HTTP 1.0 then the
server will return a 302 code to the client. If the client used HTTP 1.1, the server will return a 307 code to
the client that indicates it should use the same command verb (GET, POST, etc.) when requesting the
resource at the new location.

This method provides a simplified interface for sending a redirection status code that also implicitly sets
the Location response header to the value of the location parameter. If the server application needs to
send alternate redirection codes such as 305 (Use Proxy) then it should use SetHeader method to set the
value of the Location response header, followed by the SendReponse method to send the redirection
status code.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RedirectRequest Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.RedirectRequest Method (Int32, String)

Redirect the request from the client to another URL.

[Visual Basic]
Overloads Public Function RedirectRequest(_
 ByVal locationUrl As String, _
 ByVal isPermanent As Boolean _
) As Boolean

[C#]
public bool RedirectRequest(
 string locationUrl,
 bool isPermanent
);

Parameters
locationUrl

A string that specifies the new location for the requested resource. This value must be a complete URL,
including the http:// or https:// scheme.

isPermanent
A boolean value that specifies if the redirection should be considered temporary or permanent. If this
value is true, a brower will typically cache the response and use the new resource location for
subsequent requests. If this value is false, the redirection is considered to be temporary and a browser
will continue to use the original resource URI.

Return Value
A boolean value which specifies if the request has been redirected. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The RedirectRequest method can be used within an OnCommand event handler to redirect the client to
a new location for the resource that it has requested. This redirection can be permanent or temporary,
depending on whether the server expects the client to continue to use the original URL when requesting
the resource.

If the isPermanent parameter is false, the actual status code that is returned to the client depends on the
version of the protocol that is being used. If the client has issued the request using HTTP 1.0 then the
server will return a 302 code to the client. If the client used HTTP 1.1, the server will return a 307 code to
the client that indicates it should use the same command verb (GET, POST, etc.) when requesting the
resource at the new location.

This method provides a simplified interface for sending a redirection status code that also implicitly sets
the Location response header to the value of the location parameter. If the server application needs to
send alternate redirection codes such as 305 (Use Proxy) then it should use SetHeader method to set the
value of the Location response header, followed by the SendReponse method to send the redirection
status code.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

HttpServer.RedirectRequest Method (String, Boolean)

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RedirectRequest Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Redirect the request from the client to another URL.

[Visual Basic]
Overloads Public Function RedirectRequest(_
 ByVal locationUrl As String _
) As Boolean

[C#]
public bool RedirectRequest(
 string locationUrl
);

Parameters
locationUrl

A string that specifies the new location for the requested resource. This value must be a complete URL,
including the http:// or https:// scheme.

Return Value
A boolean value which specifies if the request has been redirected. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The RedirectRequest method can be used within an OnCommand event handler to redirect the client to
a new location for the resource that it has requested. This redirection can be permanent or temporary,
depending on whether the server expects the client to continue to use the original URL when requesting
the resource.

If the isPermanent parameter is false, the actual status code that is returned to the client depends on the
version of the protocol that is being used. If the client has issued the request using HTTP 1.0 then the
server will return a 302 code to the client. If the client used HTTP 1.1, the server will return a 307 code to
the client that indicates it should use the same command verb (GET, POST, etc.) when requesting the
resource at the new location.

This method provides a simplified interface for sending a redirection status code that also implicitly sets
the Location response header to the value of the location parameter. If the server application needs to
send alternate redirection codes such as 305 (Use Proxy) then it should use SetHeader method to set the
value of the Location response header, followed by the SendReponse method to send the redirection
status code.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RedirectRequest Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.RedirectRequest Method (String)

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a server has been started, it will be stopped
and any active client connections will be terminated. All properties will be reset to their default values.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Reset Method

Restarts the server and terminates all active client connections.

[Visual Basic]
Public Function Restart() As Boolean

[C#]
public bool Restart();

Return Value
A boolean value which specifies if the server was restarted. A return value of true specifies that the server
has been successfully restarted. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The Restart method terminates all active client connections, recreates a new listening socket bound to the
same address and port number, and then resumes accepting new client connections.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Restart Method

Register a CGI program for use and associate it with a file name extension.

Overload List
Register a CGI program for use and associate it with a file name extension.

public bool RegisterHandler(int,string,string);

Register a CGI program for use and associate it with a file name extension.

public bool RegisterHandler(int,string,string,string);

Register a CGI program for use and associate it with a file name extension.

public bool RegisterHandler(int,string,string,string,string);

Register a CGI program for use and associate it with a file name extension.

public bool RegisterHandler(string,string);

Register a CGI program for use and associate it with a file name extension.

public bool RegisterHandler(string,string,string);

Register a CGI program for use and associate it with a file name extension.

public bool RegisterHandler(string,string,string,string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.RegisterHandler Method

Register a CGI program for use and associate it with a file name extension.

[Visual Basic]
Overloads Public Function RegisterHandler(_
 ByVal hostId As Integer, _
 ByVal extension As String, _
 ByVal program As String, _
 ByVal parameters As String, _
 ByVal directory As String _
) As Boolean

[C#]
public bool RegisterHandler(
 int hostId,
 string extension,
 string program,
 string parameters,
 string directory
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

extension
A string which specifies the file name extension that is associated with the CGI program.

program
A string which specifies the full path to the CGI program on the local system.

parameters
A string that specifies additional parameters for the program. This value will be passed to the program
as command line arguments. If the CGI program does not require any command line parameters, this
parameter may be an empty string.

directory
A string that specifies the current working directory for the program. If this parameter is an empty
string, the program will use the root directory of the virtual host as the current working directory.

Return Value
A boolean value which specifies if the CGI handler was registered. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The RegisterHandler method registers an executable CGI program and associates it with a file name
extension. When the client issues a GET or POST command that specifies a file with that extension, the
program will be executed and the output return to the client.

The program string specifies file name of the CGI program. You should not install any executable
programs in the server root directory or its subdirectories. A client should never have the ability to directly
access the executable file itself. It is permitted to have multiple file name extensions that reference the

HttpServer.RegisterHandler Method (Int32, String, String, String,
String)

same program. The only requirement is that the extension be unique for the given host. The program
name may contain environment variables surrounded by % symbols. For example, %ProgramFiles% would
be expanded to the C:\Program Files folder.

It is important to note that the program specified by ProgramFile must be an executable file, not a script
or batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The parameters string can specify additional command line parameters that should be passed to the CGI
program as arguments. This string can also contain a placeholder named "%1" that will be replaced by the
full path to the local script filename. If no parameters are specified, the script file name will be passed to
the program as its only argument.

The executable program that is registered using this program must be a console application that conforms
to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as part of a POST
will be provided to the program as standard input. The output from the program must be written to
standard output. The first lines of output from the program should be any response headers, followed by
an empty line. Each line should be terminated with a carriage-return and linefeed (CRLF) sequence. If the
CGI program outputs additional data to be processed by the client, it should provide Content-Type and
Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it will be
executing in. The program will be started as a child process of the server application, and will inherit the
same privileges. This means that it will typically have access to the boot drive, the Windows folders and
the system registry. CGI programs must ensure that all query parameters and request data submitted by
the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RegisterHandler Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a CGI program for use and associate it with a file name extension.

[Visual Basic]
Overloads Public Function RegisterHandler(_
 ByVal hostId As Integer, _
 ByVal extension As String, _
 ByVal program As String, _
 ByVal parameters As String _
) As Boolean

[C#]
public bool RegisterHandler(
 int hostId,
 string extension,
 string program,
 string parameters
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

extension
A string which specifies the file name extension that is associated with the CGI program.

program
A string which specifies the full path to the CGI program on the local system.

parameters
A string that specifies additional parameters for the program. This value will be passed to the program
as command line arguments. If the CGI program does not require any command line parameters, this
parameter may be an empty string.

Return Value
A boolean value which specifies if the CGI handler was registered. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The RegisterHandler method registers an executable CGI program and associates it with a file name
extension. When the client issues a GET or POST command that specifies a file with that extension, the
program will be executed and the output return to the client.

The program string specifies file name of the CGI program. You should not install any executable
programs in the server root directory or its subdirectories. A client should never have the ability to directly
access the executable file itself. It is permitted to have multiple file name extensions that reference the
same program. The only requirement is that the extension be unique for the given host. The program
name may contain environment variables surrounded by % symbols. For example, %ProgramFiles% would
be expanded to the C:\Program Files folder.

It is important to note that the program specified by ProgramFile must be an executable file, not a script
or batch file. If the program name does not contain a directory path, then the standard Windows pathing

HttpServer.RegisterHandler Method (Int32, String, String, String)

rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The parameters string can specify additional command line parameters that should be passed to the CGI
program as arguments. This string can also contain a placeholder named "%1" that will be replaced by the
full path to the local script filename. If no parameters are specified, the script file name will be passed to
the program as its only argument.

The executable program that is registered using this program must be a console application that conforms
to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as part of a POST
will be provided to the program as standard input. The output from the program must be written to
standard output. The first lines of output from the program should be any response headers, followed by
an empty line. Each line should be terminated with a carriage-return and linefeed (CRLF) sequence. If the
CGI program outputs additional data to be processed by the client, it should provide Content-Type and
Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it will be
executing in. The program will be started as a child process of the server application, and will inherit the
same privileges. This means that it will typically have access to the boot drive, the Windows folders and
the system registry. CGI programs must ensure that all query parameters and request data submitted by
the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RegisterHandler Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a CGI program for use and associate it with a file name extension.

[Visual Basic]
Overloads Public Function RegisterHandler(_
 ByVal hostId As Integer, _
 ByVal extension As String, _
 ByVal program As String _
) As Boolean

[C#]
public bool RegisterHandler(
 int hostId,
 string extension,
 string program
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

extension
A string which specifies the file name extension that is associated with the CGI program.

program
A string which specifies the full path to the CGI program on the local system.

Return Value
A boolean value which specifies if the CGI handler was registered. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The RegisterHandler method registers an executable CGI program and associates it with a file name
extension. When the client issues a GET or POST command that specifies a file with that extension, the
program will be executed and the output return to the client.

The program string specifies file name of the CGI program. You should not install any executable
programs in the server root directory or its subdirectories. A client should never have the ability to directly
access the executable file itself. It is permitted to have multiple file name extensions that reference the
same program. The only requirement is that the extension be unique for the given host. The program
name may contain environment variables surrounded by % symbols. For example, %ProgramFiles% would
be expanded to the C:\Program Files folder.

It is important to note that the program specified by ProgramFile must be an executable file, not a script
or batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The parameters string can specify additional command line parameters that should be passed to the CGI
program as arguments. This string can also contain a placeholder named "%1" that will be replaced by the
full path to the local script filename. If no parameters are specified, the script file name will be passed to
the program as its only argument.

HttpServer.RegisterHandler Method (Int32, String, String)

The executable program that is registered using this program must be a console application that conforms
to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as part of a POST
will be provided to the program as standard input. The output from the program must be written to
standard output. The first lines of output from the program should be any response headers, followed by
an empty line. Each line should be terminated with a carriage-return and linefeed (CRLF) sequence. If the
CGI program outputs additional data to be processed by the client, it should provide Content-Type and
Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it will be
executing in. The program will be started as a child process of the server application, and will inherit the
same privileges. This means that it will typically have access to the boot drive, the Windows folders and
the system registry. CGI programs must ensure that all query parameters and request data submitted by
the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RegisterHandler Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a CGI program for use and associate it with a file name extension.

[Visual Basic]
Overloads Public Function RegisterHandler(_
 ByVal extension As String, _
 ByVal program As String, _
 ByVal parameters As String, _
 ByVal directory As String _
) As Boolean

[C#]
public bool RegisterHandler(
 string extension,
 string program,
 string parameters,
 string directory
);

Parameters
extension

A string which specifies the file name extension that is associated with the CGI program.

program
A string which specifies the full path to the CGI program on the local system.

parameters
A string that specifies additional parameters for the program. This value will be passed to the program
as command line arguments. If the CGI program does not require any command line parameters, this
parameter may be an empty string.

directory
A string that specifies the current working directory for the program. If this parameter is an empty
string, the program will use the root directory of the virtual host as the current working directory.

Return Value
A boolean value which specifies if the CGI handler was registered. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The RegisterHandler method registers an executable CGI program and associates it with a file name
extension. When the client issues a GET or POST command that specifies a file with that extension, the
program will be executed and the output return to the client.

The program string specifies file name of the CGI program. You should not install any executable
programs in the server root directory or its subdirectories. A client should never have the ability to directly
access the executable file itself. It is permitted to have multiple file name extensions that reference the
same program. The only requirement is that the extension be unique for the given host. The program
name may contain environment variables surrounded by % symbols. For example, %ProgramFiles% would
be expanded to the C:\Program Files folder.

It is important to note that the program specified by ProgramFile must be an executable file, not a script
or batch file. If the program name does not contain a directory path, then the standard Windows pathing

HttpServer.RegisterHandler Method (String, String, String, String)

rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The parameters string can specify additional command line parameters that should be passed to the CGI
program as arguments. This string can also contain a placeholder named "%1" that will be replaced by the
full path to the local script filename. If no parameters are specified, the script file name will be passed to
the program as its only argument.

The executable program that is registered using this program must be a console application that conforms
to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as part of a POST
will be provided to the program as standard input. The output from the program must be written to
standard output. The first lines of output from the program should be any response headers, followed by
an empty line. Each line should be terminated with a carriage-return and linefeed (CRLF) sequence. If the
CGI program outputs additional data to be processed by the client, it should provide Content-Type and
Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it will be
executing in. The program will be started as a child process of the server application, and will inherit the
same privileges. This means that it will typically have access to the boot drive, the Windows folders and
the system registry. CGI programs must ensure that all query parameters and request data submitted by
the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RegisterHandler Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a CGI program for use and associate it with a file name extension.

[Visual Basic]
Overloads Public Function RegisterHandler(_
 ByVal extension As String, _
 ByVal program As String, _
 ByVal parameters As String _
) As Boolean

[C#]
public bool RegisterHandler(
 string extension,
 string program,
 string parameters
);

Parameters
extension

A string which specifies the file name extension that is associated with the CGI program.

program
A string which specifies the full path to the CGI program on the local system.

parameters
A string that specifies additional parameters for the program. This value will be passed to the program
as command line arguments. If the CGI program does not require any command line parameters, this
parameter may be an empty string.

Return Value
A boolean value which specifies if the CGI handler was registered. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The RegisterHandler method registers an executable CGI program and associates it with a file name
extension. When the client issues a GET or POST command that specifies a file with that extension, the
program will be executed and the output return to the client.

The program string specifies file name of the CGI program. You should not install any executable
programs in the server root directory or its subdirectories. A client should never have the ability to directly
access the executable file itself. It is permitted to have multiple file name extensions that reference the
same program. The only requirement is that the extension be unique for the given host. The program
name may contain environment variables surrounded by % symbols. For example, %ProgramFiles% would
be expanded to the C:\Program Files folder.

It is important to note that the program specified by ProgramFile must be an executable file, not a script
or batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The parameters string can specify additional command line parameters that should be passed to the CGI
program as arguments. This string can also contain a placeholder named "%1" that will be replaced by the
full path to the local script filename. If no parameters are specified, the script file name will be passed to

HttpServer.RegisterHandler Method (String, String, String)

the program as its only argument.

The executable program that is registered using this program must be a console application that conforms
to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as part of a POST
will be provided to the program as standard input. The output from the program must be written to
standard output. The first lines of output from the program should be any response headers, followed by
an empty line. Each line should be terminated with a carriage-return and linefeed (CRLF) sequence. If the
CGI program outputs additional data to be processed by the client, it should provide Content-Type and
Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it will be
executing in. The program will be started as a child process of the server application, and will inherit the
same privileges. This means that it will typically have access to the boot drive, the Windows folders and
the system registry. CGI programs must ensure that all query parameters and request data submitted by
the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RegisterHandler Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a CGI program for use and associate it with a file name extension.

[Visual Basic]
Overloads Public Function RegisterHandler(_
 ByVal extension As String, _
 ByVal program As String _
) As Boolean

[C#]
public bool RegisterHandler(
 string extension,
 string program
);

Parameters
extension

A string which specifies the file name extension that is associated with the CGI program.

program
A string which specifies the full path to the CGI program on the local system.

Return Value
A boolean value which specifies if the CGI handler was registered. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The RegisterHandler method registers an executable CGI program and associates it with a file name
extension. When the client issues a GET or POST command that specifies a file with that extension, the
program will be executed and the output return to the client.

The program string specifies file name of the CGI program. You should not install any executable
programs in the server root directory or its subdirectories. A client should never have the ability to directly
access the executable file itself. It is permitted to have multiple file name extensions that reference the
same program. The only requirement is that the extension be unique for the given host. The program
name may contain environment variables surrounded by % symbols. For example, %ProgramFiles% would
be expanded to the C:\Program Files folder.

It is important to note that the program specified by ProgramFile must be an executable file, not a script
or batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The parameters string can specify additional command line parameters that should be passed to the CGI
program as arguments. This string can also contain a placeholder named "%1" that will be replaced by the
full path to the local script filename. If no parameters are specified, the script file name will be passed to
the program as its only argument.

The executable program that is registered using this program must be a console application that conforms
to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as part of a POST
will be provided to the program as standard input. The output from the program must be written to
standard output. The first lines of output from the program should be any response headers, followed by
an empty line. Each line should be terminated with a carriage-return and linefeed (CRLF) sequence. If the

HttpServer.RegisterHandler Method (String, String)

CGI program outputs additional data to be processed by the client, it should provide Content-Type and
Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it will be
executing in. The program will be started as a child process of the server application, and will inherit the
same privileges. This means that it will typically have access to the boot drive, the Windows folders and
the system registry. CGI programs must ensure that all query parameters and request data submitted by
the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RegisterHandler Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a CGI program for use and associate it with a virtual path on the server.

Overload List
Register a CGI program for use and associate it with a virtual path on the server.

public bool RegisterProgram(int,string,string);

Register a CGI program for use and associate it with a virtual path on the server.

public bool RegisterProgram(int,string,string,string);

Register a CGI program for use and associate it with a virtual path on the server.

public bool RegisterProgram(int,string,string,string,string);

Register a CGI program for use and associate it with a virtual path on the server.

public bool RegisterProgram(string,string);

Register a CGI program for use and associate it with a virtual path on the server.

public bool RegisterProgram(string,string,string);

Register a CGI program for use and associate it with a virtual path on the server.

public bool RegisterProgram(string,string,string,string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.RegisterProgram Method

Register a CGI program for use and associate it with a virtual path on the server.

[Visual Basic]
Overloads Public Function RegisterProgram(_
 ByVal hostId As Integer, _
 ByVal command As String, _
 ByVal program As String, _
 ByVal parameters As String, _
 ByVal directory As String _
) As Boolean

[C#]
public bool RegisterProgram(
 int hostId,
 string command,
 string program,
 string parameters,
 string directory
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

command
A string which specifies the virtual path to the CGI program. This must be an absolute path, but does
not have to specify a pre-existing virtual path or map to the directory structure of the root document
directory for the server. The maximum length of the virtual path is 1024 characters.

program
A string which specifies the full path to the CGI program on the local system.

parameters
A string that specifies additional parameters for the program. This value will be passed to the program
as command line arguments. If the CGI program does not require any command line parameters, this
parameter may be an empty string.

directory
An optional string that specifies the current working directory for the program. If this parameter is an
empty string, the server will use the root document directory for the virtual host.

Return Value
A boolean value which specifies if the CGI program was registered with the server. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure

Remarks
The RegisterProgram method registers a CGI program and associates it with a virtual path. When the
client issues a GET or POST command specifying the virtual path associated with the program, the
program will be executed and the output return to the client.

The program string specifies file name of the CGI program. You should not install any executable

HttpServer.RegisterProgram Method (Int32, String, String, String,
String)

programs in the server root directory or its subdirectories. A client should never have the ability to directly
access the executable file itself. It is permitted to have multiple virtual paths that reference the same
executable file. The only requirement is that the virtual path be unique for the given host. The program
name may contain environment variables surrounded by % symbols. For example, %ProgramFiles% would
be expanded to the C:\Program Files folder.

It is important to note that the program specified by program must be an executable file, not a script or
batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The parameters string can specify additional command line parameters that should be passed to the CGI
program as arguments. This string can also contain a placeholder named "%1" that will be replaced by the
virtual path associated with the program. If this argument is omitted, no additional parameters are passed
to the program.

The executable program that is registered using this program must be a console application that conforms
to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as part of a POST
will be provided to the program as standard input. The output from the program must be written to
standard output. The first lines of output from the program should be any response headers, followed by
an empty line. Each line should be terminated with a carriage-return and linefeed (CRLF) sequence. If the
CGI program outputs additional data to be processed by the client, it should provide Content-Type and
Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it will be
executing in. The program will be started as a child process of the server application, and will inherit the
same privileges. This means that it will typically have access to the boot drive, the Windows folders and
the system registry. CGI programs must ensure that all query parameters and request data submitted by
the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RegisterProgram Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a CGI program for use and associate it with a virtual path on the server.

[Visual Basic]
Overloads Public Function RegisterProgram(_
 ByVal hostId As Integer, _
 ByVal command As String, _
 ByVal program As String, _
 ByVal parameters As String _
) As Boolean

[C#]
public bool RegisterProgram(
 int hostId,
 string command,
 string program,
 string parameters
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

command
A string which specifies the virtual path to the CGI program. This must be an absolute path, but does
not have to specify a pre-existing virtual path or map to the directory structure of the root document
directory for the server. The maximum length of the virtual path is 1024 characters.

program
A string which specifies the full path to the CGI program on the local system.

parameters
A string that specifies additional parameters for the program. This value will be passed to the program
as command line arguments. If the CGI program does not require any command line parameters, this
parameter may be an empty string.

Return Value
A boolean value which specifies if the CGI program was registered with the server. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure

Remarks
The RegisterProgram method registers a CGI program and associates it with a virtual path. When the
client issues a GET or POST command specifying the virtual path associated with the program, the
program will be executed and the output return to the client.

The program string specifies file name of the CGI program. You should not install any executable
programs in the server root directory or its subdirectories. A client should never have the ability to directly
access the executable file itself. It is permitted to have multiple virtual paths that reference the same
executable file. The only requirement is that the virtual path be unique for the given host. The program
name may contain environment variables surrounded by % symbols. For example, %ProgramFiles% would
be expanded to the C:\Program Files folder.

HttpServer.RegisterProgram Method (Int32, String, String, String)

It is important to note that the program specified by program must be an executable file, not a script or
batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The parameters string can specify additional command line parameters that should be passed to the CGI
program as arguments. This string can also contain a placeholder named "%1" that will be replaced by the
virtual path associated with the program. If this argument is omitted, no additional parameters are passed
to the program.

The executable program that is registered using this program must be a console application that conforms
to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as part of a POST
will be provided to the program as standard input. The output from the program must be written to
standard output. The first lines of output from the program should be any response headers, followed by
an empty line. Each line should be terminated with a carriage-return and linefeed (CRLF) sequence. If the
CGI program outputs additional data to be processed by the client, it should provide Content-Type and
Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it will be
executing in. The program will be started as a child process of the server application, and will inherit the
same privileges. This means that it will typically have access to the boot drive, the Windows folders and
the system registry. CGI programs must ensure that all query parameters and request data submitted by
the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RegisterProgram Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a CGI program for use and associate it with a virtual path on the server.

[Visual Basic]
Overloads Public Function RegisterProgram(_
 ByVal hostId As Integer, _
 ByVal command As String, _
 ByVal program As String _
) As Boolean

[C#]
public bool RegisterProgram(
 int hostId,
 string command,
 string program
);

Parameters
hostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual host
should be used.

command
A string which specifies the virtual path to the CGI program. This must be an absolute path, but does
not have to specify a pre-existing virtual path or map to the directory structure of the root document
directory for the server. The maximum length of the virtual path is 1024 characters.

program
A string which specifies the full path to the CGI program on the local system.

Return Value
A boolean value which specifies if the CGI program was registered with the server. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure

Remarks
The RegisterProgram method registers a CGI program and associates it with a virtual path. When the
client issues a GET or POST command specifying the virtual path associated with the program, the
program will be executed and the output return to the client.

The program string specifies file name of the CGI program. You should not install any executable
programs in the server root directory or its subdirectories. A client should never have the ability to directly
access the executable file itself. It is permitted to have multiple virtual paths that reference the same
executable file. The only requirement is that the virtual path be unique for the given host. The program
name may contain environment variables surrounded by % symbols. For example, %ProgramFiles% would
be expanded to the C:\Program Files folder.

It is important to note that the program specified by program must be an executable file, not a script or
batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The parameters string can specify additional command line parameters that should be passed to the CGI
program as arguments. This string can also contain a placeholder named "%1" that will be replaced by the

HttpServer.RegisterProgram Method (Int32, String, String)

virtual path associated with the program. If this argument is omitted, no additional parameters are passed
to the program.

The executable program that is registered using this program must be a console application that conforms
to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as part of a POST
will be provided to the program as standard input. The output from the program must be written to
standard output. The first lines of output from the program should be any response headers, followed by
an empty line. Each line should be terminated with a carriage-return and linefeed (CRLF) sequence. If the
CGI program outputs additional data to be processed by the client, it should provide Content-Type and
Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it will be
executing in. The program will be started as a child process of the server application, and will inherit the
same privileges. This means that it will typically have access to the boot drive, the Windows folders and
the system registry. CGI programs must ensure that all query parameters and request data submitted by
the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RegisterProgram Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a CGI program for use and associate it with a virtual path on the server.

[Visual Basic]
Overloads Public Function RegisterProgram(_
 ByVal command As String, _
 ByVal program As String, _
 ByVal parameters As String, _
 ByVal directory As String _
) As Boolean

[C#]
public bool RegisterProgram(
 string command,
 string program,
 string parameters,
 string directory
);

Parameters
command

A string which specifies the virtual path to the CGI program. This must be an absolute path, but does
not have to specify a pre-existing virtual path or map to the directory structure of the root document
directory for the server. The maximum length of the virtual path is 1024 characters.

program
A string which specifies the full path to the CGI program on the local system.

parameters
A string that specifies additional parameters for the program. This value will be passed to the program
as command line arguments. If the CGI program does not require any command line parameters, this
parameter may be an empty string.

directory
An optional string that specifies the current working directory for the program. If this parameter is an
empty string, the server will use the root document directory for the virtual host.

Return Value
A boolean value which specifies if the CGI program was registered with the server. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure

Remarks
The RegisterProgram method registers a CGI program and associates it with a virtual path. When the
client issues a GET or POST command specifying the virtual path associated with the program, the
program will be executed and the output return to the client.

The program string specifies file name of the CGI program. You should not install any executable
programs in the server root directory or its subdirectories. A client should never have the ability to directly
access the executable file itself. It is permitted to have multiple virtual paths that reference the same
executable file. The only requirement is that the virtual path be unique for the given host. The program
name may contain environment variables surrounded by % symbols. For example, %ProgramFiles% would
be expanded to the C:\Program Files folder.

HttpServer.RegisterProgram Method (String, String, String, String)

It is important to note that the program specified by program must be an executable file, not a script or
batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The parameters string can specify additional command line parameters that should be passed to the CGI
program as arguments. This string can also contain a placeholder named "%1" that will be replaced by the
virtual path associated with the program. If this argument is omitted, no additional parameters are passed
to the program.

The executable program that is registered using this program must be a console application that conforms
to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as part of a POST
will be provided to the program as standard input. The output from the program must be written to
standard output. The first lines of output from the program should be any response headers, followed by
an empty line. Each line should be terminated with a carriage-return and linefeed (CRLF) sequence. If the
CGI program outputs additional data to be processed by the client, it should provide Content-Type and
Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it will be
executing in. The program will be started as a child process of the server application, and will inherit the
same privileges. This means that it will typically have access to the boot drive, the Windows folders and
the system registry. CGI programs must ensure that all query parameters and request data submitted by
the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RegisterProgram Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a CGI program for use and associate it with a virtual path on the server.

[Visual Basic]
Overloads Public Function RegisterProgram(_
 ByVal command As String, _
 ByVal program As String, _
 ByVal parameters As String _
) As Boolean

[C#]
public bool RegisterProgram(
 string command,
 string program,
 string parameters
);

Parameters
command

A string which specifies the virtual path to the CGI program. This must be an absolute path, but does
not have to specify a pre-existing virtual path or map to the directory structure of the root document
directory for the server. The maximum length of the virtual path is 1024 characters.

program
A string which specifies the full path to the CGI program on the local system.

parameters
A string that specifies additional parameters for the program. This value will be passed to the program
as command line arguments. If the CGI program does not require any command line parameters, this
parameter may be an empty string.

Return Value
A boolean value which specifies if the CGI program was registered with the server. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure

Remarks
The RegisterProgram method registers a CGI program and associates it with a virtual path. When the
client issues a GET or POST command specifying the virtual path associated with the program, the
program will be executed and the output return to the client.

The program string specifies file name of the CGI program. You should not install any executable
programs in the server root directory or its subdirectories. A client should never have the ability to directly
access the executable file itself. It is permitted to have multiple virtual paths that reference the same
executable file. The only requirement is that the virtual path be unique for the given host. The program
name may contain environment variables surrounded by % symbols. For example, %ProgramFiles% would
be expanded to the C:\Program Files folder.

It is important to note that the program specified by program must be an executable file, not a script or
batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The parameters string can specify additional command line parameters that should be passed to the CGI

HttpServer.RegisterProgram Method (String, String, String)

program as arguments. This string can also contain a placeholder named "%1" that will be replaced by the
virtual path associated with the program. If this argument is omitted, no additional parameters are passed
to the program.

The executable program that is registered using this program must be a console application that conforms
to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as part of a POST
will be provided to the program as standard input. The output from the program must be written to
standard output. The first lines of output from the program should be any response headers, followed by
an empty line. Each line should be terminated with a carriage-return and linefeed (CRLF) sequence. If the
CGI program outputs additional data to be processed by the client, it should provide Content-Type and
Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it will be
executing in. The program will be started as a child process of the server application, and will inherit the
same privileges. This means that it will typically have access to the boot drive, the Windows folders and
the system registry. CGI programs must ensure that all query parameters and request data submitted by
the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RegisterProgram Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a CGI program for use and associate it with a virtual path on the server.

[Visual Basic]
Overloads Public Function RegisterProgram(_
 ByVal command As String, _
 ByVal program As String _
) As Boolean

[C#]
public bool RegisterProgram(
 string command,
 string program
);

Parameters
command

A string which specifies the virtual path to the CGI program. This must be an absolute path, but does
not have to specify a pre-existing virtual path or map to the directory structure of the root document
directory for the server. The maximum length of the virtual path is 1024 characters.

program
A string which specifies the full path to the CGI program on the local system.

Return Value
A boolean value which specifies if the CGI program was registered with the server. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure

Remarks
The RegisterProgram method registers a CGI program and associates it with a virtual path. When the
client issues a GET or POST command specifying the virtual path associated with the program, the
program will be executed and the output return to the client.

The program string specifies file name of the CGI program. You should not install any executable
programs in the server root directory or its subdirectories. A client should never have the ability to directly
access the executable file itself. It is permitted to have multiple virtual paths that reference the same
executable file. The only requirement is that the virtual path be unique for the given host. The program
name may contain environment variables surrounded by % symbols. For example, %ProgramFiles% would
be expanded to the C:\Program Files folder.

It is important to note that the program specified by program must be an executable file, not a script or
batch file. If the program name does not contain a directory path, then the standard Windows pathing
rules will be used when searching for an executable file that matches the given name. It is recommended
that you always provide a full path to the executable file.

The parameters string can specify additional command line parameters that should be passed to the CGI
program as arguments. This string can also contain a placeholder named "%1" that will be replaced by the
virtual path associated with the program. If this argument is omitted, no additional parameters are passed
to the program.

The executable program that is registered using this program must be a console application that conforms
to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as part of a POST
will be provided to the program as standard input. The output from the program must be written to

HttpServer.RegisterProgram Method (String, String)

standard output. The first lines of output from the program should be any response headers, followed by
an empty line. Each line should be terminated with a carriage-return and linefeed (CRLF) sequence. If the
CGI program outputs additional data to be processed by the client, it should provide Content-Type and
Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it will be
executing in. The program will be started as a child process of the server application, and will inherit the
same privileges. This means that it will typically have access to the boot drive, the Windows folders and
the system registry. CGI programs must ensure that all query parameters and request data submitted by
the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have elevated
privileges, do not register a program that requires elevated privileges or has a manifest that specifies the
requestedExecutionLevel as requiring administrative privileges.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RegisterProgram Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Send a response to the client indicating that authentication is required.

Overload List
Send a response to the client indicating that authentication is required.

public bool RequireAuthentication();

Send a response to the client indicating that authentication is required.

public bool RequireAuthentication(int);

Send a response to the client indicating that authentication is required.

public bool RequireAuthentication(int,string);

Send a response to the client indicating that authentication is required.

public bool RequireAuthentication(string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.RequireAuthentication Method

Send a response to the client indicating that authentication is required.

[Visual Basic]
Overloads Public Function RequireAuthentication(_
 ByVal clientId As Integer, _
 ByVal realm As String _
) As Boolean

[C#]
public bool RequireAuthentication(
 int clientId,
 string realm
);

Parameters
clientId

An integer that identifies the client session.

realm
A string value that is displayed a web browser to indicate to the user which username and password
they should use. If this parameter is omitted or is an empty string, the domain name the client used to
establish the connection will be used.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The RequireAuthentication method can be used within an OnCommand event handler to indicate to
the client that it must provide a username and password to access the requested resource. The client
should respond by issuing another request that includes the required credentials. To determine if a client
has included valid credentials with its request, check the value of the IsAuthenticated property.

Some clients may require that the session be secure if authentication is requested or display warning
messages to the user if the connection is not secure. If your application will require clients to authenticate
before accessing specific resources, it is recommended that you enable security by setting the Secure
property to True prior to starting the server.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RequireAuthentication Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.RequireAuthentication Method (Int32, String)

Send a response to the client indicating that authentication is required.

[Visual Basic]
Overloads Public Function RequireAuthentication(_
 ByVal clientId As Integer _
) As Boolean

[C#]
public bool RequireAuthentication(
 int clientId
);

Parameters
clientId

An integer that identifies the client session.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The RequireAuthentication method can be used within an OnCommand event handler to indicate to
the client that it must provide a username and password to access the requested resource. The client
should respond by issuing another request that includes the required credentials. To determine if a client
has included valid credentials with its request, check the value of the IsAuthenticated property.

Some clients may require that the session be secure if authentication is requested or display warning
messages to the user if the connection is not secure. If your application will require clients to authenticate
before accessing specific resources, it is recommended that you enable security by setting the Secure
property to True prior to starting the server.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RequireAuthentication Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.RequireAuthentication Method (Int32)

Send a response to the client indicating that authentication is required.

[Visual Basic]
Overloads Public Function RequireAuthentication(_
 ByVal realm As String _
) As Boolean

[C#]
public bool RequireAuthentication(
 string realm
);

Parameters
realm

A string value that is displayed a web browser to indicate to the user which username and password
they should use. If this parameter is omitted or is an empty string, the domain name the client used to
establish the connection will be used.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The RequireAuthentication method can be used within an OnCommand event handler to indicate to
the client that it must provide a username and password to access the requested resource. The client
should respond by issuing another request that includes the required credentials. To determine if a client
has included valid credentials with its request, check the value of the IsAuthenticated property.

Some clients may require that the session be secure if authentication is requested or display warning
messages to the user if the connection is not secure. If your application will require clients to authenticate
before accessing specific resources, it is recommended that you enable security by setting the Secure
property to True prior to starting the server.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RequireAuthentication Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.RequireAuthentication Method (String)

Send a response to the client indicating that authentication is required.

[Visual Basic]
Overloads Public Function RequireAuthentication() As Boolean

[C#]
public bool RequireAuthentication();

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The RequireAuthentication method can be used within an OnCommand event handler to indicate to
the client that it must provide a username and password to access the requested resource. The client
should respond by issuing another request that includes the required credentials. To determine if a client
has included valid credentials with its request, check the value of the IsAuthenticated property.

Some clients may require that the session be secure if authentication is requested or display warning
messages to the user if the connection is not secure. If your application will require clients to authenticate
before accessing specific resources, it is recommended that you enable security by setting the Secure
property to True prior to starting the server.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.RequireAuthentication Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.RequireAuthentication Method ()

Resolve a path to its full virtual or local file name.

Overload List
Resolve a path to its full virtual or local file name.

public bool ResolvePath(int,string,ref string,bool);

Resolve a path to its full virtual or local file name.

public bool ResolvePath(string,ref string,bool);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ResolvePath Method

Resolve a path to its full virtual or local file name.

[Visual Basic]
Overloads Public Function ResolvePath(_
 ByVal clientId As Integer, _
 ByVal sourcePath As String, _
 ByRef resolvedPath As String, _
 ByVal isVirtual As Boolean _
) As Boolean

[C#]
public bool ResolvePath(
 int clientId,
 string sourcePath,
 ref string resolvedPath,
 bool isVirtual
);

Parameters
clientId

An integer that identifies the client session.

sourcePath
A string that specifies the name of the path to resolve. This may either be a virtual path, or a path to a
local file name or directory.

resolvedPath
A string that will contain the resolved path when the method returns.

isVirtual
A Boolean parameter that specifies if the source path is a virtual path or local path.

Return Value
A boolean value which specifies if the source path could be resolved. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The ResolvePath method is used to resolve a local file name or directory to obtain its virtual path name,
or obtain the full path name of a file or directory that is mapped to a virtual path. If the isVirtual
parameter is false, the sourcePath parameter is considered to be a path to a local file or directory and the
resolvedPath parameter will contain the virtual path. If the isVirtual parameter is true, then the
sourcePath parameter is considered to be a virtual path and the resolvedPath parameter will contain the
full path to the local file or directory that the virtual path is mapped to

A virtual path for the client is either relative to the server root directory, or the client home directory if the
client was authenticated as a restricted user. These virtual paths are what the client will see as an absolute
path on the server. For example, if the server was configured to use "C:\ProgramData\MyServer" as the
root directory, and the SourcePath parameter was specified as
"C:\ProgramData\MyServer\Documents\Research", this method would return the virtual path to that
directory as "/Documents/Research".

If the client session was authenticated as a restricted user, then the virtual path is always relative to the

HttpServer.ResolvePath Method (Int32, String, String, Boolean)

client home directory instead of the server root directory. This is because restricted users are isolated to
their own home directory and any subdirectories. For example, if restricted user "John" has a home
directory of "C:\ProgramData\MyServer\Users\John" and the SourcePath parameter was specified as
"C:\ProgramData\MyServer\Users\John\Accounting\Projections.pdf" this method would return the virtual
path as "/Accounting/Projections.pdf".

If the sourcePath parameter specifies a file or directory outside of the server root directory, this method
will fail and the last error code will be set to errorInvalidFileName. This method can only be used with
authenticated clients. If the clientId parameter specifies a client session that has not been authenticated,
this method will fail and the last error code will be errorAuthenticationRequired.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.ResolvePath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Resolve a path to its full virtual or local file name.

[Visual Basic]
Overloads Public Function ResolvePath(_
 ByVal sourcePath As String, _
 ByRef resolvedPath As String, _
 ByVal isVirtual As Boolean _
) As Boolean

[C#]
public bool ResolvePath(
 string sourcePath,
 ref string resolvedPath,
 bool isVirtual
);

Parameters
sourcePath

A string that specifies the name of the path to resolve. This may either be a virtual path, or a path to a
local file name or directory.

resolvedPath
A string that will contain the resolved path when the method returns.

isVirtual
A Boolean parameter that specifies if the source path is a virtual path or local path.

Return Value
A boolean value which specifies if the source path could be resolved. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The ResolvePath method is used to resolve a local file name or directory to obtain its virtual path name,
or obtain the full path name of a file or directory that is mapped to a virtual path. If the isVirtual
parameter is false, the sourcePath parameter is considered to be a path to a local file or directory and the
resolvedPath parameter will contain the virtual path. If the isVirtual parameter is true, then the
sourcePath parameter is considered to be a virtual path and the resolvedPath parameter will contain the
full path to the local file or directory that the virtual path is mapped to

A virtual path for the client is either relative to the server root directory, or the client home directory if the
client was authenticated as a restricted user. These virtual paths are what the client will see as an absolute
path on the server. For example, if the server was configured to use "C:\ProgramData\MyServer" as the
root directory, and the SourcePath parameter was specified as
"C:\ProgramData\MyServer\Documents\Research", this method would return the virtual path to that
directory as "/Documents/Research".

If the client session was authenticated as a restricted user, then the virtual path is always relative to the
client home directory instead of the server root directory. This is because restricted users are isolated to
their own home directory and any subdirectories. For example, if restricted user "John" has a home
directory of "C:\ProgramData\MyServer\Users\John" and the SourcePath parameter was specified as
"C:\ProgramData\MyServer\Users\John\Accounting\Projections.pdf" this method would return the virtual

HttpServer.ResolvePath Method (String, String, Boolean)

path as "/Accounting/Projections.pdf".

If the sourcePath parameter specifies a file or directory outside of the server root directory, this method
will fail and the last error code will be set to errorInvalidFileName. This method can only be used with
authenticated clients. If the clientId parameter specifies a client session that has not been authenticated,
this method will fail and the last error code will be errorAuthenticationRequired.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.ResolvePath Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Resume accepting new client connections.

[Visual Basic]
Public Function Resume() As Boolean

[C#]
public bool Resume();

Return Value
A boolean value which specifies if the server has resumed accepting client connections. A return value of
true specifies that the operation was successful. If an error occurs, the method returns false and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Resume method instructs the server to resume accepting new client connections. Any pending client
connections that were requested while the server was suspended will be accepted.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Resume Method

Send an error result code and message to the client in response to a command.

Overload List
Send an error result code and message to the client in response to a command.

public bool SendError(int);

Send an error result code and message to the client in response to a command.

public bool SendError(int,int);

Send an error result code and message to the client in response to a command.

public bool SendError(int,int,string);

Send an error result code and message to the client in response to a command.

public bool SendError(int,string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.SendError Method

Send an error result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendError(_
 ByVal clientId As Integer, _
 ByVal resultCode As Integer, _
 ByVal message As String _
) As Boolean

[C#]
public bool SendError(
 int clientId,
 int resultCode,
 string message
);

Parameters
clientId

An integer that identifies the client session.

resultCode
An integer value that specifies the error code that should be sent to the client. This value should
correspond to the error result codes defined for HTTP in RFC 2616, which are three-digit values in the
range of 400 through 599. The method will fail if an invalid error code is specified.

message
An string value that specifies a message to be sent to the client. If this parameter is an empty string, a
default message associated with the result code will be used.

Return Value
A boolean value which specifies if the error response was sent to the client. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendError method sends a response to the client indicating that an error has occurred, providing a
numeric error code and HTML formatted text which may be displayed to the user. The Message
parameter should provide a brief description of the error that will be included in the output sent to the
client. Note that the message should not contain any special formatting control characters or HTML
markup.

This method provides a simplified interface for sending an error response to the client. In some cases, a
browser may choose to display its own error message to the user in place of the generic HTML document
generated by this method. If you want your application to send a customized HTML document for a
specific type of error, you should use the SendResponse method.

If you wish to redirect the client to use an alternate URL to access the requested resource, it is
recommended that you use the RedirectRequest method rather than sending an error response.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SendError Overload List

HttpServer.SendError Method (Int32, Int32, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Send an error result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendError(_
 ByVal clientId As Integer, _
 ByVal resultCode As Integer _
) As Boolean

[C#]
public bool SendError(
 int clientId,
 int resultCode
);

Parameters
clientId

An integer that identifies the client session.

resultCode
An integer value that specifies the error code that should be sent to the client. This value should
correspond to the error result codes defined for HTTP in RFC 2616, which are three-digit values in the
range of 400 through 599. The method will fail if an invalid error code is specified.

Return Value
A boolean value which specifies if the error response was sent to the client. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendError method sends a response to the client indicating that an error has occurred, providing a
numeric error code and HTML formatted text which may be displayed to the user. The Message
parameter should provide a brief description of the error that will be included in the output sent to the
client. Note that the message should not contain any special formatting control characters or HTML
markup.

This method provides a simplified interface for sending an error response to the client. In some cases, a
browser may choose to display its own error message to the user in place of the generic HTML document
generated by this method. If you want your application to send a customized HTML document for a
specific type of error, you should use the SendResponse method.

If you wish to redirect the client to use an alternate URL to access the requested resource, it is
recommended that you use the RedirectRequest method rather than sending an error response.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SendError Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.SendError Method (Int32, Int32)

Send an error result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendError(_
 ByVal resultCode As Integer, _
 ByVal message As String _
) As Boolean

[C#]
public bool SendError(
 int resultCode,
 string message
);

Parameters
resultCode

An integer value that specifies the error code that should be sent to the client. This value should
correspond to the error result codes defined for HTTP in RFC 2616, which are three-digit values in the
range of 400 through 599. The method will fail if an invalid error code is specified.

message
An string value that specifies a message to be sent to the client. If this parameter is an empty string, a
default message associated with the result code will be used.

Return Value
A boolean value which specifies if the error response was sent to the client. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendError method sends a response to the client indicating that an error has occurred, providing a
numeric error code and HTML formatted text which may be displayed to the user. The Message
parameter should provide a brief description of the error that will be included in the output sent to the
client. Note that the message should not contain any special formatting control characters or HTML
markup.

This method provides a simplified interface for sending an error response to the client. In some cases, a
browser may choose to display its own error message to the user in place of the generic HTML document
generated by this method. If you want your application to send a customized HTML document for a
specific type of error, you should use the SendResponse method.

If you wish to redirect the client to use an alternate URL to access the requested resource, it is
recommended that you use the RedirectRequest method rather than sending an error response.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SendError Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.SendError Method (Int32, String)

Send an error result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendError(_
 ByVal resultCode As Integer _
) As Boolean

[C#]
public bool SendError(
 int resultCode
);

Parameters
resultCode

An integer value that specifies the error code that should be sent to the client. This value should
correspond to the error result codes defined for HTTP in RFC 2616, which are three-digit values in the
range of 400 through 599. The method will fail if an invalid error code is specified.

Return Value
A boolean value which specifies if the error response was sent to the client. A return value of true specifies
that the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendError method sends a response to the client indicating that an error has occurred, providing a
numeric error code and HTML formatted text which may be displayed to the user. The Message
parameter should provide a brief description of the error that will be included in the output sent to the
client. Note that the message should not contain any special formatting control characters or HTML
markup.

This method provides a simplified interface for sending an error response to the client. In some cases, a
browser may choose to display its own error message to the user in place of the generic HTML document
generated by this method. If you want your application to send a customized HTML document for a
specific type of error, you should use the SendResponse method.

If you wish to redirect the client to use an alternate URL to access the requested resource, it is
recommended that you use the RedirectRequest method rather than sending an error response.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SendError Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.SendError Method (Int32)

Send a result code to the client in response to a command.

Overload List
Send a result code to the client in response to a command.

public bool SendResponse(int);

Send a result code and message to the client in response to a command.

public bool SendResponse(int,byte[],int);

Send a result code to the client in response to a command.

public bool SendResponse(int,int);

Send a result code and message to the client in response to a command.

public bool SendResponse(int,int,byte[],int);

Send a result code and message to the client in response to a command.

public bool SendResponse(int,int,MemoryStream);

Send a result code and message to the client in response to a command.

public bool SendResponse(int,int,string);

Send a result code and message to the client in response to a command.

public bool SendResponse(int,MemoryStream);

Send a result code and message to the client in response to a command.

public bool SendResponse(int,string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.SendResponse Method

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.SendResponse_overload_8.html

Send a result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendResponse(_
 ByVal clientId As Integer, _
 ByVal resultCode As Integer, _
 ByVal responseData As Byte(), _
 ByVal responseSize As Integer _
) As Boolean

[C#]
public bool SendResponse(
 int clientId,
 int resultCode,
 byte[] responseData,
 int responseSize
);

Parameters
clientId

An integer that identifies the client session.

resultCode
An integer value that specifies the command result code to be returned to the client.

responseData
A byte array that contains data that should be returned to the client in response to a request.

responseSize
An integer value that specifies the number of bytes of data that should be sent to the client.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a normal part
of processing a command and this method is only used if the application has implemented custom
commands or wishes to modify the standard responses sent by the server.

Result codes must be three digits (in the range of 100 through 999) and although this method will support
the use of non-standard result codes, it is recommended that the client application use the standard
codes defined in RFC 2616 whenever possible. The use of non-standard result codes may cause problems
with HTTP clients that expect specific result codes in response to a particular command.

If you do not wish to return any data to the client in response to its request (for example, if you want the
response to only consist of the headers set using the SetHeader method), then you can use the
overloaded version of this method that omits the responseData parameter, and you should specify a
result code of 204. This tells the client that the request was successful and there is no data included with
the response.

This method should only be called once in response to a command sent by the client. If a result code has

HttpServer.SendResponse Method (Int32, Int32, Byte[], Int32)

already been sent in response to a command and this method is called, it will fail and return an error. This
is necessary because sending multiple result codes in response to a single command may cause
unpredictable behavior by the client.

This version of the method would typically be used when returning binary data to the client. For textual
data, such as an HTML or XML response, it is recommended that you use the overloaded version of this
method that accepts a string.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SendResponse Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Send a result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendResponse(_
 ByVal resultCode As Integer, _
 ByVal responseData As Byte(), _
 ByVal responseSize As Integer _
) As Boolean

[C#]
public bool SendResponse(
 int resultCode,
 byte[] responseData,
 int responseSize
);

Parameters
resultCode

An integer value that specifies the command result code to be returned to the client.

responseData
A byte array that contains data that should be returned to the client in response to a request.

responseSize
An integer value that specifies the number of bytes of data that should be sent to the client.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a normal part
of processing a command and this method is only used if the application has implemented custom
commands or wishes to modify the standard responses sent by the server.

Result codes must be three digits (in the range of 100 through 999) and although this method will support
the use of non-standard result codes, it is recommended that the client application use the standard
codes defined in RFC 2616 whenever possible. The use of non-standard result codes may cause problems
with HTTP clients that expect specific result codes in response to a particular command.

If you do not wish to return any data to the client in response to its request (for example, if you want the
response to only consist of the headers set using the SetHeader method), then you can use the
overloaded version of this method that omits the responseData parameter, and you should specify a
result code of 204. This tells the client that the request was successful and there is no data included with
the response.

This method should only be called once in response to a command sent by the client. If a result code has
already been sent in response to a command and this method is called, it will fail and return an error. This
is necessary because sending multiple result codes in response to a single command may cause
unpredictable behavior by the client.

This version of the method would typically be used when returning binary data to the client. For textual

HttpServer.SendResponse Method (Int32, Byte[], Int32)

data, such as an HTML or XML response, it is recommended that you use the overloaded version of this
method that accepts a string.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SendResponse Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Send a result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendResponse(_
 ByVal clientId As Integer, _
 ByVal resultCode As Integer, _
 ByVal responseData As String _
) As Boolean

[C#]
public bool SendResponse(
 int clientId,
 int resultCode,
 string responseData
);

Parameters
clientId

An integer that identifies the client session.

resultCode
An integer value that specifies the command result code to be returned to the client.

responseData
A string that contains data that should be returned to the client in response to a request.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a normal part
of processing a command and this method is only used if the application has implemented custom
commands or wishes to modify the standard responses sent by the server.

Result codes must be three digits (in the range of 100 through 999) and although this method will support
the use of non-standard result codes, it is recommended that the client application use the standard
codes defined in RFC 2616 whenever possible. The use of non-standard result codes may cause problems
with HTTP clients that expect specific result codes in response to a particular command.

If you do not wish to return any data to the client in response to its request (for example, if you want the
response to only consist of the headers set using the SetHeader method), then you can use the
overloaded version of this method that omits the responseData parameter, and you should specify a
result code of 204. This tells the client that the request was successful and there is no data included with
the response.

This method should only be called once in response to a command sent by the client. If a result code has
already been sent in response to a command and this method is called, it will fail and return an error. This
is necessary because sending multiple result codes in response to a single command may cause
unpredictable behavior by the client.

This version of the method would typically be used when returning textual data to the client. For binary

HttpServer.SendResponse Method (Int32, Int32, String)

data, it is recommended that you use the overloaded version of this method that accepts a byte array.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SendResponse Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Send a result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendResponse(_
 ByVal resultCode As Integer, _
 ByVal responseData As String _
) As Boolean

[C#]
public bool SendResponse(
 int resultCode,
 string responseData
);

Parameters
resultCode

An integer value that specifies the command result code to be returned to the client.

responseData
A string that contains data that should be returned to the client in response to a request.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a normal part
of processing a command and this method is only used if the application has implemented custom
commands or wishes to modify the standard responses sent by the server.

Result codes must be three digits (in the range of 100 through 999) and although this method will support
the use of non-standard result codes, it is recommended that the client application use the standard
codes defined in RFC 2616 whenever possible. The use of non-standard result codes may cause problems
with HTTP clients that expect specific result codes in response to a particular command.

If you do not wish to return any data to the client in response to its request (for example, if you want the
response to only consist of the headers set using the SetHeader method), then you can use the
overloaded version of this method that omits the responseData parameter, and you should specify a
result code of 204. This tells the client that the request was successful and there is no data included with
the response.

This method should only be called once in response to a command sent by the client. If a result code has
already been sent in response to a command and this method is called, it will fail and return an error. This
is necessary because sending multiple result codes in response to a single command may cause
unpredictable behavior by the client.

This version of the method would typically be used when returning textual data to the client. For binary
data, it is recommended that you use the overloaded version of this method that accepts a byte array.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SendResponse Overload List

HttpServer.SendResponse Method (Int32, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Send a result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendResponse(_
 ByVal clientId As Integer, _
 ByVal resultCode As Integer, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool SendResponse(
 int clientId,
 int resultCode,
 MemoryStream memStream
);

Parameters
clientId

An integer that identifies the client session.

resultCode
An integer value that specifies the command result code to be returned to the client.

memStream
A MemoryStream object that contains data that should be returned to the client in response to a
request.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a normal part
of processing a command and this method is only used if the application has implemented custom
commands or wishes to modify the standard responses sent by the server.

Result codes must be three digits (in the range of 100 through 999) and although this method will support
the use of non-standard result codes, it is recommended that the client application use the standard
codes defined in RFC 2616 whenever possible. The use of non-standard result codes may cause problems
with HTTP clients that expect specific result codes in response to a particular command.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SendResponse Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.SendResponse Method (Int32, Int32, MemoryStream)

Send a result code and message to the client in response to a command.

[Visual Basic]
Overloads Public Function SendResponse(_
 ByVal resultCode As Integer, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool SendResponse(
 int resultCode,
 MemoryStream memStream
);

Parameters
resultCode

An integer value that specifies the command result code to be returned to the client.

memStream
A MemoryStream object that contains data that should be returned to the client in response to a
request.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a normal part
of processing a command and this method is only used if the application has implemented custom
commands or wishes to modify the standard responses sent by the server.

Result codes must be three digits (in the range of 100 through 999) and although this method will support
the use of non-standard result codes, it is recommended that the client application use the standard
codes defined in RFC 2616 whenever possible. The use of non-standard result codes may cause problems
with HTTP clients that expect specific result codes in response to a particular command.

If you do not wish to return any data to the client in response to its request (for example, if you want the
response to only consist of the headers set using the SetHeader method), then you can use the
overloaded version of this method that omits the buffer and length parameters, and should specify a
result code of 204. This tells the client that the request was successful and there is no data included with
the response.

This method should only be called once in response to a command sent by the client. If a result code has
already been sent in response to a command and this method is called, it will fail and return an error. This
is necessary because sending multiple result codes in response to a single command may cause
unpredictable behavior by the client.

This version of the method would typically be used when returning binary data to the client. For textual
data, such as an HTML or XML response, it is recommended that you use the overloaded version of this
method that accepts a string.

HttpServer.SendResponse Method (Int32, MemoryStream)

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SendResponse Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Send a result code to the client in response to a command.

[Visual Basic]
Overloads Public Function SendResponse(_
 ByVal clientId As Integer, _
 ByVal resultCode As Integer _
) As Boolean

[C#]
public bool SendResponse(
 int clientId,
 int resultCode
);

Parameters
clientId

An integer that identifies the client session.

resultCode
An integer value that specifies the command result code to be returned to the client.

Return Value
A boolean value which specifies if the response was sent to the client. A return value of true specifies that
the operation was successful. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a normal part
of processing a command and this method is only used if the application has implemented custom
commands or wishes to modify the standard responses sent by the server.

Result codes must be three digits (in the range of 100 through 999) and although this method will support
the use of non-standard result codes, it is recommended that the client application use the standard
codes defined in RFC 2616 whenever possible. The use of non-standard result codes may cause problems
with HTTP clients that expect specific result codes in response to a particular command.

This version of the method would be used when you do not need to provide any response data to the
client. For successful responses, it is recommended that you specify a result code of 204 which tells the
client that the response will not include any data.

To send an error response to the client, it is recommended that you use the SendError method. This will
ensure that a valid error response will be sent to the client, including a default HTML page that can be
displayed by a browser to notify a user of the error condition.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SendResponse Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.SendResponse Method (Int32, Int32)

Create or change the value of a response header for the client session.

Overload List
Create or change the value of a response header for the client session.

public bool SetHeader(int,string,string);

Create or change the value of a response header for the client session.

public bool SetHeader(string,string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.SetHeader Method

Create or change the value of a response header for the client session.

[Visual Basic]
Overloads Public Function SetHeader(_
 ByVal clientId As Integer, _
 ByVal headerName As String, _
 ByVal headerValue As String _
) As Boolean

[C#]
public bool SetHeader(
 int clientId,
 string headerName,
 string headerValue
);

Parameters
clientId

An integer that identifies the client session.

headerName
A string that specifies the name of the header field. Header names are not case-sensitive and should
not include the colon which acts as a delimiter that separates the header name from its value.

headerValue
A string variable that contains the new value of the response header.

Return Value
A boolean value which specifies if the response header was created or modified. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The SetHeader method will change the value of a response header for the specified client session,
typically within an OnCommand event handler. If the headerName value matches an existing header
field, its value will be replaced. If the header name is not defined, then a new header will be created with
the given value. You should not change the value of most standard response header values unless you are
certain of the impact that it would have on the normal operation of the client.

If you wish to define a custom header value that would be included in the response to a client request,
you should prefix the header name with "X-" to avoid potential conflicts with the standard response
headers. For example, if you wanted to identify a customer, you could create a header field with the name
"X-Customer-ID" and set the value to the customer ID number. The client application would receive this
custom header value as part of the response to its request for a document.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.SetHeader Method (Int32, String, String)

Create or change the value of a response header for the client session.

[Visual Basic]
Overloads Public Function SetHeader(_
 ByVal headerName As String, _
 ByVal headerValue As String _
) As Boolean

[C#]
public bool SetHeader(
 string headerName,
 string headerValue
);

Parameters
headerName

A string that specifies the name of the header field. Header names are not case-sensitive and should
not include the colon which acts as a delimiter that separates the header name from its value.

headerValue
A string variable that contains the new value of the response header.

Return Value
A boolean value which specifies if the response header was created or modified. A return value of true
specifies that the operation was successful. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The SetHeader method will change the value of a response header for the specified client session,
typically within an OnCommand event handler. If the headerName value matches an existing header
field, its value will be replaced. If the header name is not defined, then a new header will be created with
the given value. You should not change the value of most standard response header values unless you are
certain of the impact that it would have on the normal operation of the client.

If you wish to define a custom header value that would be included in the response to a client request,
you should prefix the header name with "X-" to avoid potential conflicts with the standard response
headers. For example, if you wanted to identify a customer, you could create a header field with the name
"X-Customer-ID" and set the value to the customer ID number. The client application would receive this
custom header value as part of the response to its request for a document.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.SetHeader Method (String, String)

Create or change the value of a CGI environment variable for the specified client.

Overload List
Create or change the value of a CGI environment variable for the specified client.

public bool SetVariable(int,string,string);

Create or change the value of a CGI environment variable for the specified client.

public bool SetVariable(string,string);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.SetVariable Method

Create or change the value of a CGI environment variable for the specified client.

[Visual Basic]
Overloads Public Function SetVariable(_
 ByVal clientId As Integer, _
 ByVal variableName As String, _
 ByVal variableValue As String _
) As Boolean

[C#]
public bool SetVariable(
 int clientId,
 string variableName,
 string variableValue
);

Parameters
clientId

An integer that identifies the client session.

variableName
A string that specifies the name of the header field. Header names are not case-sensitive and should
not include the colon which acts as a delimiter that separates the header name from its value.

variableValue
A string variable that contains the new value of the response header.

Return Value
A boolean value which specifies if the environment variable was created or modified. A return value of
true specifies that the operation was successful. If an error occurs, the method returns false and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The SetVariable method will change the value of a environment variable for the specified client session,
typically within an OnCommand event handler. If the variableName value matches an existing variable,
its value will be replaced. If the variable is not defined, then a new variable will be created with the given
value. The value of an environment variable can be obtained using the GetVariable function.

The server will automatically create a number of different environment variables that will be passed to a
program or script executed by the server. These variables are defined in RFC 3875 as part of the Common
Gateway Interface (CGI) 1.1 specification. The following variables are defined by the server and should not
be modified directly by the application:

AUTH_TYPE The authorization scheme used by the server to authenticate the client
session.

CONTENT_LENGTH The length of the request data provided by the client.

CONTENT_TYPE The MIME type that identifies the type of content provided by the client.

DOCUMENT_ROOT The full path to the local document root directory on the server.

GATEWAY_INTERFACE The version of the Common Gateway Interface that is being used by the
server.

HttpServer.SetVariable Method (Int32, String, String)

PATH_INFO The resource or sub-resource that is to be returned by the program or script.

PATH_TRANSLATED The path information mapped to the server root document directory structure.

QUERY_STRING The URL encoded query parameters passed to the program or script.

REMOTE_ADDR The network address of the client sending the request to the server.

REMOTE_HOST The same value as the REMOTE_ADDR variable.

REMOTE_USER The username specified as part of the authentication credentials provided by
the client.

REQUEST_METHOD The method used by the client to request the resource.

REQUEST_URI The URI for the script provided by the client.

SCRIPT_FILENAME The full path to the program or script on the server.

SCRIPT_NAME The path to the program or script specified by the client.

SERVER_NAME The hostname or IP address of the server that the client connected to.

SERVER_PORT The port number that the client used to connect to the server.

SERVER_PORT_SECURE This variable has a value of "1" if the client connection to the server is secure.

SERVER_PROTOCOL The version of the server protocol used.

SERVER_SOFTWARE The server identity string which specifies the application name and version.

In addition to the environment variables listed, the server will also create variables that are prefixed with
"HTTP_" that are set to the value of request headers that are not otherwise defined. For example, the
HTTP_USER_AGENT variable will be set to the value of the User-Agent header provided by the client as
part of the request.

Note that calling the SetVariable method from within the OnExecute event handler will have no effect
because it occurs after the CGI program or script has completed execution. To create or modify
environment variables for the client session, it should be done within an OnCommand event handler.

This method will not change the environment block for the server process. Each client session is allocated
its own private environment block which is inherited by the CGI program. When the client session
terminates, the memory allocated for its environment is released.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SetVariable Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Create or change the value of a CGI environment variable for the specified client.

[Visual Basic]
Overloads Public Function SetVariable(_
 ByVal variableName As String, _
 ByVal variableValue As String _
) As Boolean

[C#]
public bool SetVariable(
 string variableName,
 string variableValue
);

Parameters
variableName

A string that specifies the name of the header field. Header names are not case-sensitive and should
not include the colon which acts as a delimiter that separates the header name from its value.

variableValue
A string variable that contains the new value of the response header.

Return Value
A boolean value which specifies if the environment variable was created or modified. A return value of
true specifies that the operation was successful. If an error occurs, the method returns false and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The SetVariable method will change the value of a environment variable for the specified client session,
typically within an OnCommand event handler. If the variableName value matches an existing variable,
its value will be replaced. If the variable is not defined, then a new variable will be created with the given
value. The value of an environment variable can be obtained using the GetVariable method.

Note that calling the SetVariable method from within the OnExecute event handler will have no effect
because it occurs after the CGI program or script has completed execution. To create or modify
environment variables for the client session, it should be done within an OnCommand event handler.

This method will not change the environment block for the server process. Each client session is allocated
its own private environment block which is inherited by the CGI program. When the client session
terminates, the memory allocated for its environment is released.

This version of the method uses the active client session and should only be called from within a server
event handler. To specify a client session outside of an event handler, use the version of this method that
accepts a client ID parameter.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.SetVariable Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.SetVariable Method (String, String)

Start listening for client connections on the specified IP address and port number.

Overload List
Start listening for client connections on the specified IP address and port number.

public bool Start();

Start listening for client connections on the specified IP address and port number.

public bool Start(int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,string);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,string,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,string,int,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,string,int,int,ServerOptions);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Start Method

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal rootDirectory As String, _
 ByVal maxClients As Integer, _
 ByVal idleTime As Integer, _
 ByVal options As ServerOptions _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 string rootDirectory,
 int maxClients,
 int idleTime,
 ServerOptions options
);

Parameters
localAddress

A string which specifies the local hostname or IP address address that the server should be bound to.
If this parameter is an empty string, then an appropriate address will automatically be used. If a specific
address is used, the server will only accept client connections on the network interface that is bound to
that address.

localPort
An integer that specifies the port number the server should use to listen for client connections. If a
value of zero is specified, the server will use the standard port number 80 to listen for connections, or
port 443 if the server is configured to use implicit SSL. The port number used by the application must
be unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

rootDirectory
A string that specifies the path to the root directory for the server. If this value is an empty string, the
server will use the current working directory as the root directory.

maxClients
An integer value that specifies the maximum number of clients that may connect to the server.

idleTime
An integer value that specifies the number of seconds a client can be idle before the server terminates
the session.

options
A ServerOptions enumeration that specifies one or more server options.

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should

HttpServer.Start Method (String, Int32, String, Int32, Int32,
ServerOptions)

check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an
IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path
includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal rootDirectory As String, _
 ByVal maxClients As Integer, _
 ByVal idleTime As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 string rootDirectory,
 int maxClients,
 int idleTime
);

Parameters
localAddress

A string which specifies the local hostname or IP address address that the server should be bound to.
If this parameter is an empty string, then an appropriate address will automatically be used. If a specific
address is used, the server will only accept client connections on the network interface that is bound to
that address.

localPort
An integer that specifies the port number the server should use to listen for client connections. If a
value of zero is specified, the server will use the standard port number 80 to listen for connections, or
port 443 if the server is configured to use implicit SSL. The port number used by the application must
be unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

rootDirectory
A string that specifies the path to the root directory for the server. If this value is an empty string, the
server will use the current working directory as the root directory.

maxClients
An integer value that specifies the maximum number of clients that may connect to the server.

idleTime
An integer value that specifies the number of seconds a client can be idle before the server terminates
the session.

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

HttpServer.Start Method (String, Int32, String, Int32, Int32)

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an
IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path
includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal rootDirectory As String, _
 ByVal maxClients As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 string rootDirectory,
 int maxClients
);

Parameters
localAddress

A string which specifies the local hostname or IP address address that the server should be bound to.
If this parameter is an empty string, then an appropriate address will automatically be used. If a specific
address is used, the server will only accept client connections on the network interface that is bound to
that address.

localPort
An integer that specifies the port number the server should use to listen for client connections. If a
value of zero is specified, the server will use the standard port number 80 to listen for connections, or
port 443 if the server is configured to use implicit SSL. The port number used by the application must
be unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

rootDirectory
A string that specifies the path to the root directory for the server. If this value is an empty string, the
server will use the current working directory as the root directory.

maxClients
An integer value that specifies the maximum number of clients that may connect to the server.

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an

HttpServer.Start Method (String, Int32, String, Int32)

IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path
includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal rootDirectory As String _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 string rootDirectory
);

Parameters
localAddress

A string which specifies the local hostname or IP address address that the server should be bound to.
If this parameter is an empty string, then an appropriate address will automatically be used. If a specific
address is used, the server will only accept client connections on the network interface that is bound to
that address.

localPort
An integer that specifies the port number the server should use to listen for client connections. If a
value of zero is specified, the server will use the standard port number 80 to listen for connections, or
port 443 if the server is configured to use implicit SSL. The port number used by the application must
be unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

rootDirectory
A string that specifies the path to the root directory for the server. If this value is an empty string, the
server will use the current working directory as the root directory.

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an
IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path

HttpServer.Start Method (String, Int32, String)

includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort
);

Parameters
localAddress

A string which specifies the local hostname or IP address address that the server should be bound to.
If this parameter is an empty string, then an appropriate address will automatically be used. If a specific
address is used, the server will only accept client connections on the network interface that is bound to
that address.

localPort
An integer that specifies the port number the server should use to listen for client connections. If a
value of zero is specified, the server will use the standard port number 80 to listen for connections, or
port 443 if the server is configured to use implicit SSL. The port number used by the application must
be unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an
IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path
includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory

HttpServer.Start Method (String, Int32)

does not exist at the time that the server is started, it will be created.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Start(
 int localPort
);

Parameters
localPort

An integer that specifies the port number the server should use to listen for client connections. If a
value of zero is specified, the server will use the standard port number 80 to listen for connections, or
port 443 if the server is configured to use implicit SSL. The port number used by the application must
be unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an
IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path
includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Start Method (Int32)

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start() As Boolean

[C#]
public bool Start();

Return Value
A boolean value which specifies if the server was started. A return value of true specifies that the server
has been successfully started. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address "0.0.0.0".
You can accept connections from clients using either IPv4 or IPv6 on the same socket by specifying the
special IPv6 address "::0", however this is only supported on Windows 7 SP1 and Windows Server 2008 R2
or later platforms. If no local address is specified, then the server will only listen for connections from
clients using IPv4. This behavior is by design for backwards compatibility with systems that do not have an
IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by passing
the full pathname as an argument to this method or by setting the Directory property. If the path
includes environment variables surrounded by percent (%) symbols, they will be automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your application
has permission to create files in the directory that you specify. A recommended location for the server
root directory would be a subdirectory of the %ALLUSERSPROFILE% directory. Using the environment
variable ensures that your server will work correctly on different versions of Windows. If the root directory
does not exist at the time that the server is started, it will be created.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Start Method ()

Stop listening for new client connections and terminate all active clients already connected to the server.

[Visual Basic]
Public Function Stop() As Boolean

[C#]
public bool Stop();

Return Value
A boolean value which specifies if the server was stopped. A return value of true specifies that the server
has been successfully stopped. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The Stop method instructs the server to stop accepting client connections, disconnects all active client
connections and terminates the thread that is managing the server session. If this method is called when
there is one or more clients connected to the server, it will signal each client thread to terminate and then
wait for the server thread to terminate.

See Also
HttpServer Class | SocketTools Namespace | Restart Method | Resume Method | Start Method | Throttle
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Stop Method

Suspend accepting new client connections.

[Visual Basic]
Public Function Suspend() As Boolean

[C#]
public bool Suspend();

Return Value
A boolean value which specifies if the server has been suspended. A return value of true specifies that the
server has been successfully stopped. If an error occurs, the method returns false and the application
should check the value of the LastError property to determine the cause of the failure.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. All new clients
that attempt to connect to the server will be will be immediately rejected by the server. To resume
accepting new client connections, call the Resume method. This method will not affect those clients that
have already established a connection with the server before the Suspend method was called.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Suspend Method

Limit the maximum number of client connections.

Overload List
Limit the maximum number of client connections.

public bool Throttle(int);

Limit the maximum number of client connections and connections per IP address.

public bool Throttle(int,int);

Limit the maximum number of client connections, connections per IP address and connection rate.

public bool Throttle(int,int,int);

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Throttle Method

Limit the maximum number of client connections, connections per IP address and connection rate.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer, _
 ByVal maxClientsPerAddress As Integer, _
 ByVal connectionRate As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients,
 int maxClientsPerAddress,
 int connectionRate
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

maxClientsPerAddress
An integer value that specifies the maximum number of clients that may connect to the server from
the same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is no limit on the number of client connections per address.

connectionRate
An integer value that specifies a restriction on the rate of client connections, limiting the number of
connections that will be accepted within that period of time. A value of zero specifies that there is no
restriction on the rate of client connections. The higher this value, the fewer the number of
connections that will be accepted within a specific period of time. By default, there is no limit on the
client connection rate.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

If the value of the maxGuests parameter is greater than zero, then anonymous logins will be enabled and
clients can authenticate with the username "anonymous" and their email address as the password. If the
parameter is set to zero, then anonymous logins will be disabled. Note that this will not affect any clients
that are currently logged in, it only affects those clients that connect after the Throttle method has been
called.

HttpServer.Throttle Method (Int32, Int32, Int32)

Increasing the connection rate value will force the server to slow down the rate at which it will accept
incoming client connection requests. For example, setting this parameter to a value of 1000 would limit
the server to accepting one client connection every second, while a value of 250 would allow the server to
accept four client connections per second. Note that significantly increasing the amount of time the server
must wait to accept client connections can exceed the connection backlog queue, resulting in client
connections being rejected.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Limit the maximum number of client connections and connections per IP address.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer, _
 ByVal maxClientsPerAddress As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients,
 int maxClientsPerAddress
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

maxClientsPerAddress
An integer value that specifies the maximum number of clients that may connect to the server from
the same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is no limit on the number of client connections per address.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Throttle Method (Int32, Int32)

Limit the maximum number of client connections.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

See Also
HttpServer Class | SocketTools Namespace | HttpServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Throttle Method (Int32)

Uninitialize the class library and release any resources allocated for the server.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the server and
unloads the networking library. After this method has been called, no further network operations may be
performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
HttpServer Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.Uninitialize Method

The events of the HttpServer class are listed below. For a complete list of HttpServer class members, see
the HttpServer Members topic.

Public Instance Events

OnAuthenticate Occurs when the client has requested
authentication with the specified username and
password.

OnCommand Occurs when a client has issued a command to the
server.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnDownload Occurs when a connection is established with the
remote host.

OnError Occurs when an network operation fails.

OnExecute Occurs when the client has executed an external
script handler on the server.

OnIdle Occurs when the there are no clients connected to
the server.

OnResult Occurs when the command issued by the client
has been processed by the server.

OnStart Occurs when the server starts accepting
connections.

OnStop Occurs when the server stops accepting
connections.

OnTimeout Occurs when the client has exceeded the
maximum allowed idle time.

OnUpload Occurs when the client has successfully uploaded a
file to the server.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer Events

Occurs when the client has requested authentication with the specified username and password.

[Visual Basic]
Public Event OnAuthenticate As OnAuthenticateEventHandler

[C#]
public event OnAuthenticateEventHandler OnAuthenticate;

Event Data
The event handler receives an argument of type HttpServer.AuthenticateEventArgs containing data related
to this event. The following HttpServer.AuthenticateEventArgs properties provide information specific
to this event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

HostName Gets the host name used by the client to establish
the connection to the server.

Password Gets the password provided by the client for
authentication.

UserName Gets the password provided by the client for
authentication.

Remarks
The OnAuthenticate event occurs when the client has requested authentication by sending the USER and
PASS command to the server. The event handler can call the Authenticate method to authenticate the
client session. If the client is not authenticated, the server will send an error message to the client and
terminate the session.

If the application has created one or more virtual users using the AddUser method and/or the LocalUser
property has been set to True, it is not necessary to implement an OnAuthenticate handler unless you
also wish to perform custom authentication for specific users.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnAuthenticate Event

Provides data for the OnAuthenticate event.

For a list of all members of this type, see HttpServer.AuthenticateEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpServer.AuthenticateEventArgs

[Visual Basic]
Public Class HttpServer.AuthenticateEventArgs
 Inherits EventArgs

[C#]
public class HttpServer.AuthenticateEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
HttpServer.AuthenticateEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AuthenticateEventArgs Class

Initializes a new instance of the HttpServer.AuthenticateEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpServer.AuthenticateEventArgs();

See Also
HttpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AuthenticateEventArgs Constructor

HttpServer.AuthenticateEventArgs overview

Public Instance Constructors

 HttpServer.AuthenticateEventArgs Constructor Initializes a new instance of the
HttpServer.AuthenticateEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

HostName Gets the host name used by the client to establish
the connection to the server.

Password Gets the password provided by the client for
authentication.

UserName Gets the password provided by the client for
authentication.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AuthenticateEventArgs Members

The properties of the HttpServer.AuthenticateEventArgs class are listed below. For a complete list of
HttpServer.AuthenticateEventArgs class members, see the HttpServer.AuthenticateEventArgs Members
topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

HostName Gets the host name used by the client to establish
the connection to the server.

Password Gets the password provided by the client for
authentication.

UserName Gets the password provided by the client for
authentication.

See Also
HttpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AuthenticateEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
HttpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AuthenticateEventArgs.ClientId Property

Gets the host name used by the client to establish the connection to the server.

[Visual Basic]
Public ReadOnly Property HostName As String

[C#]
public string HostName {get;}

Property Value
A string that specifies a host name.

See Also
HttpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AuthenticateEventArgs.HostName Property

Gets the password provided by the client for authentication.

[Visual Basic]
Public ReadOnly Property Password As String

[C#]
public string Password {get;}

Property Value
A string that specifies the password provided by the client when it requests authentication.

See Also
HttpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AuthenticateEventArgs.Password Property

Gets the password provided by the client for authentication.

[Visual Basic]
Public ReadOnly Property UserName As String

[C#]
public string UserName {get;}

Property Value
A string that specifies the username provided by the client when it requests authentication.

See Also
HttpServer.AuthenticateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.AuthenticateEventArgs.UserName Property

Occurs when a client has issued a command to the server.

[Visual Basic]
Public Event OnCommand As OnCommandEventHandler

[C#]
public event OnCommandEventHandler OnCommand;

Event Data
The event handler receives an argument of type HttpServer.CommandEventArgs containing data related
to this event. The following HttpServer.CommandEventArgs properties provide information specific to
this event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

Command Gets a value that specifies the command issued by
the client.

Parameters Gets a value that specifies the command
parameters issued by the client.

Resource Gets a value that specifies the resource requested
by the client.

Remarks
The OnCommand event occurs after the client has sent a command to the server, but before the
command has been processed. This event occurs for all commands issued by the client, including invalid
or disabled commands. If the application wishes to handle the command itself, it must perform any
processing and then call the SendResponse method to send the success or error code to the client. If the
SendResponse method is not called, then the server will perform its default processing for the command.

After the command has been processed, the OnResult event handler will be invoked.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnCommand Event

Provides data for the OnCommand event.

For a list of all members of this type, see HttpServer.CommandEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpServer.CommandEventArgs

[Visual Basic]
Public Class HttpServer.CommandEventArgs
 Inherits EventArgs

[C#]
public class HttpServer.CommandEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
HttpServer.CommandEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CommandEventArgs Class

Initializes a new instance of the HttpServer.CommandEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpServer.CommandEventArgs();

See Also
HttpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CommandEventArgs Constructor

HttpServer.CommandEventArgs overview

Public Instance Constructors

 HttpServer.CommandEventArgs Constructor Initializes a new instance of the
HttpServer.CommandEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Command Gets a value that specifies the command issued by
the client.

Parameters Gets a value that specifies the command
parameters issued by the client.

Resource Gets a value that specifies the resource requested
by the client.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CommandEventArgs Members

The properties of the HttpServer.CommandEventArgs class are listed below. For a complete list of
HttpServer.CommandEventArgs class members, see the HttpServer.CommandEventArgs Members
topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Command Gets a value that specifies the command issued by
the client.

Parameters Gets a value that specifies the command
parameters issued by the client.

Resource Gets a value that specifies the resource requested
by the client.

See Also
HttpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CommandEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
HttpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CommandEventArgs.ClientId Property

Gets a value that specifies the command issued by the client.

[Visual Basic]
Public ReadOnly Property Command As String

[C#]
public string Command {get;}

Property Value
A string that specifies the command sent by the client.

See Also
HttpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CommandEventArgs.Command Property

Gets a value that specifies the command parameters issued by the client.

[Visual Basic]
Public ReadOnly Property Parameters As String

[C#]
public string Parameters {get;}

Property Value
A string that specifies the command parameters sent by the client.

See Also
HttpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CommandEventArgs.Parameters Property

Gets a value that specifies the resource requested by the client.

[Visual Basic]
Public ReadOnly Property Resource As String

[C#]
public string Resource {get;}

Property Value
A string value that specifies the resource that the client has requested. Depending on the command
issued, it may be a document, a folder or an executable script.

See Also
HttpServer.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.CommandEventArgs.Resource Property

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As OnConnectEventHandler

[C#]
public event OnConnectEventHandler OnConnect;

Event Data
The event handler receives an argument of type HttpServer.ConnectEventArgs containing data related to
this event. The following HttpServer.ConnectEventArgs properties provide information specific to this
event.

Property Description

ClientAddress Gets the address of the client establishing the
connection.

ClientId Gets a value that uniquely identifies the client
session.

Remarks
The OnConnect event occurs after the client has established its initial connection to the server, after the
server has checked the active client limits and the TLS handshake has been performed if required. If the
server has been suspended, or the limit on the maximum number of client sessions has been exceeded,
the server will terminate the client session prior to this event handler being invoked.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnConnect Event

Provides data for the OnConnect event.

For a list of all members of this type, see HttpServer.ConnectEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpServer.ConnectEventArgs

[Visual Basic]
Public Class HttpServer.ConnectEventArgs
 Inherits EventArgs

[C#]
public class HttpServer.ConnectEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
HttpServer.ConnectEventArgs Members | SocketTools Namespace | OnConnect Event
(SocketTools.HttpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ConnectEventArgs Class

Initializes a new instance of the HttpServer.ConnectEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpServer.ConnectEventArgs();

See Also
HttpServer.ConnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ConnectEventArgs Constructor

HttpServer.ConnectEventArgs overview

Public Instance Constructors

 HttpServer.ConnectEventArgs Constructor Initializes a new instance of the
HttpServer.ConnectEventArgs class.

Public Instance Properties

ClientAddress Gets the address of the client establishing the
connection.

ClientId Gets a value that uniquely identifies the client
session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpServer.ConnectEventArgs Class | SocketTools Namespace | OnConnect Event (SocketTools.HttpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ConnectEventArgs Members

The properties of the HttpServer.ConnectEventArgs class are listed below. For a complete list of
HttpServer.ConnectEventArgs class members, see the HttpServer.ConnectEventArgs Members topic.

Public Instance Properties

ClientAddress Gets the address of the client establishing the
connection.

ClientId Gets a value that uniquely identifies the client
session.

See Also
HttpServer.ConnectEventArgs Class | SocketTools Namespace | OnConnect Event (SocketTools.HttpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ConnectEventArgs Properties

Gets the address of the client establishing the connection.

[Visual Basic]
Public ReadOnly Property ClientAddress As String

[C#]
public string ClientAddress {get;}

Property Value
A string that specifies the Internet Protocol address of the client.

See Also
HttpServer.ConnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ConnectEventArgs.ClientAddress Property

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
HttpServer.ConnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ConnectEventArgs.ClientId Property

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnDownload As OnDownloadEventHandler

[C#]
public event OnDownloadEventHandler OnDownload;

Event Data
The event handler receives an argument of type HttpServer.DownloadEventArgs containing data related
to this event. The following HttpServer.DownloadEventArgs properties provide information specific to
this event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

FileName Gets a value that specifies the file being
downloaded.

FileSize Gets a value that specifies the size of the file.

Remarks
The OnDownload event occurs after the client has successfully downloaded a file from the server using
the GET command. If the file transfer fails or is aborted, this event will not occur.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnDownload Event

Provides data for the OnDownload event.

For a list of all members of this type, see HttpServer.DownloadEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpServer.DownloadEventArgs

[Visual Basic]
Public Class HttpServer.DownloadEventArgs
 Inherits EventArgs

[C#]
public class HttpServer.DownloadEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
HttpServer.DownloadEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DownloadEventArgs Class

Initializes a new instance of the HttpServer.DownloadEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpServer.DownloadEventArgs();

See Also
HttpServer.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DownloadEventArgs Constructor

HttpServer.DownloadEventArgs overview

Public Instance Constructors

 HttpServer.DownloadEventArgs Constructor Initializes a new instance of the
HttpServer.DownloadEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

FileName Gets a value that specifies the file being
downloaded.

FileSize Gets a value that specifies the size of the file.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpServer.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DownloadEventArgs Members

The properties of the HttpServer.DownloadEventArgs class are listed below. For a complete list of
HttpServer.DownloadEventArgs class members, see the HttpServer.DownloadEventArgs Members
topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

FileName Gets a value that specifies the file being
downloaded.

FileSize Gets a value that specifies the size of the file.

See Also
HttpServer.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DownloadEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
HttpServer.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DownloadEventArgs.ClientId Property

Gets a value that specifies the file being downloaded.

[Visual Basic]
Public ReadOnly Property FileName As String

[C#]
public string FileName {get;}

Property Value
A string that specifies the full path to a file on the local system.

See Also
HttpServer.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DownloadEventArgs.FileName Property

Gets a value that specifies the size of the file.

[Visual Basic]
Public ReadOnly Property FileSize As Long

[C#]
public long FileSize {get;}

Property Value
A long integer value that specifies the size of the file in bytes.

See Also
HttpServer.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DownloadEventArgs.FileSize Property

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As OnDisconnectEventHandler

[C#]
public event OnDisconnectEventHandler OnDisconnect;

Event Data
The event handler receives an argument of type HttpServer.DisconnectEventArgs containing data related
to this event. The following HttpServer.DisconnectEventArgs property provides information specific to
this event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

Remarks
The OnDisconnect event is generated when the connection is terminated by the client and there is no
more data available to be read.

It is not necessary to call the Disconnect method inside the OnDisconnect event handler because the
client session is already in the process of disconnecting from the server.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnDisconnect Event

Provides data for the OnDisconnect event.

For a list of all members of this type, see HttpServer.DisconnectEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpServer.DisconnectEventArgs

[Visual Basic]
Public Class HttpServer.DisconnectEventArgs
 Inherits EventArgs

[C#]
public class HttpServer.DisconnectEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
HttpServer.DisconnectEventArgs Members | SocketTools Namespace | OnDisconnect Event
(SocketTools.HttpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DisconnectEventArgs Class

Initializes a new instance of the HttpServer.DisconnectEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpServer.DisconnectEventArgs();

See Also
HttpServer.DisconnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DisconnectEventArgs Constructor

HttpServer.DisconnectEventArgs overview

Public Instance Constructors

 HttpServer.DisconnectEventArgs Constructor Initializes a new instance of the
HttpServer.DisconnectEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpServer.DisconnectEventArgs Class | SocketTools Namespace | OnDisconnect Event
(SocketTools.HttpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DisconnectEventArgs Members

The properties of the HttpServer.DisconnectEventArgs class are listed below. For a complete list of
HttpServer.DisconnectEventArgs class members, see the HttpServer.DisconnectEventArgs Members
topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

See Also
HttpServer.DisconnectEventArgs Class | SocketTools Namespace | OnDisconnect Event
(SocketTools.HttpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DisconnectEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
HttpServer.DisconnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.DisconnectEventArgs.ClientId Property

Occurs when an network operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type HttpServer.ErrorEventArgs containing data related to this
event. The following HttpServer.ErrorEventArgs properties provide information specific to this event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a network operation fails.

This event handler may be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see HttpServer.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpServer.ErrorEventArgs

[Visual Basic]
Public Class HttpServer.ErrorEventArgs
 Inherits EventArgs

[C#]
public class HttpServer.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
HttpServer.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ErrorEventArgs Class

Initializes a new instance of the HttpServer.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpServer.ErrorEventArgs();

See Also
HttpServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ErrorEventArgs Constructor

HttpServer.ErrorEventArgs overview

Public Instance Constructors

 HttpServer.ErrorEventArgs Constructor Initializes a new instance of the
HttpServer.ErrorEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ErrorEventArgs Members

The properties of the HttpServer.ErrorEventArgs class are listed below. For a complete list of
HttpServer.ErrorEventArgs class members, see the HttpServer.ErrorEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
HttpServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ErrorEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
HttpServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ErrorEventArgs.ClientId Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
HttpServer.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public HttpServer.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
HttpServer.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ErrorEventArgs.Error Property

Occurs when the client has executed an external script handler on the server.

[Visual Basic]
Public Event OnExecute As OnExecuteEventHandler

[C#]
public event OnExecuteEventHandler OnExecute;

Event Data
The event handler receives an argument of type HttpServer.ExecuteEventArgs containing data related to
this event. The following HttpServer.ExecuteEventArgs properties provide information specific to this
event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

ExitCode Gets a value that specifies the exit code for the
script handler.

Output Gets the output of the script handler executed by
the client.

Parameters Gets a value that specifies the parameters included
in the request.

Resource Gets a value that specifies the resource requested
by the client.

Remarks
The OnExecute event occurs after the client has successfully executed an external script handler.

This event will only be generated if the client has the httpAccessExecute permission. Clients are not
granted this permission by default, and must be explicitly permitted to execute external programs. If the
client does have this permission, it can only execute specific programs that have been registered by the
server application using the RegisterProgram method.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnExecute Event

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ExecuteEventArgs.Parameters.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ExecuteEventArgs.Resource.html

Provides data for the OnExecute event.

For a list of all members of this type, see HttpServer.ExecuteEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpServer.ExecuteEventArgs

[Visual Basic]
Public Class HttpServer.ExecuteEventArgs
 Inherits EventArgs

[C#]
public class HttpServer.ExecuteEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
HttpServer.ExecuteEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ExecuteEventArgs Class

Initializes a new instance of the HttpServer.ExecuteEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpServer.ExecuteEventArgs();

See Also
HttpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ExecuteEventArgs Constructor

HttpServer.ExecuteEventArgs overview

Public Instance Constructors

 HttpServer.ExecuteEventArgs Constructor Initializes a new instance of the
HttpServer.ExecuteEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

ExitCode Gets a value that specifies the exit code for the
script handler.

Output Gets the output of the script handler executed by
the client.

Parameters Gets a value that specifies the parameters included
in the request.

Resource Gets a value that specifies the resource requested
by the client.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ExecuteEventArgs Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ExecuteEventArgs.Parameters.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ExecuteEventArgs.Resource.html

The properties of the HttpServer.ExecuteEventArgs class are listed below. For a complete list of
HttpServer.ExecuteEventArgs class members, see the HttpServer.ExecuteEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

ExitCode Gets a value that specifies the exit code for the
script handler.

Output Gets the output of the script handler executed by
the client.

Parameters Gets a value that specifies the parameters included
in the request.

Resource Gets a value that specifies the resource requested
by the client.

See Also
HttpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ExecuteEventArgs Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ExecuteEventArgs.Parameters.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ExecuteEventArgs.Resource.html

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
HttpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ExecuteEventArgs.ClientId Property

Gets a value that specifies the exit code for the script handler.

[Visual Basic]
Public ReadOnly Property ExitCode As Integer

[C#]
public int ExitCode {get;}

Property Value
An integer value that specifies an exit code.

See Also
HttpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ExecuteEventArgs.ExitCode Property

Gets the output of the script handler executed by the client.

[Visual Basic]
Public ReadOnly Property Output As String

[C#]
public string Output {get;}

Property Value
A string that contains the output of the script handler executed on behalf of the client.

See Also
HttpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ExecuteEventArgs.Output Property

Gets a value that specifies the resource requested by the client.

[Visual Basic]
Public ReadOnly Property Resource As String

[C#]
public string Resource {get;}

Property Value
A string that specifies the virtual path to the script or executable that was requested by the client.

See Also
HttpServer.ExecuteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ExecuteEventArgs.Resource Property

Occurs when the there are no clients connected to the server.

[Visual Basic]
Public Event OnIdle As EventHandler

[C#]
public event EventHandler OnIdle;

Remarks
This event will only occur after at least one client has connected to the server and then closes its
connection or is disconnected. This event will not occur immediately after the server has started using the
Start method, and will not occur when the server is stopped using the Stop method. Your application
should implement an OnStart event handler for when the server first starts, and an OnStop event handler
for when the server is stopped.

If one or more new client connections are accepted after this event occurs, the event will be generated
again when those clients disconnect and the active client count drops to zero. Therefore it is to be
expected that this event will occur multiple times over the lifetime of the server as it continues to listen for
connections

This event handler will be invoked in the context of the worker thread that is managing the server, not the
thread that created an instance of the class. Because UI components should only be modified by the
thread that created them, the event handler should never attempt to update the user interface directly.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnIdle Event

Occurs when the command issued by the client has been processed by the server.

[Visual Basic]
Public Event OnResult As OnResultEventHandler

[C#]
public event OnResultEventHandler OnResult;

Event Data
The event handler receives an argument of type HttpServer.ResultEventArgs containing data related to
this event. The following HttpServer.ResultEventArgs properties provide information specific to this
event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

Command Gets a value that specifies the command issued by
the client.

Resource Gets a value that specifies the resource requested
by the client.

ResultCode Gets the result code associated with the last
command issued by the client.

Remarks
The OnResult event occurs after the server has processed a command issued by the client. This event will
inform the application whether the command that was issued by the client was successful or not. If the
command was successful, then other related events such as OnDownload may also fire after this event.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnResult Event

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ResultEventArgs.Resource.html

Provides data for the OnResult event.

For a list of all members of this type, see HttpServer.ResultEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpServer.ResultEventArgs

[Visual Basic]
Public Class HttpServer.ResultEventArgs
 Inherits EventArgs

[C#]
public class HttpServer.ResultEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
HttpServer.ResultEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ResultEventArgs Class

Initializes a new instance of the HttpServer.ResultEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpServer.ResultEventArgs();

See Also
HttpServer.ResultEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ResultEventArgs Constructor

HttpServer.ResultEventArgs overview

Public Instance Constructors

 HttpServer.ResultEventArgs Constructor Initializes a new instance of the
HttpServer.ResultEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Command Gets a value that specifies the command issued by
the client.

Resource Gets a value that specifies the resource requested
by the client.

ResultCode Gets the result code associated with the last
command issued by the client.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpServer.ResultEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ResultEventArgs Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ResultEventArgs.Resource.html

The properties of the HttpServer.ResultEventArgs class are listed below. For a complete list of
HttpServer.ResultEventArgs class members, see the HttpServer.ResultEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Command Gets a value that specifies the command issued by
the client.

Resource Gets a value that specifies the resource requested
by the client.

ResultCode Gets the result code associated with the last
command issued by the client.

See Also
HttpServer.ResultEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ResultEventArgs Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.ResultEventArgs.Resource.html

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
HttpServer.ResultEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ResultEventArgs.ClientId Property

Gets a value that specifies the command issued by the client.

[Visual Basic]
Public ReadOnly Property Command As String

[C#]
public string Command {get;}

Property Value
A string that specifies the command sent by the client.

See Also
HttpServer.ResultEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ResultEventArgs.Command Property

Gets the result code associated with the last command issued by the client.

[Visual Basic]
Public ReadOnly Property ResultCode As Integer

[C#]
public int ResultCode {get;}

Property Value
An integer value that indicates if the command completed successfully.

Remarks
The ResultCode property is a three-digit numeric code that is used to indicate success or failure. These
codes are defined as part of the Hypertext Transfer Protocol standard, with values in the range of 200-299
indicating success. Values in the range of 400-499 and 500-599 indicate failure due to various error
conditions. Examples of such failures would be attempting to access a file that does not exist, issuing an
unrecognized command or attempting to perform a privileged operation.

See Also
HttpServer.ResultEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.ResultEventArgs.ResultCode Property

Occurs when the server starts accepting connections.

[Visual Basic]
Public Event OnStart As EventHandler

[C#]
public event EventHandler OnStart;

Remarks
The OnStart event occurs after the Start method has been called and the server and begins listening for
connections from clients. An application can use this event to update the user interface and perform any
additional initialization functions that are required by the application

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnStart Event

Occurs when the server stops accepting connections.

[Visual Basic]
Public Event OnStop As EventHandler

[C#]
public event EventHandler OnStop;

Remarks
The OnStop event occurs after the Stop method has been called and all active client sessions have
terminated. An application can use this event to update the user interface and perform any additional
cleanup functions that are required by the application. If the server has a large number of active clients,
this event may not occur immediately. The OnDisconnect event will fire for each client as the server is in
the process of shutting down. During the shutdown process, the server is still considered to be active,
however it will not accept any further connections. When the OnStop event is fired, the server thread has
terminated and the listening socket has been closed.

This event will not occur if the server is forcibly stopped using the Reset method, or when the Uninitialize
method is called prior to disposing an instance of the control. Applications that depend on this event
should ensure that the server is shutdown gracefully using the Stop method prior to terminating the
application

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnStop Event

Occurs when the client has exceeded the maximum allowed idle time.

[Visual Basic]
Public Event OnTimeout As OnTimeoutEventHandler

[C#]
public event OnTimeoutEventHandler OnTimeout;

Event Data
The event handler receives an argument of type HttpServer.TimeoutEventArgs containing data related to
this event. The following HttpServer.TimeoutEventArgs properties provide information specific to this
event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

Elapsed Gets the amount of time that the client was idle.

Remarks
The OnTimeout event occurs after the client has has exceeded the maximum allowed idle time, and
immediately before the client is disconnected from the server. This event will never occur during a file
transfer or directory listing.

To change the default idle timeout period for all clients, set the IdleTime property prior to starting the
server. To set the idle timeout period for a specific client, set the ClientIdle property in the OnConnect
event handler.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnTimeout Event

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.TimeoutEventArgs.Elapsed.html

Provides data for the OnTimeout event.

For a list of all members of this type, see HttpServer.TimeoutEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpServer.TimeoutEventArgs

[Visual Basic]
Public Class HttpServer.TimeoutEventArgs
 Inherits EventArgs

[C#]
public class HttpServer.TimeoutEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
HttpServer.TimeoutEventArgs Members | SocketTools Namespace | OnTimeout Event
(SocketTools.HttpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.TimeoutEventArgs Class

Initializes a new instance of the HttpServer.TimeoutEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpServer.TimeoutEventArgs();

See Also
HttpServer.TimeoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.TimeoutEventArgs Constructor

HttpServer.TimeoutEventArgs overview

Public Instance Constructors

 HttpServer.TimeoutEventArgs Constructor Initializes a new instance of the
HttpServer.TimeoutEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Elapsed Gets the amount of time that the client was idle.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpServer.TimeoutEventArgs Class | SocketTools Namespace | OnTimeout Event (SocketTools.HttpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.TimeoutEventArgs Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.TimeoutEventArgs.Elapsed.html

The properties of the HttpServer.TimeoutEventArgs class are listed below. For a complete list of
HttpServer.TimeoutEventArgs class members, see the HttpServer.TimeoutEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

Elapsed Gets the amount of time that the client was idle.

See Also
HttpServer.TimeoutEventArgs Class | SocketTools Namespace | OnTimeout Event (SocketTools.HttpServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.TimeoutEventArgs Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.HttpServer.TimeoutEventArgs.Elapsed.html

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
HttpServer.TimeoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.TimeoutEventArgs.ClientId Property

Occurs when the client has successfully uploaded a file to the server.

[Visual Basic]
Public Event OnUpload As OnUploadEventHandler

[C#]
public event OnUploadEventHandler OnUpload;

Event Data
The event handler receives an argument of type HttpServer.UploadEventArgs containing data related to
this event. The following HttpServer.UploadEventArgs properties provide information specific to this
event.

Property Description

ClientId Gets a value that uniquely identifies the client
session.

FileName Gets a value that specifies the file being uploaded.

FileSize Gets a value that specifies the size of the file.

Remarks
The OnUpload event occurs after the client has successfully uploaded a file to the server using the PUT
command. If the file transfer fails or is aborted, this event will not occur.

This event handler will be invoked in the context of the worker thread that is managing the client session,
not the thread that created an instance of the class. Because UI components should only be modified by
the thread that created them, the event handler should never attempt to update the user interface
directly.

See Also
HttpServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnUpload Event

Provides data for the OnUpload event.

For a list of all members of this type, see HttpServer.UploadEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.HttpServer.UploadEventArgs

[Visual Basic]
Public Class HttpServer.UploadEventArgs
 Inherits EventArgs

[C#]
public class HttpServer.UploadEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
HttpServer.UploadEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.UploadEventArgs Class

Initializes a new instance of the HttpServer.UploadEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public HttpServer.UploadEventArgs();

See Also
HttpServer.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.UploadEventArgs Constructor

HttpServer.UploadEventArgs overview

Public Instance Constructors

 HttpServer.UploadEventArgs Constructor Initializes a new instance of the
HttpServer.UploadEventArgs class.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

FileName Gets a value that specifies the file being uploaded.

FileSize Gets a value that specifies the size of the file.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
HttpServer.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.UploadEventArgs Members

The properties of the HttpServer.UploadEventArgs class are listed below. For a complete list of
HttpServer.UploadEventArgs class members, see the HttpServer.UploadEventArgs Members topic.

Public Instance Properties

ClientId Gets a value that uniquely identifies the client
session.

FileName Gets a value that specifies the file being uploaded.

FileSize Gets a value that specifies the size of the file.

See Also
HttpServer.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.UploadEventArgs Properties

Gets a value that uniquely identifies the client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which identifies the client session.

Remarks
The ClientId property returns a unique integer value that identifies the client session that generated the
event.

See Also
HttpServer.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.UploadEventArgs.ClientId Property

Gets a value that specifies the file being uploaded.

[Visual Basic]
Public ReadOnly Property FileName As String

[C#]
public string FileName {get;}

Property Value
A string that specifies the full path to a file on the local system.

See Also
HttpServer.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.UploadEventArgs.FileName Property

Gets a value that specifies the size of the file.

[Visual Basic]
Public ReadOnly Property FileSize As Long

[C#]
public long FileSize {get;}

Property Value
A long integer value that specifies the size of the file in bytes.

See Also
HttpServer.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.UploadEventArgs.FileSize Property

Represents the method that will handle the OnAuthenticate event.

[Visual Basic]
Public Delegate Sub HttpServer.OnAuthenticateEventHandler(_
 ByVal sender As Object, _
 ByVal e As AuthenticateEventArgs _
)

[C#]
public delegate void HttpServer.OnAuthenticateEventHandler(

 object sender,
 AuthenticateEventArgs e
);

Parameters
sender

The source of the event.

e
An AuthenticateEventArgs that contains the event data.

Remarks
When you create an OnAuthenticateEventHandler delegate, you identify the method that will handle
the event. To associate the event with your event handler, add an instance of the delegate to the event.
The event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnAuthenticateEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnAuthenticateEventHandler Delegate

Represents the method that will handle the OnCommand event.

[Visual Basic]
Public Delegate Sub HttpServer.OnCommandEventHandler(_
 ByVal sender As Object, _
 ByVal e As CommandEventArgs _
)

[C#]
public delegate void HttpServer.OnCommandEventHandler(

 object sender,
 CommandEventArgs e
);

Parameters
sender

The source of the event.

e
An CommandEventArgs that contains the event data.

Remarks
When you create an OnCommandEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnCommandEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnCommandEventHandler Delegate

Represents the method that will handle the OnConnect event.

[Visual Basic]
Public Delegate Sub HttpServer.OnConnectEventHandler(_
 ByVal sender As Object, _
 ByVal e As ConnectEventArgs _
)

[C#]
public delegate void HttpServer.OnConnectEventHandler(

 object sender,
 ConnectEventArgs e
);

Parameters
sender

The source of the event.

e
An ConnectEventArgs that contains the event data.

Remarks
When you create an OnConnectEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnConnectEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnConnectEventHandler Delegate

Represents the method that will handle the OnDisconnect event.

[Visual Basic]
Public Delegate Sub HttpServer.OnDisconnectEventHandler(_
 ByVal sender As Object, _
 ByVal e As DisconnectEventArgs _
)

[C#]
public delegate void HttpServer.OnDisconnectEventHandler(

 object sender,
 DisconnectEventArgs e
);

Parameters
sender

The source of the event.

e
An DisconnectEventArgs that contains the event data.

Remarks
When you create an OnDisconnectEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnDisconnectEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnDisconnectEventHandler Delegate

Represents the method that will handle the OnDownload event.

[Visual Basic]
Public Delegate Sub HttpServer.OnDownloadEventHandler(_
 ByVal sender As Object, _
 ByVal e As DownloadEventArgs _
)

[C#]
public delegate void HttpServer.OnDownloadEventHandler(

 object sender,
 DownloadEventArgs e
);

Parameters
sender

The source of the event.

e
An DownloadEventArgs that contains the event data.

Remarks
When you create an OnDownloadEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnDownloadEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnDownloadEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub HttpServer.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void HttpServer.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnErrorEventHandler Delegate

Represents the method that will handle the OnExecute event.

[Visual Basic]
Public Delegate Sub HttpServer.OnExecuteEventHandler(_
 ByVal sender As Object, _
 ByVal e As ExecuteEventArgs _
)

[C#]
public delegate void HttpServer.OnExecuteEventHandler(

 object sender,
 ExecuteEventArgs e
);

Parameters
sender

The source of the event.

e
An ExecuteEventArgs that contains the event data.

Remarks
When you create an OnExecuteEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnExecuteEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnExecuteEventHandler Delegate

Represents the method that will handle the OnResult event.

[Visual Basic]
Public Delegate Sub HttpServer.OnResultEventHandler(_
 ByVal sender As Object, _
 ByVal e As ResultEventArgs _
)

[C#]
public delegate void HttpServer.OnResultEventHandler(

 object sender,
 ResultEventArgs e
);

Parameters
sender

The source of the event.

e
An ResultEventArgs that contains the event data.

Remarks
When you create an OnResultEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnResultEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnResultEventHandler Delegate

Represents the method that will handle the OnTimeout event.

[Visual Basic]
Public Delegate Sub HttpServer.OnTimeoutEventHandler(_
 ByVal sender As Object, _
 ByVal e As TimeoutEventArgs _
)

[C#]
public delegate void HttpServer.OnTimeoutEventHandler(

 object sender,
 TimeoutEventArgs e
);

Parameters
sender

The source of the event.

e
An TimeoutEventArgs that contains the event data.

Remarks
When you create an OnTimeoutEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnTimeoutEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnTimeoutEventHandler Delegate

Represents the method that will handle the OnUpload event.

[Visual Basic]
Public Delegate Sub HttpServer.OnUploadEventHandler(_
 ByVal sender As Object, _
 ByVal e As UploadEventArgs _
)

[C#]
public delegate void HttpServer.OnUploadEventHandler(

 object sender,
 UploadEventArgs e
);

Parameters
sender

The source of the event.

e
An UploadEventArgs that contains the event data.

Remarks
When you create an OnUploadEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnUploadEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.OnUploadEventHandler Delegate

Specifies the file access permissions the HttpServer class supports.

[Visual Basic]
Public Enum HttpServer.FileAccess

[C#]
public enum HttpServer.FileAccess

Remarks
File access permissions can restrict the actions that any client can take, regardless of the user permissions
assigned to the client session. For example, a client session may have permission to use the PUT
command; however, unless the folder that they are attempting to create the file in also has accessWrite
permission, the PUT command will fail.

For security reasons, when the server is started, regular files only have the accessRead permission and
directories only have the accessRead and accessList permissions assigned to them. If you wish to allow
clients to upload files to your server, or execute scripts stored in a directory, then you must create a virtual
path to a physical directory and assign it the appropriate permissions. In both cases, best practices dictate
that the physical directory should be located outside of the root directory of the server.

If you assign the accessExecute permission to a virtual directory to allow clients to execute scripts using
the GET or POST commands, you should make sure that clients cannot list, create or modify files in that
directory. The scripts in that directory must have a registered handler, created using the RegisterHandler
method. It is not necessary to create a virtual path to a CGI program registered using the
RegisterProgram method because execute permission for that program is granted by default.

Members

Member Name Description

accessNone The virtual path or file has not been assigned any
permissions.

accessRead If the virtual path specifies a file, the client can use
the GET command to retrieve the contents of the
file and the HEAD command will return
information about the file. If the virtual path
specifies a directory, the client can use the GET
command to retrieve the index file for that
directory. If the file or directory does not have this
permission, the server will return an error to the
client.

accessWrite If the virtual path specifies a file, the client can
modify the contents of the file using the PUT
command. If the path specifies a directory, the
client can use the PUT command to create a new
file or replace an existing file in the directory.

accessExecute If the virtual path specifies a script, the client can
execute the script using either the GET or POST
commands. If the path specifies a directory, then
all scripts in that directory can be executed.

HttpServer.FileAccess Enumeration

accessList If the virtual path specifies a directory, and there is
no default index file present, the server will return
a list of files in that directory to the client. If this
permission is not specified, the server will return an
error if the directory does not have a default index
file. It is recommended that you do not specify this
permission when assigning the accessExecute
permission to a directory

accessRestricted Access to the file or directory should be restricted
to using the GET command to retrieve documents.
This is effectively the same as only specifying
accessRead as the file access permissions. If this
permission is combined with any permission other
than accessRead, those permissions will be
ignored.

accessProtected Access to the file or directory is protected by a
username and password. Clients should only be
permitted to access the resource if they provide
valid user credentials to the server. If this
permission is assigned to a virtual path, the default
command handlers will require the client to
authenticate itself to permit access to the resource.
The server application is responsible for
authenticating the session.

accessDefault This value specifies that the default access
permissions should be granted to the file or
directory. If the virtual path specifies a file, the
client can use the GET command to return the
contents. If the path specifies a directory, the client
can use the GET command to return the index file
or a list of files in the directory. If the server is in
restricted mode, it will return an error if a directory
does not have an index page.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the error codes returned by the HttpServer class.

[Visual Basic]
Public Enum HttpServer.ErrorCode

[C#]
public enum HttpServer.ErrorCode

Remarks
The HttpServer class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

HttpServer.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This method has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logfile formats that the HttpServer class supports.

[Visual Basic]
Public Enum HttpServer.FormatType

[C#]
public enum HttpServer.FormatType

Members

Member Name Description

formatNone This value specifies that the server should not
create or update a log file. This is the default
property value.

formatCommon This value specifies that the log file should use the
common log format that records a subset of
information in a fixed format. This log format
usually only provides information about file
transfers.

formatCombined This value specifies that the server should use the
combined log file format. This format is similar to
the common format, however it includes the client
referrer and user agent. This is the format that
most Apache web servers use by default.

formatExtended This value specifies that the log file should use the
standard W3C extended log file format. This is an
extensible format that can provide additional
information about the client session.

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

HttpServer.FormatType Enumeration

Specifies the security protocols that the HttpServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpServer.SecurityProtocols

[C#]
[Flags]
public enum HttpServer.SecurityProtocols

Remarks
The HttpServer class uses the SecurityProtocols enumeration to specify one or more security protocols
to be used when establishing a connection with a remote host. Multiple protocols may be specified if
necessary and the actual protocol used will be negotiated with the remote host. It is recommended that
most applications use protocolDefault when starting a secure server.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

HttpServer.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolDefault The default selection of security
protocols will be used when establishing
a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

16

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the options that the HttpServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpServer.ServerOptions

[C#]
[Flags]
public enum HttpServer.ServerOptions

Remarks
The HttpServer class uses the ServerOptions enumeration to specify one or more options to be used
when establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionMultiUser This option specifies the server should
be started in multi-user mode, where
users are assigned their own home
directories and clients can access
documents in those directories by
including the username in the request
URI. If this option is not specified, then
all users will share the server root
directory by default. This option does
not have any effect on the maximum
number of simultaneous client sessions
that can be established with the server.

1

optionRestricted This option specifies the server should
be initialized in a restricted mode,
limiting certain functionality. The only
commands accepted by the server will
be the GET and HEAD commands. The
server will never return a list of files if
the client provides a URL that maps to a
local directory and there is no default
index page. Clients will not be able to
execute CGI programs or scripts, and
cannot access files outside of the server
root directory or its subdirectories.

2

optionLocalUser This option specifies the server should
perform user authentication using the
Windows local account database. This
option is useful if the server should
accept local usernames, or if the

4

HttpServer.ServerOptions Enumeration

application does not wish to implement
an event handler for user
authentication. If this option is not
specified, the application is responsible
for authenticating all users.

optionNoIndex This option specifies the server should
not search for a default index page if
the client provides a URL that maps to a
local directory. By default, the server will
search for a file named index.htm,
index.html, default.htm, default.html or
index.txt in the directory. If a file by one
of those names is found, it will return
the contents of that file rather than a list
of files in the directory.

8

optionReadOnly This option specifies the server should
only allow read-only access to files by
default. If this option is enabled, it will
change the default permissions granted
to authenticated users. Commands that
are used to create, delete or modify files
on the server will be disabled by default.
It is recommended that this option be
enabled if the server is publicly
accessible over the Internet.

16

optionLockFiles This option specifies that files should be
exclusively locked when a client
attempts to upload or download a file. If
another client attempts to access the
same file, the operation will fail. By
default, the server will permit multiple
clients to access the same file, although
it will still write-lock files that are in the
process of being uploaded.

64

optionHiddenFiles This option specifies that when a client
requests a resource, the server should
permit access to hidden and system files
or subdirectories. By default, the server
will not allow access to a hidden or
system file, even if the client session has
been authenticated. This option is
ignored if the server is started in
restricted mode.

128

optionSecure This option specifies that secure
connections using SSL and/or TLS
should be enabled. This option requires
that a valid SSL certificate be installed
on the local host. The default port
number for secure HTTP connections is
443. If security is enabled, all client

4096

connections to the server must be
secure. Standard and secure
connections cannot be shared by the
same instance of the server. If your
application must support both standard
and secure connections, you must
create two instances of the server
listening on two different ports, one
with optionSecure enabled and the
other without.

optionSecureFallback This option specifies the server should
permit the use of less secure cipher
suites for compatibility with legacy
clients. If this option is specified, the
server will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

32768

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the priorities that the HttpServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpServer.ServerPriority

[C#]
[Flags]
public enum HttpServer.ServerPriority

Members

Member Name Description Value

priorityBackground This priority significantly reduces the
memory, processor and network
resource utilization for the server. It is
typically used with lightweight services
running in the background that are
designed for few client connections.
Each client thread will be assigned a
lower scheduling priority and will be
frequently forced to yield execution to
other threads.

0

priorityLow This priority lowers the overall resource
utilization for the client session and
meters the processor utilization for the
client session. Each client thread will be
assigned a lower scheduling priority and
will occasionally be forced to yield
execution to other threads.

1

priorityNormal The default priority which balances
resource and processor utilization. It is
recommended that most applications
use this priority.

2

priorityHigh This priority increases the overall
resource utilization for each client
session and their threads will be given
higher scheduling priority. It is not
recommended that this priority be used
on a system with a single processor.

3

priorityCritical This priority can significantly increase
processor, memory and network
utilization. Each client thread will be
given higher scheduling priority and will
be more responsive to network events.
It is not recommended that this priority
be used on a system with a single

4

HttpServer.ServerPriority Enumeration

processor.

priorityInvalid An invalid transfer priority which
indicates an error condition.

-1

priorityDefault The default server priority. This is the
same as specifying priorityNormal.

2

priorityLowest The lowest valid server priority. This is
the same as specifying
priorityBackground.

0

priorityHighest The highest valid server priority. This is
the same as specifying priorityCritical.

4

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the HttpServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpServer.TraceOptions

[C#]
[Flags]
public enum HttpServer.TraceOptions

Remarks
The HttpServer class uses the TraceOptions enumeration to specify what kind of debugging information
is written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

HttpServer.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the user access permissions the HttpServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum HttpServer.UserAccess

[C#]
[Flags]
public enum HttpServer.UserAccess

Remarks
When a client establishes a connection to the server, it is granted a default set of user access permissions
based on the initial configuration of the server. By default, the client is granted all permissions, which
means the client may use any valid HTTP command. If the server is started in restricted mode, then the
client is only granted permission to read files. This means that restricted mode clients cannot obtain
directory listings of files, nor can they create files or execute CGI programs. The user access permissions
define the types of HTTP commands that the client is permitted to use. However, server options and
individual permissions on specific files and directories can further limit what actions the client can take.

If you assign the accesRestricted permission to a client, the server will impose significant limitations on
the client. This permission provides a high level of security, ensuring that the client cannot access any
other documents outside of the server root directory; however, it also prevents the client from executing
scripts or submitting data. If the website depends on server-side scripts and the use of CGI programs,
assigning this permission may effectively disable use of the site for that client session.

Members

Member Name Description Value

accessNone The client has not been assigned any
permissions.

0

accessAll The client has been assigned all
available permissions. This enables the
client to issue all valid commands,
including any external script handlers
that have been registered for use with
the server instance.

65535

accessRead The client can download files and
retrieve other resources using the GET
command. This permission also allows
the client to obtain information about a
specific resource using the HEAD
command. The resource that the client
is attempting to retrieve must also have
read permission, otherwise the
command will fail.

1

accessWrite The client can modify existing files or
create new files using the PUT

2

HttpServer.UserAccess Enumeration

command. The directory where the
client is attempting to create or modify
the file must also have write permission,
otherwise the command will fail. This
permission is not granted by default to
clients if the server is started in
restricted mode. This permission is
ignored if the server is started in read-
only mode.

accessExecute The client can execute scripts and CGI
programs. If this permission is not
granted to the client, it will be unable to
use the GET, HEAD or POST commands
if the resource is a program or script
registered with the server. This
permission is not granted by default to
clients if the server is started in
restricted mode.

4

accessList If the client issues a GET command and
the resource specifies a directory, this
permission allows the server to return a
list of files to client if a default index file
cannot be found. If this permission is
not granted to the client, the directory
must contain a default index file,
otherwise the server will return an error.
This permission is ignored if the server is
started in restricted mode.

8

accessRestricted The client is restricted to accessing
documents using the GET and HEAD
commands, and those documents must
be located in the root directory for the
virtual host or in a subdirectory. The
client cannot execute scripts, submit
data to the server using the POST
command or upload files using the PUT
command.

1048576

accessDefault This value specifies that the default
permissions should be granted to the
client session. If the server is in restricted
mode, the client will only be able to use
the GET and HEAD commands to
retrieve documents. If the server is not
in restricted mode, the client can use all
valid HTTP commands. This is the
recommended access permissions for
most clients.

8388608

Requirements
Namespace: SocketTools

Assembly: SocketTools.HttpServer (in SocketTools.HttpServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Implements the Internet Control Message Protocol.

For a list of all members of this type, see IcmpClient Members.

System.Object
 SocketTools.IcmpClient

[Visual Basic]
Public Class IcmpClient
 Implements IDisposable

[C#]
public class IcmpClient : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The Internet Control Message Protocol (ICMP) is commonly used to determine if a remote host is
reachable and how packets of data are routed to that system. Users are most familiar with this protocol as
it is implemented in the ping and tracert command line utilities. The ping command is used to check if a
system is reachable and the amount of time that it takes for a packet of data to make a round trip from
the local system, to the remote host and then back again. The tracert command is used to trace the route
that a packet of data takes from the local system to the remote host, and can be used to identify potential
problems with overall throughput and latency. The IcmpClient class can be used to build in this type of
functionality in your own applications, giving you the ability to send and receive ICMP echo datagrams in
order to perform your own analysis.

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
IcmpClient Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient Class

IcmpClient overview

Public Static (Shared) Fields

icmpPacketSize A constant value which specifies the default packet
size.

icmpTimeout A constant value which specifies the default
timeout period in milliseconds.

icmpTimeToLive A constant value which specifies the default time-
to-live value.

Public Instance Constructors

 IcmpClient Constructor Initializes a new instance of the IcmpClient class.

Public Instance Properties

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

Handle Gets a value that specifies the client handle
allocated for the current session.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

Interval Gets and sets the interval in milliseconds between
echo packets.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets and sets the local Internet address that the
client will be bound to.

LocalName Gets a value which specifies the host name for the
local system.

Options Gets and sets a value which specifies one or more
client options.

PacketSize Gets and sets the size of an echo datagram.

IcmpClient Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.IcmpClient.icmpPacketSize.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.IcmpClient.icmpTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.IcmpClient.icmpTimeToLive.html

RecvCount Gets the number of echo reply datagrams
received by the local host.

SendCount Gets the number of echo datagrams sent by the
local host.

Status Gets a value which specifies the current status of
the client.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in milliseconds.

TimeToLive Gets and sets the default time-to-live value for
echo datagrams.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

TripAverage Gets the average packet trip time in milliseconds.

TripMaximum Gets the maximum packet trip time in milliseconds.

TripMinimum Gets the minimum packet trip time in milliseconds.

Version Gets a value which returns the current version of
the IcmpClient class library.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

Dispose Overloaded. Releases all resources used by
IcmpClient.

Echo Overloaded. Send an echo datagram to the
specified host.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the IcmpClient

class.

Reset Reset the internal state of the object, resetting all
properties to their default values.

ToString (inherited from Object) Returns a String that represents the current Object.

TraceRoute Overloaded. Send a series of echo datagrams to
trace the route taken from the local system to the
remote host

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnEcho Occurs when an echo datagram is sent to the
remote host.

OnError Occurs when an client operation fails.

OnReply Occurs when an echo reply datagram is received
by the local host.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnTrace Occurs when an echo datagram is forwarded to an
intermediate host.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the IcmpClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the IcmpClient class.

[Visual Basic]
Public Sub New()

[C#]
public IcmpClient();

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient Constructor

The properties of the IcmpClient class are listed below. For a complete list of IcmpClient class members,
see the IcmpClient Members topic.

Public Instance Properties

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

Handle Gets a value that specifies the client handle
allocated for the current session.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

Interval Gets and sets the interval in milliseconds between
echo packets.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets and sets the local Internet address that the
client will be bound to.

LocalName Gets a value which specifies the host name for the
local system.

Options Gets and sets a value which specifies one or more
client options.

PacketSize Gets and sets the size of an echo datagram.

RecvCount Gets the number of echo reply datagrams
received by the local host.

SendCount Gets the number of echo datagrams sent by the
local host.

Status Gets a value which specifies the current status of
the client.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method

IcmpClient Properties

calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in milliseconds.

TimeToLive Gets and sets the default time-to-live value for
echo datagrams.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

TripAverage Gets the average packet trip time in milliseconds.

TripMaximum Gets the maximum packet trip time in milliseconds.

TripMinimum Gets the minimum packet trip time in milliseconds.

Version Gets a value which returns the current version of
the IcmpClient class library.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.AutoResolve Property

Gets and sets a value which indicates if the client is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the client is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if client operations complete synchronously or asynchronously.
If set to true, then each client operation (such as sending or receiving data) will return when the operation
has completed or timed-out. If set to false, client operations will return immediately. If the operation
would result in the client blocking (such as attempting to read data when no data has been sent by the
remote host), an error is generated.

It is important to note that certain events, such as OnDisconnect, OnEcho and OnReply are only fired if
the client is in non-blocking mode.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Blocking Property

Gets a value that specifies the client handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current client session.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Handle Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address using dotted notation.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.HostAddress Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.HostName Property

Gets and sets the interval in milliseconds between echo packets.

[Visual Basic]
Public Property Interval As Integer

[C#]
public int Interval {get; set;}

Property Value
An integer value which specifies an interval in milliseconds.

Remarks
The Interval property determines the interval at which echo datagrams are automatically sent to the
remote host. If the interval is set to zero, no datagrams are automatically sent.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Interval Property

Gets a value which indicates if the current thread is performing a blocking client operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next client operation will not fail. An application
should always check the return value from a client operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.IsBlocked Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.IsInitialized Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public IcmpClient.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.LastErrorString Property

Gets and sets the local Internet address that the client will be bound to.

[Visual Basic]
Public Property LocalAddress As String

[C#]
public string LocalAddress {get; set;}

Property Value
A string which specifies an Internet address in dotted notation.

Remarks
The LocalAddress property is used to specify the local Internet address that the client will be bound to
when a connection is established with a remote host. By default this property is not assigned a value,
which specifies that the client should be bound to any appropriate network interface on the local system.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.LocalAddress Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.LocalName Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As IcmpOptions

[C#]
public IcmpClient.IcmpOptions Options {get; set;}

Property Value
Returns one or more IcmpOptions enumeration flags which specify the options for the client. The default
value for this property is clientOptionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Options Property

Gets and sets the size of an echo datagram.

[Visual Basic]
Public Property PacketSize As Integer

[C#]
public int PacketSize {get; set;}

Property Value
An integer which specifies the size of an echo datagram in bytes.

Remarks
The PacketSize property determines the size of an ICMP echo datagram. The default packet size is 32
bytes. The minimum packet size is 1 byte and the maximum packet size is 65,535 bytes. Specifying a
packet size outside of this range will result in an error. Note that packet sizes over 512 bytes may not be
supported by your local networking hardware or intermediate routers.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.PacketSize Property

Gets the number of echo reply datagrams received by the local host.

[Visual Basic]
Public ReadOnly Property RecvCount As Integer

[C#]
public int RecvCount {get;}

Property Value
An integer value which specifies the number of echo reply datagrams.

Remarks
This value is automatically reset whenever a new remote host is specified.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.RecvCount Property

Gets the number of echo datagrams sent by the local host.

[Visual Basic]
Public ReadOnly Property SendCount As Integer

[C#]
public int SendCount {get;}

Property Value
An integer value which specifies the number of echo datagrams sent.

Remarks
This value is automatically reset whenever a new remote host is specified.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.SendCount Property

Gets a value which specifies the current status of the client.

[Visual Basic]
Public ReadOnly Property Status As IcmpStatus

[C#]
public IcmpClient.IcmpStatus Status {get;}

Property Value
A IcmpStatus enumeration value which specifies the current client status.

Remarks
The Status property returns the current status of the client. This property can be used to check on
blocking connections to determine if the client is interacting with the remote host before taking some
action.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Status Property

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public IcmpClient.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

See Also
IcmpClient Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.IcmpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.IcmpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.IcmpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.IcmpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.IcmpClient.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ThrowError Property

Gets and sets a value which specifies a timeout period in milliseconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in milliseconds.

Remarks
Setting the Timeout property specifies the number of milliseconds until a blocking operation fails and
returns an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set to 3000 milliseconds (3 seconds).

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Timeout Property

Gets and sets the default time-to-live value for echo datagrams.

[Visual Basic]
Public Property TimeToLive As Integer

[C#]
public int TimeToLive {get; set;}

Remarks
The time-to-live (TTL) value is specified in the IP header of a datagram, and is used to control the number
of routers that the datagram is passed through. Each router that handles the datagram decrements the
TTL value by one. When it drops to zero, a datagram is returned to the sender, specifying that the TTL has
been exceeded.

Setting this property changes the default TTL value for all subsequent ICMP datagrams sent by the local
host, with the default value being 255. Reading this property returns the value of the TTL field in the IP
header of the last echo reply datagram received.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TimeToLive Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public IcmpClient.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceFlags Property

Gets the average packet trip time in milliseconds.

[Visual Basic]
Public ReadOnly Property TripAverage As Integer

[C#]
public int TripAverage {get;}

Property Value
An integer value which specifies the average trip time in milliseconds.

Remarks
The TripAverage property returns the average number of milliseconds for an ICMP echo reply datagram
to be returned from the remote host.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TripAverage Property

Gets the maximum packet trip time in milliseconds.

[Visual Basic]
Public ReadOnly Property TripMaximum As Integer

[C#]
public int TripMaximum {get;}

Property Value
An integer value which specifies the maximum trip time in milliseconds.

Remarks
The TripMaximum property returns the maximum number of milliseconds for an ICMP echo reply
datagram to be returned from the remote host.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TripMaximum Property

Gets the minimum packet trip time in milliseconds.

[Visual Basic]
Public ReadOnly Property TripMinimum As Integer

[C#]
public int TripMinimum {get;}

Property Value
An integer value which specifies the minimum trip time in milliseconds.

Remarks
The TripMinimum property returns the minimum number of milliseconds for an ICMP echo reply
datagram to be returned from the remote host.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TripMinimum Property

Gets a value which returns the current version of the IcmpClient class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the IcmpClient class
library. This value can be used by an application for validation and debugging purposes.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Version Property

The methods of the IcmpClient class are listed below. For a complete list of IcmpClient class members,
see the IcmpClient Members topic.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

Dispose Overloaded. Releases all resources used by
IcmpClient.

Echo Overloaded. Send an echo datagram to the
specified host.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the IcmpClient
class.

Reset Reset the internal state of the object, resetting all
properties to their default values.

ToString (inherited from Object) Returns a String that represents the current Object.

TraceRoute Overloaded. Send a series of echo datagrams to
trace the route taken from the local system to the
remote host

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the IcmpClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient Methods

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the client could be attached to the current thread. If this method returns
false, the client could not be attached to the thread and the application should check the value of the
LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.AttachThread Method

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Cancel Method

Send an echo datagram to the default host.

Overload List
Send an echo datagram to the default host.

public bool Echo();

Send an echo datagram to the specified host.

public bool Echo(string);

Send an echo datagram to the specified host.

public bool Echo(string,int);

Send an echo datagram to the specified host.

public bool Echo(string,int,int);

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Echo Method

Send an echo datagram to the default host.

[Visual Basic]
Overloads Public Function Echo() As Boolean

[C#]
public bool Echo();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Echo method sends an ICMP echo datagram to the specified host, providing a simplified interface for
pinging a remote system. If the method returns a value of true, then a reply was received for the echo
datagram that was sent. This would typically indicate that the client can establish a reliable connection to
the server. A return value of false indicates that there was no response to the echo datagrams. The
remote host may not exist or may not be available.

The value returned by the TripAverage property provides information about the latency between the two
hosts. Higher average time values would indicate greater latency and reduced throughput between the
systems.

The failure for a host to respond to an ICMP echo datagram may not indicate a problem with the remote
system. In some cases, a router between the local and remote host may be malfunctioning or discarding
the datagrams. Systems can also be configured to specifically ignore ICMP echo datagrams and not
respond to them; this is often a security measure to prevent certain kinds of denial-of-service attacks.

The value of the HostName property specifies the remote host that the echo datagram will be sent to.
The Timeout property specifies the timeout period in milliseconds. The TimeToLive property specifies the
time-to-live value.

See Also
IcmpClient Class | SocketTools Namespace | IcmpClient.Echo Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Echo Method ()

Send an echo datagram to the specified host.

[Visual Basic]
Overloads Public Function Echo(_
 ByVal hostName As String _
) As Boolean

[C#]
public bool Echo(
 string hostName
);

Parameters
hostName

A string which specifies the host name or IP address which the echo datagram will be sent to.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Echo method sends an ICMP echo datagram to the specified host, providing a simplified interface for
pinging a remote system. If the method returns a value of true, then a reply was received for the echo
datagram that was sent. This would typically indicate that the client can establish a reliable connection to
the server. A return value of false indicates that there was no response to the echo datagrams. The
remote host may not exist or may not be available.

The value returned by the TripAverage property provides information about the latency between the two
hosts. Higher average time values would indicate greater latency and reduced throughput between the
systems.

The failure for a host to respond to an ICMP echo datagram may not indicate a problem with the remote
system. In some cases, a router between the local and remote host may be malfunctioning or discarding
the datagrams. Systems can also be configured to specifically ignore ICMP echo datagrams and not
respond to them; this is often a security measure to prevent certain kinds of denial-of-service attacks.

The Timeout property specifies the timeout period in milliseconds. The TimeToLive property specifies the
time-to-live value.

See Also
IcmpClient Class | SocketTools Namespace | IcmpClient.Echo Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Echo Method (String)

Send an echo datagram to the specified host.

[Visual Basic]
Overloads Public Function Echo(_
 ByVal hostName As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Echo(
 string hostName,
 int timeout
);

Parameters
hostName

A string which specifies the host name or IP address which the echo datagram will be sent to.

timeout
An integer value which specifies the number of milliseconds until a blocking operation fails and the
method returns to the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Echo method sends an ICMP echo datagram to the specified host, providing a simplified interface for
pinging a remote system. If the method returns a value of true, then a reply was received for the echo
datagram that was sent. This would typically indicate that the client can establish a reliable connection to
the server. A return value of false indicates that there was no response to the echo datagrams. The
remote host may not exist or may not be available.

The value returned by the TripAverage property provides information about the latency between the two
hosts. Higher average time values would indicate greater latency and reduced throughput between the
systems.

The failure for a host to respond to an ICMP echo datagram may not indicate a problem with the remote
system. In some cases, a router between the local and remote host may be malfunctioning or discarding
the datagrams. Systems can also be configured to specifically ignore ICMP echo datagrams and not
respond to them; this is often a security measure to prevent certain kinds of denial-of-service attacks.

The TimeToLive property specifies the time-to-live value.

See Also
IcmpClient Class | SocketTools Namespace | IcmpClient.Echo Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Echo Method (String, Int32)

Send an echo datagram to the specified host.

[Visual Basic]
Overloads Public Function Echo(_
 ByVal hostName As String, _
 ByVal timeout As Integer, _
 ByVal timeToLive As Integer _
) As Boolean

[C#]
public bool Echo(
 string hostName,
 int timeout,
 int timeToLive
);

Parameters
hostName

A string which specifies the host name or IP address which the echo datagram will be sent to.

timeout
An integer value which specifies the number of milliseconds until a blocking operation fails and the
method returns to the caller.

timeToLive
An integer value which specifies the time-to-live (TTL) value for the echo datagram. This determines
the maximum number of times that a packet will be forwarded from one system to another while
enroute to its destination. The minimum time-to-live value is 1, the maximum is 255.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Echo method sends an ICMP echo datagram to the specified host, providing a simplified interface for
pinging a remote system. If the method returns a value of true, then a reply was received for the echo
datagram that was sent. This would typically indicate that the client can establish a reliable connection to
the server. A return value of false indicates that there was no response to the echo datagrams. The
remote host may not exist or may not be available.

The value returned by the TripAverage property provides information about the latency between the two
hosts. Higher average time values would indicate greater latency and reduced throughput between the
systems.

The failure for a host to respond to an ICMP echo datagram may not indicate a problem with the remote
system. In some cases, a router between the local and remote host may be malfunctioning or discarding
the datagrams. Systems can also be configured to specifically ignore ICMP echo datagrams and not
respond to them; this is often a security measure to prevent certain kinds of denial-of-service attacks.

See Also
IcmpClient Class | SocketTools Namespace | IcmpClient.Echo Overload List

IcmpClient.Echo Method (String, Int32, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Releases all resources used by IcmpClient.

Overload List
Releases all resources used by IcmpClient.

public void Dispose();

Releases the unmanaged resources allocated by the IcmpClient class and optionally releases the managed
resources.

protected virtual void Dispose(bool);

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Dispose Method

Releases all resources used by IcmpClient.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
IcmpClient Class | SocketTools Namespace | IcmpClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Dispose Method ()

Releases the unmanaged resources allocated by the IcmpClient class and optionally releases the managed
resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the IcmpClient class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
IcmpClient Class | SocketTools Namespace | IcmpClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Finalize Method

Initialize an instance of the IcmpClient class.

Overload List
Initialize an instance of the IcmpClient class.

public bool Initialize();

Initialize an instance of the IcmpClient class.

public bool Initialize(string);

See Also
IcmpClient Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Initialize Method

Initialize an instance of the IcmpClient class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the IcmpClient class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
IcmpClient Class | SocketTools Namespace | IcmpClient.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Initialize Method ()

Initialize an instance of the IcmpClient class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the IcmpClient class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the IcmpClient class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.IcmpClient icmpClient = new SocketTools.IcmpClient();

if (icmpClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(icmpClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim icmpClient As New SocketTools.IcmpClient

If icmpClient.Initialize(strLicenseKey) = False Then
 MsgBox(icmpClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
IcmpClient Class | SocketTools Namespace | IcmpClient.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Initialize Method (String)

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Reset Method

Send a series of echo datagrams to trace the route taken from the local system to the remote host

Overload List
Send a series of echo datagrams to trace the route taken from the local system to the remote host

public int TraceRoute();

Send a series of echo datagrams to trace the route taken from the local system to the remote host

public int TraceRoute(string);

Send a series of echo datagrams to trace the route taken from the local system to the remote host

public int TraceRoute(string,int);

Send a series of echo datagrams to trace the route taken from the local system to the remote host

public int TraceRoute(string,int,int);

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceRoute Method

Send a series of echo datagrams to trace the route taken from the local system to the remote host

[Visual Basic]
Overloads Public Function TraceRoute() As Integer

[C#]
public int TraceRoute();

Return Value
The method returns the total number of hops from the local system to the remote host. If the method
fails, it will return a value of -1.

Remarks
The TraceRoute method sends a series of ICMP echo datagrams to the specified host, adjusting the time-
to-live value to determine the intermediate hosts that route the packet. This method will always block the
current thread until the trace completes.

The OnTrace event will fire for each intermediate host along the route.

The value of the HostName property specifies the remote host that the echo datagram will be sent to.
The Timeout property specifies the timeout period in milliseconds.

See Also
IcmpClient Class | SocketTools Namespace | IcmpClient.TraceRoute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceRoute Method ()

Send a series of echo datagrams to trace the route taken from the local system to the remote host

[Visual Basic]
Overloads Public Function TraceRoute(_
 ByVal hostName As String _
) As Integer

[C#]
public int TraceRoute(
 string hostName
);

Parameters
hostName

A string which specifies the host name or IP address which the echo datagram will be sent to.

Return Value
The method returns the total number of hops from the local system to the remote host. If the method
fails, it will return a value of -1.

Remarks
The TraceRoute method sends a series of echo datagrams to the specified host, adjusting the time-to-
live value to determine the intermediate hosts that route the packet. This method will always block the
current thread until the trace completes.

The OnTrace event will fire for each intermediate host along the route.

The Timeout property specifies the timeout period in milliseconds.

See Also
IcmpClient Class | SocketTools Namespace | IcmpClient.TraceRoute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceRoute Method (String)

Send a series of echo datagrams to trace the route taken from the local system to the remote host

[Visual Basic]
Overloads Public Function TraceRoute(_
 ByVal hostName As String, _
 ByVal maxHops As Integer _
) As Integer

[C#]
public int TraceRoute(
 string hostName,
 int maxHops
);

Parameters
hostName

A string which specifies the host name or IP address which the echo datagram will be sent to.

maxHops
An integer value which specifies the maximum number of routers the echo datagram will be
forwarded through (the number of hops) to the remote host. The minimum value is 1 and the
maximum value is 255. It is recommended that most applications specify a value of at least 30.

Return Value
The method returns the total number of hops from the local system to the remote host. If the method
fails, it will return a value of -1.

Remarks
The TraceRoute method sends a series of echo datagrams to the specified host, adjusting the time-to-
live value to determine the intermediate hosts that route the packet. This method will always block the
current thread until the trace completes.

The OnTrace event will fire for each intermediate host along the route.

The Timeout property specifies the timeout period in milliseconds.

See Also
IcmpClient Class | SocketTools Namespace | IcmpClient.TraceRoute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceRoute Method (String, Int32)

Send a series of echo datagrams to trace the route taken from the local system to the remote host

[Visual Basic]
Overloads Public Function TraceRoute(_
 ByVal hostName As String, _
 ByVal maxHops As Integer, _
 ByVal timeout As Integer _
) As Integer

[C#]
public int TraceRoute(
 string hostName,
 int maxHops,
 int timeout
);

Parameters
hostName

A string which specifies the host name or IP address which the echo datagram will be sent to.

maxHops
An integer value which specifies the maximum number of routers the echo datagram will be
forwarded through (the number of hops) to the remote host. The minimum value is 1 and the
maximum value is 255. It is recommended that most applications specify a value of at least 30.

timeout
An integer value which specifies the number of milliseconds until a blocking operation fails and the
method returns to the caller.

Return Value
The method returns the total number of hops from the local system to the remote host. If the method
fails, it will return a value of -1.

Remarks
The TraceRoute method sends a series of echo datagrams to the specified host, adjusting the time-to-
live value to determine the intermediate hosts that route the packet. This method will always block the
current thread until the trace completes.

The OnTrace event will fire for each intermediate host along the route.

See Also
IcmpClient Class | SocketTools Namespace | IcmpClient.TraceRoute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceRoute Method (String, Int32, Int32)

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
IcmpClient Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.Uninitialize Method

The events of the IcmpClient class are listed below. For a complete list of IcmpClient class members, see
the IcmpClient Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnEcho Occurs when an echo datagram is sent to the
remote host.

OnError Occurs when an client operation fails.

OnReply Occurs when an echo reply datagram is received
by the local host.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnTrace Occurs when an echo datagram is forwarded to an
intermediate host.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.OnCancel Event

Occurs when an echo datagram is sent to the remote host.

[Visual Basic]
Public Event OnEcho As OnEchoEventHandler

[C#]
public event OnEchoEventHandler OnEcho;

Event Data
The event handler receives an argument of type IcmpClient.EchoEventArgs containing data related to this
event. The following IcmpClient.EchoEventArgs properties provide information specific to this event.

Property Description

HostName Gets the remote host name or IP address.

PacketSize Gets the size of the echo datagram in bytes.

SequenceId Gets the packet sequence number.

Remarks
The OnEcho event is generated for non-blocking sockets when an echo datagram is sent to the remote
host. This event is only generated when the Blocking property is set to false.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.OnEcho Event

Provides data for the OnEcho event.

For a list of all members of this type, see IcmpClient.EchoEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.IcmpClient.EchoEventArgs

[Visual Basic]
Public Class IcmpClient.EchoEventArgs
 Inherits EventArgs

[C#]
public class IcmpClient.EchoEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
EchoEventArgs provides information about the echo datagram sent to the remote host.

An OnEcho event occurs when an echo datagram is sent to a remote host.

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
IcmpClient.EchoEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.EchoEventArgs Class

IcmpClient.EchoEventArgs overview

Public Instance Constructors

 IcmpClient.EchoEventArgs Constructor Initializes a new instance of the
IcmpClient.EchoEventArgs class.

Public Instance Properties

HostName Gets the remote host name or IP address.

PacketSize Gets the size of the echo datagram in bytes.

SequenceId Gets the packet sequence number.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
IcmpClient.EchoEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.EchoEventArgs Members

Initializes a new instance of the IcmpClient.EchoEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public IcmpClient.EchoEventArgs();

See Also
IcmpClient.EchoEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.EchoEventArgs Constructor

The properties of the IcmpClient.EchoEventArgs class are listed below. For a complete list of
IcmpClient.EchoEventArgs class members, see the IcmpClient.EchoEventArgs Members topic.

Public Instance Properties

HostName Gets the remote host name or IP address.

PacketSize Gets the size of the echo datagram in bytes.

SequenceId Gets the packet sequence number.

See Also
IcmpClient.EchoEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.EchoEventArgs Properties

Gets the remote host name or IP address.

[Visual Basic]
Public ReadOnly Property HostName As String

[C#]
public string HostName {get;}

Property Value
A string which specifies the remote host name or IP address.

See Also
IcmpClient.EchoEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.EchoEventArgs.HostName Property

Gets the size of the echo datagram in bytes.

[Visual Basic]
Public ReadOnly Property PacketSize As Integer

[C#]
public int PacketSize {get;}

Property Value
An integer value which specifies the size of the echo datagram in bytes.

See Also
IcmpClient.EchoEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.EchoEventArgs.PacketSize Property

Gets the packet sequence number.

[Visual Basic]
Public ReadOnly Property SequenceId As Integer

[C#]
public int SequenceId {get;}

Property Value
An integer which specifies the packet sequence number.

Remarks
The SequenceId value is used to uniquely identify each echo datagram that is sent to the remote host.
This value will increase for each datagram that is sent until the remote host address is changed. Once a
new remote host is specified, the sequence number is reset.

See Also
IcmpClient.EchoEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.EchoEventArgs.SequenceId Property

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type IcmpClient.ErrorEventArgs containing data related to this
event. The following IcmpClient.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see IcmpClient.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.IcmpClient.ErrorEventArgs

[Visual Basic]
Public Class IcmpClient.ErrorEventArgs
 Inherits EventArgs

[C#]
public class IcmpClient.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
IcmpClient.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ErrorEventArgs Class

IcmpClient.ErrorEventArgs overview

Public Instance Constructors

 IcmpClient.ErrorEventArgs Constructor Initializes a new instance of the
IcmpClient.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
IcmpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ErrorEventArgs Members

Initializes a new instance of the IcmpClient.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public IcmpClient.ErrorEventArgs();

See Also
IcmpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ErrorEventArgs Constructor

The properties of the IcmpClient.ErrorEventArgs class are listed below. For a complete list of
IcmpClient.ErrorEventArgs class members, see the IcmpClient.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
IcmpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
IcmpClient.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public IcmpClient.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
IcmpClient.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ErrorEventArgs.Error Property

Occurs when an echo reply datagram is received by the local host.

[Visual Basic]
Public Event OnReply As OnReplyEventHandler

[C#]
public event OnReplyEventHandler OnReply;

Event Data
The event handler receives an argument of type IcmpClient.ReplyEventArgs containing data related to this
event. The following IcmpClient.ReplyEventArgs properties provide information specific to this event.

Property Description

HostName Gets the remote host name or IP address.

PacketSize Gets the size of the echo datagram in bytes.

SequenceId Gets the packet sequence number.

TripTime Gets the time in milliseconds since the packet was
sent to the remote host.

Remarks
This OnReply event is fired when a echo reply datagram is received from the remote system. Note that
there is no guarantee that packets will be returned in the same sequence order they were sent or that
they will be returned at all. This event is only generated when the Blocking property is set to false.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.OnReply Event

Provides data for the OnReply event.

For a list of all members of this type, see IcmpClient.ReplyEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.IcmpClient.ReplyEventArgs

[Visual Basic]
Public Class IcmpClient.ReplyEventArgs
 Inherits EventArgs

[C#]
public class IcmpClient.ReplyEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ReplyEventArgs provides information about the echo reply datagram received from the remote host.

An OnReply event occurs when an echo reply datagram is received from a remote host.

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
IcmpClient.ReplyEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ReplyEventArgs Class

IcmpClient.ReplyEventArgs overview

Public Instance Constructors

 IcmpClient.ReplyEventArgs Constructor Initializes a new instance of the
IcmpClient.ReplyEventArgs class.

Public Instance Properties

HostName Gets the remote host name or IP address.

PacketSize Gets the size of the echo datagram in bytes.

SequenceId Gets the packet sequence number.

TripTime Gets the time in milliseconds since the packet was
sent to the remote host.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
IcmpClient.ReplyEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ReplyEventArgs Members

Initializes a new instance of the IcmpClient.ReplyEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public IcmpClient.ReplyEventArgs();

See Also
IcmpClient.ReplyEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ReplyEventArgs Constructor

The properties of the IcmpClient.ReplyEventArgs class are listed below. For a complete list of
IcmpClient.ReplyEventArgs class members, see the IcmpClient.ReplyEventArgs Members topic.

Public Instance Properties

HostName Gets the remote host name or IP address.

PacketSize Gets the size of the echo datagram in bytes.

SequenceId Gets the packet sequence number.

TripTime Gets the time in milliseconds since the packet was
sent to the remote host.

See Also
IcmpClient.ReplyEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ReplyEventArgs Properties

Gets the remote host name or IP address.

[Visual Basic]
Public ReadOnly Property HostName As String

[C#]
public string HostName {get;}

Property Value
A string which specifies the remote host name or IP address.

See Also
IcmpClient.ReplyEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ReplyEventArgs.HostName Property

Gets the size of the echo datagram in bytes.

[Visual Basic]
Public ReadOnly Property PacketSize As Integer

[C#]
public int PacketSize {get;}

Property Value
An integer value which specifies the size of the echo datagram in bytes.

See Also
IcmpClient.ReplyEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ReplyEventArgs.PacketSize Property

Gets the packet sequence number.

[Visual Basic]
Public ReadOnly Property SequenceId As Integer

[C#]
public int SequenceId {get;}

Property Value
An integer which specifies the packet sequence number.

Remarks
The SequenceId value is used to uniquely identify each echo datagram that is received from the remote
host. This value will increase for each datagram that is received until the remote host address is changed.
Once a new remote host is specified, the sequence number is reset.

See Also
IcmpClient.ReplyEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ReplyEventArgs.SequenceId Property

Gets the time in milliseconds since the packet was sent to the remote host.

[Visual Basic]
Public ReadOnly Property TripTime As Integer

[C#]
public int TripTime {get;}

Property Value
An integer which specifies the number of milliseconds that have elapsed since the packet was sent to the
remote host.

Remarks
This value can be used to measure the latency between the local system and remote host.

See Also
IcmpClient.ReplyEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.ReplyEventArgs.TripTime Property

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.OnTimeout Event

Occurs when an echo datagram is forwarded to an intermediate host.

[Visual Basic]
Public Event OnTrace As OnTraceEventHandler

[C#]
public event OnTraceEventHandler OnTrace;

Event Data
The event handler receives an argument of type IcmpClient.TraceEventArgs containing data related to this
event. The following IcmpClient.TraceEventArgs properties provide information specific to this event.

Property Description

HostName Gets the remote host name or IP address.

Replies Gets the number of echo reply datagrams
received from the remote host.

TraceHop Gets a value which specifies the distance from the
local system to the specified host.

TripAverage Gets the average packet trip time in milliseconds.

TripMaximum Gets the maximum packet trip time in milliseconds.

TripMinimum Gets the minimum packet trip time in milliseconds.

Remarks
The OnTrace event is generated when the TraceRoute method is called. This event will fire for each
intermediate host in the route from the local system and the remote host.

See Also
IcmpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.OnTrace Event

Provides data for the OnTrace event.

For a list of all members of this type, see IcmpClient.TraceEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.IcmpClient.TraceEventArgs

[Visual Basic]
Public Class IcmpClient.TraceEventArgs
 Inherits EventArgs

[C#]
public class IcmpClient.TraceEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
TraceEventArgs provides information about an intermediate host as an echo datagram is forwarded from
one system to another.

An OnTrace event occurs when the TraceRoute method is called.

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
IcmpClient.TraceEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceEventArgs Class

IcmpClient.TraceEventArgs overview

Public Instance Constructors

 IcmpClient.TraceEventArgs Constructor Initializes a new instance of the
IcmpClient.TraceEventArgs class.

Public Instance Properties

HostName Gets the remote host name or IP address.

Replies Gets the number of echo reply datagrams
received from the remote host.

TraceHop Gets a value which specifies the distance from the
local system to the specified host.

TripAverage Gets the average packet trip time in milliseconds.

TripMaximum Gets the maximum packet trip time in milliseconds.

TripMinimum Gets the minimum packet trip time in milliseconds.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
IcmpClient.TraceEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceEventArgs Members

Initializes a new instance of the IcmpClient.TraceEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public IcmpClient.TraceEventArgs();

See Also
IcmpClient.TraceEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceEventArgs Constructor

The properties of the IcmpClient.TraceEventArgs class are listed below. For a complete list of
IcmpClient.TraceEventArgs class members, see the IcmpClient.TraceEventArgs Members topic.

Public Instance Properties

HostName Gets the remote host name or IP address.

Replies Gets the number of echo reply datagrams
received from the remote host.

TraceHop Gets a value which specifies the distance from the
local system to the specified host.

TripAverage Gets the average packet trip time in milliseconds.

TripMaximum Gets the maximum packet trip time in milliseconds.

TripMinimum Gets the minimum packet trip time in milliseconds.

See Also
IcmpClient.TraceEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceEventArgs Properties

Gets the remote host name or IP address.

[Visual Basic]
Public ReadOnly Property HostName As String

[C#]
public string HostName {get;}

Property Value
A string which specifies the remote host name or IP address.

See Also
IcmpClient.TraceEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceEventArgs.HostName Property

Gets the number of echo reply datagrams received from the remote host.

[Visual Basic]
Public ReadOnly Property Replies As Integer

[C#]
public int Replies {get;}

Property Value
An integer value which specifies the number of echo reply datagrams received from the remote host.

See Also
IcmpClient.TraceEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceEventArgs.Replies Property

Gets a value which specifies the distance from the local system to the specified host.

[Visual Basic]
Public ReadOnly Property TraceHop As Integer

[C#]
public int TraceHop {get;}

Property Value
An integer which specifies distance from the local system to the specified host.

Remarks
This value represents the number of times that the packet was forwarded through a router, also known as
the number of "hops" to the remote host. With a traceroute, this value will start at one and increment by
one for each intermediate host until the destination is reached or the operation times out.

See Also
IcmpClient.TraceEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceEventArgs.TraceHop Property

Gets the average packet trip time in milliseconds.

[Visual Basic]
Public ReadOnly Property TripAverage As Integer

[C#]
public int TripAverage {get;}

Property Value
An integer value which specifies the average trip time in milliseconds.

See Also
IcmpClient.TraceEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceEventArgs.TripAverage Property

Gets the maximum packet trip time in milliseconds.

[Visual Basic]
Public ReadOnly Property TripMaximum As Integer

[C#]
public int TripMaximum {get;}

Property Value
An integer value which specifies the maximum trip time in milliseconds.

See Also
IcmpClient.TraceEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceEventArgs.TripMaximum Property

Gets the minimum packet trip time in milliseconds.

[Visual Basic]
Public ReadOnly Property TripMinimum As Integer

[C#]
public int TripMinimum {get;}

Property Value
An integer value which specifies the minimum trip time in milliseconds.

See Also
IcmpClient.TraceEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.TraceEventArgs.TripMinimum Property

Specifies the error codes returned by the IcmpClient class.

[Visual Basic]
Public Enum IcmpClient.ErrorCode

[C#]
public enum IcmpClient.ErrorCode

Remarks
The IcmpClient class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

IcmpClient.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the options that the IcmpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum IcmpClient.IcmpOptions

[C#]
[Flags]
public enum IcmpClient.IcmpOptions

Remarks
The IcmpClient class uses the IcmpOptions enumeration to specify one or more options to be used when
establishing a connection with a remote host. Multiple options may be specified if necessary.

There are currently no additional options for IcmpClient class. This enumeration is provided for future
expansion.

Members

Member Name Description Value

optionNone No option specified. 0

optionDefault The default connection option. This is
the same as specifying optionNone.

0

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

32768

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.IcmpOptions Enumeration

Specifies the status values that may be returned by the IcmpClient class.

[Visual Basic]
Public Enum IcmpClient.IcmpStatus

[C#]
public enum IcmpClient.IcmpStatus

Remarks
The IcmpClient class uses the IcmpStatus enumeration to identify the current status of the client.

Members

Member Name Description

statusUnused A client session has not been created. Attempts to
perform any network operations, such as sending
or receiving data, will generate an error.

statusIdle A client session has been created, but is not
currently in use. A blocking socket operation can
be executed at this point.

statusEcho An ICMP datagram is being sent to the remote
host.

statusReply An ICMP datagram is being received from the
remote host.

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.IcmpStatus Enumeration

Specifies the logging options that the IcmpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum IcmpClient.TraceOptions

[C#]
[Flags]
public enum IcmpClient.TraceOptions

Remarks
The IcmpClient class uses the TraceOptions enumeration to specify what kind of debugging information
is written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
SocketTools Namespace

IcmpClient.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnEcho event.

[Visual Basic]
Public Delegate Sub IcmpClient.OnEchoEventHandler(_
 ByVal sender As Object, _
 ByVal e As EchoEventArgs _
)

[C#]
public delegate void IcmpClient.OnEchoEventHandler(

 object sender,
 EchoEventArgs e
);

Parameters
sender

The source of the event.

e
An EchoEventArgs that contains the event data.

Remarks
When you create an OnEchoEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnEchoEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.OnEchoEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub IcmpClient.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void IcmpClient.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.OnErrorEventHandler Delegate

Represents the method that will handle the OnReply event.

[Visual Basic]
Public Delegate Sub IcmpClient.OnReplyEventHandler(_
 ByVal sender As Object, _
 ByVal e As ReplyEventArgs _
)

[C#]
public delegate void IcmpClient.OnReplyEventHandler(

 object sender,
 ReplyEventArgs e
);

Parameters
sender

The source of the event.

e
An ReplyEventArgs that contains the event data.

Remarks
When you create an OnReplyEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnReplyEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.OnReplyEventHandler Delegate

Represents the method that will handle the OnTrace event.

[Visual Basic]
Public Delegate Sub IcmpClient.OnTraceEventHandler(_
 ByVal sender As Object, _
 ByVal e As TraceEventArgs _
)

[C#]
public delegate void IcmpClient.OnTraceEventHandler(

 object sender,
 TraceEventArgs e
);

Parameters
sender

The source of the event.

e
An TraceEventArgs that contains the event data.

Remarks
When you create an OnTraceEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnTraceEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.OnTraceEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see IcmpClient.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.IcmpClient.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class IcmpClient.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class IcmpClient.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the IcmpClient class.

Example

<Assembly: SocketTools.IcmpClient.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.IcmpClient.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
IcmpClient.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.RuntimeLicenseAttribute Class

IcmpClient.RuntimeLicenseAttribute overview

Public Instance Constructors

 IcmpClient.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
IcmpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public IcmpClient.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the IcmpClient class.

See Also
IcmpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.RuntimeLicenseAttribute Constructor

The properties of the IcmpClient.RuntimeLicenseAttribute class are listed below. For a complete list of
IcmpClient.RuntimeLicenseAttribute class members, see the IcmpClient.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
IcmpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
IcmpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClient.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see IcmpClientException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.IcmpClientException

[Visual Basic]
Public Class IcmpClientException
 Inherits ApplicationException

[C#]
public class IcmpClientException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A IcmpClientException is thrown by the IcmpClient class when an error occurs.

The default constructor for the IcmpClientException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.IcmpClient (in SocketTools.IcmpClient.dll)

See Also
IcmpClientException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClientException Class

IcmpClientException overview

Public Instance Constructors

 IcmpClientException Overloaded. Initializes a new instance of the
IcmpClientException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

IcmpClientException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
IcmpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the IcmpClientException class with the last network error code.

Overload List
Initializes a new instance of the IcmpClientException class with the last network error code.

public IcmpClientException();

Initializes a new instance of the IcmpClientException class with a specified error number.

public IcmpClientException(int);

Initializes a new instance of the IcmpClientException class with a specified error message.

public IcmpClientException(string);

Initializes a new instance of the IcmpClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

public IcmpClientException(string,Exception);

See Also
IcmpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClientException Constructor

Initializes a new instance of the IcmpClientException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public IcmpClientException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the IcmpClient.ErrorCode enumeration.

See Also
IcmpClientException Class | SocketTools Namespace | IcmpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClientException Constructor ()

Initializes a new instance of the IcmpClientException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public IcmpClientException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
IcmpClientException Class | SocketTools Namespace | IcmpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClientException Constructor (String)

Initializes a new instance of the IcmpClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public IcmpClientException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
IcmpClientException Class | SocketTools Namespace | IcmpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClientException Constructor (String, Exception)

Initializes a new instance of the IcmpClientException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public IcmpClientException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the IcmpClient.ErrorCode enumeration.

See Also
IcmpClientException Class | SocketTools Namespace | IcmpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClientException Constructor (Int32)

The properties of the IcmpClientException class are listed below. For a complete list of
IcmpClientException class members, see the IcmpClientException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
IcmpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClientException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public IcmpClient.ErrorCode ErrorCode {get;}

Property Value
Returns a IcmpClient.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the IcmpClientException class sets the error code to the last network error that
occurred. For more information about the errors that may occur, refer to the IcmpClient.ErrorCode
enumeration.

See Also
IcmpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClientException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
IcmpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClientException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
IcmpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClientException.Number Property

The methods of the IcmpClientException class are listed below. For a complete list of
IcmpClientException class members, see the IcmpClientException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
IcmpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClientException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
IcmpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

IcmpClientException.ToString Method

Implements the Internet Message Access Protocol.

For a list of all members of this type, see ImapClient Members.

System.Object
 SocketTools.ImapClient

[Visual Basic]
Public Class ImapClient
 Implements IDisposable

[C#]
public class ImapClient : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The Internet Message Access Protocol (IMAP) is an application protocol which is used to access a user's
email messages which are stored on a mail server. However, unlike the Post Office Protocol (POP) where
messages are downloaded and processed on the local system, the messages on an IMAP server are
retained on the server and processed remotely. This is ideal for users who need access to a centralized
store of messages or have limited bandwidth. For example, traveling salesmen who have notebook
computers or mobile users on a wireless network would be ideal candidates for using IMAP.

The ImapClient class implements the current standard for this protocol, and provides functions to retrieve
messages, or just certain parts of a message, create and manage mailboxes, search for specific messages
based on certain criteria and so on.

This class supports secure connections using the standard TLS protocols.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
ImapClient Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient Class

ImapClient overview

Public Static (Shared) Fields

imapPortDefault A constant value which specifies the default port
number.

imapPortSecure A constant value which specifies the default port
number for a secure connection.

imapTimeout A constant value which specifies the default
timeout period.

Public Instance Constructors

 ImapClient Constructor Initializes a new instance of the ImapClient class.

Public Instance Fields

Mailbox Gets the names of the available mailboxes for the
current user.

MessagePart Gets the contents of the specified message part.

Public Instance Properties

Authentication Gets and sets the method used to authenticate the
user.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

BearerToken Gets and sets the bearer token used with OAuth
2.0 authentication.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

ImapClient Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.imapPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.imapPortSecure.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.imapTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.CertificatePassword.html

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

Delimiter Gets the hierarchical path delimiter used for the
current mailbox.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HeaderField Gets and sets the current header field name.

HeaderValue Gets the value of the current header field.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsIdle Gets a value which indicates if the client is idle and
the current mailbox is being monitored for status
changes.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

Localize Gets a value that specifies if the date and time are
localized.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.CertificateUser.html

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Mailboxes Gets the number of mailboxes available on the
server.

MailboxFlags Gets one or more flags which identify
characteristics of the current mailbox.

MailboxMask Gets and sets the current mailbox wildcard mask.

MailboxName Gets and sets the name of the current mailbox.

MailboxPath Gets and sets the current mailbox reference path.

MailboxSize Gets the size of the current mailbox.

MailboxUID Gets the unique identifier for the current mailbox.

Message Gets and sets the current message number.

MessageCount Gets the number of messages available in the
current mailbox.

MessageFlags Gets and sets one or more flags for the current
message.

MessageParts Gets the number of message parts in the current
message.

MessageSize Gets the size of the current message in bytes.

MessageUID Gets the UID for the current message.

NewMessages Gets the number of new messages available in the
current mailbox.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client.

ReadOnly Gets a value which specifies if the current mailbox
can be modified.

RecentMessages Gets the number of messages which have recently
arrived in the mailbox.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Secure Gets and sets a value which specifies if a secure
connection is established.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.RemoteService.html

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the client.

Subscribed Gets a value that specifies if the user has
subscribed to the currently selected mailbox.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client.

Version Gets a value which returns the current version of
the ImapClient class library.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

CheckMailbox Create a checkpoint for the currently selected
mailbox.

CloseMessage Closes the current message.

Command Overloaded. Send a custom command to the mail
server.

Connect Overloaded. Establish a connection with a remote
host.

CopyMessage Copy a message from the current mailbox to
another mailbox.

CreateMailbox Creates a new mailbox on the server.

CreateMessage Overloaded. Create a new message.

DeleteMailbox Overloaded. Deletes a mailbox from the server.

DeleteMessage Overloaded. Flags a message for deletion from the
current mailbox.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
ImapClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

ExamineMailbox Selects the specified mailbox for read-only access.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeader Overloaded. Returns the value of a header field
from the specified message part.

GetHeaders Overloaded. Retrieves the headers for the
specified message from the server.

GetMessage Overloaded. Retrieve a message from the server
and return the contents in a byte array.

GetType (inherited from Object) Gets the Type of the current instance.

Idle Overloaded. Enables mailbox status monitoring for
the client session.

Initialize Overloaded. Initialize an instance of the ImapClient
class.

OpenMessage Overloaded. Open the specified message for
reading.

Read Overloaded. Read data from the server and store
it in a byte array.

Refresh Updates the list of available mailboxes.

RenameMailbox Change the name of a mailbox.

ReselectMailbox Reselects the current mailbox.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SearchMailbox Overloaded. Search the current mailbox for
messages that match the specified criteria and
character set.

SelectMailbox Selects the specified mailbox for read-write access.

StoreMessage Overloaded. Retrieve a message from the current
mailbox and store it in a file on the local system.

SubscribeMailbox Overloaded. Subscribes the user to the specified
mailbox.

ToString (inherited from Object) Returns a String that represents the current Object.

UndeleteMessage Removes the deletion flag for the specified
message.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

UnselectMailbox Overloaded. Unselects the current mailbox.

UnsubscribeMailbox Overloaded. Unsubscribes the user from the
specified mailbox.

Write Overloaded. Write one or more bytes of data to
the server.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnUpdate Occurs when the server sends a mailbox update
notification to the client.

OnWrite Occurs when data can be written to the client.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the ImapClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also

ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the ImapClient class.

[Visual Basic]
Public Sub New()

[C#]
public ImapClient();

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient Constructor

The fields of the ImapClient class are listed below. For a complete list of ImapClient class members, see
the ImapClient Members topic.

Public Static (Shared) Fields

imapPortDefault A constant value which specifies the default port
number.

imapPortSecure A constant value which specifies the default port
number for a secure connection.

imapTimeout A constant value which specifies the default
timeout period.

Public Instance Fields

Mailbox Gets the names of the available mailboxes for the
current user.

MessagePart Gets the contents of the specified message part.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient Fields

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.imapPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.imapPortSecure.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.imapTimeout.html

Gets the names of the available mailboxes for the current user.

[Visual Basic]
Public ReadOnly Mailbox As MailboxArray

[C#]
public readonly MailboxArray Mailbox;

Remarks
The Mailbox array is used to enumerate the available mailboxes on the IMAP server. This is a zero-based
array, which means that the index value for the first mailbox is zero. The total number of mailboxes that
are available on the server is returned by the Mailboxes property.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Mailbox Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.MailboxArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.MailboxArray.html

Gets the contents of the specified message part.

[Visual Basic]
Public ReadOnly MessagePart As MessagePartArray

[C#]
public readonly MessagePartArray MessagePart;

Remarks
The MessagePart array returns the contents of the specified message part. All messages have at least
one part, which consists of one or more header fields, followed by the body of the message. The default
part, part 1, refers to the main message header and body. If the message contains multiple parts (as with a
message that contains one or more attached files), the MessagePart array can be set to refer to that
specific part of the message.

Messages with file attachments typically consist of a message part which describes the contents of the
attachment, followed by the attachment itself. For a message with one attached file, there would be a total
of three parts. Part 1 would refer to the main message part, which contains the headers such as From, To,
Subject, Date and so on. For multipart messages, part 1 typically does not have a message body, since any
text is usually created as a separate part (for those messages that do not contain multiple parts, the part 1
body contains the text message). Part 2 would contain the text describing the attachment, and part 3
would contain the attachment itself. If the attached file is binary, then the transfer encoding type would
usually be base64.

It is important to note that an IMAP server considers the first part of a multipart message to be part 1, so
the MessagePart array is one-based. This is different than the SocketTools.MailMessage class, which
considers the first part of a mulitpart message to be zero

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.MessagePart Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.MessagePartArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.MessagePartArray.html

The properties of the ImapClient class are listed below. For a complete list of ImapClient class members,
see the ImapClient Members topic.

Public Instance Properties

Authentication Gets and sets the method used to authenticate the
user.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

BearerToken Gets and sets the bearer token used with OAuth
2.0 authentication.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

Delimiter Gets the hierarchical path delimiter used for the
current mailbox.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

ImapClient Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.CertificateUser.html

HeaderField Gets and sets the current header field name.

HeaderValue Gets the value of the current header field.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsIdle Gets a value which indicates if the client is idle and
the current mailbox is being monitored for status
changes.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

Localize Gets a value that specifies if the date and time are
localized.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Mailboxes Gets the number of mailboxes available on the
server.

MailboxFlags Gets one or more flags which identify
characteristics of the current mailbox.

MailboxMask Gets and sets the current mailbox wildcard mask.

MailboxName Gets and sets the name of the current mailbox.

MailboxPath Gets and sets the current mailbox reference path.

MailboxSize Gets the size of the current mailbox.

MailboxUID Gets the unique identifier for the current mailbox.

Message Gets and sets the current message number.

MessageCount Gets the number of messages available in the
current mailbox.

MessageFlags Gets and sets one or more flags for the current
message.

MessageParts Gets the number of message parts in the current
message.

MessageSize Gets the size of the current message in bytes.

MessageUID Gets the UID for the current message.

NewMessages Gets the number of new messages available in the
current mailbox.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client.

ReadOnly Gets a value which specifies if the current mailbox
can be modified.

RecentMessages Gets the number of messages which have recently
arrived in the mailbox.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the client.

Subscribed Gets a value that specifies if the user has
subscribed to the currently selected mailbox.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.RemoteService.html

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client.

Version Gets a value which returns the current version of
the ImapClient class library.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets the method used to authenticate the user.

[Visual Basic]
Public Property Authentication As ImapAuthentication

[C#]
public ImapClient.ImapAuthentication Authentication {get; set;}

Property Value
A ImapAuthentication enumeration value which specifies the authentication method.

Remarks
The authXOAuth2 and authBearer authentication methods are similar, but they are not interchangeable.
Both use an OAuth 2.0 bearer token to authenticate the client session, but they differ in how the token is
presented to the server. It is currently preferable to use the XOAUTH2 method because it is more widely
available and some service providers do not yet support the OAUTHBEARER method.

See Also
ImapClient Class | SocketTools Namespace | BearerToken Poperty | Password Property | UserName
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Authentication Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.ImapAuthentication.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.ImapAuthentication.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.ImapAuthentication.html

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.AutoResolve Property

Gets and sets the bearer token used with OAuth 2.0 authentication.

[Visual Basic]
Public Property BearerToken As String

[C#]
public string BearerToken {get; set;}

Property Value
Returns a string which contains the bearer token. Assigning a value to this property sets the curent
authentication type to use OAuth 2.0 authentication and updates the bearer token.

Remarks
Assigning a value to the BearerToken property will automatically change the current authentication
method to use OAuth 2.0 if necessary.

You should only use an OAuth 2.0 authentication method if you understand the process of how to request
the access token. Obtaining a bearer token requires registering your application with the mail service
provider (e.g.: Microsoft or Google), getting a unique client ID associated with your application and then
requesting the bearer token using the appropriate scope for the service. Obtaining the initial token will
typically involve interactive confirmation on the part of the user, requiring they grant permission to your
application to access their mail account.

Your application should not store the bearer token for later use. They usually have a relatively short
lifespan, typically about an hour, and are designed to be used with the current client session. You should
specify offline access as part of the OAuth 2.0 scope, and store the refresh token provided by the service.
The refresh token has a much onger validity period and can be used to obtain a new access token when
needed.

If the current authentication method does not use OAuth 2.0, this property will return an empty string and
you should use the Password property to obtain the current user password.

See Also
ImapClient Class | SocketTools Namespace | Authentication Property | Password Property | UserName
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.BearerToken Property

Gets and sets a value which indicates if the client is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the client is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if client operations complete synchronously or asynchronously.
If set to true, then each client operation (such as sending or receiving data) will return when the operation
has completed or timed-out. If set to false, client operations will return immediately. If the operation
would result in the client blocking (such as attempting to read data when no data has been sent by the
remote host), an error is generated.

It is important to note that certain events, such as OnDisconnect, OnRead and OnWrite are only fired if
the client is in non-blocking mode.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Blocking Property

Get a value that specifies the date that the security certificate expires.

[Visual Basic]
Public ReadOnly Property CertificateExpires As String

[C#]
public string CertificateExpires {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateExpires property returns a string that specifies the date and time that the security
certificate expires. This property will return an empty string if a secure connection has not been
established with the remote host.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CertificateExpires Property

Get a value that specifies the date that the security certificate was issued.

[Visual Basic]
Public ReadOnly Property CertificateIssued As String

[C#]
public string CertificateIssued {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateIssued property returns a string that specifies the date and time that the security certificate
was issued. This property will return an empty string if a secure connection has not been established with
the remote host.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CertificateIssued Property

Get a value that provides information about the organization that issued the certificate.

[Visual Basic]
Public ReadOnly Property CertificateIssuer As String

[C#]
public string CertificateIssuer {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateIssuer property returns a string that contains information about the organization that
issued the server certificate. The string value is a comma separated list of tagged name and value pairs. In
the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CertificateIssuer Property

Gets and sets a value that specifies the name of the client certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the certificate name.

Remarks
The CertificateName property is used to specify the name of a client certificate to use when establishing
a secure connection. It is only required that you set this property value if the server requires a client
certificate for authentication. If this property is not set, a client certificate will not be provided to the server.
If a certificate name is specified, the certificate must have a private key associated with it, otherwise the
connection attempt will fail because the control will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
ImapClient Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CertificateName Property

Gets a value which indicates the status of the security certificate returned by the remote host.

[Visual Basic]
Public ReadOnly Property CertificateStatus As SecurityCertificate

[C#]
public ImapClient.SecurityCertificate CertificateStatus {get;}

Property Value
A SecurityCertificate enumeration value which specifies the status of the certificate.

Remarks
The CertificateStatus property is used to determine the status of the security certificate returned by the
remote host when a secure connection has been established. This property value should be checked after
the connection to the server has completed, but prior to beginning a transaction.

Note that if the certificate cannot be validated, the secure connection will not be automatically terminated.
It is the responsibility of your application to determine the best course of action to take if the certificate is
invalid. Even if the security certificate cannot be validated, the data exchanged with the remote host will
still be encrypted.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CertificateStatus Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when establishing a secure connection. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and therefore it is
not necessary to set this property value because that is the default location that will be used to search for
the certificate. This property is only used if the CertificateName property is also set to a valid certificate
name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the property
should specify the full path to the file and must contain both the certificate and private key in PKCS #12

ImapClient.CertificateStore Property

format. If the file is protected by a password, the CertificatePassword property must also be set to
specify the password.

See Also
ImapClient Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.CertificatePassword.html

Gets a value that provides information about the organization that the server certificate was issued to.

[Visual Basic]
Public ReadOnly Property CertificateSubject As String

[C#]
public string CertificateSubject {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateSubject property returns a string that contains information about the organization that the
server certificate was issued to. The string value is a comma separated list of tagged name and value pairs.
In the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CertificateSubject Property

Gets a value that indicates the length of the key used by the encryption algorithm for a secure connection.

[Visual Basic]
Public ReadOnly Property CipherStrength As Integer

[C#]
public int CipherStrength {get;}

Property Value
An integer value which specifies the encryption key length if a secure connection has been established;
otherwise a value of 0 is returned.

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure data
stream. Common values returned by this property are 128 and 256. A key length of 40 or 56 bits is
considered insecure and subject to brute force attacks. 128-bit and 256-bit keys are considered secure. If
this property returns a value of 0, this means that a secure connection has not been established with the
remote host.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CipherStrength Property

Gets the hierarchical path delimiter used for the current mailbox.

[Visual Basic]
Public ReadOnly Property Delimiter As String

[C#]
public string Delimiter {get;}

Property Value
A string which specifies the path delimiter used for the current mailbox.

Remarks
The Delimiter property returns a string which specifies the path delimiter used for the current mailbox. If
the IMAP server supports multiple levels of mailboxes, then a special character or sequence of characters
are used as delimiters between different levels of the mailbox hierarchy. On most systems, including most
UNIX and Windows platforms, the delimiter is the forward slash "/" character.

It is possible that an IMAP server may only support a flat namespace, in which case this property will return
an empty string.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Delimiter Property

Gets a value that specifies the client handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current client session.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Handle Property

Gets a value which specifies the length of the message digest that was selected for a secure connection.

[Visual Basic]
Public ReadOnly Property HashStrength As Integer

[C#]
public int HashStrength {get;}

Property Value
An integer value which specifies the length of the message digest if a secure connection has been
established; otherwise a value of 0 is returned.

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that was
selected. Common values returned by this property are 128 and 160. If this property returns a value of 0,
this means that a secure connection has not been established with the remote host.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.HashStrength Property

Gets and sets the current header field name.

[Visual Basic]
Public Property HeaderField As String

[C#]
public string HeaderField {get; set;}

Property Value
A string which specifies the current header field name.

Remarks
The HeaderField property returns the name of the current header field. Setting this property causes the
control to determine if that header field exists, and if it does, to update the HeaderValue property with its
value. This property can be used to obtain the value of any header in the current message.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.HeaderField Property

Gets the value of the current header field.

[Visual Basic]
Public ReadOnly Property HeaderValue As String

[C#]
public string HeaderValue {get;}

Property Value
A string which specifies the value of the current header field.

Remarks
The HeaderValue property returns the value of the header field specified by the HeaderField property.
This property can be used to obtain the value of any header in the current message.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.HeaderValue Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.HostAddress Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.HostName Property

Gets a value which indicates if the current thread is performing a blocking client operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next client operation will not fail. An application
should always check the return value from a client operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.IsBlocked Property

Gets a value which indicates if a connection to the remote host has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the remote
host. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.IsConnected Property

Gets a value which indicates if the client is idle and the current mailbox is being monitored for status
changes.

[Visual Basic]
Public ReadOnly Property IsIdle As Boolean

[C#]
public bool IsIdle {get;}

Property Value
Returns true if the client is idle and the current mailbox is being monitored; otherwise returns false.

Remarks
The IsIdle property can be used to determine if the Idle method has been called to place the client
session in an idle state, monitoring the connection for any status messages sent by the server. Typically
this is done to allow the application to be notified asynchronously whenever a new message is stored in
the mailbox, or when a message has been expunged.

The worker thread that monitors the client connection in the background can terminate if an IMAP
command is sent to the server, if the Cancel method is called or if the client disconnects from the server.
This property enables the application to determine if this background thread is still active or not.

See Also
ImapClient Class | SocketTools Namespace | Idle Method | OnUpdate Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.IsIdle Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.IsInitialized Property

Gets a value which indicates if there is data available to be read from the socket connection to the server.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to read the client. Note
that even if this property does return true indicating that there is data available to be read, applications
should always check the return value from the Read method.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.IsReadable Property

Gets a value which indicates if data can be written to the client without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the client; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to write data to the client.
Note that even if this property does return true indicating that data can be written to the client,
applications should always check the return value from the Write method.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.IsWritable Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public ImapClient.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.LastErrorString Property

Gets the local Internet address that the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local Internet address that the client is bound to when a
connection is established with a remote host. This property may return either an IPv4 or IPv6 formatted
address, depending on the type of connection that was established.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.LocalAddress Property

Gets a value that specifies if the date and time are localized.

[Visual Basic]
Public Property Localize As Boolean

[C#]
public bool Localize {get; set;}

Property Value
A boolean value which specifies if the date and time is localized.

Remarks
Setting the Localize property controls how date and time values are localized. If the property is set to
true, then the date and time will be adjusted to the current timezone. If the property is set to false, the
date and time are returned as UTC (Coordinated Universal Time) values.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Localize Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.LocalName Property

Gets the local port number the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalPort As Integer

[C#]
public int LocalPort {get;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to identify the local port number that the client is bound to to when a
connection is established with a remote host.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.LocalPort Property

Gets the number of mailboxes available on the server.

[Visual Basic]
Public ReadOnly Property Mailboxes As Integer

[C#]
public int Mailboxes {get;}

Property Value
An integer value which specifies the number of available mailboxes.

Remarks
The Mailboxes property returns the total number of mailboxes available to the current account on the
server. This property can be used in conjunction with the Mailbox array to enumerate the names of all of
the mailboxes which can be selected by the client.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Mailboxes Property

Gets one or more flags which identify characteristics of the current mailbox.

[Visual Basic]
Public ReadOnly Property MailboxFlags As ImapFlags

[C#]
public ImapClient.ImapFlags MailboxFlags {get;}

Property Value
An ImapFlags enumeration value which specifies one or more mailbox flags.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.MailboxFlags Property

Gets and sets the current mailbox wildcard mask.

[Visual Basic]
Public Property MailboxMask As String

[C#]
public string MailboxMask {get; set;}

Property Value
A string which specifies the current mailbox wildcard mask.

Remarks
The MailboxMask property returns the current mailbox wildcard mask. If no wildcard mask has been
specified by the client, this property will return an empty string.

Setting the MailboxMask property will determine which mailboxes are returned by the Mailbox array.
Wildcards may include the asterisk (which matches any mailbox as well as any child mailboxes) and the
percent sign (which matches any mailbox, but does not match any child mailboxes). This property may be
used in conjunction with the MailboxPath property to further qualify which mailboxes are returned.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.MailboxMask Property

Gets and sets the name of the current mailbox.

[Visual Basic]
Public Property MailboxName As String

[C#]
public string MailboxName {get; set;}

Property Value
A string that specifies the name of the current mailbox.

Remarks
The MailboxName property returns the name of the currently selected mailbox. If no mailbox has been
selected by the client, this property will return an empty string.

Setting the MailboxName property will select a new mailbox in read-write mode. If the client has a
different mailbox currently selected, that mailbox will be closed and any messages marked for deletion will
be expunged. To prevent deleted messages from being removed from the previous mailbox, call the
UnselectMailbox method prior to selecting the new mailbox. Setting the MailboxName property to an
empty string will cause the current mailbox to be unselected, and a new mailbox will not be selected.
Before the application can access any messages, it must select a new mailbox.

Selecting a new mailbox will automatically update those properties which provide information about the
current mailbox, such as the MailboxFlags and MailboxUID properties. If an application wishes to
update the information for the current mailbox, simply set the MailboxName property again with the
same mailbox name. Note that this will not cause any messages marked for deletion to be expunged.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names may or
may not be case-sensitive depending on the IMAP server's operating system and implementation.

If the mailbox name contains international characters then it is automatically encoded using a modified
version of UTF-7 encoding. For example, if a mailbox is named "Håndskrift", the mailbox name created on
the server will be the string "H&AOU-ndskrift". The control will automatically decode UTF-7 encoded
mailbox names, making the conversion transparent to the application.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.MailboxName Property

Gets and sets the current mailbox reference path.

[Visual Basic]
Public Property MailboxPath As String

[C#]
public string MailboxPath {get; set;}

Property Value
A string which specifies the current mailbox reference path.

Remarks
The MailboxPath property returns the current mailbox reference path. If no path has been specified by
the client, this property will return an empty string.

Setting the MailboxPath property will determine which mailboxes are returned by the Mailbox array.
Typically this is used to specify a subdirectory where mail folders are stored for the current user. Note that
some mail servers may not permit absolute reference paths, and in most cases the path should include a
trailing slash. This property may be used in conjunction with the MailboxMask property to further qualify
which mailboxes are returned.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.MailboxPath Property

Gets the size of the current mailbox.

[Visual Basic]
Public ReadOnly Property MailboxSize As Integer

[C#]
public int MailboxSize {get;}

Property Value
An integer value which specifies the size of the mailbox in bytes.

Remarks
The MailboxSize property returns the combined size of all messages in the current mailbox. Referencing
this property will cause the current thread to block and may require a significant amount of time to
calculate the mailbox size if there are a large number of messages in the mailbox. Because it can
potentially result in long delays, it is not recommended that an application calculate the mailbox size
unless it is absolutely necessary.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.MailboxSize Property

Gets the unique identifier for the current mailbox.

[Visual Basic]
Public ReadOnly Property MailboxUID As Integer

[C#]
public int MailboxUID {get;}

Property Value
An integer value which specifies the mailbox UID.

Remarks
The MailboxUID property returns an integer value which uniquely identifies the mailbox and corresponds
to the UIDVALIDITY value returned by the IMAP server. The actual value is determined by the server and
should be considered opaque. The protocol specification requires that a mailbox's UID must not change
unless the mailbox contents are modified or existing messages in the mailbox have been assigned new
UIDs.

An application can use the MailboxUID property value in combination with the MessageUID property in
order to uniquely identify a message on the server. However, the application must take into consideration
that the IMAP server can reassign new message UIDs when the mailbox is modified. If the mailbox and
message UIDs are being stored on the local system to track what messages have been retrieved from the
server, the application must check the UID of the mailbox whenever it is selected. If the mailbox UID has
changed, this means that the UIDs for the messages in that mailbox may have changed. The client should
resynchronize with the server, and update it's local copy of that mailbox.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.MailboxUID Property

Gets and sets the current message number.

[Visual Basic]
Public Property Message As Integer

[C#]
public int Message {get; set;}

Property Value
An integer value which specifies the current message number.

Remarks
The Message property sets or returns the message number for the currently selected mailbox. Message
numbers range from 1 through the number of messages available on the server, as returned by the
MessageCount property. Setting the Message property to an invalid message number will generate an
exception.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Message Property

Gets the number of messages available in the current mailbox.

[Visual Basic]
Public ReadOnly Property MessageCount As Integer

[C#]
public int MessageCount {get;}

Property Value
An integer value which specifies the number of messages.

Remarks
The MessageCount property returns the number of messages available to be retrieved from the currently
selected mailbox.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.MessageCount Property

Gets and sets one or more flags for the current message.

[Visual Basic]
Public Property MessageFlags As ImapFlags

[C#]
public ImapClient.ImapFlags MessageFlags {get; set;}

Property Value
An ImapFlags enumeration value which specifies one or more message flags.

Remarks
The MessageFlags property returns information about the currently selected message specified by the
Message property. Setting the MessageFlags property changes the flags for the currently selected
message. Multiple bit flags can be combined using the bitwise Or operator. An application can test if a
flag is set by using the bitwise And operator.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.MessageFlags Property

Gets the number of message parts in the current message.

[Visual Basic]
Public ReadOnly Property MessageParts As Integer

[C#]
public int MessageParts {get;}

Property Value
An integer value which specifies the number of message parts.

Remarks
The MessageParts property returns the number of message parts in the current message. All messages
have at least one part, referenced as part 1. Multipart messages will consist of additional parts which may
be accessed by reading the MessagePart array or calling the GetMessage method.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.MessageParts Property

Gets the size of the current message in bytes.

[Visual Basic]
Public ReadOnly Property MessageSize As Integer

[C#]
public int MessageSize {get;}

Property Value
An integer value which specifies the size of the message.

Remarks
The MessageSize property returns the size of the current message in bytes. The size includes the header
and body portion of the message.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.MessageSize Property

Gets the UID for the current message.

[Visual Basic]
Public ReadOnly Property MessageUID As Integer

[C#]
public int MessageUID {get;}

Property Value
An integer value which specifies the current message UID.

Remarks
The MessageUID property returns an integer value which specifies a unique identifier for this message.
The actual value is determined by the server and should be considered opaque. If the client application
stores the message UID on the local system, it should also store the UID for the mailbox that contains the
message. If the mailbox UID changes, the message UID may no longer be valid.

An application can use the MessageUID property value in combination with the MailboxUID property in
order to uniquely identify a message on the server. However, the application must take into consideration
that the IMAP server can reassign new message UIDs when the mailbox is modified. If the mailbox and
message UIDs are being stored on the local system to track what messages have been retrieved from the
server, the application must check the UID of the mailbox whenever it is selected. If the mailbox UID has
changed, this means that the UIDs for the messages in that mailbox may have changed. The client should
resynchronize with the server, and update it's local copy of that mailbox.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.MessageUID Property

Gets the number of new messages available in the current mailbox.

[Visual Basic]
Public ReadOnly Property NewMessages As Integer

[C#]
public int NewMessages {get;}

Property Value
An integer value which specifies the number of new, unread messages in the current mailbox.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.NewMessages Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As ImapOptions

[C#]
public ImapClient.ImapOptions Options {get; set;}

Property Value
Returns one or more ImapOptions enumeration flags which specify the options for the client. The default
value for this property is imapOptionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Options Property

Gets and sets the password used to authenticate the client.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password.

Remarks
The Password property specifies the password used to authenticate the client session. This property is
used as the default value for the Connect method if no password is specified as an argument.

Refer to the Authentication property for more information on the available authentication methods. If
you are using the OAuth 2.0 authentication method, this property should not be set to the user's
password. Instead, you should set the BearerToken property to the OAuth 2.0 bearer token issued by the
mail service provider. Note that these access tokens can be much larger than your typical password and
are only valid for a limited period of time.

You can use the Password property to specify an OAuth 2.0 bearer token. However, it is recommended
that you use the BearerToken property instead of assigning it to this property. It will ensure compatibility
with future versions of the class and make it clear in your code you are using an OAuth 2.0 bearer token
and not a password. If the AuthType property specifies one of the OAuth 2.0 authentication methods, this
property will return the bearer token.

See Also
ImapClient Class | SocketTools Namespace | Authentication Property | BearerToken Property | UserName
Property | Connect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Password Property

Gets a value which specifies if the current mailbox can be modified.

[Visual Basic]
Public ReadOnly Property ReadOnly As Boolean

[C#]
public bool ReadOnly {get;}

Property Value
A boolean value which specifies if the current mailbox can be modified. A value of true specifies that the
mailbox cannot be modified by the client. A value of false specifies that the mailbox can be modified.

Remarks
The ExamineMailbox method can be used to select a mailbox in read-only mode. The SelectMailbox
method can be used to select a mailbox in read-write mode, which allows the contents of the mailbox to
be modified.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ReadOnly Property

Gets the number of messages which have recently arrived in the mailbox.

[Visual Basic]
Public ReadOnly Property RecentMessages As Integer

[C#]
public int RecentMessages {get;}

Property Value
An integer value which specifies the number of recent messages.

Remarks
The RecentMessages property returns the number of messages which have been recently added to the
currently selected mailbox. This property is particularly useful when the INBOX mailbox is selected because
it enables the application to check if any new messages have arrived.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.RecentMessages Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.RemotePort Property

Gets a value which specifies the last result code returned by the server.

[Visual Basic]
Public ReadOnly Property ResultCode As ImapResult

[C#]
public ImapClient.ImapResult ResultCode {get;}

Property Value
An ImapResult enumeration value which specifies the last result code returned by the server.

Remarks
One of the following result codes may be returned after a command is executed on the server:

ResultCode Description

resultUnknown An unknown result code was returned by the
server.

resultOk The previous command completed successfully.
The result string contains information about the
results of the command.

resultNo The previous command could not be completed.
The result string contains information about why
the command failed.

resultBad The previous command could not be completed,
the command may be invalid or not supported on
the server. The result string contains information
about why the command failed.

resultContinue The command has executed and is waiting for
additional data from the client.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ResultCode Property

Gets a string value which describes the result of the previous command.

[Visual Basic]
Public ReadOnly Property ResultString As String

[C#]
public string ResultString {get;}

Property Value
A string which describes the result of the previous command executed on the server.

Remarks
The ResultString property returns the result string from the last action taken by the client. This string is
generated by the remote server, and typically is used to describe the result code. For example, if the
previous result code indicates an error, the result string may describe the condition that caused the error.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ResultString Property

Gets and sets a value which specifies if a secure connection is established.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connection is established; otherwise returns false. The default value is false.

Remarks
The Secure property determines if a secure connection is established with the remote host. The default
value for this property is false, which specifies that a standard connection to the server is used. To
establish a secure connection, the application should set this property value to true prior to calling the
Connect method. Once the connection has been established, the client may exchange data with the
server as with standard connections.

It is strongly recommended that any application that sets this property true use error handling to trap an
errors that may occur. If the control is unable to initialize the security libraries, or otherwise cannot create
a secure session for the client, an exception may be generated when this property value is set.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Secure Property

Gets a value that specifies the encryption algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureCipher As SecureCipherAlgorithm

[C#]
public ImapClient.SecureCipherAlgorithm SecureCipher {get;}

Property Value
A SecureCipherAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureCipher property returns a value which identifies the algorithm used to encrypt the data
stream. If a secure connection has not been established, this property will return a value of cipherNone.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.SecureCipher Property

Gets a value that specifies the message digest algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureHash As SecureHashAlgorithm

[C#]
public ImapClient.SecureHashAlgorithm SecureHash {get;}

Property Value
A SecureHashAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureHash property returns a value which identifies the message digest (hash) algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of hashNone.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.SecureHash Property

Gets a value that specifies the key exchange algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureKeyExchange As SecureKeyAlgorithm

[C#]
public ImapClient.SecureKeyAlgorithm SecureKeyExchange {get;}

Property Value
A SecureKeyAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureKeyExchange property returns a value which identifies the key exchange algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of keyExchangeNone.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.SecureKeyExchange Property

Gets and sets a value which specifies the protocol used for a secure connection.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public ImapClient.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when establishing a secure
connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when establishing a
secure connection with a server or accepting a secure connection from a client. By default, the class will
attempt to use either SSL v3 or TLS v1 to establish the connection, with the appropriate protocol
automatically selected based on the capabilities of the remote host. It is recommended that you only
change this property value if you fully understand the implications of doing so. Assigning a value to this
property will override the default protocol and force the class to attempt to use only the protocol
specified.

Multiple security protocols may be specified by combining them using a bitwise or operator. After a
connection has been established, this property will identify the protocol that was selected. Attempting to
set this property after a connection has been established will result in an exception being thrown. This
property should only be set after setting the Secure property to true and before calling the Accept or
Connect methods.

In some cases, a server may only accept a secure connection if the TLS v1 protocol is specified. If the
security protocol is not compatible with the server, then the connection will fail with an error indicating
that the control is unable to establish a security context for the session. In this case, try assigning the
property to protocolTLS1 and attempt the connection again.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.SecureProtocol Property

Gets a value which specifies the current status of the client.

[Visual Basic]
Public ReadOnly Property Status As ImapStatus

[C#]
public ImapClient.ImapStatus Status {get;}

Property Value
A ImapStatus enumeration value which specifies the current client status.

Remarks
The Status property returns the current status of the client. This property can be used to check on
blocking connections to determine if the client is interacting with the remote host before taking some
action.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Status Property

Gets a value that specifies if the user has subscribed to the currently selected mailbox.

[Visual Basic]
Public Property Subscribed As Boolean

[C#]
public bool Subscribed {get; set;}

Property Value
A boolean value that specifies if the user has subscribed to the current mailbox.

Remarks
The Subscribed property is used to determine if the current mailbox has been subscribed to by the user.
If the property returns false, the server has indicated that the user has not subscribed to the mailbox. If
the property returns true, the current mailbox is in the user's subscription list.

Setting the Subscribed property changes the subscription status of the current mailbox. Setting the
property to true adds the mailbox to the user's list of subscribed mailboxes, while setting it to false
removes the mailbox from the subscription list.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Subscribed Property

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public ImapClient.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
ImapClient Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.ImapClient.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Timeout Property

Gets and sets the current timezone offset in seconds.

[Visual Basic]
Public Property TimeZone As Integer

[C#]
public int TimeZone {get; set;}

Property Value
An integer value which specifies the current timezone offset in seconds.

Remarks
The TimeZone property returns the current offset from UTC in seconds. Setting the property changes the
current timezone offset to the specified value. The value of this property is initially determined by the date
and time settings on the local system.

This property value is used in conjunction with the Localize property to control how date and time
localization is handled.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.TimeZone Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public ImapClient.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.TraceFlags Property

Gets and sets the username used to authenticate the client.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username.

Remarks
The UserName property specifies the username used to authenticate the client session. This property is
used as the default value for the Connect method if no username is specified as an argument.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UserName Property

Gets a value which returns the current version of the ImapClient class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the ImapClient class
library. This value can be used by an application for validation and debugging purposes.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Version Property

The methods of the ImapClient class are listed below. For a complete list of ImapClient class members,
see the ImapClient Members topic.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

CheckMailbox Create a checkpoint for the currently selected
mailbox.

CloseMessage Closes the current message.

Command Overloaded. Send a custom command to the mail
server.

Connect Overloaded. Establish a connection with a remote
host.

CopyMessage Copy a message from the current mailbox to
another mailbox.

CreateMailbox Creates a new mailbox on the server.

CreateMessage Overloaded. Create a new message.

DeleteMailbox Overloaded. Deletes a mailbox from the server.

DeleteMessage Overloaded. Flags a message for deletion from the
current mailbox.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
ImapClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

ExamineMailbox Selects the specified mailbox for read-only access.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeader Overloaded. Returns the value of a header field
from the specified message part.

GetHeaders Overloaded. Retrieves the headers for the
specified message from the server.

GetMessage Overloaded. Retrieve a message from the server
and return the contents in a byte array.

GetType (inherited from Object) Gets the Type of the current instance.

Idle Overloaded. Enables mailbox status monitoring for
the client session.

ImapClient Methods

Initialize Overloaded. Initialize an instance of the ImapClient
class.

OpenMessage Overloaded. Open the specified message for
reading.

Read Overloaded. Read data from the server and store
it in a byte array.

Refresh Updates the list of available mailboxes.

RenameMailbox Change the name of a mailbox.

ReselectMailbox Reselects the current mailbox.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SearchMailbox Overloaded. Search the current mailbox for
messages that match the specified criteria and
character set.

SelectMailbox Selects the specified mailbox for read-write access.

StoreMessage Overloaded. Retrieve a message from the current
mailbox and store it in a file on the local system.

SubscribeMailbox Overloaded. Subscribes the user to the specified
mailbox.

ToString (inherited from Object) Returns a String that represents the current Object.

UndeleteMessage Removes the deletion flag for the specified
message.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

UnselectMailbox Overloaded. Unselects the current mailbox.

UnsubscribeMailbox Overloaded. Unsubscribes the user from the
specified mailbox.

Write Overloaded. Write one or more bytes of data to
the server.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the ImapClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the client could be attached to the current thread. If this method returns
false, the client could not be attached to the thread and the application should check the value of the
LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.AttachThread Method

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Cancel Method

Create a checkpoint for the currently selected mailbox.

[Visual Basic]
Public Function CheckMailbox() As Boolean

[C#]
public bool CheckMailbox();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CheckMailbox method requests that the server create a checkpoint of the currently selected mailbox,
and updates the current number of new, unread messages available to the client.

When the client requests a checkpoint, the server may perform implementation-dependent housekeeping
for that mailbox, such updating the mailbox on disk with the current state of the mailbox in memory. On
some systems this command has no effect other than to update the client with the current number of
messages in the mailbox.

This function actually sends two IMAP commands. The first is the CHECK command, followed by the
NOOP command to poll for any new messages that have arrived. In addition to polling the server for new
messages, this command can also be used to ensure the idle timer on the server does not expire and
force a disconnect from the client.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CheckMailbox Method

Closes the current message.

[Visual Basic]
Public Function CloseMessage() As Boolean

[C#]
public bool CloseMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CloseMessage method closes the current message. If there is any remaining data left to be read
from the message, it will be read and discarded.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CloseMessage Method

Send a custom command to the mail server.

Overload List
Send a custom command to the mail server.

public bool Command(string);

Send a custom command to the mail server.

public bool Command(string,string);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Command Method

Send a custom command to the mail server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String _
) As Boolean

[C#]
public bool Command(
 string command
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

To determine if the command was successful, check the value of the ResultCode property. To obtain
additional information returned by the server in response to the command, check the value of the
ResultString property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Command Method (String)

Send a custom command to the mail server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal parameter As String _
) As Boolean

[C#]
public bool Command(
 string command,
 string parameter
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

parameter
A string which specifies one or more parameters to be sent along with the command. If more than
one parameter is required, they should be separated by a single space character. Consult the protocol
standard and/or technical reference documentation for the server to determine what parameters
should be provided when issuing a specific command. If no parameters are required for the
command, this argument may be omitted.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

To determine if the command was successful, check the value of the ResultCode property. To obtain
additional information returned by the server in response to the command, check the value of the
ResultString property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Command Method (String, String)

Establish a connection with a remote host.

Overload List
Establish a connection with a remote host.

public bool Connect();

Establish a connection with a remote host.

public bool Connect(string,int);

Establish a connection with a remote host.

public bool Connect(string,int,int);

Establish a connection with a remote host.

public bool Connect(string,int,int,ImapOptions);

Establish a connection with a remote host.

public bool Connect(string,int,string,string);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int,ImapOptions);

Establish a connection with a remote host.

public bool Connect(string,string,string);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Connect Method

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect() As Boolean

[C#]
public bool Connect();

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the HostName or HostAddress property will be used to determine the host name or
address to connect to.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Connect Method ()

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Connect Method (String, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Connect Method (String, Int32, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer, _
 ByVal options As ImapOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout,
 ImapOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the ImapOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Connect Method (String, Int32, Int32, ImapOptions)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies a username used to authenticate the client session.

userPassword
A string which specifies the password used to authenticate the client session.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Connect Method (String, Int32, String, String)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies a username used to authenticate the client session.

userPassword
A string which specifies the password used to authenticate the client session.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Connect Overload List

ImapClient.Connect Method (String, Int32, String, String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer, _
 ByVal options As ImapOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout,
 ImapOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies a username used to authenticate the client session.

userPassword
A string which specifies the password used to authenticate the client session.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the ImapOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

ImapClient.Connect Method (String, Int32, String, String, Int32,
ImapOptions)

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

userName
A string which specifies a username used to authenticate the client session.

userPassword
A string which specifies the password used to authenticate the client session.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Connect Method (String, String, String)

Copy a message from the current mailbox to another mailbox.

[Visual Basic]
Public Function CopyMessage(_
 ByVal messageId As Integer, _
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool CopyMessage(
 int messageId,
 string mailboxName
);

Parameters
messageId

The message identifier which specifies which message will be copied to the mailbox. This value must
be greater than zero and specify a valid message number.

mailboxName
A string which specifies the name of the mailbox that the message will be copied to. The mailbox must
already exist, and the client must have the appropriate access rights to modify the mailbox.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CopyMessage method copies a message from the current mailbox to the specified mailbox. The
message is appended to the mailbox, and the message flags and internal date are preserved. If the
mailbox does not exist, the method will fail. To create a new mailbox, use the CreateMailbox method. A
message can be copied within the same mailbox, in which case the server may flag it as a new message.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CopyMessage Method

Creates a new mailbox on the server.

[Visual Basic]
Public Function CreateMailbox(_
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool CreateMailbox(
 string mailboxName
);

Parameters
mailboxName

A string which specifies the name of the new mailbox to be created.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMailbox method creates a new mailbox on the server. If the mailbox name is suffixed with the
server's hierarchy delimiter, this indicates to the server that the client intends to create mailbox names
under the specified name in the hierarchy. If superior hierarchical names are specified in the mailbox
name, then the server may automatically create them as needed. For example, if the mailbox name
"Mail/Office/Projects" is specified and "Mail/Office" does not exist, it may be automatically created by the
server.

The special mailbox name INBOX is reserved, and cannot be created. It is recommended that mailbox
names only consist of printable ASCII characters, and the special characters "*" and "%" should be
avoided.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CreateMailbox Method

Create a new message.

Overload List
Create a new message.

public bool CreateMessage(byte[],int);

Create a new message.

public bool CreateMessage(byte[],int,ImapFlags);

Create a new message.

public bool CreateMessage(string);

Create a new message.

public bool CreateMessage(string,ImapFlags);

Create a new message.

public bool CreateMessage(string,byte[],int,ImapFlags);

Create a new message.

public bool CreateMessage(string,string,ImapFlags);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CreateMessage Method

Create a new message.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal message As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool CreateMessage(
 byte[] message,
 int length
);

Parameters
message

A byte array that contains the message data.

length
An integer value which specifies the size of the message in bytes. This value cannot be larger than the
size of the message buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the specified
mailbox. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

The message will be created in the mailbox specified by the MailboxName property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.CreateMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CreateMessage Method (Byte[], Int32)

Create a new message.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal message As Byte(), _
 ByVal length As Integer, _
 ByVal messageFlags As ImapFlags _
) As Boolean

[C#]
public bool CreateMessage(
 byte[] message,
 int length,
 ImapFlags messageFlags
);

Parameters
message

A byte array that contains the message data.

length
An integer value which specifies the size of the message in bytes. This value cannot be larger than the
size of the message buffer specified by the caller.

messageFlags

An ImapFlags enumeration value which specifies one or more message flags. One or more of the
following flags may be used:

Flag Description

imapFlagNone The message will be created with no flags set.

imapFlagAnswered The message has been answered.

imapFlagDraft The message is a draft copy.

imapFlagUrgent The message is urgent.

imapFlagSeen The message has already been read.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the specified
mailbox. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

The message will be created in the mailbox specified by the MailboxName property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.CreateMessage Overload List

ImapClient.CreateMessage Method (Byte[], Int32, ImapFlags)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Create a new message.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal message As String _
) As Boolean

[C#]
public bool CreateMessage(
 string message
);

Parameters
message

A string that contains the message data.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the specified
mailbox. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

The message will be created in the mailbox specified by the MailboxName property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.CreateMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CreateMessage Method (String)

Create a new message.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal message As String, _
 ByVal messageFlags As ImapFlags _
) As Boolean

[C#]
public bool CreateMessage(
 string message,
 ImapFlags messageFlags
);

Parameters
message

A string that contains the message data.

messageFlags

An ImapFlags enumeration value which specifies one or more message flags. One or more of the
following flags may be used:

Flag Description

imapFlagNone The message will be created with no flags set.

imapFlagAnswered The message has been answered.

imapFlagDraft The message is a draft copy.

imapFlagUrgent The message is urgent.

imapFlagSeen The message has already been read.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the specified
mailbox. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

The message will be created in the mailbox specified by the MailboxName property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.CreateMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CreateMessage Method (String, ImapFlags)

Create a new message.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal mailboxName As String, _
 ByVal message As Byte(), _
 ByVal length As Integer, _
 ByVal messageFlags As ImapFlags _
) As Boolean

[C#]
public bool CreateMessage(
 string mailboxName,
 byte[] message,
 int length,
 ImapFlags messageFlags
);

Parameters
mailboxName

A string which specifies the name of the mailbox the message will be created in.

message
A byte array that contains the message data.

length
An integer value which specifies the size of the message in bytes. This value cannot be larger than the
size of the message buffer specified by the caller.

messageFlags

An ImapFlags enumeration value which specifies one or more message flags. One or more of the
following flags may be used:

Flag Description

imapFlagNone The message will be created with no flags set.

imapFlagAnswered The message has been answered.

imapFlagDraft The message is a draft copy.

imapFlagUrgent The message is urgent.

imapFlagSeen The message has already been read.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the specified
mailbox. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

ImapClient.CreateMessage Method (String, Byte[], Int32, ImapFlags)

See Also
ImapClient Class | SocketTools Namespace | ImapClient.CreateMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Create a new message.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal mailboxName As String, _
 ByVal message As String, _
 ByVal messageFlags As ImapFlags _
) As Boolean

[C#]
public bool CreateMessage(
 string mailboxName,
 string message,
 ImapFlags messageFlags
);

Parameters
mailboxName

A string which specifies the name of the mailbox the message will be created in.

message
A string that contains the message data.

messageFlags

An ImapFlags enumeration value which specifies one or more message flags. One or more of the
following flags may be used:

Flag Description

imapFlagNone The message will be created with no flags set.

imapFlagAnswered The message has been answered.

imapFlagDraft The message is a draft copy.

imapFlagUrgent The message is urgent.

imapFlagSeen The message has already been read.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the specified
mailbox. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.CreateMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.CreateMessage Method (String, String, ImapFlags)

Deletes the currently selected mailbox from the server.

Overload List
Deletes the currently selected mailbox from the server.

public bool DeleteMailbox();

Deletes a mailbox from the server.

public bool DeleteMailbox(string);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.DeleteMailbox Method

Deletes the currently selected mailbox from the server.

[Visual Basic]
Overloads Public Function DeleteMailbox() As Boolean

[C#]
public bool DeleteMailbox();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The DeleteMailbox method deletes the currently selected mailbox from the server. The current mailbox
will be automatically unselected and any messages marked for deletion will be expunged before the
mailbox is removed. If the delete operation fails, the client will remain in an unselected state until either
the ExamineMailbox or SelectMailbox method is called

A mailbox cannot be deleted if it contains inferior hierarchical names and has the imapFlagNoSelect
attribute. On most systems this is the case when the mailbox name references a directory on the server,
and that directory contains other subdirectories or mailboxes. To remove the current mailbox, you must
first delete any child mailboxes that exist.

The special mailbox named INBOX cannot be deleted.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.DeleteMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.DeleteMailbox Method ()

Deletes a mailbox from the server.

[Visual Basic]
Overloads Public Function DeleteMailbox(_
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool DeleteMailbox(
 string mailboxName
);

Parameters
mailboxName

A string which specifies the name of the new mailbox to be deleted.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The DeleteMailbox method deletes a mailbox from the server. A mailbox cannot be deleted if it contains
inferior hierarchical names and has the imapFlagNoSelect attribute. On most systems this is the case
when the mailbox name references a directory on the server, and that directory contains other
subdirectories or mailboxes. To remove the mailbox, you must first delete any child mailboxes that exist.

If the mailbox that is deleted is the currently selected mailbox, it will be automatically unselected and any
messages marked for deletion will be expunged before the mailbox is removed. If the delete operation
fails, the client will remain in an unselected state until either the ExamineMailbox or SelectMailbox
method is called.

The special mailbox named INBOX cannot be deleted.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.DeleteMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.DeleteMailbox Method (String)

Flags the current message for deletion from the mailbox.

Overload List
Flags the current message for deletion from the mailbox.

public bool DeleteMessage();

Flags a message for deletion from the current mailbox.

public bool DeleteMessage(int);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.DeleteMessage Method

Flags the current message for deletion from the mailbox.

[Visual Basic]
Overloads Public Function DeleteMessage() As Boolean

[C#]
public bool DeleteMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method only flags the current message for deletion, it is not actually deleted until the mailbox is
expunged or another mailbox is selected. This function will return an error if the current mailbox is in read-
only mode, such as if it was selected using the ExamineMailbox method.

It is important to note that unlike the POP3 protocol, a message that is flagged for deletion is still
accessible on the IMAP server until the mailbox is expunged. This means, for example, that a deleted
message can still be retrieved using the GetMessage method.

To determine if a message has been flagged for deletion, set the Message property to the message
number and then check the value of the MessageFlags property to determine if the
ImapFlags.flagDeleted flag has been set.

To remove the deletion flag from the message, use the UndeleteMessage method. To prevent all
messages in the current mailbox from being expunged, use the ReselectMailbox function to reset the
current mailbox state. Calling the Reset method will also unselect the current mailbox without expunging
deleted messages.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.DeleteMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.DeleteMessage Method ()

Flags a message for deletion from the current mailbox.

[Visual Basic]
Overloads Public Function DeleteMessage(_
 ByVal messageId As Integer _
) As Boolean

[C#]
public bool DeleteMessage(
 int messageId
);

Parameters
messageId

Number of message to delete from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method only flags the message for deletion, it is not actually deleted until the mailbox is expunged or
another mailbox is selected. This function will return an error if the current mailbox is in read-only mode,
such as if it was selected using the ExamineMailbox method.

It is important to note that unlike the POP3 protocol, a message that is flagged for deletion is still
accessible on the IMAP server until the mailbox is expunged. This means, for example, that a deleted
message can still be retrieved using the GetMessage method.

To determine if a message has been flagged for deletion, set the Message property to the message
number and then check the value of the MessageFlags property to determine if the
ImapFlags.flagDeleted flag has been set.

To remove the deletion flag from the message, use the UndeleteMessage method. To prevent all
messages in the current mailbox from being expunged, use the ReselectMailbox function to reset the
current mailbox state. Calling the Reset method will also unselect the current mailbox without expunging
deleted messages.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.DeleteMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.DeleteMessage Method (Int32)

Terminate the connection with a remote host.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and releases the client handle
allocated by the class. Note that the socket is not immediately released when the connection is terminated
and will enter a wait state for two minutes. After the time wait period has elapsed, the client will be
released by the operating system. This is a normal safety mechanism to handle any packets that may
arrive after the connection has been closed.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Disconnect Method

Releases all resources used by ImapClient.

Overload List
Releases all resources used by ImapClient.

public void Dispose();

Releases the unmanaged resources allocated by the ImapClient class and optionally releases the managed
resources.

protected virtual void Dispose(bool);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Dispose Method

Releases all resources used by ImapClient.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Dispose Method ()

Releases the unmanaged resources allocated by the ImapClient class and optionally releases the managed
resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the ImapClient class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Dispose Method (Boolean)

Selects the specified mailbox for read-only access.

[Visual Basic]
Public Function ExamineMailbox(_
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool ExamineMailbox(
 string mailboxName
);

Parameters
mailboxName

A string that specifies the name of the mailbox to be examined.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ExamineMailbox method is used to select a mailbox in read-only mode. Messages can be read, but
they cannot be modified or deleted from the mailbox and new messages will not lose their status as new
messages if they are accessed.

If the client has a different mailbox currently selected, that mailbox will be closed and any messages
marked for deletion will be expunged. To prevent deleted messages from being removed from the
previous mailbox, use the UnselectMailbox method prior to examining the new mailbox.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names may or
may not be case-sensitive depending on the IMAP server's operating system and implementation.

To access a mailbox in read-write mode, use the SelectMailbox method.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ExamineMailbox Method

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Finalize Method

Returns the value of a header field from the specified message part.

Overload List
Returns the value of a header field from the specified message part.

public bool GetHeader(int,int,string,ref string);

Returns the value of a header field from the specified message.

public bool GetHeader(int,string,ref string);

Returns the value of a header field from the current message.

public bool GetHeader(string,ref string);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetHeader Method

Returns the value of a header field from the specified message part.

[Visual Basic]
Overloads Public Function GetHeader(_
 ByVal messageId As Integer, _
 ByVal messagePart As Integer, _
 ByVal headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetHeader(
 int messageId,
 int messagePart,
 string headerName,
 ref string headerValue
);

Parameters
messageId

An integer value that specifies the message to retrieve the header value from. This value must be
greater than zero. The first message in the mailbox is message number one.

messagePart
An integer value that specifies the message part that the header value is to be be retrieved from.
Message parts start with a value of one. A value of zero specifies that the RFC822 header field for the
message will be used.

headerName
A string which specifies the message header to retrieve.

headerValue
A string passed by reference which will contain the value of the specified message header if the
method is successful.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeader method returns the value of a header field from the specified message part. This allows
an application to be able to easily determine the value of a header such as the sender, or the subject of
the message. Any header field, including non-standard extensions, may be returned by this method.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetHeader Method (Int32, Int32, String, String)

Returns the value of a header field from the specified message.

[Visual Basic]
Overloads Public Function GetHeader(_
 ByVal messageId As Integer, _
 ByVal headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetHeader(
 int messageId,
 string headerName,
 ref string headerValue
);

Parameters
messageId

An integer value that specifies the message to retrieve the header value from. This value must be
greater than zero. The first message in the mailbox is message number one.

headerName
A string which specifies the message header to retrieve.

headerValue
A string passed by reference which will contain the value of the specified message header if the
method is successful.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeader method returns the value of a header field from the specified message. This allows an
application to be able to easily determine the value of a header such as the sender, or the subject of the
message. Any header field, including non-standard extensions, may be returned by this method.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetHeader Method (Int32, String, String)

Returns the value of a header field from the current message.

[Visual Basic]
Overloads Public Function GetHeader(_
 ByVal headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetHeader(
 string headerName,
 ref string headerValue
);

Parameters
headerName

A string which specifies the message header to retrieve.

headerValue
A string passed by reference which will contain the value of the specified message header if the
method is successful.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeader method returns the value of a header field from the current message. This allows an
application to be able to easily determine the value of a header such as the sender, or the subject of the
message. Any header field, including non-standard extensions, may be returned by this method.

The current message number is specified by the value of the Message property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetHeader Method (String, String)

Retrieves the headers for the current message from the server.

Overload List
Retrieves the headers for the current message from the server.

public bool GetHeaders(byte[],ref int);

Retrieves the headers for the specified message from the server.

public bool GetHeaders(int,byte[],ref int);

Retrieves the headers for the specified message from the server.

public bool GetHeaders(int,ref string);

Retrieves the headers for the current message from the server.

public bool GetHeaders(ref string);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetHeaders Method

Retrieves the headers for the current message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetHeaders(
 byte[] buffer,
 ref int length
);

Parameters
buffer

A byte array that will contain the message data when the method returns.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into a local
buffer. This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer. To retrieve the headers from a specific section of a multipart message, you can use the
GetMessage method and specify the ImapSections.sectionHeader option.

The current message number is specified by the value of the Message property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetHeaders Method (Byte[], Int32)

Retrieves the headers for the specified message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByVal messageId As Integer, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetHeaders(
 int messageId,
 byte[] buffer,
 ref int length
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A byte array that will contain the message data when the method returns.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into a local
buffer. This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer. To retrieve the headers from a specific section of a multipart message, you can use the
GetMessage method and specify the ImapSections.sectionHeader option.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetHeaders Method (Int32, Byte[], Int32)

Retrieves the headers for the specified message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByVal messageId As Integer, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetHeaders(
 int messageId,
 ref string buffer
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into a local
buffer. This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer. To retrieve the headers from a specific section of a multipart message, you can use the
GetMessage method and specify the ImapSections.sectionHeader option.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetHeaders Method (Int32, String)

Retrieves the headers for the current message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetHeaders(
 ref string buffer
);

Parameters
buffer

A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into a local
buffer. This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer. To retrieve the headers from a specific section of a multipart message, you can use the
GetMessage method and specify the ImapSections.sectionHeader option.

The current message number is specified by the value of the Message property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetHeaders Method (String)

Retrieve the current message from the server and return the contents in a byte array.

Overload List
Retrieve the current message from the server and return the contents in a byte array.

public bool GetMessage(byte[],ref int);

Retrieve the current message from the server and return the contents in a byte array.

public bool GetMessage(byte[],ref int,ImapSections);

Retrieve a message from the server and return the contents in a byte array.

public bool GetMessage(int,byte[],ref int);

Retrieve a message from the server and return the contents in a byte array.

public bool GetMessage(int,byte[],ref int,ImapSections);

Retrieve a message from the server and return the contents in a byte array.

public bool GetMessage(int,int,byte[],ref int);

Retrieve a message from the server and return the contents in a byte array.

public bool GetMessage(int,int,byte[],ref int,ImapSections);

Retrieve a message from the server and return the contents in a string.

public bool GetMessage(int,int,ref string);

Retrieve a message from the server and return the contents in a string.

public bool GetMessage(int,int,ref string,ImapSections);

Retrieve a message from the server and return the contents in a string.

public bool GetMessage(int,ref string);

Retrieve a message from the server and return the contents in a string.

public bool GetMessage(int,ref string,ImapSections);

Retrieve the current message from the server and return the contents in a string.

public bool GetMessage(ref string);

Retrieve the current message message from the server and return the contents in a string.

public bool GetMessage(ref string,ImapSections);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetMessage Method

Retrieve the current message from the server and return the contents in a byte array.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetMessage(
 byte[] buffer,
 ref int length
);

Parameters
buffer

A byte array that the message data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this parameter will be updated with the actual number of bytes copied into the array.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve the current message from the server and copy it into a local
buffer. This method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

The current message number is specified by the value of the Message property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetMessage Method (Byte[], Int32)

Retrieve the current message from the server and return the contents in a byte array.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal buffer As Byte(), _
 ByRef length As Integer, _
 ByVal options As ImapSections _
) As Boolean

[C#]
public bool GetMessage(
 byte[] buffer,
 ref int length,
 ImapSections options
);

Parameters
buffer

A byte array that the message data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this parameter will be updated with the actual number of bytes copied into the array.

options
An ImapSections enumeration value which specifies which section of the message to return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve the current message from the server and copy it into a local
buffer. This method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

The current message number is specified by the value of the Message property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetMessage Method (Byte[], Int32, ImapSections)

Retrieve a message from the server and return the contents in a byte array.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 byte[] buffer,
 ref int length
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A byte array that the message data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this parameter will be updated with the actual number of bytes copied into the array.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetMessage Method (Int32, Byte[], Int32)

Retrieve a message from the server and return the contents in a byte array.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByVal buffer As Byte(), _
 ByRef length As Integer, _
 ByVal options As ImapSections _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 byte[] buffer,
 ref int length,
 ImapSections options
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A byte array that the message data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this parameter will be updated with the actual number of bytes copied into the array.

options
An ImapSections enumeration value which specifies which section of the message to return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetMessage Method (Int32, Byte[], Int32, ImapSections)

Retrieve a message from the server and return the contents in a byte array.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByVal messagePart As Integer, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 int messagePart,
 byte[] buffer,
 ref int length
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

messagePart
An integer value that specifies the message part that should be retrieved. A value of zero specifies that
the complete message should be returned. If the message is a multipart MIME message, message
parts start with a value of one.

buffer
A byte array that the message data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this parameter will be updated with the actual number of bytes copied into the array.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetMessage Method (Int32, Int32, Byte[], Int32)

Retrieve a message from the server and return the contents in a byte array.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByVal messagePart As Integer, _
 ByVal buffer As Byte(), _
 ByRef length As Integer, _
 ByVal options As ImapSections _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 int messagePart,
 byte[] buffer,
 ref int length,
 ImapSections options
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

messagePart
An integer value that specifies the message part that should be retrieved. A value of zero specifies that
the complete message should be returned. If the message is a multipart MIME message, message
parts start with a value of one.

buffer
A byte array that the message data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this parameter will be updated with the actual number of bytes copied into the array.

options
An ImapSections enumeration value which specifies which section of the message to return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also

ImapClient.GetMessage Method (Int32, Int32, Byte[], Int32,
ImapSections)

ImapClient Class | SocketTools Namespace | ImapClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Retrieve a message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByVal messagePart As Integer, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 int messagePart,
 ref string buffer
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

messagePart
An integer value that specifies the message part that should be retrieved. A value of zero specifies that
the complete message should be returned. If the message is a multipart MIME message, message
parts start with a value of one.

buffer
A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetMessage Method (Int32, Int32, String)

Retrieve a message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByVal messagePart As Integer, _
 ByRef buffer As String, _
 ByVal options As ImapSections _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 int messagePart,
 ref string buffer,
 ImapSections options
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

messagePart
An integer value that specifies the message part that should be retrieved. A value of zero specifies that
the complete message should be returned. If the message is a multipart MIME message, message
parts start with a value of one.

buffer
A string passed by reference that will contain the message data when the method returns.

options
An ImapSections enumeration value which specifies which section of the message to return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetMessage Method (Int32, Int32, String, ImapSections)

Retrieve a message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 ref string buffer
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetMessage Method (Int32, String)

Retrieve a message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByRef buffer As String, _
 ByVal options As ImapSections _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 ref string buffer,
 ImapSections options
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A string passed by reference that will contain the message data when the method returns.

options
An ImapSections enumeration value which specifies which section of the message to return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetMessage Method (Int32, String, ImapSections)

Retrieve the current message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetMessage(
 ref string buffer
);

Parameters
buffer

A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve the current message from the server and copy it into a local
buffer. This method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

The current message number is specified by the value of the Message property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetMessage Method (String)

Retrieve the current message message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByRef buffer As String, _
 ByVal options As ImapSections _
) As Boolean

[C#]
public bool GetMessage(
 ref string buffer,
 ImapSections options
);

Parameters
buffer

A string passed by reference that will contain the message data when the method returns.

options
An ImapSections enumeration value which specifies which section of the message to return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve the current message from the server and copy it into a local
buffer. This method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

The current message number is specified by the value of the Message property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.GetMessage Method (String, ImapSections)

Enables mailbox status monitoring for the client session.

Overload List
Enables mailbox status monitoring for the client session.

public bool Idle();

Enables mailbox status monitoring for the client session.

public bool Idle(IdleOptions,int);

See Also
ImapClient Class | SocketTools Namespace | OnUpdate

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Idle Method

Enables mailbox status monitoring for the client session.

[Visual Basic]
Overloads Public Function Idle() As Boolean

[C#]
public bool Idle();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
Many IMAP servers support the ability to asynchronously send status updates to the client, rather than
have the client periodically poll the server. The client enables this feature by calling the Idle method and
providing an event handler for the OnUpdate event. Typically these events inform the client that a new
message has arrived or that a message has been expunged from the mailbox.

The Idle method begins monitoring the client session asynchronously and returns control immediately to
the caller. If the server sends a update notification to the client, the OnUpdate event will fire with
information about the status change. Sending an IMAP command to the server will cause the client to
stop monitoring the session for status changes. To explicitly stop monitoring the session, use the Cancel
method.

This method works by sending the IDLE command to the server and starting a worker thread which
monitors the connection and looks for untagged responses issued by the server. Events will be generated
for EXISTS, EXPUNGE and RECENT messages. Note that some servers may periodically send untagged OK
messages to the client, indicating that the connection is still active; these messages are explicitly ignored.

The OnUpdate event is invoked within the context of the worker thread that is monitoring the client
session. Because of this, applications should not directly update the user interface from within the event
handler. For example, if the server sends a notification that a new email message has arrived, the
application should not attempt to read the new message and update the user interface directly from
within the event handler. Instead, it should create a delegate and use the Control.Invoke method to
marshal the call to the thread that owns the control's window handle. Failure to do this can cause the
application to become unstable. For more information, refer to the Control.Invoke method in the .NET
Framework documentation.

An application should never make an assumption about how a particular server may send update
notifications to the client. Servers can be configured to use different intervals at which notifications are
sent. For example, a server may send new message notifications immediately, but may periodically notify
the client when a message has been expunged. Alternatively, a server may only send notifications at fixed
intervals, in which case the client would not be notified of any new messages until the interval period is
reached. It is not possible for a client to know what a particular server's update interval is. Applications that
require that degree of control should not use the Idle method and should poll the server instead.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Idle Overload List | OnUpdate

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Idle Method ()

Enables mailbox status monitoring for the client session.

[Visual Basic]
Overloads Public Function Idle(_
 ByVal options As IdleOptions, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Idle(
 IdleOptions options,
 int timeout
);

Parameters
options

One or more of the IdleOptions enumeration flags.

timeout
Specifies the timeout period in seconds to wait for a notification from the server. This parameter is only
used when the ImapIdle.idleWait option has been specified.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
Many IMAP servers support the ability to asynchronously send status updates to the client, rather than
have the client periodically poll the server. The client enables this feature by calling the Idle method and
providing an event handler for the OnUpdate event. Typically these events inform the client that a new
message has arrived or that a message has been expunged from the mailbox.

The Idle method can operate in one of two modes, based on the options specified by the caller. If the
option idleNoWait is specified, the method begins monitoring the client session asynchronously and
returns control immediately to the caller. If the server sends a update notification to the client, the
OnUpdate event will fire with information about the status change. If the option idleWait is specified, the
method will block waiting for the server to send a notification message to the client. The method will
return when either a message is received or the timeout period is exceeded. Sending an IMAP command
to the server will cause the client to stop monitoring the session for status changes. To explicitly stop
monitoring the session, use the Cancel method.

This method works by sending the IDLE command to the server and starting a worker thread which
monitors the connection and looks for untagged responses issued by the server. Events will be generated
for EXISTS, EXPUNGE and RECENT messages. Note that some servers may periodically send untagged OK
messages to the client, indicating that the connection is still active; these messages are explicitly ignored.

The OnUpdate event is invoked within the context of the worker thread that is monitoring the client
session. Because of this, applications should not directly update the user interface from within the event
handler. For example, if the server sends a notification that a new email message has arrived, the
application should not attempt to read the new message and update the user interface directly from
within the event handler. Instead, it should create a delegate and use the Control.Invoke method to
marshal the call to the thread that owns the control's window handle. Failure to do this can cause the

ImapClient.Idle Method (IdleOptions, Int32)

application to become unstable. For more information, refer to the Control.Invoke method in the .NET
Framework documentation.

An application should never make an assumption about how a particular server may send update
notifications to the client. Servers can be configured to use different intervals at which notifications are
sent. For example, a server may send new message notifications immediately, but may periodically notify
the client when a message has been expunged. Alternatively, a server may only send notifications at fixed
intervals, in which case the client would not be notified of any new messages until the interval period is
reached. It is not possible for a client to know what a particular server's update interval is. Applications that
require that degree of control should not use the Idle method and should poll the server instead.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Idle Overload List | OnUpdate

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initialize an instance of the ImapClient class.

Overload List
Initialize an instance of the ImapClient class.

public bool Initialize();

Initialize an instance of the ImapClient class.

public bool Initialize(string);

See Also
ImapClient Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Initialize Method

Initialize an instance of the ImapClient class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the ImapClient class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Initialize Method ()

Initialize an instance of the ImapClient class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the ImapClient class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the ImapClient class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.ImapClient imapClient = new SocketTools.ImapClient();

if (imapClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(imapClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim imapClient As New SocketTools.ImapClient

If imapClient.Initialize(strLicenseKey) = False Then
 MsgBox(imapClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Initialize Method (String)

Open the current message for reading.

Overload List
Open the current message for reading.

public bool OpenMessage();

Open the specified message for reading.

public bool OpenMessage(int);

Open the specified message for reading.

public bool OpenMessage(int,int);

Open the specified message for reading.

public bool OpenMessage(int,int,ImapSections);

Open the specified message for reading.

public bool OpenMessage(int,int,int,ref int,ImapSections);

Open the specified message for reading.

public bool OpenMessage(int,int,ref int,ImapSections);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OpenMessage Method

Open the current message for reading.

[Visual Basic]
Overloads Public Function OpenMessage() As Boolean

[C#]
public bool OpenMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenMessage method opens the current message in the mailbox. The client can then read the
contents of the message using the Read method, and once all of the data has been read, the message
should be closed by calling the CloseMessage method.

The current message number is specified by the value of the Message property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.OpenMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OpenMessage Method ()

Open the specified message for reading.

[Visual Basic]
Overloads Public Function OpenMessage(_
 ByVal messageId As Integer _
) As Boolean

[C#]
public bool OpenMessage(
 int messageId
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenMessage method opens a message in the current mailbox. The client can then read the
contents of the message using the Read method, and once all of the data has been read, the message
should be closed by calling the CloseMessage method.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.OpenMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OpenMessage Method (Int32)

Open the specified message for reading.

[Visual Basic]
Overloads Public Function OpenMessage(_
 ByVal messageId As Integer, _
 ByVal messagePart As Integer _
) As Boolean

[C#]
public bool OpenMessage(
 int messageId,
 int messagePart
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

messagePart
An integer value that specifies the message part that should be retrieved. A value of zero specifies that
the complete message should be returned. If the message is a multipart MIME message, message
parts start with a value of one.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenMessage method opens a message or a specific part of a multipart message in the current
mailbox. The client can then read the contents of the message using the Read method, and once all of
the data has been read, the message should be closed by calling the CloseMessage method.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.OpenMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OpenMessage Method (Int32, Int32)

Open the specified message for reading.

[Visual Basic]
Overloads Public Function OpenMessage(_
 ByVal messageId As Integer, _
 ByVal messagePart As Integer, _
 ByVal options As ImapSections _
) As Boolean

[C#]
public bool OpenMessage(
 int messageId,
 int messagePart,
 ImapSections options
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

messagePart
An integer value that specifies the message part that should be retrieved. A value of zero specifies that
the complete message should be returned. If the message is a multipart MIME message, message
parts start with a value of one.

options
An ImapSections enumeration value which specifies which section of the message to return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenMessage method opens a message in the current mailbox. The client can then read the
contents of the message using the Read method, and once all of the data has been read, the message
should be closed by calling the CloseMessage method.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.OpenMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OpenMessage Method (Int32, Int32, ImapSections)

Open the specified message for reading.

[Visual Basic]
Overloads Public Function OpenMessage(_
 ByVal messageId As Integer, _
 ByVal messagePart As Integer, _
 ByVal offset As Integer, _
 ByRef length As Integer, _
 ByVal options As ImapSections _
) As Boolean

[C#]
public bool OpenMessage(
 int messageId,
 int messagePart,
 int offset,
 ref int length,
 ImapSections options
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

messagePart
An integer value that specifies the message part that should be retrieved. A value of zero specifies that
the complete message should be returned. If the message is a multipart MIME message, message
parts start with a value of one.

offset
The byte offset into the message. This parameter can be used in conjunction with the length argument
to return a specific part of a message. If this argument is omitted or a value of zero is specified, the
server will return data from the beginning of the message.

length
An integer passed by reference which should be initialized to the maximum number of bytes to be
read, and will contain the size of the message when the function returns. To specify the entire
message, from the offset specified by the offset parameter to the end of the message, initialize the
length parameter to a value of -1.

options
An ImapSections enumeration value which specifies which section of the message to return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenMessage method opens a message or a specific part of a multipart message in the current
mailbox. The message data may also be limited a specific byte offset and length, which can be useful for
previewing the contents. The client can then read the contents of the message using the Read method,

ImapClient.OpenMessage Method (Int32, Int32, Int32, Int32,
ImapSections)

and once all of the data has been read, the message should be closed by calling the CloseMessage
method.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.OpenMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Open the specified message for reading.

[Visual Basic]
Overloads Public Function OpenMessage(_
 ByVal messageId As Integer, _
 ByVal messagePart As Integer, _
 ByRef length As Integer, _
 ByVal options As ImapSections _
) As Boolean

[C#]
public bool OpenMessage(
 int messageId,
 int messagePart,
 ref int length,
 ImapSections options
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

messagePart
An integer value that specifies the message part that should be retrieved. A value of zero specifies that
the complete message should be returned. If the message is a multipart MIME message, message
parts start with a value of one.

length
An integer passed by reference which should be initialized to the maximum number of bytes to be
read, and will contain the size of the message when the function returns. To specify the entire
message, initialize the length parameter to a value of -1.

options
An ImapSections enumeration value which specifies which section of the message to return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenMessage method opens a message or a specific part of a multipart message in the current
mailbox. The message data may also be limited a specific byte offset and length, which can be useful for
previewing the contents. The client can then read the contents of the message using the Read method,
and once all of the data has been read, the message should be closed by calling the CloseMessage
method.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.OpenMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OpenMessage Method (Int32, Int32, Int32, ImapSections)

Read data from the server and store it in a byte array.

Overload List
Read data from the server and store it in a byte array.

public int Read(byte[]);

Read data from the server and store it in a byte array.

public int Read(byte[],int);

Read data from the server and store it in a string.

public int Read(ref string);

Read data from the server and store it in a string.

public int Read(ref string,int);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Read Method

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the size of the byte array passed
to the method. If no data is available to be read, an error will be generated if the client is in non-blocking
mode. If the client is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Read Method (Byte[])

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Read Method (Byte[], Int32)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the client.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to a maximum of 4096 bytes. If no
data is available to be read, an error will be generated if the client is in non-blocking mode. If the client is
in blocking mode, the program will stop until data is received from the server or the connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Read Method (String)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Read Method (String, Int32)

Updates the list of available mailboxes.

[Visual Basic]
Public Function Refresh() As Boolean

[C#]
public bool Refresh();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Refresh method updates the list of mailboxes that may be selected by the client. The available
mailboxes may be enumerated using the Mailbox property array, with the Mailboxes property returning
the total number of mailboxes.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Refresh Method

Change the name of a mailbox.

[Visual Basic]
Public Function RenameMailbox(_
 ByVal oldMailbox As String, _
 ByVal newMailbox As String _
) As Boolean

[C#]
public bool RenameMailbox(
 string oldMailbox,
 string newMailbox
);

Parameters
oldMailbox

A string that specifies the name of the mailbox to be renamed on the server. The mailbox must exist
on the server, otherwise an error will be returned.

newMailbox
A string that specifies the new name for the mailbox. An error will be returned if a mailbox with that
name already exists.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
If the existing mailbox name contains inferior hierarchical names (mailboxes under the specified mailbox)
then those mailboxes will also be renamed. For example, if the mailbox "Mail/Pictures" contains two
mailboxes, "Personal" and "Work" and it is renamed to "Mail/Images" then the two mailboxes under it
would be automatically renamed to "Mail/Images/Personal" and "Mail/Images/Work".

If the mailbox being renamed is the currently selected mailbox, the current mailbox will be unselected and
any messages marked for deletion will be expunged. The new mailbox name will then automatically be re-
selected. To prevent deleted messages from being removed from the mailbox prior to being renamed,
use the UnselectMailbox method to unselect the current mailbox before calling RenameMailbox. Note
that if the rename operation fails, the client may be left in an unselected state.

It is permitted to rename the special mailbox INBOX. In this case, the messages will be moved from the
INBOX mailbox to the new mailbox. If the INBOX mailbox is currently selected, the new mailbox will not
automatically be selected. INBOX will remain the selected mailbox.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.RenameMailbox Method

Reselects the current mailbox.

[Visual Basic]
Public Function ReselectMailbox() As Boolean

[C#]
public bool ReselectMailbox();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ReselectMailbox method forces the current mailbox to be reselected and updates those properties
which return information about the mailbox, such as the MailboxFlags property. Deleted messages are
not expunged from the mailbox and remain marked for deletion.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ReselectMailbox Method

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Reset Method

Search the current mailbox for messages that match the specified criteria.

Overload List
Search the current mailbox for messages that match the specified criteria.

public int SearchMailbox(string,int[],int);

Search the current mailbox for messages that match the specified criteria and character set.

public int SearchMailbox(string,string,int[],int);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.SearchMailbox Method

Search the current mailbox for messages that match the specified criteria.

[Visual Basic]
Overloads Public Function SearchMailbox(_
 ByVal criteria As String, _
 ByVal messageList As Integer(), _
 ByVal maxMessages As Integer _
) As Integer

[C#]
public int SearchMailbox(
 string criteria,
 int[] messageList,
 int maxMessages
);

Parameters
criteria

A string which consists of one or more keywords which are used to define the search criteria. The
following keywords are recognized:

Keyword Description

ANSWERED Match those messages which have the
ImapFlags.flagAnswered flag set.

BCC address Match those messages which contain the
specified address in the BCC header field.

BEFORE date Match those messages which were added to the
mailbox prior to the specified date.

BODY string Match those messages where the body contains
the specified string.

CC address Match those messages which contain the
specified address in the CC header field.

DELETED Match those messages which have the
ImapFlags.flagDeleted flag set.

DRAFT Match those messages which have the
ImapFlags.flagDraft flag set.

FLAGGED Match those messages which have the
ImapFlags.flagUrgent flag set.

FROM address Match those messages which contain the
specified address in the FROM header field.

HEADER field string Match those messages which contain the string
in the specified header field. If no string is
specified, then all messages which contain the
header will be matched.

LARGER size Match those messages which are larger than the

ImapClient.SearchMailbox Method (String, Int32[], Int32)

specified size in bytes.

NEW Match those messages which have the
ImapFlags.flagRecent flag set, but not the
ImapFlags.flagSeen flag.

OLD Match those messages which do not have the
ImapFlags.flagRecent flag set.

ON date Match those messages which were added on the
specified date.

RECENT Match those messages which have the
ImapFlags.flagRecent flag set.

SEEN Match those messages which have the
ImapFlags.flagSeen flag set.

SENTBEFORE date Match those messages whose Date header value
is earlier than the specified date.

SENTON date Match those messages whose Date header value
is the same as the specified date.

SENTSINCE date Match those messages whose Date header value
is later than the specified date.

SINCE date Match those messages added to the mailbox
after the specified date.

SMALLER size Match those messages which are smaller than
the specified size in bytes.

SUBJECT string Match those messages whose Subject header
contains the specified string.

TEXT string Match those messages whose headers or body
contains the specified string.

TO address Match those messages which contain the
specified address in the TO header field.

UID sequence Match those messages with unique identifiers in
the sequence set.

UNANSWERED Match those messages which do not have the
ImapFlags.flagAnswered flag set.

UNDELETED Match those messages which do not have the
ImapFlags.flagDeleted flag set.

UNDRAFT Match those messages which do not have the
ImapFlags.flagDraft flag set.

UNFLAGGED Match those messages which do not have the
ImapFlags.flagUrgent flag set.

UNSEEN Match those messages which do not have the
ImapFlags.flagUnseen flag set.

messageList
An array of integers which will contain the message numbers of those messages which match the
search criteria.

maxMessages
An integer value which specifies the maximum number of message numbers which can be returned in
the messageList array. This value cannot be larger than the size of the array.

Return Value
The number of messages which were found to match the search criteria. If no messages match the criteria,
then the return value will be zero. A return value of -1 indicates an error, and the specific error code can
be determined by checking the value of the LastError property.

Remarks
The SearchMailbox method is used to search a mailbox for messages which match a given criteria and
return a list of the matching message numbers. The search criteria is composed of one or more search
keywords and and optional value to match against. String searches are not case sensitive and partial
matches in the message are returned. The message numbers returned by this method are only valid until
the mailbox is expunged or another mailbox is selected.

In addition to the listed keywords, the keyword NOT may prefix a keyword to return those messages which
do not match the search criteria. For example, "NOT TO user@domain.com" would return those messages
which were not addressed to user@domain.com.

If multiple search keywords are specified, the result is the intersection of all those messages which meet
the search criteria. For example, a search criteria of "DELETED SINCE 1-Jan-2010" would return all those
messages which are marked for deletion and were added to the mailbox after 1 January 2010.

Those search keywords which expect dates must be specified in format dd-mmm-yyyy where the month
is the three letter abbreviation for the month name. Note that the internal date the message was added to
the mailbox is not the same as the value of the Date header field in the message.

If the search keyword requires a string value and the string contains one or more spaces, you must
enclose the search string in quotes as part of the criteria string. The quotes around the search string
prevents the server from interpreting it as a multiple search criteria to be evaluated. If you are using a
search string provided by a user, it is recommended that you always enclose it in quotes to prevent any
potential ambiguity in the search. Even if the search string does not contain any spaces, it is always safe to
enclose it in quotes.

The UID keyword expects a one or more unique message identifiers. These values may provided as
comma separated list, or a range delimited by a colon. For example, "UID 23000:24000" would return all
those messages who have UIDs ranging from 23000 through to 24000.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.SearchMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Search the current mailbox for messages that match the specified criteria and character set.

[Visual Basic]
Overloads Public Function SearchMailbox(_
 ByVal criteria As String, _
 ByVal charset As String, _
 ByVal messageList As Integer(), _
 ByVal maxMessages As Integer _
) As Integer

[C#]
public int SearchMailbox(
 string criteria,
 string charset,
 int[] messageList,
 int maxMessages
);

Parameters
criteria

A string which consists of one or more keywords which are used to define the search criteria. The
following keywords are recognized:

Keyword Description

ANSWERED Match those messages which have the
ImapFlags.flagAnswered flag set.

BCC address Match those messages which contain the
specified address in the BCC header field.

BEFORE date Match those messages which were added to the
mailbox prior to the specified date.

BODY string Match those messages where the body contains
the specified string.

CC address Match those messages which contain the
specified address in the CC header field.

DELETED Match those messages which have the
ImapFlags.flagDeleted flag set.

DRAFT Match those messages which have the
ImapFlags.flagDraft flag set.

FLAGGED Match those messages which have the
ImapFlags.flagUrgent flag set.

FROM address Match those messages which contain the
specified address in the FROM header field.

HEADER field string Match those messages which contain the string
in the specified header field. If no string is
specified, then all messages which contain the
header will be matched.

ImapClient.SearchMailbox Method (String, String, Int32[], Int32)

LARGER size Match those messages which are larger than the
specified size in bytes.

NEW Match those messages which have the
ImapFlags.flagRecent flag set, but not the
ImapFlags.flagSeen flag.

OLD Match those messages which do not have the
ImapFlags.flagRecent flag set.

ON date Match those messages which were added on the
specified date.

RECENT Match those messages which have the
ImapFlags.flagRecent flag set.

SEEN Match those messages which have the
ImapFlags.flagSeen flag set.

SENTBEFORE date Match those messages whose Date header value
is earlier than the specified date.

SENTON date Match those messages whose Date header value
is the same as the specified date.

SENTSINCE date Match those messages whose Date header value
is later than the specified date.

SINCE date Match those messages added to the mailbox
after the specified date.

SMALLER size Match those messages which are smaller than
the specified size in bytes.

SUBJECT string Match those messages whose Subject header
contains the specified string.

TEXT string Match those messages whose headers or body
contains the specified string.

TO address Match those messages which contain the
specified address in the TO header field.

UID sequence Match those messages with unique identifiers in
the sequence set.

UNANSWERED Match those messages which do not have the
ImapFlags.flagAnswered flag set.

UNDELETED Match those messages which do not have the
ImapFlags.flagDeleted flag set.

UNDRAFT Match those messages which do not have the
ImapFlags.flagDraft flag set.

UNFLAGGED Match those messages which do not have the
ImapFlags.flagUrgent flag set.

UNSEEN Match those messages which do not have the
ImapFlags.flagUnseen flag set.

charset
An string which specifies the character set to use when searching the mailbox. If this argument is

omitted, the default US-ASCII character set will be used. Note that not all servers support searches
using anything but the default character set.

messageList
An array of integers which will contain the message numbers of those messages which match the
search criteria.

maxMessages
An integer value which specifies the maximum number of message numbers which can be returned in
the messageList array. This value cannot be larger than the size of the array.

Return Value
The number of messages which were found to match the search criteria. If no messages match the criteria,
then the return value will be zero. A return value of -1 indicates an error, and the specific error code can
be determined by checking the value of the LastError property.

Remarks
The SearchMailbox method is used to search a mailbox for messages which match a given criteria and
return a list of the matching message numbers. The search criteria is composed of one or more search
keywords and and optional value to match against. String searches are not case sensitive and partial
matches in the message are returned. The message numbers returned by this method are only valid until
the mailbox is expunged or another mailbox is selected.

In addition to the listed keywords, the keyword NOT may prefix a keyword to return those messages which
do not match the search criteria. For example, "NOT TO user@domain.com" would return those messages
which were not addressed to user@domain.com.

If multiple search keywords are specified, the result is the intersection of all those messages which meet
the search criteria. For example, a search criteria of "DELETED SINCE 1-Jan-2010" would return all those
messages which are marked for deletion and were added to the mailbox after 1 January 2010.

Those search keywords which expect dates must be specified in format dd-mmm-yyyy where the month
is the three letter abbreviation for the month name. Note that the internal date the message was added to
the mailbox is not the same as the value of the Date header field in the message.

If the search keyword requires a string value and the string contains one or more spaces, you must
enclose the search string in quotes as part of the criteria string. The quotes around the search string
prevents the server from interpreting it as a multiple search criteria to be evaluated. If you are using a
search string provided by a user, it is recommended that you always enclose it in quotes to prevent any
potential ambiguity in the search. Even if the search string does not contain any spaces, it is always safe to
enclose it in quotes.

The UID keyword expects a one or more unique message identifiers. These values may provided as
comma separated list, or a range delimited by a colon. For example, "UID 23000:24000" would return all
those messages who have UIDs ranging from 23000 through to 24000.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.SearchMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Selects the specified mailbox for read-write access.

[Visual Basic]
Public Function SelectMailbox(_
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool SelectMailbox(
 string mailboxName
);

Parameters
mailboxName

A string argument which specifies the name of the mailbox to be selected.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SelectMailbox method is used to select a mailbox in read-write mode. If the client has a different
mailbox currently selected, that mailbox will be closed and any messages marked for deletion will be
expunged. To prevent deleted messages from being removed from the previous mailbox, use the
UnselectMailbox method prior to selecting the new mailbox.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names may or
may not be case-sensitive depending on the IMAP server's operating system and implementation.

To access a mailbox in read-only mode, use the ExamineMailbox method.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.SelectMailbox Method

Retrieve a message from the current mailbox and store it in a file on the local system.

Overload List
Retrieve a message from the current mailbox and store it in a file on the local system.

public bool StoreMessage(int,string);

Retrieve the current message and store it in a file on the local system.

public bool StoreMessage(string);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.StoreMessage Method

Retrieve a message from the current mailbox and store it in a file on the local system.

[Visual Basic]
Overloads Public Function StoreMessage(_
 ByVal messageId As Integer, _
 ByVal fileName As String _
) As Boolean

[C#]
public bool StoreMessage(
 int messageId,
 string fileName
);

Parameters
messageId

Number of message to retrieve. This value must be greater than zero. The first message in the mailbox
is message number one.

fileName
A string which specifies the file that the message will be stored in. If the file does not exist, it will be
created. If the file does exist, it will be overwritten with the contents of the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The StoreMessage method retrieves a message from the server and stores it in a file on the local system.
The contents of the message is stored as a text file, using the specified file name. This method will cause
the current thread to block until the message transfer completes, a timeout occurs or the transfer is
canceled. During the transfer, the OnProgress event will fire periodically, enabling the application to
update any user interface objects such as a progress bar.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.StoreMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.StoreMessage Method (Int32, String)

Retrieve the current message and store it in a file on the local system.

[Visual Basic]
Overloads Public Function StoreMessage(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool StoreMessage(
 string fileName
);

Parameters
fileName

A string which specifies the file that the message will be stored in. If the file does not exist, it will be
created. If the file does exist, it will be overwritten with the contents of the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The StoreMessage method retrieves the current message from the server and stores it in a file on the
local system. The contents of the message is stored as a text file, using the specified file name. This
method will cause the current thread to block until the message transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The current message number is specified by the value of the Message property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.StoreMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.StoreMessage Method (String)

Subscribes the user to the current mailbox.

Overload List
Subscribes the user to the current mailbox.

public bool SubscribeMailbox();

Subscribes the user to the specified mailbox.

public bool SubscribeMailbox(string);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.SubscribeMailbox Method

Subscribes the user to the current mailbox.

[Visual Basic]
Overloads Public Function SubscribeMailbox() As Boolean

[C#]
public bool SubscribeMailbox();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SubscribeMailbox method adds the current mailbox to the current user's list of active or subscribed
mailboxes. The user will remain subscribed to the mailbox across multiple sessions, until the
UnsubscribeMailbox method is called to remove the mailbox from the subscription list.

Note that if a user subscribes to a mailbox and that mailbox is later renamed or deleted, the mailbox will
not be automatically removed from the user's subscription list. To determine if the current mailbox is in
the user's subscription list, check the Subscribed property.

The current mailbox is specified by the value of the MailboxName property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.SubscribeMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.SubscribeMailbox Method ()

Subscribes the user to the specified mailbox.

[Visual Basic]
Overloads Public Function SubscribeMailbox(_
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool SubscribeMailbox(
 string mailboxName
);

Parameters
mailboxName

A string which specifies the name of the mailbox to subscribe to.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SubscribeMailbox method adds the specified mailbox to the current user's list of active or
subscribed mailboxes. The user will remain subscribed to the mailbox across multiple sessions, until the
UnsubscribeMailbox method is called to remove the mailbox from the subscription list.

Note that if a user subscribes to a mailbox and that mailbox is later renamed or deleted, the mailbox will
not be automatically removed from the user's subscription list. To determine if the current mailbox is in
the user's subscription list, check the Subscribed property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.SubscribeMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.SubscribeMailbox Method (String)

Removes the deletion flag for the specified message.

[Visual Basic]
Public Function UndeleteMessage(_
 ByVal messageId As Integer _
) As Boolean

[C#]
public bool UndeleteMessage(
 int messageId
);

Parameters
messageId

Number of message to undelete from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The UndeleteMessage method removes the deletion flag for the specified message in the current
mailbox. To determine if a message has been marked for deletion, set the Message property to the
message number and then check the value of the MessageFlags property to determine if the
imapFlagDeleted bit flag has been set.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UndeleteMessage Method

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
ImapClient Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Uninitialize Method

Unselects the current mailbox and expunges deleted messages.

Overload List
Unselects the current mailbox and expunges deleted messages.

public bool UnselectMailbox();

Unselects the current mailbox.

public bool UnselectMailbox(bool);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UnselectMailbox Method

Unselects the current mailbox and expunges deleted messages.

[Visual Basic]
Overloads Public Function UnselectMailbox() As Boolean

[C#]
public bool UnselectMailbox();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The UnselectMailbox method unselects the current mailbox. Once the mailbox has been unselected, no
messages in that mailbox can be accessed, and any messages which have been flagged for deletion are
removed.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.UnselectMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UnselectMailbox Method ()

Unselects the current mailbox.

[Visual Basic]
Overloads Public Function UnselectMailbox(_
 ByVal expunge As Boolean _
) As Boolean

[C#]
public bool UnselectMailbox(
 bool expunge
);

Parameters
expunge

An boolean value which determines if deleted messages will be expunged from the mailbox. A value
of true specifies that messages that have been marked for deletion will be removed from the mailbox.
A value of false specifies that no messages will be removed from the mailbox.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The UnselectMailbox method unselects the current mailbox. Once the mailbox has been unselected, no
messages in that mailbox can be accessed.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.UnselectMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UnselectMailbox Method (Boolean)

Unsubscribes the user from the current mailbox.

Overload List
Unsubscribes the user from the current mailbox.

public bool UnsubscribeMailbox();

Unsubscribes the user from the specified mailbox.

public bool UnsubscribeMailbox(string);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UnsubscribeMailbox Method

Unsubscribes the user from the current mailbox.

[Visual Basic]
Overloads Public Function UnsubscribeMailbox() As Boolean

[C#]
public bool UnsubscribeMailbox();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The UnsubscribeMailbox method removes the current mailbox from the current user's list of active or
subscribed mailboxes. To determine if the current mailbox is in the user's subscription list, check the
Subscribed property.

The current mailbox is specified by the value of the MailboxName property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.UnsubscribeMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UnsubscribeMailbox Method ()

Unsubscribes the user from the specified mailbox.

[Visual Basic]
Overloads Public Function UnsubscribeMailbox(_
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool UnsubscribeMailbox(
 string mailboxName
);

Parameters
mailboxName

A string which specifies the name of the mailbox to unsubscribe from.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The UnsubscribeMailbox method removes the specified mailbox from the current user's list of active or
subscribed mailboxes. To determine if the current mailbox is in the user's subscription list, check the
Subscribed property.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.UnsubscribeMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UnsubscribeMailbox Method (String)

Write one or more bytes of data to the server.

Overload List
Write one or more bytes of data to the server.

public int Write(byte[]);

Write one or more bytes of data to the server.

public int Write(byte[],int);

Write a string of characters to the server.

public int Write(string);

Write a string of characters to the server.

public int Write(string,int);

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Write Method

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the server.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Write Method (Byte[])

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the server.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Write Method (Byte[], Int32)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Write Method (String)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the server.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
ImapClient Class | SocketTools Namespace | ImapClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.Write Method (String, Int32)

The events of the ImapClient class are listed below. For a complete list of ImapClient class members, see
the ImapClient Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnUpdate Occurs when the server sends a mailbox update
notification to the client.

OnWrite Occurs when data can be written to the client.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OnCancel Event

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a remote host as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a socket is
created but the connection is not actually established until after this event occurs. Between the time
connection process is started and this event fires, no operation may be performed on the client other than
calling the Disconnect method.

This event is only generated if the client is in non-blocking mode.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OnConnect Event

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the remote host closes its connection, terminating the client
session with the application. Because there may still be data in the client receive buffers, you should
continue to read data from the client until the Read method returns a value of 0. Once all of the data has
been read, you should call the Disconnect method to close the local socket and release the resources
allocated for the client.

This event is only generated if the client is in non-blocking mode.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OnDisconnect Event

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type ImapClient.ErrorEventArgs containing data related to this
event. The following ImapClient.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
ImapClient Class | SocketTools Namespace | OnErrorEventHandler Delegate

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see ImapClient.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.ImapClient.ErrorEventArgs

[Visual Basic]
Public Class ImapClient.ErrorEventArgs
 Inherits EventArgs

[C#]
public class ImapClient.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
ImapClient.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ErrorEventArgs Class

ImapClient.ErrorEventArgs overview

Public Instance Constructors

 ImapClient.ErrorEventArgs Constructor Initializes a new instance of the
ImapClient.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
ImapClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ErrorEventArgs Members

Initializes a new instance of the ImapClient.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public ImapClient.ErrorEventArgs();

See Also
ImapClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ErrorEventArgs Constructor

The properties of the ImapClient.ErrorEventArgs class are listed below. For a complete list of
ImapClient.ErrorEventArgs class members, see the ImapClient.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
ImapClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
ImapClient.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public ImapClient.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
ImapClient.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ErrorEventArgs.Error Property

Occurs as a data stream is being read or written to the client.

[Visual Basic]
Public Event OnProgress As OnProgressEventHandler

[C#]
public event OnProgressEventHandler OnProgress;

Event Data
The event handler receives an argument of type ImapClient.ProgressEventArgs containing data related to
this event. The following ImapClient.ProgressEventArgs properties provide information specific to this
event.

Property Description

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Message Gets the message number.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Remarks
The OnProgress event occurs as a data stream is being read or written to the client. If large amounts of
data are being read or written, this event can be used to update a progress bar or other user-interface
component to provide the user with some visual feedback on the progress of the operation.

See Also
ImapClient Class | SocketTools Namespace | OnProgressEventHandler Delegate

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OnProgress Event

Provides data for the OnProgress event.

For a list of all members of this type, see ImapClient.ProgressEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.ImapClient.ProgressEventArgs

[Visual Basic]
Public Class ImapClient.ProgressEventArgs
 Inherits EventArgs

[C#]
public class ImapClient.ProgressEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ProgressEventArgs specifies the number of bytes copied from the data stream, the total number of bytes
in the data stream and a completion percentage.

The OnProgress event occurs as a data stream is being read or written to the client. This event only occurs
when the GetHeaders, GetMessage or StoreMessage methods are called.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
ImapClient.ProgressEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ProgressEventArgs Class

ImapClient.ProgressEventArgs overview

Public Instance Constructors

 ImapClient.ProgressEventArgs Constructor Initializes a new instance of the
ImapClient.ProgressEventArgs class.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Message Gets the message number.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
ImapClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ProgressEventArgs Members

Initializes a new instance of the ImapClient.ProgressEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public ImapClient.ProgressEventArgs();

See Also
ImapClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ProgressEventArgs Constructor

The properties of the ImapClient.ProgressEventArgs class are listed below. For a complete list of
ImapClient.ProgressEventArgs class members, see the ImapClient.ProgressEventArgs Members topic.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Message Gets the message number.

Percent Gets a value which specifies the percentage of
data that has been read or written.

See Also
ImapClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ProgressEventArgs Properties

Gets a value which specifies the number of bytes of data that has been read or written.

[Visual Basic]
Public ReadOnly Property BytesCopied As Integer

[C#]
public int BytesCopied {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesCopied property specifies the number of bytes that have been read from the client and stored
in the local stream buffer, or written from the stream buffer to the client.

See Also
ImapClient.ProgressEventArgs Class | SocketTools Namespace | BytesTotal Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ProgressEventArgs.BytesCopied Property

Gets a value which specifies the total number of bytes in the data stream.

[Visual Basic]
Public ReadOnly Property BytesTotal As Integer

[C#]
public int BytesTotal {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesTotal property specifies the total amount of data being read from the client and stored in the
data stream, or written from the data stream to the client. If the amount of data was unknown or
unspecified at the time the method call was made, then this value will always be the same as the
BytesCopied property.

See Also
ImapClient.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ProgressEventArgs.BytesTotal Property

Gets the message number.

[Visual Basic]
Public ReadOnly Property Message As Integer

[C#]
public int Message {get;}

Property Value
An integer value which specifies the message number.

Remarks
The Message property specifies the message number for the current message that is being downloaded
from the mail server to the local host. If the OnProgress event occurs while message data is being
uploaded to the server, this property will return a value of zero.

See Also
ImapClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ProgressEventArgs.Message Property

Gets a value which specifies the percentage of data that has been read or written.

[Visual Basic]
Public ReadOnly Property Percent As Integer

[C#]
public int Percent {get;}

Property Value
An integer value which specifies a percentage.

Remarks
The Percent property specifies the percentage of data that has been transmitted, expressed as an integer
value between 0 and 100, inclusive. If the maximum size of the data stream was not specified by the caller,
this value will always be 100.

See Also
ImapClient.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | BytesTotal
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ProgressEventArgs.Percent Property

Occurs when data is available to be read from the client.

[Visual Basic]
Public Event OnRead As EventHandler

[C#]
public event EventHandler OnRead;

Remarks
The OnRead event occurs when data is available to be read from the client. This event is level-triggered,
which means that once this event fires, it will not occur again until some data has been read from the
client. This design prevents an application from being flooded with event notifications. It is recommended
that your application read all of the available data from the server and store it in a local buffer for
processing. See the example below.

This event is only generated if the client is in non-blocking mode.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OnRead Event

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OnTimeout Event

Occurs when the server sends a mailbox update notification to the client.

[Visual Basic]
Public Event OnUpdate As OnUpdateEventHandler

[C#]
public event OnUpdateEventHandler OnUpdate;

Event Data
The event handler receives an argument of type ImapClient.UpdateEventArgs containing data related to
this event. The following ImapClient.UpdateEventArgs properties provide information specific to this
event.

Property Description

Message Gets the message number.

UpdateType Gets the type of update notification that has been
sent by the server.

Remarks
This event is only generated when the Idle method has been used to enable mailbox status monitoring.

See Also
ImapClient Class | SocketTools Namespace | Idle Method | OnUpdateEventHandler Delegate

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OnUpdate Event

Provides data for the OnUpdate event.

For a list of all members of this type, see ImapClient.UpdateEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.ImapClient.UpdateEventArgs

[Visual Basic]
Public Class ImapClient.UpdateEventArgs
 Inherits EventArgs

[C#]
public class ImapClient.UpdateEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
ImapClient.UpdateEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UpdateEventArgs Class

ImapClient.UpdateEventArgs overview

Public Instance Constructors

 ImapClient.UpdateEventArgs Constructor Initializes a new instance of the
ImapClient.UpdateEventArgs class.

Public Instance Properties

Message Gets the message number.

UpdateType Gets the type of update notification that has been
sent by the server.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
ImapClient.UpdateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UpdateEventArgs Members

Initializes a new instance of the ImapClient.UpdateEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public ImapClient.UpdateEventArgs();

See Also
ImapClient.UpdateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UpdateEventArgs Constructor

The properties of the ImapClient.UpdateEventArgs class are listed below. For a complete list of
ImapClient.UpdateEventArgs class members, see the ImapClient.UpdateEventArgs Members topic.

Public Instance Properties

Message Gets the message number.

UpdateType Gets the type of update notification that has been
sent by the server.

See Also
ImapClient.UpdateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UpdateEventArgs Properties

Gets the message number.

[Visual Basic]
Public ReadOnly Property Message As Integer

[C#]
public int Message {get;}

Property Value
An integer value which specifies the message number.

Remarks
The Message property specifies the message number for the message that has been added to or
expunged from the current mailbox. A value of zero indicates that the update notification does not
reference a specific message in the mailbox.

See Also
ImapClient.UpdateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UpdateEventArgs.Message Property

Gets the type of update notification that has been sent by the server.

[Visual Basic]
Public ReadOnly Property UpdateType As IdleUpdate

[C#]
public ImapClient.IdleUpdate UpdateType {get;}

Property Value
One or more of the IdleUpdate enumeration flags.

See Also
ImapClient.UpdateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.UpdateEventArgs.UpdateType Property

Occurs when data can be written to the client.

[Visual Basic]
Public Event OnWrite As EventHandler

[C#]
public event EventHandler OnWrite;

Remarks
The OnWrite event occurs when the application can write data to the client. This event will typically occur
when a connection is first established with the remote host, and after the Write method has failed
because there was insufficient memory available in the client send buffers. In the second case, when some
of the buffered data has been successfully sent to the remote host and there is space available in the send
buffers, this event is used to signal the application that it may attempt to send more data.

This event is only generated if the client is in non-blocking mode.

See Also
ImapClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OnWrite Event

Specifies the error codes returned by the ImapClient class.

[Visual Basic]
Public Enum ImapClient.ErrorCode

[C#]
public enum ImapClient.ErrorCode

Remarks
The ImapClient class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

ImapClient.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the mailbox and message flags that the ImapClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum ImapClient.ImapFlags

[C#]
[Flags]
public enum ImapClient.ImapFlags

Members

Member Name Description Value

flagNone No flags have been set for the current
message or mailbox.

0

flagAnswered The message has been answered. 1

flagDraft The message is a draft copy and has
not been delivered.

2

flagUrgent The message has been flagged for
urgent or special attention.

4

flagSeen The message has been read. 8

flagRecent The message has been added to the
mailbox recent.

256

flagDeleted The message has been marked for
deletion.

512

flagNoInferiors The mailbox does not contain any child
mailboxes. In the IMAP protocol, these
are referred to as inferior hierarchical
mailbox names.

65536

flagNoSelect The mailbox cannot be selected or
examined. This flag is typically used by
servers to indicate that the mailbox
name refers to a directory on the server,
not an actual mailbox.

131072

flagMarked The mailbox is marked as being of
interest to a client. If this flag is used, it
typically means that the mailbox
contains messages. An application
should not depend on this flag being
present for any given mailbox. Some
IMAP servers do not support marked or
unmarked flags for mailboxes.

262144

flagUnmarked The mailbox is marked as not being of
interest to a client. If this flag is used, it

524288

ImapClient.ImapFlags Enumeration

typically means that the mailbox does
not contain any messages. An
application should not depend on this
flag being present for any given
mailbox. Some IMAP servers do not
support marked or unmarked flags for
mailboxes.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the idle monitoring options that the ImapClient class supports.

[Visual Basic]
Public Enum ImapClient.IdleOptions

[C#]
public enum ImapClient.IdleOptions

Remarks
The Idle method can operate in two modes, based on the options specified by the caller. If the option
imapIdleNoWait is specified, the method begins monitoring the client session asynchronously and
returns control immediately to the caller. If the server sends a update notification to the client, the
OnUpdate event will fire with information about the status change. If the option imapIdleWait is
specified, the method will block waiting for the server to send a notification message to the client. The
method will return when either a message is received or the timeout period is exceeded.

Members

Member Name Description

idleNoWait The Idle method should return immediately after
idle processing has been enabled. When this
option is used, the application may continue to
perform other functions while the client session is
monitored for status updates sent by the server.
The client will continue to monitor status changes
until an IMAP command issued or the client
disconnects from the server. This is the default
option.

idleWait The Idle method should wait until the server sends
a status update, or until the timeout period is
reached. The client will stop monitoring status
changes when the function returns. If this option is
used in a single-threaded application, normal
message processing can be impeded, causing the
application to appear non-responsive until the
timeout period is reached. It is strongly
recommended that single-threaded applications
with a user interface specify the imapIdleNoWait
option instead.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace | Idle Method (SocketTools.ImapClient) | OnUpdate Event
(SocketTools.ImapClient)

ImapClient.IdleOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the types of update notification messages that the ImapClient class supports.

[Visual Basic]
Public Enum ImapClient.IdleUpdate

[C#]
public enum ImapClient.IdleUpdate

Members

Member Name Description

updateUnknown The server has sent an unrecognized notification
message. This does not necessarily reflect an error
condition, as some servers may send additional
notification messages beyond the standard EXISTS,
EXPUNGE and RECENT messages. Most
applications should ignore this type of notification.

updateMessage The server has sent notification message to the
client indicating that a new message has arrived.
Typically this update notification occurs shortly
after the new message has been stored in the
current mailbox.

updateExpunge The server has sent a notification message to the
client indicating that a message has been removed
from the current mailbox. It is recommended that
the application re-examine the mailbox when this
notification is received. Typically this notification is
only sent periodically by the server, and may not
be sent immediately after a message has been
expunged from the mailbox.

updateMailbox The server has sent notification message to the
client indicating that the state of the mailbox has
changed. This message is sent periodically by the
server and may not be sent immediately after a
new message arrives or a message is flagged as
unread. It is recommended that the application re-
examine the mailbox when this notification is
received.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace | OnUpdate

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.IdleUpdate Enumeration

Specifies the options that the ImapClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum ImapClient.ImapOptions

[C#]
[Flags]
public enum ImapClient.ImapOptions

Remarks
The ImapClient class uses the ImapOptions enumeration to specify one or more options to be used when
establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionDefault The default connection option. This is
the same as specifying optionNone.

0

optionIdentify This option specifies the client should
identify itself to the server. If enabled,
the client will send the ID command to
the server as defined in RFC 2971. This
option has no effect if the server does
not support the ID command.

1

optionTunnel This option specifies that a tunneled
TCP connection and/or port-forwarding
is being used to establish the
connection to the server. This changes
the behavior of the client with regards
to internal checks of the destination IP
address and remote port number,
default capability selection and how the
connection is established. This option
also forces all connections to be
outbound and enables the firewall
compatibility features in the client.

1024

optionTrustedSite This option specifies the server is
trusted. The server certificate will not be
validated and the connection will always
be permitted. This option only affects
connections using either the SSL or TLS
protocols.

2048

optionSecure This option specifies the client should
attempt to establish a secure

4096

ImapClient.ImapOptions Enumeration

connection with the server. The server
must support secure connections using
either the SSL or TLS protocol.

optionExplicitSSL This option specifies the client should
attempt to establish a secure explicit SSL
session. The initial connection to the
server is not encrypted, and the client
will attempt to negotiate a secure
connection by sending the STARTTLS
command to the server. Some servers
may require this option when
connecting to the server on ports other
than the default secure port of 993.

4096

optionImplicitSSL This option specifies the client should
attempt to establish a secure implicit
SSL session. The SSL handshake is
initiated immediately after the
connection to the server has been
established.

8192

optionSecureFallback This option specifies the client should
permit the use of less secure cipher
suites for compatibility with legacy
servers. If this option is specified, the
client will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

32768

optionPreferIPv6 This option specifies the client should
prefer the use of IPv6 if the server
hostname can be resolved to both an
IPv6 and IPv4 address. This option is
ignored if the local system does not
have IPv6 enabled, or when the
hostname can only be resolved to an
IPv4 address. If the server hostname can
only be resolved to an IPv6 address, the
client will attempt to establish a
connection using IPv6 regardless if this
option has been specified.

262144

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

Requirements

Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the result codes that the ImapClient class supports.

[Visual Basic]
Public Enum ImapClient.ImapResult

[C#]
public enum ImapClient.ImapResult

Members

Member Name Description

resultUnknown An unknown result code was returned by the
server.

resultOk The previous command completed successfully.
The result string contains information about the
results of the command.

resultNo The previous command could not be completed.
The result string contains information about why
the command failed.

resultBad The previous command could not be completed,
the command may be invalid or not supported on
the server. The result string contains information
about why the command failed.

resultContinue The command has executed and is waiting for
additional data from the client.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ImapResult Enumeration

Specifies the message sections that the ImapClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum ImapClient.ImapSections

[C#]
[Flags]
public enum ImapClient.ImapSections

Members

Member Name Description Value

sectionDefault All headers and the complete body of
the specified message or message part
are to be retrieved. The client
application is responsible for parsing the
header block. If the message is a MIME
multipart message and the complete
message is returned, the application is
responsible for parsing the individual
message parts if necessary.

0

sectionHeader All headers for the specified message or
message part are to be retrieved. The
client application is responsible for
parsing the header block.

1

sectionMimeHeader The MIME headers for the specified
message or message are to be
retrieved. Only those header fields
which are used in MIME messages, such
as Content-Type will be returned to the
client. This is typically useful when
processing the header for a multipart
message which contains file
attachments. The client application is
responsible for parsing the header
block.

2

sectionBody The body of the specified message or
message part will be retrieved. For a
MIME formatted message, this may
include data that is uuencoded or
base64 encoded. The application is
responsible for decoding this data.

4

sectionPreview The message header or body is being
previewed and should not be marked as
read by the server. This prevents the
message from having the

4096

ImapClient.ImapSections Enumeration

IMAP_FLAG_SEEN flag from being
automatically set when the message
data is retrieved.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the status values that may be returned by the ImapClient class.

[Visual Basic]
Public Enum ImapClient.ImapStatus

[C#]
public enum ImapClient.ImapStatus

Remarks
The ImapClient class uses the ImapStatus enumeration to identify the current status of the client.

Members

Member Name Description

statusUnused A client session has not been created. Attempts to
perform any network operations, such as sending
or receiving data, will generate an error.

statusIdle A client session has been created, but is not
currently in use. A blocking socket operation can
be executed at this point.

statusConnect The client is in the process of establishing a
connection with a remote host.

statusRead The client is in the process of receiving data from a
remote host.

statusWrite The client is in the process of sending data to a
remote host.

statusDisconnect The client session is being closed and subsequent
attempts to access the client will result in an error.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.ImapStatus Enumeration

Specifies the encryption algorithms that the ImapClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum ImapClient.SecureCipherAlgorithm

[C#]
[Flags]
public enum ImapClient.SecureCipherAlgorithm

Remarks
The ImapClient class uses the SecureCipherAlgorithm enumeration to identify which encryption
algorithm was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

cipherNone No cipher has been selected. A secure
connection has not been established
with the remote host.

0

cipherRC2 The RC2 block cipher was selected. This
is a variable key length cipher which
supports keys between 40- and 128-bits
in length, in 8-bit increments.

1

cipherRC4 The RC4 stream cipher was selected.
This is a variable key length cipher
which supports keys between 40- and
128-bits in length, in 8-bit increments.

2

cipherRC5 The RC5 block cipher was selected. This
is a variable key length cipher which
supports keys up to 2040 bits, in 8-bit
increments.

4

cipherDES The DES (Data Encryption Standard)
block cipher was selected. This is a fixed
key length cipher using 56-bit keys.

8

cipherDES3 The Triple DES block cipher was
selected. This cipher encrypts the data
three times using different keys,
effectively using a 168-bit key length.

16

cipherDESX A variant of the DES block cipher which
XORs an extra 64-bits of the key before
and after the plaintext has been
encrypted, increasing the key size to
184 bits.

32

cipherAES The Advanced Encryption Standard 64

ImapClient.SecureCipherAlgorithm Enumeration

cipher (also known as the Rijndael
cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits.
This cipher is supported on Windows XP
SP3 SP3 and later versions of the
operating system.

cipherSkipjack The Skipjack block cipher was selected.
This is a fixed key length cipher, using
80-bit keys.

128

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the hash algorithms that the ImapClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum ImapClient.SecureHashAlgorithm

[C#]
[Flags]
public enum ImapClient.SecureHashAlgorithm

Remarks
The ImapClient class uses the SecureHashAlgorithm enumeration to identify the message digest (hash)
algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

hashNone No hash algorithm has been selected.
This is not a secure connection with the
server.

0

hashMD5 The MD5 algorithm was selected. This
algorithm produces a 128-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

1

hashSHA The SHA-1 algorithm was selected. This
algorithm produces a 160-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

2

hashSHA256 The SHA-256 algorithm was selected.
This algorithm produces a 256-bit
message digest.

4

hashSHA384 The SHA-384 algorithm was selected.
This algorithm produces a 384-bit
message digest.

8

hashSHA512 The SHA-512 algorithm was selected.
This algorithm produces a 512-bit
message digest.

16

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also

ImapClient.SecureHashAlgorithm Enumeration

SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the key exchange algorithms that the ImapClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum ImapClient.SecureKeyAlgorithm

[C#]
[Flags]
public enum ImapClient.SecureKeyAlgorithm

Remarks
The ImapClient class uses the SecureKeyAlgorithm enumeration to identify the key exchange algorithm
that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

keyExchangeNone No key exchange algorithm has been
selected. This is not a secure connection
with the server.

0

keyExchangeRSA The RSA public key exchange algorithm
has been selected.

1

keyExchangeKEA The KEA public key exchange algorithm
has been selected. This is an improved
version of the Diffie-Hellman public key
algorithm.

2

keyExchangeDH The Diffie-Hellman public key exchange
algorithm has been selected.

4

keyExchangeECDH The Elliptic Curve Diffie-Hellman key
exchange algorithm was selected. This is
a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography.
This key exchange algorithm is only
supported on Windows XP SP3 SP3 and
later versions of the operating system.

8

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.SecureKeyAlgorithm Enumeration

Specifies the security certificate status values that may be returned by the ImapClient class.

[Visual Basic]
Public Enum ImapClient.SecurityCertificate

[C#]
public enum ImapClient.SecurityCertificate

Remarks
The ImapClient class uses the SecurityCertificate enumeration to identify the current status of the
certificate that was provided by the remote host when a secure connection was established.

Members

Member Name Description

certificateNone No certificate information is available. A secure
connection was not established with the server.

certificateValid The certificate is valid.

certificateNoMatch The certificate is valid, however the domain name
specified in the certificate does not match the
domain name of the remote host. The application
can examine the CertificateSubject property to
determine the site the certificate was issued to.

certificateExpired The certificate has expired and is no longer valid.
The application can examine the
CertificateExpires property to determine when
the certificate expired.

certificateRevoked The certificate has been revoked and is no longer
valid. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateUntrusted The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the
local host. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateInvalid The certificate is invalid. This typically indicates that
the internal structure of the certificate is damaged.
It is recommended that the application
immediately terminate the connection if this status
is returned.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

ImapClient.SecurityCertificate Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the security protocols that the ImapClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum ImapClient.SecurityProtocols

[C#]
[Flags]
public enum ImapClient.SecurityProtocols

Remarks
The ImapClient class uses the SecurityProtocols enumeration to specify one or more security protocols
to be used when establishing a connection with a remote host. Multiple protocols may be specified if
necessary and the actual protocol used will be negotiated with the remote host. It is recommended that
most applications use protocolDefault when creating a secure connection.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

ImapClient.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolDefault The default selection of security
protocols will be used when establishing
a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

16

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the ImapClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum ImapClient.TraceOptions

[C#]
[Flags]
public enum ImapClient.TraceOptions

Remarks
The ImapClient class uses the TraceOptions enumeration to specify what kind of debugging information
is written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace

ImapClient.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub ImapClient.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void ImapClient.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OnErrorEventHandler Delegate

Represents the method that will handle the OnProgress event.

[Visual Basic]
Public Delegate Sub ImapClient.OnProgressEventHandler(_
 ByVal sender As Object, _
 ByVal e As ProgressEventArgs _
)

[C#]
public delegate void ImapClient.OnProgressEventHandler(

 object sender,
 ProgressEventArgs e
);

Parameters
sender

The source of the event.

e
A ProgressEventArgs that contains the event data.

Remarks
When you create an OnProgressEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnProgressEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OnProgressEventHandler Delegate

Represents the method that will handle the OnUpdate event.

[Visual Basic]
Public Delegate Sub ImapClient.OnUpdateEventHandler(_
 ByVal sender As Object, _
 ByVal e As UpdateEventArgs _
)

[C#]
public delegate void ImapClient.OnUpdateEventHandler(

 object sender,
 UpdateEventArgs e
);

Parameters
sender

The source of the event.

e
An UpdateEventArgs that contains the event data.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
SocketTools Namespace | UpdateEventArgs Class

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.OnUpdateEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see ImapClient.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.ImapClient.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class ImapClient.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class ImapClient.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the ImapClient class.

Example

<Assembly: SocketTools.ImapClient.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.ImapClient.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
ImapClient.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.RuntimeLicenseAttribute Class

ImapClient.RuntimeLicenseAttribute overview

Public Instance Constructors

 ImapClient.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
ImapClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public ImapClient.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the ImapClient class.

See Also
ImapClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.RuntimeLicenseAttribute Constructor

The properties of the ImapClient.RuntimeLicenseAttribute class are listed below. For a complete list of
ImapClient.RuntimeLicenseAttribute class members, see the ImapClient.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
ImapClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
ImapClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClient.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see ImapClientException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.ImapClientException

[Visual Basic]
Public Class ImapClientException
 Inherits ApplicationException

[C#]
public class ImapClientException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A ImapClientException is thrown by the ImapClient class when an error occurs.

The default constructor for the ImapClientException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.ImapClient (in SocketTools.ImapClient.dll)

See Also
ImapClientException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClientException Class

ImapClientException overview

Public Instance Constructors

 ImapClientException Overloaded. Initializes a new instance of the
ImapClientException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

ImapClientException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
ImapClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the ImapClientException class with the last network error code.

Overload List
Initializes a new instance of the ImapClientException class with the last network error code.

public ImapClientException();

Initializes a new instance of the ImapClientException class with a specified error number.

public ImapClientException(int);

Initializes a new instance of the ImapClientException class with a specified error message.

public ImapClientException(string);

Initializes a new instance of the ImapClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

public ImapClientException(string,Exception);

See Also
ImapClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClientException Constructor

Initializes a new instance of the ImapClientException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public ImapClientException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the ImapClient.ErrorCode enumeration.

See Also
ImapClientException Class | SocketTools Namespace | ImapClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClientException Constructor ()

Initializes a new instance of the ImapClientException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public ImapClientException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
ImapClientException Class | SocketTools Namespace | ImapClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClientException Constructor (String)

Initializes a new instance of the ImapClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public ImapClientException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
ImapClientException Class | SocketTools Namespace | ImapClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClientException Constructor (String, Exception)

Initializes a new instance of the ImapClientException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public ImapClientException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the ImapClient.ErrorCode enumeration.

See Also
ImapClientException Class | SocketTools Namespace | ImapClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClientException Constructor (Int32)

The properties of the ImapClientException class are listed below. For a complete list of
ImapClientException class members, see the ImapClientException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
ImapClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClientException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public ImapClient.ErrorCode ErrorCode {get;}

Property Value
Returns a ImapClient.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the ImapClientException class sets the error code to the last network error that
occurred. For more information about the errors that may occur, refer to the ImapClient.ErrorCode
enumeration.

See Also
ImapClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClientException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
ImapClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClientException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
ImapClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClientException.Number Property

The methods of the ImapClientException class are listed below. For a complete list of
ImapClientException class members, see the ImapClientException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
ImapClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClientException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
ImapClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

ImapClientException.ToString Method

Implements an interface to the Remote Access Services API.

For a list of all members of this type, see InternetDialer Members.

System.Object
 SocketTools.InternetDialer

[Visual Basic]
Public Class InternetDialer
 Implements IDisposable

[C#]
public class InternetDialer : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The InternetDialer class provides a way for client applications to connect to a remote server using
Microsoft Windows Remote Access Services (RAS). To use this class, the dial-up networking software must
be installed on the local system. For access to the Internet, the TCP/IP protocol must be installed and
configured. The class may configured to use either the SLIP or PPP protocols, depending on the
requirements of the service provider. Refer to your system documentation for information about installing
and configuring dial-up networking on your system.

For those applications which may be used in a mobile environment, or otherwise require remote network
access, the InternetDialer class provides a convenient interface to this service. Connections can be
established and discontinued under the direct control of the program, rather than requiring that the user
execute another program before starting your application.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
InternetDialer Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer Class

InternetDialer overview

Public Static (Shared) Fields

rasDeviceATM A constant value which specifies an ATM device
type.

rasDeviceFrameRelay A constant value which specifies a frame relay
device type.

rasDeviceGeneric A constant value which specifies a generic device
type.

rasDeviceIRDA A constant value which specifies an infrared device
type.

rasDeviceISDN A constant value which specifies an ISDN device
type.

rasDeviceModem A constant value which specifies a modem device
type.

rasDevicePad A constant value which specifies a packet
assembler/disassembler device type.

rasDeviceParallel A constant value which specifies an parallel port
device type.

rasDevicePPPoE A constant value which specifies a PPP over
Ethernet device type.

rasDeviceSerial A constant value which specifies a serial port
device type.

rasDeviceSonet A constant value which specifies a SONET device
type.

rasDeviceSW56 A constant value which specifies a SW56 device
type.

rasDeviceVPN A constant value which specifies a VPN device
type.

rasDeviceX25 A constant value which specifies an X25 device
type.

Public Instance Constructors

 InternetDialer Constructor Initializes a new instance of the InternetDialer class.

Public Instance Fields

Connection Gets the handle for a dial-up networking session.

DeviceEntry Gets the name of the specified device entry.

NameServer Gets and sets the IP addresses of the nameservers
assigned to the current phonebook entry.

InternetDialer Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceATM.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceFrameRelay.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceGeneric.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceIRDA.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceISDN.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceModem.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDevicePad.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceParallel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDevicePPPoE.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceSerial.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceSonet.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceSW56.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceVPN.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceX25.html

PhoneBookEntry Gets the name for the specified phone book entry.

Public Instance Properties

AreaCode Gets and sets the area code for the current
phonebook entry.

AutoConnect Automatically inherit connections established by
another process.

AutoDial Enable and disable autodialing on the local
system.

AutoDisconnect Automatically disconnect from the remote server.

Blocking Gets and sets the blocking state of the class.

BytesIn Gets the number of bytes that have been received
by the dial-up networking device.

BytesOut Gets the number of bytes that have been
transmitted by the dial-up networking device.

Callback Specifies that the remote server should call the
system back.

CallbackNumber Gets and sets the telephone number for the
remote server to call back on.

Connections Gets the number of active dial-up networking
sessions.

ConnectSpeed Gets the line speed for the current dial-up
networking connection.

CountryCode Gets and sets the country code for the current
phonebook entry.

CountryName Gets and sets the country name for the current
phonebook entry.

DefaultGateway Enable and disable the default gateway for IP
packets through the dial-up adapter.

DeviceCount Gets the number of dial-up networking devices
available.

DeviceName Gets and sets the device name for the current dial-
up networking connection.

DeviceType Gets and sets the device type for the current dial-
up networking connection.

DynamicAddress Enables and disables the use of dynamically
allocated IP addresses.

DynamicNameServers Enables and disables the use of dynamically
assigned nameserver addresses.

EntryName Gets and sets the current phone book entry name.

FramingProtocol Gets and sets the framing protocol for the current
phonebook entry.

Handle Gets and sets the handle for the current dial-up
networking connection.

InternetAddress Gets the address assigned to the current dial-up
networking session.

Interval Gets and sets the interval at which the connection
is monitored.

IpHeaderCompression Enables and disables IP header compression for
the current phonebook entry.

IsConnected Gets a value which indicates if a connection has
been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LcpExtensions Enables and disables the use of PPP LCP
extensions for the current phonebook entry.

LocalNumber Gets and sets the local telephone number
specified in the phonebook entry.

ModemLights Enables and disables the dial-up networking
system tray icon.

ModemSpeaker Enables and disables the modem speaker.

NetworkLogon Enables and disables a network login for the
current phonebook entry.

NetworkProtocol Gets and sets the network protocol for the current
phonebook entry.

Password Gets the password required to establish a
connection with the service provider.

PhoneBook Sets the file name of the Remote Access
phonebook to use.

PhoneBookEntries Gets the number of entries in the current
phonebook.

PhoneNumber Gets and sets the telephone number of the service
provider.

RequireEncryption Enables and disables secure authentication for the
current phonebook entry.

ScriptFile Gets and sets the name of the script file for the
current phonebook entry.

ServerAddress Gets the address of the dial-up networking server.

SoftwareCompression Enables and disables software compression for the
current phonebook entry.

Status Gets a value which specifies the current status of
the dial-up networking connection.

Terminal Gets and sets the interactive terminal window
mode for the current phonebook entry.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

UserDomain Gets and sets the NT domain on which user
authentication is to occur.

UserName Gets the username required to establish a
connection with the service provider.

UserPhoneBook Gets the name of the default user phonebook.

Version Gets a value which returns the current version of
the InternetDialer class library.

Public Instance Methods

Connect Overloaded. Establish a connection with a dial-up
networking services provider.

CreateEntry Create a new entry in the current phonebook.

DeleteEntry Overloaded. Delete a phonebook entry from the
current phonebook.

Disconnect Terminate the connection with the dial-up
networking service provider.

Dispose Overloaded. Releases all resources used by
InternetDialer.

EditEntry Edit an existing phonebook entry in the current
phonebook.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
InternetDialer class.

LoadEntry Overloaded. Load the specified entry from the
current phonebook.

RenameEntry Rename an existing phonebook entry.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SaveEntry Overloaded. Save the current settings to the
specified phonebook entry in the current
phonebook.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
service provider.

OnDisconnect Occurs when the dial-up networking connection is
terminated.

OnError Occurs when an client operation fails.

OnStatus Occurs when the when the connection state
changes.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the InternetDialer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the InternetDialer class.

[Visual Basic]
Public Sub New()

[C#]
public InternetDialer();

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer Constructor

The fields of the InternetDialer class are listed below. For a complete list of InternetDialer class
members, see the InternetDialer Members topic.

Public Static (Shared) Fields

rasDeviceATM A constant value which specifies an ATM device
type.

rasDeviceFrameRelay A constant value which specifies a frame relay
device type.

rasDeviceGeneric A constant value which specifies a generic device
type.

rasDeviceIRDA A constant value which specifies an infrared device
type.

rasDeviceISDN A constant value which specifies an ISDN device
type.

rasDeviceModem A constant value which specifies a modem device
type.

rasDevicePad A constant value which specifies a packet
assembler/disassembler device type.

rasDeviceParallel A constant value which specifies an parallel port
device type.

rasDevicePPPoE A constant value which specifies a PPP over
Ethernet device type.

rasDeviceSerial A constant value which specifies a serial port
device type.

rasDeviceSonet A constant value which specifies a SONET device
type.

rasDeviceSW56 A constant value which specifies a SW56 device
type.

rasDeviceVPN A constant value which specifies a VPN device
type.

rasDeviceX25 A constant value which specifies an X25 device
type.

Public Instance Fields

Connection Gets the handle for a dial-up networking session.

DeviceEntry Gets the name of the specified device entry.

NameServer Gets and sets the IP addresses of the nameservers
assigned to the current phonebook entry.

PhoneBookEntry Gets the name for the specified phone book entry.

See Also

InternetDialer Fields

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceATM.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceFrameRelay.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceGeneric.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceIRDA.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceISDN.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceModem.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDevicePad.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceParallel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDevicePPPoE.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceSerial.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceSonet.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceSW56.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceVPN.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.rasDeviceX25.html

InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets the handle for a dial-up networking session.

[Visual Basic]
Public ReadOnly Connection As ConnectionArray

[C#]
public readonly ConnectionArray Connection;

Remarks
The Connection array can be used to enumerate the active dial-up networking sessions on the local
system. The index is zero-based, and the number of connections is returned by the Connections
property. The property returns an integer value which represents the handle to the session. Setting the
Handle property to this value will cause the control to inherit the session and the control's properties will
be updated with information about the connection.

Specifying an index greater than the number of available connections will generate an exception.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connection Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.ConnectionArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.ConnectionArray.html

Gets the name of the specified device entry.

[Visual Basic]
Public ReadOnly DeviceEntry As DeviceEntryArray

[C#]
public readonly DeviceEntryArray DeviceEntry;

Remarks
The DeviceEntry array can be used in conjunction with the DeviceCount property to enumerate the
available dial-up networking devices. Typically this is used to provide a user with a selection of dial-up
devices. The device used by the current phonebook entry can be changed by setting the DeviceName
property to one of the device entry values.

Note that you should first set the DeviceType property to the type of device which you wish to
enumerate. The default device type is rasDeviceModem, for serial analog modems or other devices
which recognize the AT command set.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeviceEntry Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.DeviceEntryArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.DeviceEntryArray.html

Gets and sets the IP addresses of the nameservers assigned to the current phonebook entry.

[Visual Basic]
Public ReadOnly NameServer As NameServerArray

[C#]
public readonly NameServerArray NameServer;

Remarks
The NameServer array is used to set or return the nameserver IP addresses assigned to the current
phonebook entry. Setting the array to an IP address changes the corresponding address assigned to the
phonebook entry. Note that assigned nameserver addresses are only used if the DynamicNameServers
property has been set to false. If dynamic nameservers are assigned to the session this array will not
return those addresses, it will return empty strings.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.NameServer Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.NameServerArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.NameServerArray.html

Gets the name for the specified phone book entry.

[Visual Basic]
Public ReadOnly PhoneBookEntry As PhoneBookEntryArray

[C#]
public readonly PhoneBookEntryArray PhoneBookEntry;

Remarks
The PhoneBookEntry array contains a list of the entries in the current phone book, and may be used to
establish a connection with a remote server. Specifying an index greater than the number of available
entries in the phone book will generate an exception.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.PhoneBookEntry Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.PhoneBookEntryArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetDialer.PhoneBookEntryArray.html

The properties of the InternetDialer class are listed below. For a complete list of InternetDialer class
members, see the InternetDialer Members topic.

Public Instance Properties

AreaCode Gets and sets the area code for the current
phonebook entry.

AutoConnect Automatically inherit connections established by
another process.

AutoDial Enable and disable autodialing on the local
system.

AutoDisconnect Automatically disconnect from the remote server.

Blocking Gets and sets the blocking state of the class.

BytesIn Gets the number of bytes that have been received
by the dial-up networking device.

BytesOut Gets the number of bytes that have been
transmitted by the dial-up networking device.

Callback Specifies that the remote server should call the
system back.

CallbackNumber Gets and sets the telephone number for the
remote server to call back on.

Connections Gets the number of active dial-up networking
sessions.

ConnectSpeed Gets the line speed for the current dial-up
networking connection.

CountryCode Gets and sets the country code for the current
phonebook entry.

CountryName Gets and sets the country name for the current
phonebook entry.

DefaultGateway Enable and disable the default gateway for IP
packets through the dial-up adapter.

DeviceCount Gets the number of dial-up networking devices
available.

DeviceName Gets and sets the device name for the current dial-
up networking connection.

DeviceType Gets and sets the device type for the current dial-
up networking connection.

DynamicAddress Enables and disables the use of dynamically
allocated IP addresses.

DynamicNameServers Enables and disables the use of dynamically
assigned nameserver addresses.

InternetDialer Properties

EntryName Gets and sets the current phone book entry name.

FramingProtocol Gets and sets the framing protocol for the current
phonebook entry.

Handle Gets and sets the handle for the current dial-up
networking connection.

InternetAddress Gets the address assigned to the current dial-up
networking session.

Interval Gets and sets the interval at which the connection
is monitored.

IpHeaderCompression Enables and disables IP header compression for
the current phonebook entry.

IsConnected Gets a value which indicates if a connection has
been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LcpExtensions Enables and disables the use of PPP LCP
extensions for the current phonebook entry.

LocalNumber Gets and sets the local telephone number
specified in the phonebook entry.

ModemLights Enables and disables the dial-up networking
system tray icon.

ModemSpeaker Enables and disables the modem speaker.

NetworkLogon Enables and disables a network login for the
current phonebook entry.

NetworkProtocol Gets and sets the network protocol for the current
phonebook entry.

Password Gets the password required to establish a
connection with the service provider.

PhoneBook Sets the file name of the Remote Access
phonebook to use.

PhoneBookEntries Gets the number of entries in the current
phonebook.

PhoneNumber Gets and sets the telephone number of the service
provider.

RequireEncryption Enables and disables secure authentication for the
current phonebook entry.

ScriptFile Gets and sets the name of the script file for the
current phonebook entry.

ServerAddress Gets the address of the dial-up networking server.

SoftwareCompression Enables and disables software compression for the
current phonebook entry.

Status Gets a value which specifies the current status of
the dial-up networking connection.

Terminal Gets and sets the interactive terminal window
mode for the current phonebook entry.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

UserDomain Gets and sets the NT domain on which user
authentication is to occur.

UserName Gets the username required to establish a
connection with the service provider.

UserPhoneBook Gets the name of the default user phonebook.

Version Gets a value which returns the current version of
the InternetDialer class library.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets the area code for the current phonebook entry.

[Visual Basic]
Public Property AreaCode As String

[C#]
public string AreaCode {get; set;}

Property Value
A string which specifies the area code.

Remarks
The AreaCode property is used to set or return the current phonebook entry's area code. If no area code
has been specified, then this property will return an empty string. The value of this property is ignored
unless the CountryCode property is also set to a valid country code.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.AreaCode Property

Automatically inherit connections established by another process.

[Visual Basic]
Public Property AutoConnect As Boolean

[C#]
public bool AutoConnect {get; set;}

Property Value
A boolean value which specifies if connections are automatically inherited by the class.

Remarks
The AutoConnect property determines if the class automatically detects if a connection has been
established by another process. When enabled, the class will periodically check for any connections that
have been established. The Interval property controls the frequency in which the control performs this
check.

If the class detects that a connection has been made, it will immediately fire the OnConnect event,
followed by the OnStatus event, to indicate that a connection has been established. The class then begins
to monitor that connection as usual, until that connection is dropped or the control is unloaded.

To periodically check to see if a connection has been established by another process without using the
AutoConnect property, read the value of the Connections property, which returns the number of active
dial-up networking connections. A value greater than zero indicates that a dial-up networking connection
has been established.

If there are multiple dial-up networking devices on the system, it may be possible for more than one
connection to be active at a time. If this is the case, setting the AutoConnect property to true will cause
the class to inherit the first active connection. To manage multiple dial-up connections, use the
Connection array to enumerate the available connections and set the Handle property to take control of
a specific session.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.AutoConnect Property

Enable and disable autodialing on the local system.

[Visual Basic]
Public Property AutoDial As Boolean

[C#]
public bool AutoDial {get; set;}

Property Value
A boolean value which specifies if autodialing has been enabled.

Remarks
The AutoDial property can be used to determine if autodialing is enabled or disabled on the current
system. When autodialing is enabled and an application attempts to establish a connection over the
Internet, a dialog box will be displayed asking the user if they want to connect to their default service
provider. This property will return true if autodialing is currently enabled, or false if it has been disabled.

Setting the AutoDial property allows an application to change the autodial settings for the current user.
Setting the property value to true specifies that you wish to enable autodialing, and the system will
prompt the user to establish a dial-up connection when necessary. Setting the property to false disables
autodialing, and prevents the system from prompting the user. This can be beneficial if your application
needs to run in an unattended mode. If you change the autodial settings for the user, it is recommended
that you restore them to their original value before the application terminates.

If the autodial settings cannot be changed by the current user, an exception will be generated.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.AutoDial Property

Automatically disconnect from the remote server.

[Visual Basic]
Public Property AutoDisconnect As Boolean

[C#]
public bool AutoDisconnect {get; set;}

Property Value
A boolean value that specifies if connections are automatically terminated.

Remarks
The AutoDisconnect property determines if this instance of the class should automatically disconnect
from a remote host when the destructor is called, typically when the application terminates. The default
value for this property is true.

If a dial-up connection was already established at the time an instance of the class is created, this property
will be reset to false, preventing it from automatically disconnecting from the host when it is unloaded.
Therefore, to always force the control to automatically terminate a connection when it is unloaded, you
must explicitly set the property value to true in your application.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.AutoDisconnect Property

Gets and sets the blocking state of the class.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
A boolean value which specifies the blocking state of the class.

Remarks
The Blocking property determines how the class establishes a dial-up connection. If set to true, the class
will wait until a connection has been established or the connection attempt fails before returning control
to the application. If set to false, the class will begin the connection process and return control
immediately to the application. For a non-blocking connection, the application should monitor the
OnStatus event to determine the progress of the connection attempt. The default value for this property
is false.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Blocking Property

Gets the number of bytes that have been received by the dial-up networking device.

[Visual Basic]
Public ReadOnly Property BytesIn As Integer

[C#]
public int BytesIn {get;}

Property Value
An integer which specifies the number of bytes received.

Remarks
The BytesIn property returns the number of bytes that have been received by the dial-up networking
device. If the control is unable to determine the number of bytes received, it will return a value of zero.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.BytesIn Property

Gets the number of bytes that have been transmitted by the dial-up networking device.

[Visual Basic]
Public ReadOnly Property BytesOut As Integer

[C#]
public int BytesOut {get;}

Property Value
An integer which specifies the number of bytes transmitted.

Remarks
The BytesOut property returns the number of bytes that have been transmitted by the dial-up networking
device. If the control is unable to determine the number of bytes transmitted, it will return a value of zero.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.BytesOut Property

Specifies that the remote server should call the system back.

[Visual Basic]
Public Property Callback As Boolean

[C#]
public bool Callback {get; set;}

Property Value
A boolean value which specifies if the server should call the local system back.

Remarks
Setting the Callback property specifies that the server should call the user back at the telephone number
specified by the CallbackNumber property. This property is ignored unless the user has "Set By Caller"
callback permission on the server.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Callback Property

Gets and sets the telephone number for the remote server to call back on.

[Visual Basic]
Public Property CallbackNumber As String

[C#]
public string CallbackNumber {get; set;}

Property Value
A string which specifies the callback telephone number.

Remarks
Setting the CallbackNumber property specifies that the server should call the user back at the given
telephone number. This property is ignored unless the user has "Set By Caller" callback permission on the
server. Assigning an asterisk to this property causes the number stored in the phone book entry to be
used for callback.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.CallbackNumber Property

Gets the number of active dial-up networking sessions.

[Visual Basic]
Public ReadOnly Property Connections As Integer

[C#]
public int Connections {get;}

Property Value
An integer value which specifies the number of active dial-up networking sessions.

Remarks
The Connections property returns the number of active dial-up networking connections on the local
system. A value of zero indicates that there is no dial-up networking connection. This property is used in
conjunction with the Connection array to enumerate the connections on the current system.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connections Property

Gets the line speed for the current dial-up networking connection.

[Visual Basic]
Public ReadOnly Property ConnectSpeed As Integer

[C#]
public int ConnectSpeed {get;}

Property Value
An integer value which specifies the connection speed.

Remarks
The ConnectSpeed property returns the speed, in bytes per second, at which the current dial-up
networking device has established a connection. If the class is unable to determine the connection speed,
it will return a value of zero.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ConnectSpeed Property

Gets and sets the country code for the current phonebook entry.

[Visual Basic]
Public Property CountryCode As Integer

[C#]
public int CountryCode {get; set;}

Property Value
An integer value which specifies the country code.

Remarks
The CountryCode property specifies the numeric country code for the current phonebook entry. If this
value is zero, then the country and area code information is not used when dialing the phone number.
The country code for the United States is 1.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.CountryCode Property

Gets and sets the country name for the current phonebook entry.

[Visual Basic]
Public Property CountryName As String

[C#]
public string CountryName {get; set;}

Property Value
A string which specifies the country name.

Remarks
The CountryName property returns the name of the country associated with the country code used when
dialing the current phonebook entry. If no country code has been specified, this property will return an
empty string. Setting this property to the name of a country will change the current country code. If no
area code has been defined, and the country code specifies the current dialing location, the AreaCode
property will be updated to the current area code.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.CountryName Property

Enable and disable the default gateway for IP packets through the dial-up adapter.

[Visual Basic]
Public Property DefaultGateway As Boolean

[C#]
public bool DefaultGateway {get; set;}

Property Value
A boolean value which specifies if the default gateway should be used.

Remarks
The DefaultGateway property is used to determine the default gateway for IP packets. If set to true, then
packets are routed through the dial-up networking adapter when the connection is active. The value of
this property corresponds to the Use Default Gateway checkbox on the TCP/IP configuration dialog.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DefaultGateway Property

Gets the number of dial-up networking devices available.

[Visual Basic]
Public ReadOnly Property DeviceCount As Integer

[C#]
public int DeviceCount {get;}

Property Value
An integer value which specifies the number of devices.

Remarks
The DeviceCount property returns the number of dial-up networking devices available. This property can
be used in conjunction with the DeviceEntry array to enumerate the devices.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeviceCount Property

Gets and sets the device name for the current dial-up networking connection.

[Visual Basic]
Public Property DeviceName As String

[C#]
public string DeviceName {get; set;}

Property Value
A string which specifies the device name.

Remarks
The DeviceName property returns a description of the device that the connection was established on. For
example, the string "US Robotics Sportster 56000" may be returned for a modem. Note that this property
value may change if the DeviceType property is modified. Setting this property will change the device
used to establish the dial-up networking connection. Changes to this property value should be made after
changes to the DeviceType property.

To enumerate a list of available devices for a given device type, use the DeviceCount property and
DeviceEntry array.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeviceName Property

Gets and sets the device type for the current dial-up networking connection.

[Visual Basic]
Public Property DeviceType As String

[C#]
public string DeviceType {get; set;}

Property Value
A string which specifies the device type.

Remarks
The DeviceType property returns the type of device that the connection was established with. Setting this
property will change the type of device that will be used to establish the connection. Examples of valid
device types are:

DeviceType Description

modem An internal or external serial analog modem
device, or other serial communications device
which supports the AT command set.

isdn An ISDN terminal adapter. Note that some ISDN
devices, such as the 3Com ImpactIQ are
considered modem devices.

vpn A virtual private network connection.

Because changing the device type can change the current device name, it is recommended that
applications change this property value before changing the value of the DeviceName property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeviceType Property

Enables and disables the use of dynamically allocated IP addresses.

[Visual Basic]
Public Property DynamicAddress As Boolean

[C#]
public bool DynamicAddress {get; set;}

Property Value
A boolean value which specifies if a dynamically allocated IP address should be used.

Remarks
The DynamicAddress property determines if the current phonebook entry should use a dynamically
assigned IP address. If this property is set to true, then an IP address is assigned to the dial-up adapter
when the connection is established. If set to false, then the dial-up adapter IP address is set to the value
of the InternetAddress property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DynamicAddress Property

Enables and disables the use of dynamically assigned nameserver addresses.

[Visual Basic]
Public Property DynamicNameServers As Boolean

[C#]
public bool DynamicNameServers {get; set;}

Property Value
A boolean value which specifies if dynamically allocated nameservers should be used.

Remarks
The DynamicNameServers property determines if the current phonebook entry should use dynamically
assigned nameservers. If this property is set to true, then one or more nameservers are assigned to the
dial-up adapter when the connection is established. If set to false, then the dial-up adapter nameservers
are set to the values specified by the NameServer property array.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DynamicNameServers Property

Gets and sets the current phone book entry name.

[Visual Basic]
Public Property EntryName As String

[C#]
public string EntryName {get; set;}

Property Value
A string which specifies the current phonebook entry name.

Remarks
The EntryName property can be used to specify a phone book entry to use to connect with a remote
server. The entry name identifies a communications profile which includes the telephone number, callback
number and domain name of the remote host. Setting the EntryName property to an empty string
indicates that a telephone number will be provided to establish the connection.

In Windows documentation, the phonebook entry name is also referred to as a connectoid.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.EntryName Property

Gets and sets the framing protocol for the current phonebook entry.

[Visual Basic]
Public Property FramingProtocol As RasFramingProtocol

[C#]
public InternetDialer.RasFramingProtocol FramingProtocol {get; set;}

Property Value
A RasFramingProtocol enumeration which specifies the framing protocol.

Remarks
The FramingProtocol property is used to set or return the framing protocol used for the current
phonebook entry.

Note that unless there is a specific need for the application to use SLIP or the Microsoft RAS protocol, it is
recommended that PPP always be selected as the framing protocol.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.FramingProtocol Property

Gets and sets the handle for the current dial-up networking connection.

[Visual Basic]
Public Property Handle As Integer

[C#]
public int Handle {get; set;}

Property Value
An integer value which specifies a dial-up networking connection.

Remarks
The Handle property returns the handle to the current dial-up networking connection, or a value of zero
if the class has not been used to establish a connection. Setting the value of this property to a valid handle
causes the class to inherit the specified connection, and its properties will be updated with information
about that connection. This enables an application to monitor and control a connection that was
established by another program.

Setting the Handle property to a value of zero causes the class to release the current connection,
however it will not cause the dial-up networking session to terminate. To disconnect from the remote
server, the Disconnect method must be called by the application. Setting the property to a non-zero
value which does not specify a valid handle will generate an exception.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Handle Property

Gets the address assigned to the current dial-up networking session.

[Visual Basic]
Public Property InternetAddress As String

[C#]
public string InternetAddress {get; set;}

Property Value
A string which specifies an Internet Protocol (IP) address.

Remarks
The InternetAddress property returns the address assigned to the current dial-up networking session. If
no connection has been established, or the connection has not been made with a PPP server, then this
property will return an empty string. If the DynamicAddress property is set to false, changing this
property value will update the address assigned to the current phonebook entry.

The address may only be changed before a connection is established.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.InternetAddress Property

Gets and sets the interval at which the connection is monitored.

[Visual Basic]
Public Property Interval As Integer

[C#]
public int Interval {get; set;}

Property Value
An integer value which specifies the interval in milliseconds.

Remarks
The Interval property specifies the interval, in milliseconds, at which the connection is monitored by the
class. The minimum value of 0 indicates that the class should not monitor the connection. The maximum
interval value is 65536 milliseconds, which is slightly more than one minute. The default value is 1000,
which causes the control to check the connection status every second.

Note that setting the property value to zero will prevent the class from detecting certain conditions, such
as a disconnected telephone line or a modem that is turned off.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Interval Property

Enables and disables IP header compression for the current phonebook entry.

[Visual Basic]
Public Property IpHeaderCompression As Boolean

[C#]
public bool IpHeaderCompression {get; set;}

Property Value
A boolean value which specifies if IP header compression is enabled.

Remarks
The IpHeaderCompression property is used to enable or disable IP header compression. If set to true,
when a connection is established, RAS will negotiate with the dial-up server to use header compression. If
set to false, header compression will not be negotiated. This property corresponds to the Use IP Header
Compression checkbox on the TCP/IP configuration dialog.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.IpHeaderCompression Property

Gets a value which indicates if a connection has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
A boolean value which specifies if a connection has been established with a service provider.

Remarks
The IsConnected property is used to determine if the class has connected to the remote host. A value of
true indicates that a connection has been established.

Note that the IsConnected property should not be used to determine if an active dial-up networking
connection has been established by another application. The property will only return true if the class has
been used to establish the connection itself, or if a connection is inherited by setting either the
AutoConnect or Handle properties. To determine if there are any active dial-up networking connections,
check the value of the Connections property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.IsInitialized Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public InternetDialer.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LastErrorString Property

Enables and disables the use of PPP LCP extensions for the current phonebook entry.

[Visual Basic]
Public Property LcpExtensions As Boolean

[C#]
public bool LcpExtensions {get; set;}

Property Value
A boolean value which specifies if PPP LCP extensions are enabled.

Remarks
The LcpExtensions property determines if the PPP LCP extensions defined in RFC 1570 will be used. If the
PPP framing protocol is being used for the dial-up connection, it is recommended that this property be
set to true. However, some older implementations of PPP may require that this property be set to false in
order to establish a connection.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LcpExtensions Property

Gets and sets the local telephone number specified in the phonebook entry.

[Visual Basic]
Public Property LocalNumber As String

[C#]
public string LocalNumber {get; set;}

Property Value
A string which specifies the local telephone number.

Remarks
The LocalNumber property sets or returns the local phone number that is specified in the current
phonebook entry. If the CountryCode property has a value of zero, then the local number is dialed to
connect to the server. If the CountryCode property is set to a valid country code, then RAS will also use
the country and area code values when dialing the phone number.

Note that this property only determines the local phone number for the phonebook entry, and can be
overridden by setting the PhoneNumber property to a specific value.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LocalNumber Property

Enables and disables the dial-up networking system tray icon.

[Visual Basic]
Public Property ModemLights As Boolean

[C#]
public bool ModemLights {get; set;}

Property Value
A boolean value which specifies if the system tray icon is displayed.

Remarks
The ModemLights property determines if the dial-up networking icon in the system tray is displayed
when a connection is established.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ModemLights Property

Enables and disables the modem speaker.

[Visual Basic]
Public Property ModemSpeaker As Boolean

[C#]
public bool ModemSpeaker {get; set;}

Property Value
A boolean value which specifies if the modem speaker is enabled.

Remarks
The ModemSpeaker property determines if the modem speaker is enabled when dialing the remote
server. If the property is set to false, the modem will be silent when dialing the telephone number and
establishing the connection. Note that setting this property to true will not force the speaker on if the
modem hardware has been configured to explicitly disable the speaker.

To disable the speaker, the modem must support changes to the speaker volume. Disabling the speaker is
typically done by instructing the modem to set the speaker volume to zero.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ModemSpeaker Property

Enables and disables a network login for the current phonebook entry.

[Visual Basic]
Public Property NetworkLogon As Boolean

[C#]
public bool NetworkLogon {get; set;}

Property Value
A boolean value which specifies if a network login is enabled.

Remarks
The NetworkLogon property determines if the client automatically logs on to the network after a
connection has been established.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.NetworkLogon Property

Gets and sets the network protocol for the current phonebook entry.

[Visual Basic]
Public Property NetworkProtocol As RasNetworkProtocol

[C#]
public InternetDialer.RasNetworkProtocol NetworkProtocol {get; set;}

Property Value
A RasNetworkProtocol enumeration value which specifies the network protocol.

Remarks
The NetworkProtocol property is used to set or return the network protocol used for the current
phonebook entry.

Note that unless there is a specific need for the application to use the NetBEUI or IPX protocols, it is
recommended that only the TCP/IP protocol be specified.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.NetworkProtocol Property

Gets the password required to establish a connection with the service provider.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password for the current phonebook entry.

Remarks
The Password property specifies the password required to establish a connection with the service
provider.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Password Property

Sets the file name of the Remote Access phonebook to use.

[Visual Basic]
Public Property PhoneBook As String

[C#]
public string PhoneBook {get; set;}

Property Value
A string which specifies the current phonebook.

Remarks
The PhoneBook property specifies the file name of the Remote Access phone book. Setting this property
to an empty string causes the default phonebook to be used.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.PhoneBook Property

Gets the number of entries in the current phonebook.

[Visual Basic]
Public ReadOnly Property PhoneBookEntries As Integer

[C#]
public int PhoneBookEntries {get;}

Property Value
An integer value which specifies the number of phonebook entries.

Remarks
The PhoneBookEntries property returns the number of entries in the current phonebook. A value of zero
indicates that no phonebook entries are available.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.PhoneBookEntries Property

Gets and sets the telephone number of the service provider.

[Visual Basic]
Public Property PhoneNumber As String

[C#]
public string PhoneNumber {get; set;}

Property Value
A string which specifies a telephone number.

Remarks
The PhoneNumber property specifies the telephone number of the service provider. If this property is
not set, then the PhoneEntry property must be set to a valid phone book entry. If both the
PhoneNumber and PhoneEntry properties are defined, the PhoneNumber property will override the
value specified in the phonebook.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.PhoneNumber Property

Enables and disables secure authentication for the current phonebook entry.

[Visual Basic]
Public Property RequireEncryption As Boolean

[C#]
public bool RequireEncryption {get; set;}

Property Value
A boolean value which specifies if secure authentication is enabled.

Remarks
The RequireEncryption property determines if encryption is required during PPP authentication. If the
property is set to true, then only secure password schemes can be used to authenticate the client. If the
property is set to false, the client can use the PAP plain-text authentication protocol to authenticate the
client. Some older PPP implementations may require that this property be set to false in order to establish
a connection.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RequireEncryption Property

Gets and sets the name of the script file for the current phonebook entry.

[Visual Basic]
Public Property ScriptFile As String

[C#]
public string ScriptFile {get; set;}

Property Value
A string which specifies the name of the script file.

Remarks
The ScriptFile property specifies the name of the login script used to establish a connection with the
remote host. This property must be set to the full pathname of the script file. If a script file is not required,
then this property should be set to an empty string.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ScriptFile Property

Gets the address of the dial-up networking server.

[Visual Basic]
Public ReadOnly Property ServerAddress As String

[C#]
public string ServerAddress {get;}

Property Value
A string which specifies an Internet Protocol (IP) address.

Remarks
The ServerAddress property returns the address of the dial-up networking server that the local host has
connected to. If no connection has been established, or the connection has not been made with a PPP
server, then this property will return an empty string. This property may also return an empty string if the
remote server did not provide this information during the connection process.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ServerAddress Property

Enables and disables software compression for the current phonebook entry.

[Visual Basic]
Public Property SoftwareCompression As Boolean

[C#]
public bool SoftwareCompression {get; set;}

Property Value
A boolean value which specifies if software compression is enabled.

Remarks
The SoftwareCompression property determines if data compression is negotiated during the connection.
If the property is set to true, then the client will negotiate a compatible compression protocol. Software
compression should only be disabled if the client is unable to establish a connection with the server.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.SoftwareCompression Property

Gets a value which specifies the current status of the dial-up networking connection.

[Visual Basic]
Public ReadOnly Property Status As DialerStatus

[C#]
public InternetDialer.DialerStatus Status {get;}

Property Value
A DialerStatus enumeration value which specifies the current status.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Status Property

Gets and sets the interactive terminal window mode for the current phonebook entry.

[Visual Basic]
Public Property Terminal As RasTerminalMode

[C#]
public InternetDialer.RasTerminalMode Terminal {get; set;}

Property Value
A RasTerminalMode enumeration which specifies the terminal window mode.

Remarks
The Terminal array is used to control if a terminal window is displayed during the dial-up networking
connection process. The terminal window can be used to allow user input before and/or after the dial-up
networking connection has been established. If scripting has been enabled by setting the ScriptFile
property, no terminal window should be displayed after the connection. This is because scripting has it's
own terminal implementation.

Displaying a terminal window also imposes several restrictions on the behavior of the class. Because of
how the Remote Access Services API is implemented by Microsoft, a connection dialog will be displayed
after the Connect method is called if the Terminal property is non-zero. Setting this property to a non-
zero value will also disable any asynchronous event notifications. It is not recommended that you set this
property unless it is absolutely necessary.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Terminal Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error. The timeout period is only used when the client is in blocking mode. Although this property can
be changed when the client is in non-blocking mode, the value will be ignored until the client is returned
to blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Timeout Property

Gets and sets the NT domain on which user authentication is to occur.

[Visual Basic]
Public Property UserDomain As String

[C#]
public string UserDomain {get; set;}

Property Value
A string which specifies the NT domain name.

Remarks
The UserDomain property is used to specify the NT domain on which the user name and password will
be authenticated. An empty string specifies the domain in which the Remote Access server is a member.
An asterisk specifies the domain stored in the phone book entry.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.UserDomain Property

Gets the username required to establish a connection with the service provider.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username for the current phonebook entry.

Remarks
The UserName property specifies the username required to establish a connection with the service
provider.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.UserName Property

Gets the name of the default user phonebook.

[Visual Basic]
Public ReadOnly Property UserPhoneBook As String

[C#]
public string UserPhoneBook {get;}

Property Value
A string which specifies a phonebook name.

Remarks
The UserPhoneBook property returns the name of the default user phonebook. The value returned
depends on how the user has configured dial-up networking, specifically whether the system, user or
alternate phonebook has been selected. The current phonebook can be changed by setting the
PhoneBook property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.UserPhoneBook Property

Gets a value which returns the current version of the InternetDialer class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the InternetDialer
class library. This value can be used by an application for validation and debugging purposes.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Version Property

The methods of the InternetDialer class are listed below. For a complete list of InternetDialer class
members, see the InternetDialer Members topic.

Public Instance Methods

Connect Overloaded. Establish a connection with a dial-up
networking services provider.

CreateEntry Create a new entry in the current phonebook.

DeleteEntry Overloaded. Delete a phonebook entry from the
current phonebook.

Disconnect Terminate the connection with the dial-up
networking service provider.

Dispose Overloaded. Releases all resources used by
InternetDialer.

EditEntry Edit an existing phonebook entry in the current
phonebook.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
InternetDialer class.

LoadEntry Overloaded. Load the specified entry from the
current phonebook.

RenameEntry Rename an existing phonebook entry.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SaveEntry Overloaded. Save the current settings to the
specified phonebook entry in the current
phonebook.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the InternetDialer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading

InternetDialer Methods

the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a dial-up networking services provider.

Overload List
Establish a connection with a dial-up networking services provider.

public bool Connect();

Establish a connection with a dial-up networking services provider.

public bool Connect(string);

Establish a connection with a dial-up networking services provider.

public bool Connect(string,string,string);

Establish a connection with a dial-up networking services provider.

public bool Connect(string,string,string,string);

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connect Method

Establish a connection with a dial-up networking services provider.

[Visual Basic]
Overloads Public Function Connect() As Boolean

[C#]
public bool Connect();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Connect method establishes a dial-up networking connection with a service provider using the
current phonebook entry.

The current phonebook entry name is specified by the EntryName property.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connect Method ()

Establish a connection with a dial-up networking services provider.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal entryName As String _
) As Boolean

[C#]
public bool Connect(
 string entryName
);

Parameters
entryName

A string which specifies the phonebook entry that should be used when establishing the connection.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Connect method establishes a dial-up networking connection with a service provider using the
specified phonebook entry. The entry name is the same name as the connectoid that is displayed when
you list the available dial-up networking connections on the local system.

For a list of all of the available phonebook entries, reference the PhoneBookEntry array.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connect Method (String)

Establish a connection with a dial-up networking services provider.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal phoneNumber As String, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string phoneNumber,
 string userName,
 string userPassword
);

Parameters
phoneNumber

A string which specifies the phone number to dial.

userName
A string which specifies the username which will be used to authenticate the session.

userPassword
A string which specifies the password which will be used to authenticate the session.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Connect method establishes a dial-up networking connection with a service provider. A temporary
phonebook entry will be created for the dial-up networking session, and this entry will be removed when
the local host disconnects from the service provider.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connect Method (String, String, String)

Establish a connection with a dial-up networking services provider.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal phoneNumber As String, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal userDomain As String _
) As Boolean

[C#]
public bool Connect(
 string phoneNumber,
 string userName,
 string userPassword,
 string userDomain
);

Parameters
phoneNumber

A string which specifies the phone number to dial.

userName
A string which specifies the username which will be used to authenticate the session.

userPassword
A string which specifies the password which will be used to authenticate the session.

userDomain
A string which specifies the domain on which the username and password will be authenticated. An
empty string specifies the domain in which the Remote Access Server is a member.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Connect method establishes a dial-up networking connection with a service provider. A temporary
phonebook entry will be created for the dial-up networking session, and this entry will be removed when
the local host disconnects from the service provider.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connect Method (String, String, String, String)

Create a new entry in the current phonebook.

[Visual Basic]
Public Function CreateEntry() As Boolean

[C#]
public bool CreateEntry();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateEntry method displays a dialog box which allows the user to create a new phonebook entry on
the system. If you do not wish to display a dialog box, use the SaveEntry method instead.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.CreateEntry Method

Delete the current phonebook entry from the phonebook.

Overload List
Delete the current phonebook entry from the phonebook.

public bool DeleteEntry();

Delete a phonebook entry from the current phonebook.

public bool DeleteEntry(string);

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeleteEntry Method

Delete the current phonebook entry from the phonebook.

[Visual Basic]
Overloads Public Function DeleteEntry() As Boolean

[C#]
public bool DeleteEntry();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The current phonebook entry name is specified by the EntryName property.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.DeleteEntry Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeleteEntry Method ()

Delete a phonebook entry from the current phonebook.

[Visual Basic]
Overloads Public Function DeleteEntry(_
 ByVal entryName As String _
) As Boolean

[C#]
public bool DeleteEntry(
 string entryName
);

Parameters
entryName

A string which specifies the phonebook entry name to delete.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.DeleteEntry Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeleteEntry Method (String)

Terminate the connection with the dial-up networking service provider.

[Visual Basic]
Public Function Disconnect() As Boolean

[C#]
public bool Disconnect();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method may cause the current thread to block as the connection is terminated and the dial-up
network device is being reset to its default state. Any active network connections using this dial-up
networking connection will be terminated.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Disconnect Method

Releases all resources used by InternetDialer.

Overload List
Releases all resources used by InternetDialer.

public void Dispose();

Releases the unmanaged resources allocated by the InternetDialer class and optionally releases the
managed resources.

protected virtual void Dispose(bool);

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Dispose Method

Releases all resources used by InternetDialer.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Dispose Method ()

Releases the unmanaged resources allocated by the InternetDialer class and optionally releases the
managed resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the InternetDialer class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Dispose Method (Boolean)

Edit an existing phonebook entry in the current phonebook.

[Visual Basic]
Public Function EditEntry(_
 ByVal entryName As String _
) As Boolean

[C#]
public bool EditEntry(
 string entryName
);

Parameters
entryName

A string which specifies the name of the phonebook entry to be edited.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The EditEntry method edits the specified entry from the local phonebook. This will cause a dialog box to
be displayed from which the user can change the connection information. If you do not want to display a
dialog, then use the SaveEntry method instead.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.EditEntry Method

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Finalize Method

Initialize an instance of the InternetDialer class.

Overload List
Initialize an instance of the InternetDialer class.

public bool Initialize();

Initialize an instance of the InternetDialer class.

public bool Initialize(string);

See Also
InternetDialer Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Initialize Method

Initialize an instance of the InternetDialer class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the InternetDialer class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Initialize Method ()

Initialize an instance of the InternetDialer class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the InternetDialer class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the InternetDialer class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.InternetDialer xxxClient = new SocketTools.InternetDialer();

if (xxxClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(xxxClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim xxxClient As New SocketTools.InternetDialer

If xxxClient.Initialize(strLicenseKey) = False Then
 MsgBox(xxxClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Initialize Overload List |
RuntimeLicenseAttribute Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Initialize Method (String)

Reload the current phonebook entry from the phonebook.

Overload List
Reload the current phonebook entry from the phonebook.

public bool LoadEntry();

Load the specified entry from the current phonebook.

public bool LoadEntry(string);

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LoadEntry Method

Reload the current phonebook entry from the phonebook.

[Visual Basic]
Overloads Public Function LoadEntry() As Boolean

[C#]
public bool LoadEntry();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The current entry from the phonebook will be reloaded and any changes made to the current entry will be
abandoned.

The current phonebook entry name is specified by the EntryName property.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.LoadEntry Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LoadEntry Method ()

Load the specified entry from the current phonebook.

[Visual Basic]
Overloads Public Function LoadEntry(_
 ByVal entryName As String _
) As Boolean

[C#]
public bool LoadEntry(
 string entryName
);

Parameters
entryName

A string which specifies the name of a phonebook entry.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The LoadEntry method loads the specified entry from the current phonebook and sets the class
properties to match the configuration.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.LoadEntry Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LoadEntry Method (String)

Rename an existing phonebook entry.

[Visual Basic]
Public Function RenameEntry(_
 ByVal oldEntryName As String, _
 ByVal newEntryName As String _
) As Boolean

[C#]
public bool RenameEntry(
 string oldEntryName,
 string newEntryName
);

Parameters
oldEntryName

A string which specifies the phonebook entry which will be renamed.

newEntryName
A string which specifies the new name for the phonebook entry.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The RenameEntry method renames the specified entry in the local phonebook. The new entry name
must not already exist in the phonebook.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RenameEntry Method

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Reset Method

Save the current phonebook entry settings.

Overload List
Save the current phonebook entry settings.

public bool SaveEntry();

Save the current settings to the specified phonebook entry in the current phonebook.

public bool SaveEntry(string);

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.SaveEntry Method

Save the current phonebook entry settings.

[Visual Basic]
Overloads Public Function SaveEntry() As Boolean

[C#]
public bool SaveEntry();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SaveEntry method saves the current phonebook entry settings, based on the class property values. If
the entry does not exist, it will be created. If the entry does exist, it will be overwritten. Note that unlike the
CreateEntry method, this method does not display any user-interface dialogs.

The current phonebook entry name is specified by the EntryName property.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.SaveEntry Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.SaveEntry Method ()

Save the current settings to the specified phonebook entry in the current phonebook.

[Visual Basic]
Overloads Public Function SaveEntry(_
 ByVal entryName As String _
) As Boolean

[C#]
public bool SaveEntry(
 string entryName
);

Parameters
entryName

A string which specifies the name of the phonebook entry.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SaveEntry method saves the specified entry to the current phonebook, based on the class property
values. If the entry does not exist, it will be created. If the entry does exist, it will be overwritten. Note that
unlike the CreateEntry method, this method does not display any user-interface dialogs.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.SaveEntry Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.SaveEntry Method (String)

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
InternetDialer Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Uninitialize Method

The events of the InternetDialer class are listed below. For a complete list of InternetDialer class
members, see the InternetDialer Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
service provider.

OnDisconnect Occurs when the dial-up networking connection is
terminated.

OnError Occurs when an client operation fails.

OnStatus Occurs when the when the connection state
changes.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnCancel Event

Occurs when a connection is established with the service provider.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a service provider as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a dial-up
networking connection is initiated, but the connection is not actually established until after this event
occurs. Between the time connection process is started and this event fires, no operation may be
performed by the client other than calling the Disconnect method.

This event is only generated if the client is in non-blocking mode.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnConnect Event

Occurs when the dial-up networking connection is terminated.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the dial-up networking connection has been terminated. This
event is only generated if the client is in non-blocking mode.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnDisconnect Event

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type InternetDialer.ErrorEventArgs containing data related to
this event. The following InternetDialer.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see InternetDialer.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetDialer.ErrorEventArgs

[Visual Basic]
Public Class InternetDialer.ErrorEventArgs
 Inherits EventArgs

[C#]
public class InternetDialer.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
InternetDialer.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ErrorEventArgs Class

InternetDialer.ErrorEventArgs overview

Public Instance Constructors

 InternetDialer.ErrorEventArgs Constructor Initializes a new instance of the
InternetDialer.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetDialer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ErrorEventArgs Members

Initializes a new instance of the InternetDialer.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetDialer.ErrorEventArgs();

See Also
InternetDialer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ErrorEventArgs Constructor

The properties of the InternetDialer.ErrorEventArgs class are listed below. For a complete list of
InternetDialer.ErrorEventArgs class members, see the InternetDialer.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
InternetDialer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
InternetDialer.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public InternetDialer.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
InternetDialer.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ErrorEventArgs.Error Property

Occurs when the when the connection state changes.

[Visual Basic]
Public Event OnStatus As OnStatusEventHandler

[C#]
public event OnStatusEventHandler OnStatus;

Event Data
The event handler receives an argument of type InternetDialer.StatusEventArgs containing data related to
this event. The following InternetDialer.StatusEventArgs properties provide information specific to this
event.

Property Description

Description Gets a description of the current dial-up
networking connection status.

Status Gets a value which specifies the current status of
the dial-up networking connection.

Remarks
The OnStatus event is generated when the status of the connection changes. Typically this occurs when a
connection is being established with a dial-up networking server.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnStatus Event

Provides data for the OnStatus event.

For a list of all members of this type, see InternetDialer.StatusEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetDialer.StatusEventArgs

[Visual Basic]
Public Class InternetDialer.StatusEventArgs
 Inherits EventArgs

[C#]
public class InternetDialer.StatusEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
StatusEventArgs specifies the status code and a description of the status for the last status change that
has occurred.

The OnStatus event occurs whenever the status of the dial-up networking connection changes.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
InternetDialer.StatusEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.StatusEventArgs Class

InternetDialer.StatusEventArgs overview

Public Instance Constructors

 InternetDialer.StatusEventArgs Constructor Initializes a new instance of the
InternetDialer.StatusEventArgs class.

Public Instance Properties

Description Gets a description of the current dial-up
networking connection status.

Status Gets a value which specifies the current status of
the dial-up networking connection.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetDialer.StatusEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.StatusEventArgs Members

Initializes a new instance of the InternetDialer.StatusEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetDialer.StatusEventArgs();

See Also
InternetDialer.StatusEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.StatusEventArgs Constructor

The properties of the InternetDialer.StatusEventArgs class are listed below. For a complete list of
InternetDialer.StatusEventArgs class members, see the InternetDialer.StatusEventArgs Members topic.

Public Instance Properties

Description Gets a description of the current dial-up
networking connection status.

Status Gets a value which specifies the current status of
the dial-up networking connection.

See Also
InternetDialer.StatusEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.StatusEventArgs Properties

Gets a description of the current dial-up networking connection status.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the connection status.

See Also
InternetDialer.StatusEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.StatusEventArgs.Description Property

Gets a value which specifies the current status of the dial-up networking connection.

[Visual Basic]
Public ReadOnly Property Status As DialerStatus

[C#]
public InternetDialer.DialerStatus Status {get;}

Property Value
A DialerStatus enumeration value which specifies the current status.

See Also
InternetDialer.StatusEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.StatusEventArgs.Status Property

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnTimeout Event

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub InternetDialer.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void InternetDialer.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnErrorEventHandler Delegate

Represents the method that will handle the OnStatus event.

[Visual Basic]
Public Delegate Sub InternetDialer.OnStatusEventHandler(_
 ByVal sender As Object, _
 ByVal e As StatusEventArgs _
)

[C#]
public delegate void InternetDialer.OnStatusEventHandler(

 object sender,
 StatusEventArgs e
);

Parameters
sender

The source of the event.

e
A StatusEventArgs object that contains the event data.

Remarks
When you create an OnStatusEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnStatusEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnStatusEventHandler Delegate

Specifies the status values that may be returned by the InternetDialer class.

[Visual Basic]
Public Enum InternetDialer.DialerStatus

[C#]
public enum InternetDialer.DialerStatus

Remarks
The InternetDialer class uses the DialerStatus enumeration to identify the current status of the client.

Members

Member Name Description

statusUnused No connection has been established.

statusOpenPort The communications port is about to be opened.

statusPortOpened The communications port has been opened.

statusConnectDevice A device is about to be connected.

statusDeviceConnected A device has been connected successfully.

statusAllDevicesConnected All devices have been connected.

statusAuthenticate Authenticating username and password.

statusAuthNotify An authentication event has occurred.

statusAuthRetry Requesting authentication with new credentials.

statusAuthCallback The remote server has requested a callback
number.

statusAuthChangePassword The user has requested to change the password.

statusAuthProject Registering computer on the network.

statusAuthLinkSpeed The link speed calculation phase is starting.

statusAuthAck An authentication request is being acknowledged.

statusReAuthenticate Authenticating username and password.

statusAuthenticated The user has been authenticated.

statusPrepareForCallback The line is about to be disconnected in
preparation for callback.

statusWaitForModemReset The modem is resetting itself in preparation for
callback.

statusWaitForCallback Waiting for callback from remote server.

statusProjected Protocol specific information has been negotiated.

statusStartAuthentication User authentication is being initiated.

statusCallbackComplete Callback completed and resuming authentication.

InternetDialer.DialerStatus Enumeration

statusLogonNetwork Logging on to the network.

statusSubEntryConnected A subentry has been connected.

statusSubEntryDisconnected A subentry has been disconnected.

statusInteractive Initiating interactive login session.

statusRetryAuthentication Retrying user authentication.

statusCallbackSetByCaller Callback has been set by caller.

statusPasswordExpired Password has expired.

statusConnected Connected to remote server.

statusDisconnected Disconnected from remote server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the error codes returned by the InternetDialer class.

[Visual Basic]
Public Enum InternetDialer.ErrorCode

[C#]
public enum InternetDialer.ErrorCode

Remarks
The InternetDialer class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorDeviceNotFound The specified device could not be found.

errorOperationTimeout The specified operation has timed out.

errorPending An operation is pending.

errorInvalidPortHandle An invalid port handle was detected.

errorPortAlreadyOpen The specified port is already open.

errorBufferTooSmall The caller's buffer is too small.

errorWrongInfoSpecified Incorrect information was specified.

errorCannotSetPortInfo The port information cannot be set.

errorPortNotConnected The specified port is not connected.

errorEventInvalid An invalid event was detected.

errorDeviceDoesNotExist A device was specified that does not exist.

errorDevicetypeDoesNotExist A device type was specified that does not exist.

errorBufferInvalid An invalid buffer was specified.

errorRouteNotAvailable A route was specified that is not available.

errorRouteNotAllocated A route was specified that is not allocated.

errorInvalidCompressionSpecified An invalid compression was specified.

errorOutOfBuffers There were insufficient buffers available.

InternetDialer.ErrorCode Enumeration

errorPortNotFound The specified port was not found.

errorAsyncRequestPending An asynchronous request is pending.

errorAlreadyDisconnecting The modem or other connecting device is already
disconnecting.

errorPortNotOpen The specified port is not open.

errorPortDisconnected A connection to the remote computer could not
be established.

errorNoEndpoints No endpoints could be determined.

errorCannotOpenPhonebook The system could not open the phone book file.

errorCannotLoadPhonebook The system could not load the phone book file.

errorCannotFindPhonebookEntry The system could not find the phone book entry
for this connection.

errorCannotWritePhonebook The system could not update the phone book file.

errorCorruptPhonebook The system found invalid information in the phone
book file.

errorCannotLoadString A string could not be loaded.

errorKeyNotFound A key could not be found.

errorDisconnection The connection was terminated by the remote
computer before it could be completed.

errorRemoteDisconnection The connection was closed by the remote
computer.

errorHardwareFailure The modem or other connecting device was
disconnected due to hardware failure.

errorUserDisconnection The user disconnected the modem or other
connecting device.

errorInvalidSize An incorrect structure size was detected.

errorPortNotAvailable The modem or other connecting device is already
in use or is not configured properly.

errorCannotProjectClient Your computer could not be registered on the
remote network.

errorUnknown There was an unknown error.

errorWrongDeviceAttached The device attached to the port is not the one
expected.

errorBadString A string was detected that could not be converted.

errorRequestTimeout The request has timed out.

errorCannotGetLana No asynchronous net is available.

errorNetBIOSError An error has occurred involving NetBIOS.

errorServerOutOfResources The server cannot allocate NetBIOS resources
needed to support the client.

errorNameExistsOnNet One of your computer's NetBIOS names is already

registered on the remote network.

errorServerGeneralNetFailure A network adapter at the server failed.

errorMsgAliasNotAdded You will not receive network message popups.

errorAuthInternal There was an internal authentication error.

errorRestrictedLogonHours The account is not permitted to log on at this time
of day.

errorAcctDisabled The account is disabled.

errorPasswdExpired The password for this account has expired.

errorNoDialInPermission The account does not have permission to dial in.

errorServerNotResponding The remote access server is not responding.

errorFromDevice The modem or other connecting device has
reported an error.

errorUnrecognizedResponse There was an unrecognized response from the
modem or other connecting device.

errorMacroNotFound A macro required by the modem or other
connecting device was not found in the
configuration file.

errorMacroNotDefined A command or response in the configuration file
refers to an undefined macro.

errorMessageMacroNotFound The message macro was not found in the
configuration file.

errorDefaultOffMacroNotFound The configuration file contains an undefined
macro.

errorFileCouldNotBeOpened The configuration file could not be opened.

errorDevicenameTooLong The device name in the configuration file is too
long.

errorDevicenameNotFound The configuration file refers to an unknown device
name.

errorNoResponses The configuration file contains no responses for
the command.

errorNoCommandFound The configuration file is missing a command.

errorWrongKeySpecified There was an attempt to set a macro not listed in
configuration file.

errorUnknownDeviceType The configuration file refers to an unknown device
type.

errorAllocatingMemory The system has run out of memory.

errorPortNotConfigured The modem or other connecting device is not
properly configured.

errorDeviceNotReady The modem or other connecting device is not
functioning.

errorReadingIniFile The system was unable to read the configuration
file.

errorNoConnection The connection was terminated.

errorBadUsageInIniFile The usage parameter in the configuration file is
invalid.

errorReadingSectionname The system was unable to read the section name
from the configuration file.

errorReadingDeviceType The system was unable to read the device type
from the configuration file.

errorReadingDeviceName The system was unable to read the device name
from the configuration file.

errorReadingUsage The system was unable to read the usage from the
configuration file.

errorReadingMaxConnectBps The system was unable to read the maximum
connection BPS rate from the configuration file.

errorReadingMaxCarrierBps The system was unable to read the maximum
carrier connection speed from the configuration
file.

errorLineBusy The phone line is busy.

errorVoiceAnswer A person answered instead of a modem or other
connecting device.

errorNoAnswer The remote computer did not respond.

errorNoCarrier The system could not detect the carrier.

errorNoDialtone There was no dial tone.

errorInCommand The modem or other connecting device reported
a general error.

errorWritingSectionname There was an error in writing the section name.

errorWritingDeviceType There was an error in writing the device type.

errorWritingDeviceName There was an error in writing the device name.

errorWritingMaxConnectBps There was an error in writing the maximum
connection speed..

errorWritingMaxCarrierBps There was an error in writing the maximum carrier
speed.

errorWritingUsage There was an error in writing the usage.

errorWritingDefaultOff There was an error in writing the default-off.

errorReadingDefaultOff There was an error in reading the default-off.

errorEmptyIniFile The configuration file is empty.

errorAuthenticationFailure Access was denied because the username and/or
password was invalid on the domain.

errorPortOrDevice There was a hardware failure in the modem or
other connecting device.

errorNotBinaryMacro An internal error has occurred.

errorDcbNotFound An internal error has occurred.

errorStateMachinesNotStarted The state machines are not started.

errorStateMachinesAlreadyStarted The state machines are already started.

errorPartialResponseLooping The response looping did not complete.

errorUnknownResponseKey A response keyname in the configuration file is not
in the expected format.

errorRecvBufFull The modem or other connecting device response
caused a buffer overflow.

errorCmdTooLong The expanded command in the configuration file is
too long.

errorUnsupportedBps The modem moved to a connection speed not
supported by the COM driver.

errorUnexpectedResponse Device response received when none expected.

errorInteractiveMode The connection needs information from you, but
the application does not allow user interaction.

errorBadCallbackNumber The callback number is invalid.

errorInvalidAuthState The authorization state is invalid.

errorWritingInitBps An internal error has occurred.

errorX25Diagnostic There was an error related to the X.25 protocol.

errorAcctExpired The account has expired.

errorChangingPassword There was an error changing the password on the
domain.

errorOverrun Serial overrun errors were detected while
communicating with the modem.

errorRasmanCannotInitialize A configuration error on this computer is
preventing this connection.

errorBiplexPortNotAvailable The two-way port is initializing, wait a few seconds
and redial.

errorNoActiveIsdnLines No active ISDN lines are available.

errorNoIsdnChannelsAvailable No ISDN channels are available to make the call.

errorTooManyLineErrors Too many errors occurred because of poor phone
line quality.

errorIpConfiguration The Remote Access Service IP configuration is
unusable.

errorNoIpAddresses No IP addresses are available in the static pool of
Remote Access Service IP addresses.

errorPppTimeout The connection was terminated because the
remote computer did not respond in a timely
manner.

errorPppRemoteTerminated The connection was terminated by the remote
computer.

errorPppNoProtocolsConfigured A connection to the remote computer could not
be established.

errorPppNoResponse The remote computer did not respond.

errorPppInvalidPacket Invalid data was received from the remote
computer.

errorPhoneNumberTooLong The phone number, including prefix and suffix, is
too long.

errorIpxcpNoDialoutConfigured The IPX protocol cannot dial out on the modem
because this computer is not configured for dialing
out.

errorIpxcpNoDialinConfigured The IPX protocol cannot dial in on the modem
because this computer is not configured for dialing
in.

errorIpxcpDialoutAlreadyActive The IPX protocol cannot be used for dialing out on
more than one modem.

errorAccessingTcpcfgDll Cannot access TCPCFG.DLL.

errorNoIpRasAdapter The system cannot find an IP adapter.

errorSlipRequiresIp SLIP cannot be used unless the IP protocol is
installed.

errorProjectionNotComplete Computer registration is not complete.

errorProtocolNotConfigured The protocol is not configured.

errorPppNotConverging Your computer and the remote computer could
not agree on PPP control protocols.

errorPppCpRejected A connection to the remote computer could not
be completed.

errorPppLcpTerminated The PPP link control protocol was terminated.

errorPppRequiredAddressRejected The requested address was rejected by the server.

errorPppNcpTerminated The remote computer terminated the control
protocol.

errorPppLoopbackDetected Loopback was detected.

errorPppNoAddressAssigned The server did not assign an address.

errorCannotUseLogonCredentials The authentication protocol required by the
remote server cannot use the stored password.

errorTapiConfiguration An invalid dialing rule was detected.

errorNoLocalEncryption The local computer does not support the required
data encryption type.

errorNoRemoteEncryption The remote computer does not support the
required data encryption type.

errorRemoteRequiresEncryption The remote computer requires data encryption.

errorIpxcpNetNumberConflict The system cannot use the IPX network number
assigned by the remote computer.

errorInvalidSMM An internal error has occurred.

errorSMMUninitialized An internal error has occurred.

errorNoMacForPort An internal error has occurred.

errorSmmTimeout An internal error has occurred.

errorBadPhoneNumber An invalid telephone number has been specified.

errorWrongModule An internal error has occurred.

errorInvalidCallbackNumber The callback number contains an invalid character.

errorScriptSyntax A syntax error was encountered while processing a
script.

errorHangupFailed The connection could not be disconnected
because it was created by the multi-protocol
router.

errorBundleNotFound The system could not find the multi-link bundle.

errorCannotDoCustomdial The system cannot perform automated dial
because this connection has a custom dialer
specified.

errorDialAlreadyInProgress This connection is already being dialed.

errorRasautoCannotInitialize Remote Access Services could not be started
automatically.

errorConnectionAlreadyShared Internet Connection Sharing is already enabled on
the connection.

errorSharingChangeFailed An error occurred while the existing Internet
Connection Sharing settings were being changed.

errorSharingRouterInstall An error occurred while routing capabilities were
being enabled.

errorShareConnectionFailed An error occurred while Internet Connection
Sharing was being enabled for the connection.

errorSharingPrivateInstall An error occurred while the local network was
being configured for sharing.

errorCannotShareConnection Internet Connection Sharing cannot be enabled.

errorNoSmartCardReader No smart card reader is installed.

errorSharingAddressExists Internet Connection Sharing cannot be enabled.

errorNoCertificate A certificate could not be found.

errorSharingMultipleAddresses Internet Connection Sharing cannot be enabled.

errorFailedToEncrypt The connection attempt failed because of failure
to encrypt data.

errorBadAddressSpecified The specified destination is not reachable.

errorConnectionReject The remote computer rejected the connection

attempt.

errorCongestion The connection attempt failed because the
network is busy.

errorIncompatible The remote computer's network hardware is
incompatible with the type of call requested.

errorNumberchanged The connection attempt failed because the
destination number has changed.

errorTempfailure The connection attempt failed because of a
temporary failure.

errorBlocked The call was blocked by the remote computer.

errorDonotdisturb The call could not be connected because the
remote computer has invoked the Do Not Disturb
feature.

errorOutoforder The connection attempt failed because the
modem on the remote computer is out of order.

errorUnableToAuthenticateServer It was not possible to verify the identity of the
server.

errorSmartCardRequired To dial out using this connection you must use a
smart card.

errorInvalidFunctionForEntry An attempted function is not valid for this
connection.

errorCertForEncryptionNotFound The connection requires a certificate, and no valid
certificate was found.

errorSharingRrasConflict Network Address Translation must be removed
before enabling Internet Connection Sharing.

errorSharingNoPrivateLan Internet Connection Sharing cannot be enabled.

errorNoDiffUserAtLogon You cannot dial using this connection at logon
time.

errorNoRegCertAtLogon You cannot dial using this connection at logon
time.

errorOakleyNoCert The L2TP connection attempt failed because there
is no valid machine certificate on your computer
for security authentication.

errorOakleyAuthFail The L2TP connection attempt failed because the
security layer could not authenticate the remote
computer.

errorOakleyAttribFail The L2TP connection attempt failed because the
security layer could not negotiate compatible
parameters with the remote computer.

errorOakleyGeneralProcessing The L2TP connection attempt failed because the
security layer encountered a processing error
during initial negotiations with the remote
computer.

errorOakleyNoPeerCert The L2TP connection attempt failed because
certificate validation on the remote computer
failed.

errorOakleyNoPolicy The L2TP connection attempt failed because
security policy for the connection was not found.

errorOakleyTimedOut The L2TP connection attempt failed because
security negotiation timed out.

errorOakleyError The L2TP connection attempt failed because an
error occurred while negotiating security.

errorUnknownFramedProtocol The Framed Protocol RADIUS attribute for this user
is not PPP.

errorWrongTunnelType The Tunnel Type RADIUS attribute for this user is
not correct.

errorUnknownServiceType The Service Type RADIUS attribute for this user is
neither Framed nor Callback Framed.

errorConnectingDeviceNotFound A connection to the remote computer could not
be established because the modem was not found
or was busy.

errorNoEaptlsCertificate A certificate could not be found that can be used
with this Extensible Authentication Protocol.

errorSharingHostAddressConflict Internet Connection Sharing cannot be enabled.

errorAutomaticVpnFailed Unable to establish the VPN connection.

errorValidatingServerCert Unable to verify the digital certificate sent by the
server.

errorReadSCard The card supplied was not recognized, please
check that the card is inserted correctly, and fits
tightly

errorInvalidPEAPCookieConfig The PEAP configuration stored in the session
cookie does not match the current session
configuration

errorInvalidPEAPCookieUser The PEAP identity stored in the session cookie
does not match the current identity

errorInvalidMSCHAPV2Config You cannot dial using this connection at logon
time, because it is configured to use logged on
user's credentials

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorOperationNotSupported The specified operation is not supported.

Requirements

Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the framing protocols supported by the InternetDialer class.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetDialer.RasFramingProtocol

[C#]
[Flags]
public enum InternetDialer.RasFramingProtocol

Members

Member Name Description Value

framingProtocolPPP Point-to-Point Protocol (PPP). This is the
most common protocol used by
Internet Service Providers (ISPs).

1

framingProtocolSLIP Serial Line Internet Protocol (SLIP). This
is a protocol commonly used when
connecting to older UNIX systems.

2

framingProtocolRAS A proprietary Microsoft protocol
implemented in Windows for
Workgroups 3.11 and Windows NT.

4

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RasFramingProtocol Enumeration

Specifies the networking protocols supported by the InternetDialer class.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetDialer.RasNetworkProtocol

[C#]
[Flags]
public enum InternetDialer.RasNetworkProtocol

Remarks
These values may be combined if multiple protocols should be negotiated when the connection is
established. Note that unless there is a specific need for the application to use the NetBEUI or IPX
protocols, it is recommended that only the TCP/IP protocol be specified.

Members

Member Name Description Value

networkProtocolNetBEUI Negotiate the NetBEUI protocol. 1

networkProtocolIPX Negotiate the IPX protocol. 2

networkProtocolIP Negotiate the TCP/IP protocol. 4

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RasNetworkProtocol Enumeration

Specifies the interactive terminal modes supported by the InternetDialer class.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetDialer.RasTerminalMode

[C#]
[Flags]
public enum InternetDialer.RasTerminalMode

Remarks
These values may be combined if multiple terminal modes should be used when the connection is
established. If scripting has been enabled by setting the ScriptFile property, no terminal window should
be displayed after the connection. This is because scripting has it's own terminal implementation.

Members

Member Name Description Value

terminalNone No terminal window is displayed 0

terminalBeforeDial Terminal window is displayed before
dialing.

1

terminalAfterDial Terminal window is displayed after
dialing. Do not use if scripting has been
enabled.

2

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RasTerminalMode Enumeration

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see InternetDialer.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.InternetDialer.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class InternetDialer.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class InternetDialer.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the InternetDialer class.

Example

<Assembly: SocketTools.InternetDialer.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.InternetDialer.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
InternetDialer.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RuntimeLicenseAttribute Class

InternetDialer.RuntimeLicenseAttribute overview

Public Instance Constructors

 InternetDialer.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetDialer.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public InternetDialer.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the InternetDialer class.

See Also
InternetDialer.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RuntimeLicenseAttribute Constructor

The properties of the InternetDialer.RuntimeLicenseAttribute class are listed below. For a complete list
of InternetDialer.RuntimeLicenseAttribute class members, see the
InternetDialer.RuntimeLicenseAttribute Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
InternetDialer.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
InternetDialer.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see InternetDialerException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.InternetDialerException

[Visual Basic]
Public Class InternetDialerException
 Inherits ApplicationException

[C#]
public class InternetDialerException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A InternetDialerException is thrown by the InternetDialer class when an error occurs.

The default constructor for the InternetDialerException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
InternetDialerException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialerException Class

InternetDialerException overview

Public Instance Constructors

 InternetDialerException Overloaded. Initializes a new instance of the
InternetDialerException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

InternetDialerException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetDialerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the InternetDialerException class with the last network error code.

Overload List
Initializes a new instance of the InternetDialerException class with the last network error code.

public InternetDialerException();

Initializes a new instance of the InternetDialerException class with a specified error number.

public InternetDialerException(int);

Initializes a new instance of the InternetDialerException class with a specified error message.

public InternetDialerException(string);

Initializes a new instance of the InternetDialerException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

public InternetDialerException(string,Exception);

See Also
InternetDialerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialerException Constructor

Initializes a new instance of the InternetDialerException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public InternetDialerException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the InternetDialer.ErrorCode enumeration.

See Also
InternetDialerException Class | SocketTools Namespace | InternetDialerException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialerException Constructor ()

Initializes a new instance of the InternetDialerException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public InternetDialerException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
InternetDialerException Class | SocketTools Namespace | InternetDialerException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialerException Constructor (String)

Initializes a new instance of the InternetDialerException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public InternetDialerException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
InternetDialerException Class | SocketTools Namespace | InternetDialerException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialerException Constructor (String, Exception)

Initializes a new instance of the InternetDialerException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public InternetDialerException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the InternetDialer.ErrorCode enumeration.

See Also
InternetDialerException Class | SocketTools Namespace | InternetDialerException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialerException Constructor (Int32)

The properties of the InternetDialerException class are listed below. For a complete list of
InternetDialerException class members, see the InternetDialerException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
InternetDialerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialerException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public InternetDialer.ErrorCode ErrorCode {get;}

Property Value
Returns a InternetDialer.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the InternetDialerException class sets the error code to the last network error
that occurred. For more information about the errors that may occur, refer to the InternetDialer.ErrorCode
enumeration.

See Also
InternetDialerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialerException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
InternetDialerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialerException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
InternetDialerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialerException.Number Property

The methods of the InternetDialerException class are listed below. For a complete list of
InternetDialerException class members, see the InternetDialerException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetDialerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialerException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
InternetDialerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialerException.ToString Method

The InternetMail class enables a developer to create, send and retrieve email messages. The class
implements the Simple Mail Transfer Protocol (SMTP) for sending messages, the Post Office Protocol
(POP3) for retrieving messages from a mail server and the Multipurpose Internet Mail Extensions (MIME)
standard for composing messages.

For a list of all members of this type, see InternetMail Members.

System.Object
 SocketTools.InternetMail

[Visual Basic]
Public Class InternetMail
 Implements IDisposable

[C#]
public class InternetMail : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The InternetMail class provides a simplified interface for composing, sending and retrieving email
messages. The class was designed for ease-of-use and flexibility, without the inherent learning curve and
additional coding required when using multiple components. In many cases, email functionality is simply
one feature in an already complex project. Instead of setting dozens of properties and writing many lines
of code to connect the output of one control to the input of another, the InternetMail class requires just
two method calls to compose and deliver a message. The simple elegance of the component's interface
translates directly into fewer lines of source code to write, debug and maintain. In turn, this allows the
developer to focus his efforts on the core application without sacrificing features that add value to the
end-user.

The class offers a comprehensive interface, providing the developer with everything that he needs to
incorporate email functionality in an application. Many of the class' properties control the contents of a
message, such as the list of recipients, the subject of the message and the message body. Methods are
used to compose new messages, retrieve messages from a mail server and deliver messages to one or
more recipients. Messages can also be managed on the mail server, or downloaded to the local system
and stored in a file or a database record. The developer has complete access to all of the headers in the
message, and can create custom application-specific header fields if needed. Event notifications enable
the developer to provide the user with feedback, such as the progress of sending or retrieving a message.
Advanced features such as delivery status notification, support for relay servers and secure encrypted
connections are easily implemented by simply setting a few properties.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
InternetMail Members | SocketTools Namespace

InternetMail Class

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetMailMembers.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetMailMembers.html

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail overview

Public Static (Shared) Fields

mailPortImap4 A constant value which specifies the default port
number for a connection to a mail server.

mailPortImap4s A constant value which specifies the default port
number for a secure connection to a mail server.

mailPortPop3 A constant value which specifies the default port
number for a connection to a mail server.

mailPortPop3s A constant value which specifies the default port
number for a secure connection to a mail server.

mailPortSmtp A constant value which specifies the default port
number for submitting messages to a mail server.

mailTimeout A constant value which specifies the default
timeout period.

Public Instance Constructors

 InternetMail Constructor Initializes a new instance of the InternetMail class.

Public Instance Fields

Mailbox Gets the names of the available mailboxes for the
current user.

NameServer Change or return the Internet address for a
nameserver

Recipient Gets the recipients specified in the current
message.

Public Instance Properties

AllHeaders Gets a value which returns a list of all message
recipients.

AllRecipients Gets a value which returns a list of all message
recipients.

Attachment Gets and sets the name of the current file
attachment.

Bcc Gets and sets the blind carbon-copy header field
value.

Cc Gets and sets the carbon-copy header field value.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

InternetMail Members

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.mailPortImap4.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.mailPortImap4s.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.mailPortPop3.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.mailPortPop3s.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.mailPortSmtp.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.mailTimeout.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Mailbox.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.NameServer.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Recipient.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AllHeaders.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AllRecipients.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Attachment.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Bcc.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Cc.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateExpires.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateIssued.html

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

ContentId Gets the content identifier for the current message
part.

ContentLength Gets the size of the data stored in the current
message part.

ContentType Gets and sets the content type of the selected
message part.

Date Gets and sets the date for the current message.

Delivered Gets the number of recipients the message has
been delivered to.

Domain Gets and sets the local domain name.

Encoding Gets and sets the content encoding method used
for the current message part.

From Gets and sets the address of the user who sent the
message.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

IsConnected Gets a value which indicates if a connection to the
mail server has been established.

IsIdle Gets a value which indicates if the client is idle and
the current mailbox is being monitored for status
changes.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateIssuer.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateName.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateStatus.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateStore.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateSubject.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateUser.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CipherStrength.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ContentId.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ContentLength.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ContentType.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Date.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Delivered.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Domain.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Encoding.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.From.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.HashStrength.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.IsConnected.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.IsIdle.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.IsInitialized.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.LastError.html

that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LastMessage Gets the number of the last message available in
the current mailbox.

LocalAddress Gets and sets the local Internet address that the
client will be bound to.

Localize Gets and sets a value which specifies if date and
time values should be localized.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Mailboxes Gets the number of mailboxes available on the
server.

MailboxFlags Gets one or more flags which identify
characteristics of the current mailbox.

MailboxMask Gets and sets the current mailbox wildcard mask.

MailboxName Gets and sets the name of the current mailbox.

MailboxPath Gets and sets the current mailbox reference path.

MailboxSize Gets the size of the current mailbox.

MailboxUID Gets the unique identifier for the current mailbox.

Mailer Gets and sets the name of the mailer application.

Message Gets and sets the current message headers and
body.

MessageCount Gets the number of messages available in the
current mailbox.

MessageFlags Gets and sets one or more flags for the current
message.

MessageID Gets the current message identifier.

MessageIndex Gets and sets the current message number.

MessagePart Gets and sets the current section index in a
multipart message.

MessageParts Gets the number of sections in a multipart
message.

MessageSize Gets the size of the current message in bytes.

MessageText Gets and sets the text body of the current
message part.

MessageUID Gets the UID for the current message.

MimeVersion Gets and sets the MIME version number for the
current message.

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.LastErrorString.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.LastMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.LocalAddress.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Localize.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.LocalName.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.LocalPort.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Mailboxes.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MailboxFlags.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MailboxMask.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MailboxName.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MailboxPath.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MailboxSize.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MailboxUID.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Mailer.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Message.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageCount.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageFlags.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageID.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageIndex.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessagePart.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageParts.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageSize.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageText.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageUID.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MimeVersion.html

NewMessages Gets the number of new messages available in the
current mailbox.

Options Gets and sets a value which specifies one or more
client options.

Organization Gets and sets the name of the organization that
originated the message.

Password Gets and sets the password used to authenticate
the client.

Priority Gets and sets the current message priority.

RecentMessages Gets the number of messages which have recently
arrived in the mailbox.

Recipients Gets the number of recipients specified in the
current message.

RelayPort Gets and sets a value which specifies the relay
server port number.

RelayServer Gets and sets a value which specifies the relay
server name or address.

ReplyTo Gets and sets the address of the user who should
receive replies to this message.

ReturnReceipt Gets and sets the address of the person who
should receive a message indicating that the
message has been read.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Sender Gets and sets the address of the user who
originated the message.

ServerName Gets and sets a value which specifies the host
name or address of the mail server.

ServerPort Gets and sets a value which specifies the remote
port number.

ServerType Gets and sets a value which specifies the type of
mail server the client is connecting to.

Subject Gets and sets the subject of the current message.

Subscribed Gets a value that specifies if the user has

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.NewMessages.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Options.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Organization.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Password.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Priority.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.RecentMessages.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Recipients.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.RelayPort.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.RelayServer.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ReplyTo.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ReturnReceipt.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Secure.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SecureCipher.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SecureHash.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SecureKeyExchange.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SecureProtocol.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Sender.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ServerName.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ServerPort.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ServerType.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Subject.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Subscribed.html

subscribed to the currently selected mailbox.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

To Gets and sets the address of the message
recipient.

Trace Gets and sets a value which indicates if network
function tracing is enabled.

TraceFile Gets and sets a value which specifies the name of
the client function tracing logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the InternetMail class library.

Public Instance Methods

AppendMessage Append text to the body of the current message
part.

AttachData Overloaded. Attach the contents of a byte array to
the current message.

AttachFile Overloaded. Attach the specified file to the current
message.

AttachImage Overloaded. Attach an inline image to the current
message.

AttachThread Obsolete. Attach an instance of the class to the
current thread.

Cancel Cancel the current blocking client operation.

ChangePassword Change the mailbox password for the current user.

CheckMailbox Create a checkpoint for the currently selected
mailbox.

ClearMessage Clear the header and body of the current
message.

ComposeMessage Overloaded. Compose a new mail message.

Connect Overloaded. Establish a connection with a mail
server.

CopyMessage Copy a message from the current mailbox to

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ThrowError.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Timeout.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.TimeZone.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.To.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Trace.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.TraceFile.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.TraceFlags.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.UserName.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Version.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AppendMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AttachData_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AttachFile_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AttachImage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AttachThread.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Cancel.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ChangePassword.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CheckMailbox.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ClearMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ComposeMessage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Connect_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CopyMessage.html

another mailbox.

CreateMailbox Creates a new mailbox on the server.

CreateMessage Overloaded. Create a new message.

CreatePart Overloaded. Create a new message part in a
multipart message.

DeleteHeader Overloaded. Delete a header field from the
specified message part.

DeleteMailbox Overloaded. Deletes a mailbox from the server.

DeleteMessage Flags a message for deletion from the current
mailbox.

DeletePart Delete the specified message part from the current
message.

Disconnect Terminate the connection with the remote server.

Dispose Overloaded. Releases all resources used by
InternetMail.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

ExportMessage Overloaded. Export the current message to a file
on the local system.

ExtractAllFiles Overloaded. Extract all file attachments from the
current message.

ExtractFile Overloaded. Extract the contents of a file
attachment and store it on the local system.

FindAttachment Search for a specific file attachment in the current
message.

GetFirstHeader Return the first header in the current message
part.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeader Overloaded. Return the value of a header field in
the specified message part.

GetHeaders Overloaded. Retrieves the headers for the
specified message from the server.

GetMessage Overloaded. Retrieve a message from the server
and return the contents in a byte array.

GetNextHeader Return the next header in the current message
part.

GetType (inherited from Object) Gets the Type of the current instance.

Idle Overloaded. Enables mailbox status monitoring for
the client session.

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CreateMailbox.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CreateMessage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CreatePart_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.DeleteHeader_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.DeleteMailbox_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.DeleteMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.DeletePart.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Disconnect.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Dispose_overload_1.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ExportMessage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ExtractAllFiles_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ExtractFile_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.FindAttachment.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.GetFirstHeader.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.GetHeader_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.GetHeaders_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.GetMessage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.GetNextHeader.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Idle_overloads.html

ImportMessage Replace the current message with the contents of
a file.

Initialize Overloaded. Initialize an instance of the
InternetMail class.

ParseAddress Overloaded. Parse an Internet email address.

ParseMessage Parse the specified string, adding the contents to
the current message.

RenameMailbox Change the name of a mailbox.

ReselectMailbox Reselects the current mailbox.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SearchMailbox Overloaded. Search the current mailbox for
messages that match the specified criteria and
character set.

SelectMailbox Selects the specified mailbox for read-write access.

SendMessage Overloaded. Submit the specified message to a
mail server for delivery.

SetHeader Overloaded. Set the value for a header in the
specified message part.

StoreMessage Overloaded. Retrieve a message from the current
mailbox and store it in a file on the local system.

SubscribeMailbox Overloaded. Subscribes the user to the specified
mailbox.

ToString (inherited from Object) Returns a String that represents the current Object.

UndeleteMessage Removes the deletion flag for the specified
message.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

UnselectMailbox Overloaded. Unselects the current mailbox.

UnsubscribeMailbox Overloaded. Unsubscribes the user from the
specified mailbox.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnDelivered Occurs when a message has been submitted for
delivery.

OnError Occurs when an client operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnRecipient Occurs when a message is about to be submitted
for delivery.

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ImportMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Initialize_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ParseAddress_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ParseMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.RenameMailbox.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ReselectMailbox.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Reset.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SearchMailbox_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SelectMailbox.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SendMessage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SetHeader_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.StoreMessage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SubscribeMailbox_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.UndeleteMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Uninitialize.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.UnselectMailbox_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.UnsubscribeMailbox_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnCancel.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnDelivered.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnError.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnProgress.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnRecipient.html

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnUpdate Occurs when the server sends a mailbox update
notification to the client.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the InternetMail class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the current message.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnTimeout.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnUpdate.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Dispose_overload_2.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Finalize.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Initializes a new instance of the InternetMail class.

[Visual Basic]
Public Sub New()

[C#]
public InternetMail();

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail Constructor

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

The fields of the InternetMail class are listed below. For a complete list of InternetMail class members,
see the InternetMail Members topic.

Public Static (Shared) Fields

mailPortImap4 A constant value which specifies the default port
number for a connection to a mail server.

mailPortImap4s A constant value which specifies the default port
number for a secure connection to a mail server.

mailPortPop3 A constant value which specifies the default port
number for a connection to a mail server.

mailPortPop3s A constant value which specifies the default port
number for a secure connection to a mail server.

mailPortSmtp A constant value which specifies the default port
number for submitting messages to a mail server.

mailTimeout A constant value which specifies the default
timeout period.

Public Instance Fields

Mailbox Gets the names of the available mailboxes for the
current user.

NameServer Change or return the Internet address for a
nameserver

Recipient Gets the recipients specified in the current
message.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail Fields

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.mailPortImap4.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.mailPortImap4s.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.mailPortPop3.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.mailPortPop3s.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.mailPortSmtp.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.mailTimeout.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Mailbox.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.NameServer.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Recipient.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

A constant value which specifies the default port number for a connection to a mail server.

[Visual Basic]
Public Const mailPortImap4 As Integer = 143

[C#]
public const int mailPortImap4 = 143;

Remarks
The default port number for the Internet Message Access Protocol is 143.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.mailPortImap4 Field

A constant value which specifies the default port number for a secure connection to a mail server.

[Visual Basic]
Public Const mailPortImap4s As Integer = 993

[C#]
public const int mailPortImap4s = 993;

Remarks
The default port number for a secure connection using IMAP4 over SSL/TLS is 993.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.mailPortImap4s Field

A constant value which specifies the default port number for a connection to a mail server.

[Visual Basic]
Public Const mailPortPop3 As Integer = 110

[C#]
public const int mailPortPop3 = 110;

Remarks
The default port number for the Post Office Protocol is 110.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.mailPortPop3 Field

A constant value which specifies the default port number for a secure connection to a mail server.

[Visual Basic]
Public Const mailPortPop3s As Integer = 995

[C#]
public const int mailPortPop3s = 995;

Remarks
The default port number for a secure connection using POP3 over SSL/TLS is 995.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.mailPortPop3s Field

A constant value which specifies the default port number for submitting messages to a mail server.

[Visual Basic]
Public Const mailPortSmtp As Integer = 25

[C#]
public const int mailPortSmtp = 25;

Remarks
The default port number for the Simple Mail Transfer Protocol is 25.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.mailPortSmtp Field

A constant value which specifies the default timeout period.

[Visual Basic]
Public Const mailTimeout As Integer = 20

[C#]
public const int mailTimeout = 20;

Remarks
The default timeout period is 20 seconds for each blocking network operation. An error will occur if the
operation does not complete within the specified time period.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.mailTimeout Field

The properties of the InternetMail class are listed below. For a complete list of InternetMail class
members, see the InternetMail Members topic.

Public Instance Properties

AllHeaders Gets a value which returns a list of all message
recipients.

AllRecipients Gets a value which returns a list of all message
recipients.

Attachment Gets and sets the name of the current file
attachment.

Bcc Gets and sets the blind carbon-copy header field
value.

Cc Gets and sets the carbon-copy header field value.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

ContentId Gets the content identifier for the current message
part.

ContentLength Gets the size of the data stored in the current
message part.

ContentType Gets and sets the content type of the selected
message part.

InternetMail Properties

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AllHeaders.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AllRecipients.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Attachment.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Bcc.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Cc.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateExpires.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateIssued.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateIssuer.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateName.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateStatus.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateStore.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateSubject.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CertificateUser.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CipherStrength.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ContentId.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ContentLength.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ContentType.html

Date Gets and sets the date for the current message.

Delivered Gets the number of recipients the message has
been delivered to.

Domain Gets and sets the local domain name.

Encoding Gets and sets the content encoding method used
for the current message part.

From Gets and sets the address of the user who sent the
message.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

IsConnected Gets a value which indicates if a connection to the
mail server has been established.

IsIdle Gets a value which indicates if the client is idle and
the current mailbox is being monitored for status
changes.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LastMessage Gets the number of the last message available in
the current mailbox.

LocalAddress Gets and sets the local Internet address that the
client will be bound to.

Localize Gets and sets a value which specifies if date and
time values should be localized.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Mailboxes Gets the number of mailboxes available on the
server.

MailboxFlags Gets one or more flags which identify
characteristics of the current mailbox.

MailboxMask Gets and sets the current mailbox wildcard mask.

MailboxName Gets and sets the name of the current mailbox.

MailboxPath Gets and sets the current mailbox reference path.

MailboxSize Gets the size of the current mailbox.

MailboxUID Gets the unique identifier for the current mailbox.

Mailer Gets and sets the name of the mailer application.

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Date.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Delivered.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Domain.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Encoding.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.From.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.HashStrength.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.IsConnected.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.IsIdle.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.IsInitialized.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.LastError.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.LastErrorString.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.LastMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.LocalAddress.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Localize.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.LocalName.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.LocalPort.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Mailboxes.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MailboxFlags.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MailboxMask.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MailboxName.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MailboxPath.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MailboxSize.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MailboxUID.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Mailer.html

Message Gets and sets the current message headers and
body.

MessageCount Gets the number of messages available in the
current mailbox.

MessageFlags Gets and sets one or more flags for the current
message.

MessageID Gets the current message identifier.

MessageIndex Gets and sets the current message number.

MessagePart Gets and sets the current section index in a
multipart message.

MessageParts Gets the number of sections in a multipart
message.

MessageSize Gets the size of the current message in bytes.

MessageText Gets and sets the text body of the current
message part.

MessageUID Gets the UID for the current message.

MimeVersion Gets and sets the MIME version number for the
current message.

NewMessages Gets the number of new messages available in the
current mailbox.

Options Gets and sets a value which specifies one or more
client options.

Organization Gets and sets the name of the organization that
originated the message.

Password Gets and sets the password used to authenticate
the client.

Priority Gets and sets the current message priority.

RecentMessages Gets the number of messages which have recently
arrived in the mailbox.

Recipients Gets the number of recipients specified in the
current message.

RelayPort Gets and sets a value which specifies the relay
server port number.

RelayServer Gets and sets a value which specifies the relay
server name or address.

ReplyTo Gets and sets the address of the user who should
receive replies to this message.

ReturnReceipt Gets and sets the address of the person who
should receive a message indicating that the
message has been read.

Secure Gets and sets a value which specifies if a secure
connection is established.

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Message.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageCount.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageFlags.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageID.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageIndex.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessagePart.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageParts.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageSize.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageText.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MessageUID.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.MimeVersion.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.NewMessages.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Options.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Organization.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Password.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Priority.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.RecentMessages.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Recipients.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.RelayPort.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.RelayServer.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ReplyTo.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ReturnReceipt.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Secure.html

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Sender Gets and sets the address of the user who
originated the message.

ServerName Gets and sets a value which specifies the host
name or address of the mail server.

ServerPort Gets and sets a value which specifies the remote
port number.

ServerType Gets and sets a value which specifies the type of
mail server the client is connecting to.

Subject Gets and sets the subject of the current message.

Subscribed Gets a value that specifies if the user has
subscribed to the currently selected mailbox.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

To Gets and sets the address of the message
recipient.

Trace Gets and sets a value which indicates if network
function tracing is enabled.

TraceFile Gets and sets a value which specifies the name of
the client function tracing logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the InternetMail class library.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SecureCipher.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SecureHash.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SecureKeyExchange.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SecureProtocol.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Sender.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ServerName.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ServerPort.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ServerType.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Subject.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Subscribed.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ThrowError.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Timeout.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.TimeZone.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.To.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Trace.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.TraceFile.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.TraceFlags.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.UserName.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Version.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Gets a value which returns a list of all message recipients.

[Visual Basic]
Public ReadOnly Property AllHeaders As String

[C#]
public string AllHeaders {get;}

Property Value
A string which contains the complete RFC822 headers for the message.

Remarks
The AllHeaders property will return all of the RFC 822 header values in a string. This includes the message
headers that are most commonly referred to, such as the To, From and Subject headers. Each header and
its value are separated by a colon, and terminated with a carriage return and linefeed (CRLF) pair.

The headers and their values returned by this property will not be identical to the header block in the
original message. If a header value is split across multiple lines, the text returned by this property will be
folded, with the complete header value on a single line of text and removing any extraneous whitespace. If
the header value has been encoded by the mail client, this property will return the decoded value, not the
original encoded value.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AllHeaders Property

Gets a value which returns a list of all message recipients.

[Visual Basic]
Public ReadOnly Property AllRecipients As String

[C#]
public string AllRecipients {get;}

Property Value
A string which contains a comma-separated list of all message recipients.

Remarks
The AllRecipients property returns a string value that contains a comma-separated list of all message
recipients. To individually enumerate through each of the recipient addresses, you can use the Recipient
property array and Recipients property.

Note that this property value will include those addresses specified by the Bcc property, even though they
are not included in the message header.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AllRecipients Property

Gets and sets the name of the current file attachment.

[Visual Basic]
Public ReadOnly Property Attachment As String

[C#]
public string Attachment {get;}

Property Value
A string which specifies the name of an attached file.

Remarks
The Attachment property specifies the name of the file attachment in a multipart message. When a new
part is selected that contains an attached file, the Attachment property is updated to reflect the attached
file's name.

This property is used by the attach and extract actions to specify the local file name that will be used.
Changing its value does not change the attached file name in the multipart message itself.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Attachment Property

Gets and sets the blind carbon-copy header field value.

[Visual Basic]
Public Property Bcc As String

[C#]
public string Bcc {get; set;}

Property Value
A string which specifies one or more blind carbon-copy recipients.

Remarks
The Bcc property returns the list of addresses that are to receive blind carbon copies of the message.
Setting the property creates or modifies the Bcc header field. Multiple addresses can be specified by
separating them with commas.

A blind carbon copy is when a copy of a message is delivered to a recipient, but that recipient is not listed
in the message headers. Because the other recipients of that same message will not see the address in the
headers, they will not know it was delivered to that person. As a result, the Bcc header field is not normally
exported when the ExportMessage method is called, or when the contents of the message are
referenced using the Message property. To include the Bcc header in the message, use the
exportAllHeaders option. Of course, if this option is specified, the addresses in the Bcc list will no longer
be blind to the other recipients.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Bcc Property

Gets and sets the bearer token used with OAuth 2.0 authentication.

[Visual Basic]
Public Property BearerToken As String

[C#]
public string BearerToken {get; set;}

Property Value
Returns a string which contains the bearer token. Assigning a value to this property sets the curent
authentication type to use OAuth 2.0 authentication and updates the bearer token.

Remarks
Assigning a value to the BearerToken property will automatically change the current authentication
method to use OAuth 2.0 and will clear the current Password property value.

You should only use an OAuth 2.0 authentication method if you understand the process of how to request
the access token. Obtaining a bearer token requires registering your application with the mail service
provider (e.g.: Microsoft or Google), getting a unique client ID associated with your application and then
requesting the bearer token using the appropriate scope for the service. Obtaining the initial token will
typically involve interactive confirmation on the part of the user, requiring they grant permission to your
application to access their mail account.

Your application should not store the bearer token for later use. They usually have a relatively short
lifespan, typically about an hour, and are designed to be used with the current client session. You should
specify offline access as part of the OAuth 2.0 scope, and store the refresh token provided by the service.
The refresh token has a much onger validity period and can be used to obtain a new access token when
needed.

If the current authentication method does not use OAuth 2.0, this property will return an empty string and
you should use the Password property to obtain the current user password.

See Also
InternetMail Class | SocketTools Namespace | Password Property | UserName Property | Connect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.BearerToken Property

Gets and sets the carbon-copy header field value.

[Visual Basic]
Public Property Cc As String

[C#]
public string Cc {get; set;}

Property Value
A string which specifies one or more carbon-copy recipients.

Remarks
The Cc property returns the list of addresses that were delivered carbon copies of the message. Setting
the property creates or modifies the Cc header field. Multiple addresses can be specified by separating
them with commas.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Cc Property

Get a value that specifies the date that the security certificate expires.

[Visual Basic]
Public ReadOnly Property CertificateExpires As String

[C#]
public string CertificateExpires {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateExpires property returns a string that specifies the date and time that the security
certificate expires. This property will return an empty string if a secure connection has not been
established with the remote host.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CertificateExpires Property

Get a value that specifies the date that the security certificate was issued.

[Visual Basic]
Public ReadOnly Property CertificateIssued As String

[C#]
public string CertificateIssued {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateIssued property returns a string that specifies the date and time that the security certificate
was issued. This property will return an empty string if a secure connection has not been established with
the remote host.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CertificateIssued Property

Get a value that provides information about the organization that issued the certificate.

[Visual Basic]
Public ReadOnly Property CertificateIssuer As String

[C#]
public string CertificateIssuer {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateIssuer property returns a string that contains information about the organization that
issued the server certificate. The string value is a comma separated list of tagged name and value pairs. In
the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CertificateIssuer Property

Gets and sets a value that specifies the name of the client certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the certificate name.

Remarks
The CertificateName property is used to specify the name of a client certificate to use when establishing
a secure connection. It is only required that you set this property value if the server requires a client
certificate for authentication. If this property is not set, a client certificate will not be provided to the server.
If a certificate name is specified, the certificate must have a private key associated with it, otherwise the
connection attempt will fail because the control will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
InternetMail Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CertificateName Property

Gets a value which indicates the status of the security certificate returned by the remote host.

[Visual Basic]
Public ReadOnly Property CertificateStatus As SecurityCertificate

[C#]
public InternetMail.SecurityCertificate CertificateStatus {get;}

Property Value
A SecurityCertificate enumeration value which specifies the status of the certificate.

Remarks
The CertificateStatus property is used to determine the status of the security certificate returned by the
remote host when a secure connection has been established. This property value should be checked after
the connection to the server has completed, but prior to beginning a transaction.

Note that if the certificate cannot be validated, the secure connection will not be automatically terminated.
It is the responsibility of your application to determine the best course of action to take if the certificate is
invalid. Even if the security certificate cannot be validated, the data exchanged with the remote host will
still be encrypted.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CertificateStatus Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when establishing a secure connection. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and therefore it is
not necessary to set this property value because that is the default location that will be used to search for
the certificate. This property is only used if the CertificateName property is also set to a valid certificate
name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the property
should specify the full path to the file and must contain both the certificate and private key in PKCS #12

InternetMail.CertificateStore Property

format. If the file is protected by a password, the CertificatePassword property must also be set to
specify the password.

See Also
InternetMail Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetMail.CertificatePassword.html

Gets a value that provides information about the organization that the server certificate was issued to.

[Visual Basic]
Public ReadOnly Property CertificateSubject As String

[C#]
public string CertificateSubject {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateSubject property returns a string that contains information about the organization that the
server certificate was issued to. The string value is a comma separated list of tagged name and value pairs.
In the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CertificateSubject Property

Gets a value that indicates the length of the key used by the encryption algorithm for a secure connection.

[Visual Basic]
Public ReadOnly Property CipherStrength As Integer

[C#]
public int CipherStrength {get;}

Property Value
An integer value which specifies the encryption key length if a secure connection has been established;
otherwise a value of 0 is returned.

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure data
stream. Common values returned by this property are 128 and 256. A key length of 40 or 56 bits is
considered insecure and subject to brute force attacks. 128-bit and 256-bit keys are considered secure. If
this property returns a value of 0, this means that a secure connection has not been established with the
remote host.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CipherStrength Property

Gets the content identifier for the current message part.

[Visual Basic]
Public ReadOnly Property ContentId As String

[C#]
public string ContentId {get;}

Property Value
A string which specifies the content identifier.

Remarks
The ContentId property returns the unique content identifier string for the current message part. This
multipart header field is not commonly used, and if undefined, will return an empty string.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ContentId Property

Gets the size of the data stored in the current message part.

[Visual Basic]
Public ReadOnly Property ContentLength As Integer

[C#]
public int ContentLength {get;}

Property Value
An integer which specifies the size of the current message part in bytes.

Remarks
The ContentLength property returns the size of the data stored in the selected message part. This
property is read-only, and is updated when the current message part changes.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ContentLength Property

Gets and sets the content type of the selected message part.

[Visual Basic]
Public Property ContentType As String

[C#]
public string ContentType {get; set;}

Property Value
A string which specifies the content type.

Remarks
The ContentType property returns the MIME type for the currently selected message part. The type string
consists of a primary type and secondary sub-type separated by a slash, followed by one or more optional
parameters delimited by semi-colons. For example, this is a common content type for text messages:

text/plain; charset=utf-8

The text designation indicates that this message part contains readable text, and the plain sub-type
indicates that the text does not contain any special encoding. The optional parameter which follows the
content type provides additional information about the content. In this example, it specifies which
character set should be used to display the text. The two common character sets used are UTF-8 and US-
ASCII.

There are seven predefined, standard content types, each with their own sub-types. The following table
lists these types, along with some common sub-types that are found in messages:

Type Description

text Indicates that the message part contains text. This
is the most common type found in mail messages;
if no content type is explicitly defined, then it is
assumed to be plain text. Examples are text/plain,
text/richtext and text/html.

image Indicates that the message part contains a
graphics image. Examples are image/gif and
image/jpeg.

audio Indicates that the message part contains audio
data; the basic sub-type is 8-bit PCM encoded
audio (commonly found with the .au filename
extension). Examples are audio/basic, audio/aiff
and audio/wav.

video Indicates that the message part contains a video
clip in the specified format. Examples are
video/mpeg and video/avi.

application Indicates that the message part contains
application specific data, typically used with the
octet-stream sub-type to indicate binary file
attachments for executable programs, compressed

InternetMail.ContentType Property

file archives, etc. Examples are application/octet-
stream and application/postscript.

message Indicates that the message part contains a
complete RFC 822 compliant message, complete
with headers. An example is message/rfc822.

multipart Indicates that this is part of a mixed message (a
message that contains multiple parts of different
content types). Examples are multipart/alternative
and multipart/mixed.

The three most common content types that are used in applications are text/plain for the mail message
body, application/octet-stream for binary file attachments and multipart/mixed for messages that contain
both text and attached files. For more information about the different content types, refer to the
Multipurpose Internet Mail Extensions (MIME) standards document RFC 1521.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets the date for the current message.

[Visual Basic]
Public Property Date As String

[C#]
public string Date {get; set;}

Property Value
A string which specifies the date in RFC 822 format.

Remarks
The Date property returns the value of the date field in the current message header. Setting this property
causes the date field to be updated with the specified value. When setting the date, any one of the
following formats may be used:

Format Example

mm/dd/yy[yy] hh:mm[:ss] 03/01/2006 12:00:00

yy[yy]/mm/dd hh:mm[:ss] 2006/03/01 12:00:00

dd mmm yy[yy] hh:mm[:ss] 01 Mar 2006 12:00:00

mmm dd yy[yy] hh:mm[:ss] Mar 01 2006 12:00:00

Any extraneous information that may be included in the date string, such as the day of the week, is
ignored. In addition to the date and time, the string may also include a time zone specification at the end.
If no time zone is specified, the current time zone is used.

When specifying a time zone, the value should either be prefixed by a plus sign (+) to indicate that the
time zone is to the east of GMT, or a minus sign (-) to indicates that it's to the west. Four digits follow, with
the first two indicating the number of hours east or west of GMT, and the last two digits indicating the
number of minutes. Therefore, a value of -0800 means that the time zone is eight hours to the west of
GMT, or in other words, the Pacific time zone.

Regardless of the format of the string assigned to the property, it always returns the date in the same
format (which conforms to the RFC 822 specification). Using the above examples, the date would be
returned as "Wed, 01 Mar 2006 12:00:00 -0800" if you are located in the Pacific timezone.

The Localize property affects how dates are processed by the control. If enabled, dates are automatically
adjusted for the local time zone. By default, localization is disabled.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Date Property

Gets the number of recipients the message has been delivered to.

[Visual Basic]
Public ReadOnly Property Delivered As Integer

[C#]
public int Delivered {get;}

Property Value
An integer value which specifies the number of recipients the message was successfully delivered to.

Remarks
The Delivered property returns the number of recipients that the message was successfully delivered to
using the SendMessage method. This property is updated after the method returns, and can be
compared against the value of the Recipients property to check that the message was submitted to all
recipients.

It is important to note that there is no guarantee that the recipient has retrieved and read the message,
only that it has been submitted successfully to the mail server for delivery.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Delivered Property

Gets and sets the local domain name.

[Visual Basic]
Public Property Domain As String

[C#]
public string Domain {get; set;}

Property Value
A string value which specifies the local domain name.

Remarks
The Domain property specifies the domain name of the local host, and is used to identify the current
system when sending messages. If this property is not defined, then the local host name will be used.

Note that explicitly setting the Domain property to a value that does not match your local host name may
cause some mail servers to reject any messages that you attempt to send.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Domain Property

Gets and sets the content encoding method used for the current message part.

[Visual Basic]
Public Property Encoding As String

[C#]
public string Encoding {get; set;}

Property Value
A string which specifies the encoding type.

Remarks
The Encoding property returns the method used for encoding the current message part. Setting this
property causes the Content-Transfer-Encoding header value to be updated. The following values are
commonly used:

Type Description

7bit The default transfer encoding type, which consists
of printable ASCII characters.

8bit Printable ASCII characters, including those
characters with the high-bit set as is common with
the ISO Latin-1 character set.

binary All characters; binary transfer encoding is rarely
used.

quoted-printable Printable ASCII characters, with non-printable or
extended characters represented using their
hexadecimal equivalents.

base64 The transfer encoding type commonly used to
convert binary data into 7-bit ASCII characters so
that it may be transported safely through the mail
system.

x-uuencode A transfer encoding type similar in function to the
base64 encoding method.

Note that setting this property only updates the Content-Transfer-Encoding header value. To control the
actual encoding method used for attachments, specify the encoding method when calling the AttachFile
method.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Encoding Property

Gets and sets the address of the user who sent the message.

[Visual Basic]
Public Property From As String

[C#]
public string From {get; set;}

Property Value
A string which specifies the sender of the message.

Remarks
The From property returns the address of the user who sent the message. Setting the property causes the
From header field to be updated with the new value.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.From Property

Gets a value which specifies the length of the message digest that was selected for a secure connection.

[Visual Basic]
Public ReadOnly Property HashStrength As Integer

[C#]
public int HashStrength {get;}

Property Value
An integer value which specifies the length of the message digest if a secure connection has been
established; otherwise a value of 0 is returned.

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that was
selected. Common values returned by this property are 128 and 160. If this property returns a value of 0,
this means that a secure connection has not been established with the remote host.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.HashStrength Property

Gets a value which indicates if a connection to the mail server has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the mail
server. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.IsConnected Property

Gets a value which indicates if the client is idle and the current mailbox is being monitored for status
changes.

[Visual Basic]
Public ReadOnly Property IsIdle As Boolean

[C#]
public bool IsIdle {get;}

Property Value
Returns true if the client is idle and the current mailbox is being monitored; otherwise returns false.

Remarks
The IsIdle property can be used to determine if the Idle method has been called to place the client
session in an idle state, monitoring the connection for any status messages sent by the server. Typically
this is done to allow the application to be notified asynchronously whenever a new message is stored in
the mailbox, or when a message has been expunged.

The worker thread that monitors the client connection in the background can terminate if an IMAP
command is sent to the server, if the Cancel method is called or if the client disconnects from the server.
This property enables the application to determine if this background thread is still active or not.

See Also
InternetMail Class | SocketTools Namespace | Idle Method | OnUpdate Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.IsIdle Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required libraries or not
being able to access the system registry.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.IsInitialized Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public InternetMail.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.LastErrorString Property

Gets the number of the last message available in the current mailbox.

[Visual Basic]
Public ReadOnly Property LastMessage As Integer

[C#]
public int LastMessage {get;}

Property Value
An integer value which specifies the number of messages.

Remarks
The LastMessage property returns the number of the last message available in the currently selected
mailbox. This value may be different than the value returned by the MessageCount property if one or
more messages have been deleted. This is because the MessageCount property returns the number of
available messages, and this value will decrement whenever a message is flagged for deletion. The
LastMessage property value is constant and will always return the last message number in the mailbox,
regardless if any messages have been deleted.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.LastMessage Property

Gets and sets the local Internet address that the client will be bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address in dotted notation.

Remarks
The LocalAddress property is used to specify the local Internet address that the client will be bound to
when a connection is established with a remote host. By default this property is not assigned a value,
which specifies that the client should be bound to any appropriate network interface on the local system.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.LocalAddress Property

Gets and sets a value which specifies if date and time values should be localized.

[Visual Basic]
Public Property Localize As Boolean

[C#]
public bool Localize {get; set;}

Property Value
A boolean value which specifies if date and time values should be localized.

Remarks
The Localize property is used to enable or disable localization features of the class. Currently this only
affects the way in which dates are processed by the class. If set to true, the control will adjust for the local
time zone when setting and reading the Date property. The default value for this property is false.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Localize Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.LocalName Property

The class used to return the available mailboxes for the current user.

For a list of all members of this type, see InternetMail.MailboxArray Members.

System.Object
 SocketTools.InternetMail.MailboxArray

[Visual Basic]
<DefaultMember(MemberName:="Item")>
Public Class InternetMail.MailboxArray

[C#]
[DefaultMember(MemberName="Item")]
public class InternetMail.MailboxArray

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The MailboxArray class returns the available mailboxes for the current user. A read-only instance of this
class is created by the class constructor and accessed using the Mailbox array.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
InternetMail.MailboxArray Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MailboxArray Class

InternetMail.MailboxArray overview

Public Instance Properties

Count Returns the maximum number of elements in the
array.

Item Gets the name of a mailbox.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail.MailboxArray Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MailboxArray Members

The properties of the InternetMail.MailboxArray class are listed below. For a complete list of
InternetMail.MailboxArray class members, see the InternetMail.MailboxArray Members topic.

Public Instance Properties

Count Returns the maximum number of elements in the
array.

Item Gets the name of a mailbox.

See Also
InternetMail.MailboxArray Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MailboxArray Properties

Returns the maximum number of elements in the array.

[Visual Basic]
Public ReadOnly Property Count As Integer

[C#]
public int Count {get;}

Property Value
An integer value.

Remarks
This property will return the same value as the Mailboxes property and is used to determine the
maximum index value for the Mailbox array.

See Also
InternetMail.MailboxArray Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MailboxArray.Count Property

Gets the name of a mailbox.

[Visual Basic]
Public Default ReadOnly Property Item(_
 ByVal index As Integer _
) As String

[C#]
public string this[
 int index
] {get;}

Parameters
index

An integer value which specifies the index into the array.

Property Value
A string which specifies the name of a mailbox.

See Also
InternetMail.MailboxArray Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MailboxArray.Item Property

Gets the number of mailboxes available on the server.

[Visual Basic]
Public ReadOnly Property Mailboxes As Integer

[C#]
public int Mailboxes {get;}

Property Value
An integer value which specifies the number of available mailboxes.

Remarks
The Mailboxes property returns the total number of mailboxes available to the current account on the
server. This property can be used in conjunction with the Mailbox array to enumerate the names of all of
the mailboxes which can be selected by the client.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Mailboxes Property

Gets one or more flags which identify characteristics of the current mailbox.

[Visual Basic]
Public ReadOnly Property MailboxFlags As ImapFlags

[C#]
public InternetMail.ImapFlags MailboxFlags {get;}

Property Value
An ImapFlags enumeration value which specifies one or more mailbox flags.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MailboxFlags Property

Gets and sets the current mailbox wildcard mask.

[Visual Basic]
Public Property MailboxMask As String

[C#]
public string MailboxMask {get; set;}

Property Value
A string which specifies the current mailbox wildcard mask.

Remarks
The MailboxMask property returns the current mailbox wildcard mask. If no wildcard mask has been
specified by the client, this property will return an empty string.

Setting the MailboxMask property will determine which mailboxes are returned by the Mailbox array.
Wildcards may include the asterisk (which matches any mailbox as well as any child mailboxes) and the
percent sign (which matches any mailbox, but does not match any child mailboxes). This property may be
used in conjunction with the MailboxPath property to further qualify which mailboxes are returned.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MailboxMask Property

Gets and sets the name of the current mailbox.

[Visual Basic]
Public Property MailboxName As String

[C#]
public string MailboxName {get; set;}

Property Value
A string that specifies the name of the current mailbox.

Remarks
The MailboxName property returns the name of the currently selected mailbox. If no mailbox has been
selected by the client, this property will return an empty string.

Setting the MailboxName property will select a new mailbox in read-write mode. If the client has a
different mailbox currently selected, that mailbox will be closed and any messages marked for deletion will
be expunged. To prevent deleted messages from being removed from the previous mailbox, call the
UnselectMailbox method prior to selecting the new mailbox. Setting the MailboxName property to an
empty string will cause the current mailbox to be unselected, and a new mailbox will not be selected.
Before the application can access any messages, it must select a new mailbox.

Selecting a new mailbox will automatically update those properties which provide information about the
current mailbox, such as the MailboxFlags and MailboxUID properties. If an application wishes to
update the information for the current mailbox, simply set the MailboxName property again with the
same mailbox name. Note that this will not cause any messages marked for deletion to be expunged.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names may or
may not be case-sensitive depending on the IMAP server's operating system and implementation.

If the mailbox name contains international characters then it is automatically encoded using a modified
version of UTF-7 encoding. For example, if a mailbox is named "Håndskrift", the mailbox name created on
the server will be the string "H&AOU-ndskrift". The control will automatically decode UTF-7 encoded
mailbox names, making the conversion transparent to the application.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MailboxName Property

Gets and sets the current mailbox reference path.

[Visual Basic]
Public Property MailboxPath As String

[C#]
public string MailboxPath {get; set;}

Property Value
A string which specifies the current mailbox reference path.

Remarks
The MailboxPath property returns the current mailbox reference path. If no path has been specified by
the client, this property will return an empty string.

Setting the MailboxPath property will determine which mailboxes are returned by the Mailbox array.
Typically this is used to specify a subdirectory where mail folders are stored for the current user. Note that
some mail servers may not permit absolute reference paths, and in most cases the path should include a
trailing slash. This property may be used in conjunction with the MailboxMask property to further qualify
which mailboxes are returned.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MailboxPath Property

Gets the size of the current mailbox.

[Visual Basic]
Public ReadOnly Property MailboxSize As Integer

[C#]
public int MailboxSize {get;}

Property Value
An integer value which specifies the size of the mailbox in bytes.

Remarks
The MailboxSize property returns the combined size of all messages in the current mailbox. Referencing
this property will cause the current thread to block and may require a significant amount of time to
calculate the mailbox size if there are a large number of messages in the mailbox. Because it can
potentially result in long delays, it is not recommended that an application calculate the mailbox size
unless it is absolutely necessary.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MailboxSize Property

Gets the unique identifier for the current mailbox.

[Visual Basic]
Public ReadOnly Property MailboxUID As Integer

[C#]
public int MailboxUID {get;}

Property Value
An integer value which specifies the mailbox UID.

Remarks
The MailboxUID property returns an integer value which uniquely identifies the mailbox and corresponds
to the UIDVALIDITY value returned by the IMAP server. The actual value is determined by the server and
should be considered opaque. The protocol specification requires that a mailbox's UID must not change
unless the mailbox contents are modified or existing messages in the mailbox have been assigned new
UIDs.

An application can use the MailboxUID property value in combination with the MessageUID property in
order to uniquely identify a message on the server. However, the application must take into consideration
that the IMAP server can reassign new message UIDs when the mailbox is modified. If the mailbox and
message UIDs are being stored on the local system to track what messages have been retrieved from the
server, the application must check the UID of the mailbox whenever it is selected. If the mailbox UID has
changed, this means that the UIDs for the messages in that mailbox may have changed. The client should
resynchronize with the server, and update it's local copy of that mailbox.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MailboxUID Property

Gets and sets the name of the mailer application.

[Visual Basic]
Public Property Mailer As String

[C#]
public string Mailer {get; set;}

Property Value
A string which specifies the name of the mailer application.

Remarks
The Mailer property returns the value of the X-Mailer field in the current message header. Setting this
property causes the field to be updated with the specified value. This is typically used to identify the
program which generated the message.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Mailer Property

Gets and sets the current message headers and body.

[Visual Basic]
Public Property Message As String

[C#]
public string Message {get; set;}

Property Value
A string which contains the complete message.

Remarks
The Message property returns the current message, including the headers and all message parts, as a
string. Setting this property will cause the current message to be cleared and replaced by the new value.
The contents must follow the standard specifications for a message. If the property is set to an empty
string, the current message is cleared.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Message Property

Gets the number of messages available in the current mailbox.

[Visual Basic]
Public ReadOnly Property MessageCount As Integer

[C#]
public int MessageCount {get;}

Property Value
An integer value which specifies the number of messages.

Remarks
The MessageCount property returns the number of messages available to be retrieved from the currently
selected mailbox.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MessageCount Property

Gets and sets one or more flags for the current message.

[Visual Basic]
Public Property MessageFlags As ImapFlags

[C#]
public InternetMail.ImapFlags MessageFlags {get; set;}

Property Value
An ImapFlags enumeration value which specifies one or more message flags.

Remarks
The MessageFlags property returns information about the currently selected message specified by the
Message property. Setting the MessageFlags property changes the flags for the currently selected
message. Multiple bit flags can be combined using the bitwise Or operator. An application can test if a
flag is set by using the bitwise And operator.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MessageFlags Property

Gets the current message identifier.

[Visual Basic]
Public Property MessageID As String

[C#]
public string MessageID {get; set;}

Property Value
A string which specifies the message identifier.

Remarks
The MessageID property returns a unique string that can be used to identify the message.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MessageID Property

Gets and sets the current message number.

[Visual Basic]
Public Property MessageIndex As Integer

[C#]
public int MessageIndex {get; set;}

Property Value
An integer value which specifies the current message number.

Remarks
The Message property sets or returns the message number for the currently selected mailbox. Message
numbers range from 1 through the number of messages available on the server, as returned by the
MessageCount property. Setting the Message property to an invalid message number will generate an
exception.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MessageIndex Property

Gets and sets the current section index in a multipart message.

[Visual Basic]
Public Property MessagePart As Integer

[C#]
public int MessagePart {get; set;}

Property Value
An integer which specifies the current message part.

Remarks
The MessagePart property returns the current message part index. All messages have at least one part,
which consists of one or more header fields, followed by the body of the message. The default part, part
0, refers to the main message header and body. If the message contains multiple parts (as with a message
that contains one or more attached files), the Part property can be set to refer to that specific part of the
message.

For example, messages with file attachments typically consist of a message part which describes the
contents of the attachment, followed by the attachment itself. For a message with one attached file, there
would be a total of three parts. Part 0 would refer to the main message part, which contains the headers
such as From, To, Subject, Date and so on. For multipart messages, part 0 typically does not have a
message body, since any text is usually created as a separate part (for those messages that do not contain
multiple parts, the part 0 body contains the text message). Part 1 would contain the text describing the
attachment, and part 2 would contain the attachment itself. If the attached file is binary, then the transfer
encoding type would usually be base64.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MessagePart Property

Gets the number of sections in a multipart message.

[Visual Basic]
Public ReadOnly Property MessageParts As Integer

[C#]
public int MessageParts {get;}

Property Value
An integer value which specifies the number of message parts.

Remarks
The MessageParts property returns the number of parts in the current message. All messages have at
least one part, referenced as part 0. Multipart messages will consist of additional parts which may be
accessed by setting the MessagePart property.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MessageParts Property

Gets the size of the current message in bytes.

[Visual Basic]
Public ReadOnly Property MessageSize As Integer

[C#]
public int MessageSize {get;}

Property Value
An integer value which specifies the size of the message.

Remarks
The MessageSize property returns the size of the current message in bytes. The size includes the header
and body portion of the message.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MessageSize Property

Gets and sets the text body of the current message part.

[Visual Basic]
Public Property MessageText As String

[C#]
public string MessageText {get; set;}

Property Value
A string which contains the body of the current message part.

Remarks
The MessageText property returns the body of the current message part. Setting this property replaces
the body of the current message part with the new text.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MessageText Property

Gets the UID for the current message.

[Visual Basic]
Public ReadOnly Property MessageUID As String

[C#]
public string MessageUID {get;}

Property Value
An string value which specifies the current message UID.

Remarks
The MessageID property returns a string which uniquely identifies the message on the server. The
identifier is assigned by the mail server, and retains the same value across multiple client sessions. This
value is typically used when the client wants to leave a message on the mail server, but does not wish to
retrieve the message contents multiple times. For example, the client can store the unique ID for each
message that it retrieves, but does not delete from the server. The next time that it connects to the mail
server, it compares the unique ID of a message against the stored values. If there is a match, the client
knows that the message has already been retrieved, and does not need to do so again.

This property requires that the server support the optional UIDL command. If the command is not
supported, this property will always return an empty string. Note that the unique ID for the message is not
the same as the Message-ID header field in the message itself.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MessageUID Property

Gets and sets the MIME version number for the current message.

[Visual Basic]
Public Property MimeVersion As String

[C#]
public string MimeVersion {get; set;}

Property Value
A string that specifies the version number.

Remarks
The MimeVersion property returns the version number for the current message. Setting this property
causes the MIME-Version header value to be changed to the specified value. An empty string causes the
MIME version number to be set to the default value of "1.0". It is recommended that you do not change
the value of this property.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MimeVersion Property

The class used to return the nameservers configured for the local host.

For a list of all members of this type, see InternetMail.NameServerArray Members.

System.Object
 SocketTools.InternetMail.NameServerArray

[Visual Basic]
<DefaultMember(MemberName:="Item")>
Public Class InternetMail.NameServerArray

[C#]
[DefaultMember(MemberName="Item")]
public class InternetMail.NameServerArray

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The NameServerArray class returns the nameservers configured for the local host. A read-only instance
of this class is created by the InternetMail class constructor and accessed using the NameServer array.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
InternetMail.NameServerArray Members | SocketTools Namespace | NameServer Field

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.NameServerArray Class

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetMail.NameServer.html

InternetMail.NameServerArray overview

Public Instance Properties

Count Returns the maximum number of elements in the
array.

Item Returns the Internet address for the specified
nameserver.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail.NameServerArray Class | SocketTools Namespace | NameServer Field

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.NameServerArray Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetMail.NameServer.html

The properties of the InternetMail.NameServerArray class are listed below. For a complete list of
InternetMail.NameServerArray class members, see the InternetMail.NameServerArray Members topic.

Public Instance Properties

Count Returns the maximum number of elements in the
array.

Item Returns the Internet address for the specified
nameserver.

See Also
InternetMail.NameServerArray Class | SocketTools Namespace | NameServer Field

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.NameServerArray Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetMail.NameServer.html

Returns the maximum number of elements in the array.

[Visual Basic]
Public ReadOnly Property Count As Integer

[C#]
public int Count {get;}

Property Value
An integer value.

Remarks
This property will return the maximum number of nameservers that may be configured.

See Also
InternetMail.NameServerArray Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.NameServerArray.Count Property

Returns the Internet address for the specified nameserver.

[Visual Basic]
Public Default Property Item(_
 ByVal index As Integer _
) As String

[C#]
public string this[
 int index
] {get; set;}

Parameters
index

An integer value which specifies the index into the array.

Property Value
A string which specifies an Internet address using dot notation.

See Also
InternetMail.NameServerArray Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.NameServerArray.Item Property

Gets the number of new messages available in the current mailbox.

[Visual Basic]
Public ReadOnly Property NewMessages As Integer

[C#]
public int NewMessages {get;}

Property Value
An integer value which specifies the number of new, unread messages in the current mailbox.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.NewMessages Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As InternetMailOptions

[C#]
public InternetMail.InternetMailOptions Options {get; set;}

Property Value
Returns one or more InternetMailOptions enumeration flags which specify the options for the client. The
default value for this property is optionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Options Property

Gets and sets the name of the organization that originated the message.

[Visual Basic]
Public Property Organization As String

[C#]
public string Organization {get; set;}

Property Value
A string which specifies the organization name.

Remarks
The Organization property returns the name of the organization that originated the current message.
Setting this property updates the specified header value. Note that many mail clients do not generate an
Organization header field, in which case the property value will be an empty string.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Organization Property

Gets and sets the password used to authenticate the client.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password.

Remarks
The Password property specifies the password used to authenticate the client session. This property is
used as the default value for the Connect method if no password is specified as an argument.

Assigning a value to his property will clear any OAuth 2.0 bearer token which may have been previously
assigned to the BearerToken property and default authentication methods will be used with the mail
service.

If the BearerToken property has been set, the client will use OAuth 2.0 for authentication and this
property will return an empty string.

See Also
InternetMail Class | SocketTools Namespace | BearerToken Property | UserName Property | Connect
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Password Property

Gets and sets the current message priority.

[Visual Basic]
Public Property Priority As String

[C#]
public string Priority {get; set;}

Property Value
A string which specifies the message priority.

Remarks
The Priority property returns the current priority for the message. Setting this property value causes the
X-Priority header to be updated with the specified value.

There is no standard for specifying message priority. The convention is to use a number from 1-5, with 1
indicating the highest priority, 3 as normal priority and 5 as the lowest priority. Some mailers follow the
number with a space and then text that describes the priority level.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Priority Property

Gets the number of messages which have recently arrived in the mailbox.

[Visual Basic]
Public ReadOnly Property RecentMessages As Integer

[C#]
public int RecentMessages {get;}

Property Value
An integer value which specifies the number of recent messages.

Remarks
The RecentMessages property returns the number of messages which have been recently added to the
currently selected mailbox. This property is particularly useful when the INBOX mailbox is selected because
it enables the application to check if any new messages have arrived.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecentMessages Property

The class used to return the recipient addresses for the current message.

For a list of all members of this type, see InternetMail.RecipientArray Members.

System.Object
 SocketTools.InternetMail.RecipientArray

[Visual Basic]
<DefaultMember(MemberName:="Item")>
Public Class InternetMail.RecipientArray

[C#]
[DefaultMember(MemberName="Item")]
public class InternetMail.RecipientArray

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RecipientArray class returns the recipient addresses for the current message. A read-only instance of
this class is created by the InternetMail class constructor and accessed using the Recipient array.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
InternetMail.RecipientArray Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecipientArray Class

InternetMail.RecipientArray overview

Public Instance Properties

Count Returns the maximum number of elements in the
array.

Item Gets the email address of a recipient specified in
the current message.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Gets the recipient addresses for the current
message.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail.RecipientArray Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecipientArray Members

The properties of the InternetMail.RecipientArray class are listed below. For a complete list of
InternetMail.RecipientArray class members, see the InternetMail.RecipientArray Members topic.

Public Instance Properties

Count Returns the maximum number of elements in the
array.

Item Gets the email address of a recipient specified in
the current message.

See Also
InternetMail.RecipientArray Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecipientArray Properties

Returns the maximum number of elements in the array.

[Visual Basic]
Public ReadOnly Property Count As Integer

[C#]
public int Count {get;}

Property Value
An integer value.

Remarks
This property will return the same value as the Recipients property and is used to determine the
maximum index value for the Recipient array.

See Also
InternetMail.RecipientArray Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecipientArray.Count Property

Gets the email address of a recipient specified in the current message.

[Visual Basic]
Public Default ReadOnly Property Item(_
 ByVal index As Integer _
) As String

[C#]
public string this[
 int index
] {get;}

Parameters
index

An integer value which specifies the index into the array.

Property Value
A string which contains an email address.

See Also
InternetMail.RecipientArray Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecipientArray.Item Property

The methods of the InternetMail.RecipientArray class are listed below. For a complete list of
InternetMail.RecipientArray class members, see the InternetMail.RecipientArray Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Gets the recipient addresses for the current
message.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail.RecipientArray Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecipientArray Methods

Gets the recipient addresses for the current message.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string which specifies the email addresses for the recipients of the current message.

Remarks
The ToString method returns a comma separated list of email addresses for all recipients specified in the
current message.

See Also
InternetMail.RecipientArray Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecipientArray.ToString Method

Gets the number of recipients specified in the current message.

[Visual Basic]
Public ReadOnly Property Recipients As Integer

[C#]
public int Recipients {get;}

Property Value
An integer which specifies the number of recipients.

Remarks
The Recipients property returns the number of recipient addresses that have been specified in the
current message. This includes all of the addresses listed in the To, Cc and Bcc header fields. This property
can be used in conjunction with the Recipient array to enumerate all of the recipient addresses in the
message.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Recipients Property

Gets and sets a value which specifies the relay server port number.

[Visual Basic]
Public Property RelayPort As Integer

[C#]
public int RelayPort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RelayPort property is used to set the port number that will be used to establish a connection with a
relay server when sending a message.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RelayPort Property

Gets and sets a value which specifies the relay server name or address.

[Visual Basic]
Public Property RelayServer As String

[C#]
public string RelayServer {get; set;}

Property Value
A string which specifies a host name.

Remarks
The RelayServer property can be used to set the host name for the relay mail server that will be
responsible for delivering the message.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RelayServer Property

Gets and sets the address of the user who should receive replies to this message.

[Visual Basic]
Public Property ReplyTo As String

[C#]
public string ReplyTo {get; set;}

Property Value
A string that specifies an email address.

Remarks
The ReplyTo property returns the address of the user who should receive replies to the current message.
Setting this property updates the Reply-To header with the specified value.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ReplyTo Property

Gets and sets the address of the person who should receive a message indicating that the message has
been read.

[Visual Basic]
Public Property ReturnReceipt As String

[C#]
public string ReturnReceipt {get; set;}

Property Value
A string value which specifies an email address.

Remarks
The ReturnReceipt property returns the address of the person who should receive a message indicating
that the current message has been read. Setting this property updates the Disposition-Notification-To
header field with the specified value.

Setting the ReturnReceipt property does not automatically cause an acknowledgement to be returned to
the sender. An application is responsible for checking to make sure the header field contains a valid
address and then generating the return receipt message.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ReturnReceipt Property

Gets and sets a value which specifies if a secure connection is established.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connection is established; otherwise returns false. The default value is false.

Remarks
The Secure property determines if a secure connection is established with the remote host. The default
value for this property is false, which specifies that a standard connection to the server is used. To
establish a secure connection, the application should set this property value to true prior to calling the
Connect method. Once the connection has been established, the client may exchange data with the
server as with standard connections.

It is strongly recommended that any application that sets this property true use error handling to trap an
errors that may occur. If the control is unable to initialize the security libraries, or otherwise cannot create
a secure session for the client, an exception may be generated when this property value is set.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Secure Property

Gets a value that specifies the encryption algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureCipher As SecureCipherAlgorithm

[C#]
public InternetMail.SecureCipherAlgorithm SecureCipher {get;}

Property Value
A SecureCipherAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureCipher property returns a value which identifies the algorithm used to encrypt the data
stream. If a secure connection has not been established, this property will return a value of cipherNone.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SecureCipher Property

Gets a value that specifies the message digest algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureHash As SecureHashAlgorithm

[C#]
public InternetMail.SecureHashAlgorithm SecureHash {get;}

Property Value
A SecureHashAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureHash property returns a value which identifies the message digest (hash) algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of hashNone.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SecureHash Property

Gets a value that specifies the key exchange algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureKeyExchange As SecureKeyAlgorithm

[C#]
public InternetMail.SecureKeyAlgorithm SecureKeyExchange {get;}

Property Value
A SecureKeyAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureKeyExchange property returns a value which identifies the key exchange algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of keyExchangeNone.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SecureKeyExchange Property

Gets and sets a value which specifies the protocol used for a secure connection.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public InternetMail.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when establishing a secure
connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when establishing a
secure connection with a server or accepting a secure connection from a client. By default, the class will
attempt to use either SSL v3 or TLS v1 to establish the connection, with the appropriate protocol
automatically selected based on the capabilities of the remote host. It is recommended that you only
change this property value if you fully understand the implications of doing so. Assigning a value to this
property will override the default protocol and force the class to attempt to use only the protocol
specified.

Multiple security protocols may be specified by combining them using a bitwise or operator. After a
connection has been established, this property will identify the protocol that was selected. Attempting to
set this property after a connection has been established will result in an exception being thrown. This
property should only be set after setting the Secure property to true and before calling the Accept or
Connect methods.

In some cases, a server may only accept a secure connection if the TLS v1 protocol is specified. If the
security protocol is not compatible with the server, then the connection will fail with an error indicating
that the control is unable to establish a security context for the session. In this case, try assigning the
property to protocolTLS1 and attempt the connection again.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SecureProtocol Property

Gets and sets the address of the user who originated the message.

[Visual Basic]
Public Property Sender As String

[C#]
public string Sender {get; set;}

Property Value
A string which specifies the sender's email address.

Remarks
The Sender property returns the address of the user who originated the message. Setting this property
updates the X-Sender header with the specified value.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Sender Property

Gets and sets a value which specifies the host name or address of the mail server.

[Visual Basic]
Public Property ServerName As String

[C#]
public string ServerName {get; set;}

Property Value
A string which specifies a server host name or address.

Remarks
The ServerName property can be used to set the host name for the mail server that you want to establish
a connection to.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ServerName Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property ServerPort As Integer

[C#]
public int ServerPort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The ServerPort property is used to set the port number that will be used to establish a connection with a
mail server.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ServerPort Property

Gets and sets a value which specifies the type of mail server the client is connecting to.

[Visual Basic]
Public Property ServerType As MailServerType

[C#]
public InternetMail.MailServerType ServerType {get; set;}

Property Value
Returns a MailServerType enumeration value which specifies the type of mail server, either using the Post
Office Protocol or the Internet Message Access Protocol.

Remarks
If this property value is specified as serverUnknown, the actual server type will be determined by the
value of the ServerPort property, if the port number is recognized as a standard service port. If the server
type cannot be automatically identified, an error will be returned when the Connect method is called.

If you are connecting using a non-standard port number, you should always initialize this property value
to the correct server type before attempting to establish a connection.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ServerType Property

Gets and sets the subject of the current message.

[Visual Basic]
Public Property Subject As String

[C#]
public string Subject {get; set;}

Property Value
A string which specifies the subject of the message.

Remarks
The Subject property returns the subject of the current message. Setting this property updates the
Subject header with the specified value. Note that not all messages have subjects, in which case this
property will be set to an empty string.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Subject Property

Gets a value that specifies if the user has subscribed to the currently selected mailbox.

[Visual Basic]
Public Property Subscribed As Boolean

[C#]
public bool Subscribed {get; set;}

Property Value
A boolean value that specifies if the user has subscribed to the current mailbox.

Remarks
The Subscribed property is used to determine if the current mailbox has been subscribed to by the user.
If the property returns false, the server has indicated that the user has not subscribed to the mailbox. If
the property returns true, the current mailbox is in the user's subscription list.

Setting the Subscribed property changes the subscription status of the current mailbox. Setting the
property to true adds the mailbox to the user's list of subscribed mailboxes, while setting it to false
removes the mailbox from the subscription list.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Subscribed Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Timeout Property

Gets and sets the current timezone offset in seconds.

[Visual Basic]
Public Property TimeZone As Integer

[C#]
public int TimeZone {get; set;}

Property Value
An integer value which specifies the current timezone offset.

Remarks
The TimeZone property returns the current offset from UTC in seconds. Setting the property changes the
current timezone offset to the specified value. The value of this property is initially determined by the date
and time settings on the local system.

The TimeZone property value is used in conjunction with the Localize property to control how message
date and time localization is handled.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.TimeZone Property

Gets and sets the address of the message recipient.

[Visual Basic]
Public Property To As String

[C#]
public string To {get; set;}

Property Value
A string which specifies the recipient of the message.

Remarks
The To property returns the address of the message recipient. Setting this property causes the To header
to be updated with the specified value. Multiple addresses can be specified by separating them with
commas.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.To Property

Gets and sets a value which indicates if network function tracing is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Trace Property

Gets and sets a value which specifies the name of the client function tracing logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public InternetMail.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.TraceFlags Property

Gets and sets the username used to authenticate the client session.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username.

Remarks
If a username is not specified when the Connect method is called, the value of this property will be used
as the default username when establishing a connection with the server.

See Also
InternetMail Class | SocketTools Namespace | BearerToken Property | Password Property | Connect
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UserName Property

Gets a value which returns the current version of the InternetMail class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the InternetMail
class library. This value can be used by an application for validation and debugging purposes.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Version Property

The methods of the InternetMail class are listed below. For a complete list of InternetMail class
members, see the InternetMail Members topic.

Public Instance Methods

AppendMessage Append text to the body of the current message
part.

AttachData Overloaded. Attach the contents of a byte array to
the current message.

AttachFile Overloaded. Attach the specified file to the current
message.

AttachImage Overloaded. Attach an inline image to the current
message.

AttachThread Obsolete. Attach an instance of the class to the
current thread.

Cancel Cancel the current blocking client operation.

ChangePassword Change the mailbox password for the current user.

CheckMailbox Create a checkpoint for the currently selected
mailbox.

ClearMessage Clear the header and body of the current
message.

ComposeMessage Overloaded. Compose a new mail message.

Connect Overloaded. Establish a connection with a mail
server.

CopyMessage Copy a message from the current mailbox to
another mailbox.

CreateMailbox Creates a new mailbox on the server.

CreateMessage Overloaded. Create a new message.

CreatePart Overloaded. Create a new message part in a
multipart message.

DeleteHeader Overloaded. Delete a header field from the
specified message part.

DeleteMailbox Overloaded. Deletes a mailbox from the server.

DeleteMessage Flags a message for deletion from the current
mailbox.

DeletePart Delete the specified message part from the current
message.

Disconnect Terminate the connection with the remote server.

Dispose Overloaded. Releases all resources used by
InternetMail.

InternetMail Methods

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AppendMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AttachData_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AttachFile_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AttachImage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.AttachThread.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Cancel.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ChangePassword.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CheckMailbox.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ClearMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ComposeMessage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Connect_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CopyMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CreateMailbox.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CreateMessage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.CreatePart_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.DeleteHeader_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.DeleteMailbox_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.DeleteMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.DeletePart.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Disconnect.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Dispose_overload_1.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.html

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

ExportMessage Overloaded. Export the current message to a file
on the local system.

ExtractAllFiles Overloaded. Extract all file attachments from the
current message.

ExtractFile Overloaded. Extract the contents of a file
attachment and store it on the local system.

FindAttachment Search for a specific file attachment in the current
message.

GetFirstHeader Return the first header in the current message
part.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeader Overloaded. Return the value of a header field in
the specified message part.

GetHeaders Overloaded. Retrieves the headers for the
specified message from the server.

GetMessage Overloaded. Retrieve a message from the server
and return the contents in a byte array.

GetNextHeader Return the next header in the current message
part.

GetType (inherited from Object) Gets the Type of the current instance.

Idle Overloaded. Enables mailbox status monitoring for
the client session.

ImportMessage Replace the current message with the contents of
a file.

Initialize Overloaded. Initialize an instance of the
InternetMail class.

ParseAddress Overloaded. Parse an Internet email address.

ParseMessage Parse the specified string, adding the contents to
the current message.

RenameMailbox Change the name of a mailbox.

ReselectMailbox Reselects the current mailbox.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SearchMailbox Overloaded. Search the current mailbox for
messages that match the specified criteria and
character set.

SelectMailbox Selects the specified mailbox for read-write access.

SendMessage Overloaded. Submit the specified message to a

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ExportMessage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ExtractAllFiles_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ExtractFile_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.FindAttachment.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.GetFirstHeader.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.GetHeader_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.GetHeaders_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.GetMessage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.GetNextHeader.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Idle_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ImportMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Initialize_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ParseAddress_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ParseMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.RenameMailbox.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ReselectMailbox.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Reset.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SearchMailbox_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SelectMailbox.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SendMessage_overloads.html

mail server for delivery.

SetHeader Overloaded. Set the value for a header in the
specified message part.

StoreMessage Overloaded. Retrieve a message from the current
mailbox and store it in a file on the local system.

SubscribeMailbox Overloaded. Subscribes the user to the specified
mailbox.

ToString (inherited from Object) Returns a String that represents the current Object.

UndeleteMessage Removes the deletion flag for the specified
message.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

UnselectMailbox Overloaded. Unselects the current mailbox.

UnsubscribeMailbox Overloaded. Unsubscribes the user from the
specified mailbox.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the InternetMail class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the current message.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SetHeader_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.StoreMessage_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.SubscribeMailbox_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.UndeleteMessage.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Uninitialize.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.UnselectMailbox_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.UnsubscribeMailbox_overloads.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Dispose_overload_2.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.Finalize.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Append text to the body of the current message part.

[Visual Basic]
Public Function AppendMessage(_
 ByVal messageText As String _
) As Boolean

[C#]
public bool AppendMessage(
 string messageText
);

Parameters
messageText

A string which specifies the message text to be appended to the current message part.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AppendMessage Method

Attach the contents of a byte array to the current message.

Overload List
Attach the contents of a byte array to the current message.

public bool AttachData(byte[],int);

Attach the contents of a byte array to the current message.

public bool AttachData(byte[],int,string);

Attach the contents of a byte array to the current message.

public bool AttachData(byte[],int,string,string);

Attach the contents of a byte array to the current message.

public bool AttachData(byte[],int,string,string,MimeAttachment);

Attach the contents of a string to the current message.

public bool AttachData(string);

Attach the contents of a string to the current message.

public bool AttachData(string,string);

Attach the contents of a string to the current message.

public bool AttachData(string,string,string);

Attach the contents of a string to the current message.

public bool AttachData(string,string,string,MimeAttachment);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachData Method

Attach the contents of a byte array to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool AttachData(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be attached to the message.

length
An integer value which specifies the maximum number of bytes top copy from the buffer. This value
cannot be larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The contents of the buffer will be attached to the message as inline content.

The buffer will be examined to determine what kind of data it contains. If there is only text characters, then
the content type will be specified as text/plain. If the buffer contains binary data, then the content type will
be specified as application/octet-stream, which is appropriate for any type of data.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachData Method (Byte[], Int32)

Attach the contents of a byte array to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As Byte(), _
 ByVal length As Integer, _
 ByVal contentName As String _
) As Boolean

[C#]
public bool AttachData(
 byte[] buffer,
 int length,
 string contentName
);

Parameters
buffer

A byte array that contains the data to be attached to the message.

length
An integer value which specifies the maximum number of bytes top copy from the buffer. This value
cannot be larger than the size of the buffer specified by the caller.

contentName
An string argument which specifies a name for the data being attached to the message. This typically
is used as a file name by the mail client to store the data in. If this parameter is omitted or passed as
an empty string then no name is defined and the data is attached as inline content. Note that if a file
name is specified with a path, only the base file name will be used.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The buffer will be examined to determine what kind of data it contains. If there is only text characters, then
the content type will be specified as text/plain. If the buffer contains binary data, then the content type will
be specified as application/octet-stream, which is appropriate for any type of data.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachData Method (Byte[], Int32, String)

Attach the contents of a byte array to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As Byte(), _
 ByVal length As Integer, _
 ByVal contentName As String, _
 ByVal contentType As String _
) As Boolean

[C#]
public bool AttachData(
 byte[] buffer,
 int length,
 string contentName,
 string contentType
);

Parameters
buffer

A byte array that contains the data to be attached to the message.

length
An integer value which specifies the maximum number of bytes top copy from the buffer. This value
cannot be larger than the size of the buffer specified by the caller.

contentName
An string argument which specifies a name for the data being attached to the message. This typically
is used as a file name by the mail client to store the data in. Note that if a file name is specified with a
path, only the base file name will be used.

contentType
An string argument which specifies the type of data being attached. The value must be a valid MIME
content type. If the buffer contains only text characters, then the content type will be specified as
text/plain. If the buffer contains binary data, then the content type will be specified as
application/octet-stream, which is appropriate for any type of data.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachData Method (Byte[], Int32, String, String)

Attach the contents of a byte array to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As Byte(), _
 ByVal length As Integer, _
 ByVal contentName As String, _
 ByVal contentType As String, _
 ByVal options As MimeAttachment _
) As Boolean

[C#]
public bool AttachData(
 byte[] buffer,
 int length,
 string contentName,
 string contentType,
 MimeAttachment options
);

Parameters
buffer

A byte array that contains the data to be attached to the message.

length
An integer value which specifies the maximum number of bytes top copy from the buffer. This value
cannot be larger than the size of the buffer specified by the caller.

contentName
An string argument which specifies a name for the data being attached to the message. This typically
is used as a file name by the mail client to store the data in. Note that if a file name is specified with a
path, only the base file name will be used.

contentType
An string argument which specifies the type of data being attached. The value must be a valid MIME
content type. If the buffer contains only text characters, then the content type will be specified as
text/plain. If the buffer contains binary data, then the content type will be specified as
application/octet-stream, which is appropriate for any type of data.

options
A MimeAttachment enumeration which specifies how the data should be attached to the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachData Method (Byte[], Int32, String, String,
MimeAttachment)

Attach the contents of a string to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool AttachData(
 string buffer
);

Parameters
buffer

A string that contains the data to be attached to the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The contents of the buffer will be attached to the message as inline content with a content type of
text/plain.

This implementation of the method should never be used to attach binary data to a message. If you need
to attach binary data, use the implementation of that accepts a byte array as the buffer parameter.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachData Method (String)

Attach the contents of a string to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As String, _
 ByVal contentName As String _
) As Boolean

[C#]
public bool AttachData(
 string buffer,
 string contentName
);

Parameters
buffer

A string that contains the data to be attached to the message.

contentName
An string argument which specifies a name for the data being attached to the message. This typically
is used as a file name by the mail client to store the data in. Note that if a file name is specified with a
path, only the base file name will be used.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The content will be attached using the content type of text/plain.

This implementation of the method should never be used to attach binary data to a message. If you need
to attach binary data, use the implementation of that accepts a byte array as the buffer parameter.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachData Method (String, String)

Attach the contents of a string to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As String, _
 ByVal contentName As String, _
 ByVal contentType As String _
) As Boolean

[C#]
public bool AttachData(
 string buffer,
 string contentName,
 string contentType
);

Parameters
buffer

A string that contains the data to be attached to the message.

contentName
An string argument which specifies a name for the data being attached to the message. This typically
is used as a file name by the mail client to store the data in.Note that if a file name is specified with a
path, only the base file name will be used.

contentType
An string argument which specifies the type of data being attached. The value must be a valid MIME
content type. If the buffer contains only text characters, then the content type will be specified as
"text/plain". If the buffer contains binary data, then the content type will be specified as
"application/octet-stream", which is appropriate for any type of data.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This implementation of the method should never be used to attach binary data to a message. If you need
to attach binary data, use the implementation of that accepts a byte array as the buffer parameter.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachData Method (String, String, String)

Attach the contents of a string to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As String, _
 ByVal contentName As String, _
 ByVal contentType As String, _
 ByVal options As MimeAttachment _
) As Boolean

[C#]
public bool AttachData(
 string buffer,
 string contentName,
 string contentType,
 MimeAttachment options
);

Parameters
buffer

A string that contains the data to be attached to the message.

contentName
An string argument which specifies a name for the data being attached to the message. This typically
is used as a file name by the mail client to store the data in.Note that if a file name is specified with a
path, only the base file name will be used.

contentType
An string argument which specifies the type of data being attached. The value must be a valid MIME
content type. If the buffer contains only text characters, then the content type will be specified as
text/plain. If the buffer contains binary data, then the content type will be specified as
application/octet-stream, which is appropriate for any type of data.

options
A MimeAttachment enumeration which specifies how the data should be attached to the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This implementation of the method should never be used to attach binary data to a message. If you need
to attach binary data, use the implementation of that accepts a byte array as the buffer parameter.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachData Method (String, String, String,
MimeAttachment)

Attach the specified file to the current message.

Overload List
Attach the specified file to the current message.

public bool AttachFile(string);

Attach the specified file to the current message.

public bool AttachFile(string,MimeAttachment);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachFile Method

Attach the specified file to the current message.

[Visual Basic]
Overloads Public Function AttachFile(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool AttachFile(
 string fileName
);

Parameters
fileName

A string which specifies the name of the file to be attached to the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AttachFile method attaches the specified file to the current message. If the message already contains
one or more file attachments, then it is added to the end of the message. If the message does not contain
any attached files, then it is converted to a multipart message and the file is appended to the message.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.AttachFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachFile Method (String)

Attach the specified file to the current message.

[Visual Basic]
Overloads Public Function AttachFile(_
 ByVal fileName As String, _
 ByVal options As MimeAttachment _
) As Boolean

[C#]
public bool AttachFile(
 string fileName,
 MimeAttachment options
);

Parameters
fileName

A string which specifies the name of the file to be attached to the message.

options
A MimeAttachment enumeration which specifies how the data should be attached to the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AttachFile method attaches the specified file to the current message. If the message already contains
one or more file attachments, then it is added to the end of the message. If the message does not contain
any attached files, then it is converted to a multipart message and the file is appended to the message.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.AttachFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachFile Method (String, MimeAttachment)

NOTE: This method is now obsolete.

The AttachThread method has been deprecated

Attach an instance of the class to the current thread.

[Visual Basic]
<Obsolete(Message:="The AttachThread method has been deprecated", IsError:=False)>
Public Function AttachThread() As Boolean

[C#]
[Obsolete(Message="The AttachThread method has been deprecated", IsError=False)]
public bool AttachThread();

Return Value
A boolean value which specifies if the message could be attached to the current thread. If this method
returns false, the message could not be attached to the thread and the application should check the value
of the LastError property to determine the cause of the failure.

Remarks
This method has been deprecated and should no longer be used. The current version of the InternetMail
class uses a free threading model which permits any thread to access methods and properties. However,
applications must take care to synchronize access to the class instance across multiple threads if they are
modifying the message contents.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.AttachThread Method

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Cancel Method

Change the mailbox password for the current user.

[Visual Basic]
Public Function ChangePassword(_
 ByVal userName As String, _
 ByVal oldPassword As String, _
 ByVal newPassword As String _
) As Boolean

[C#]
public bool ChangePassword(
 string userName,
 string oldPassword,
 string newPassword
);

Parameters
userName

A string which specifies the username for which the password will be changed.

oldPassword
A string which specifies the current password.

newPassword
A string which specifies the new password.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ChangePassword method changes the current password that will be used to authenticate the user.
Once the password has been changed, the Password property will be updated with the new password.

Note that in order to change the user's mailbox password, the server must be running the poppass service
on port 106, on the same server. Because passwords are transmitted as clear text (unencrypted), this
service is not considered secure and may not be available.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ChangePassword Method

Create a checkpoint for the currently selected mailbox.

[Visual Basic]
Public Function CheckMailbox() As Boolean

[C#]
public bool CheckMailbox();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CheckMailbox method requests that the server create a checkpoint of the currently selected mailbox,
and updates the current number of new, unread messages available to the client.

When the client requests a checkpoint, the server may perform implementation-dependent housekeeping
for that mailbox, such updating the mailbox on disk with the current state of the mailbox in memory. On
some systems this command has no effect other than to update the client with the current number of
messages in the mailbox.

This function actually sends two IMAP commands. The first is the CHECK command, followed by the
NOOP command to poll for any new messages that have arrived. In addition to polling the server for new
messages, this command can also be used to ensure the idle timer on the server does not expire and
force a disconnect from the client.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CheckMailbox Method

Clear the header and body of the current message.

[Visual Basic]
Public Function ClearMessage() As Boolean

[C#]
public bool ClearMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ClearMessage method clears the current message, releasing the memory allocated for the message
and any attachments.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ClearMessage Method

Compose a new mail message.

Overload List
Compose a new mail message.

public bool ComposeMessage(string,string,string,string);

Compose a new mail message.

public bool ComposeMessage(string,string,string,string,string);

Compose a new mail message.

public bool ComposeMessage(string,string,string,string,string,string);

Compose a new mail message.

public bool ComposeMessage(string,string,string,string,string,string,string);

Compose a new mail message.

public bool ComposeMessage(string,string,string,string,string,string,string,MimeCharacterSet,MimeEncoding);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ComposeMessage Method

Compose a new mail message.

[Visual Basic]
Overloads Public Function ComposeMessage(_
 ByVal messageFrom As String, _
 ByVal messageTo As String, _
 ByVal messageSubject As String, _
 ByVal messageText As String _
) As Boolean

[C#]
public bool ComposeMessage(
 string messageFrom,
 string messageTo,
 string messageSubject,
 string messageText
);

Parameters
messageFrom

A string argument which specifies the sender's email address. Only a single address should be
specified. After the message has been composed, the From property will be updated with this value.

messageTo
A string argument which specifies one or more recipient email addresses. Multiple email addresses
may be specified by separating them with commas. After the message has been composed, the To
property will be updated with this value.

messageSubject
A string argument which specifies the subject for the message. If the argument is not specified, then
no Subject header field will be created for this message. After the message has been composed, the
Subject property will be updated with this value

messageText
An string argument which specifies the body of the message. Each line of text contained in the string
should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the end-of-
line.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ComposeMessage method creates a new mail message, or replaces the current message if one
already exists.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ComposeMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ComposeMessage Method (String, String, String, String)

Compose a new mail message.

[Visual Basic]
Overloads Public Function ComposeMessage(_
 ByVal messageFrom As String, _
 ByVal messageTo As String, _
 ByVal messageCc As String, _
 ByVal messageSubject As String, _
 ByVal messageText As String _
) As Boolean

[C#]
public bool ComposeMessage(
 string messageFrom,
 string messageTo,
 string messageCc,
 string messageSubject,
 string messageText
);

Parameters
messageFrom

A string argument which specifies the sender's email address. Only a single address should be
specified. After the message has been composed, the From property will be updated with this value.

messageTo
A string argument which specifies one or more recipient email addresses. Multiple email addresses
may be specified by separating them with commas. After the message has been composed, the To
property will be updated with this value.

messageCc
A string argument which specifies one or more additional recipient addresses that will receive a copy
of the message. If this argument is not specified, then no Cc header field will be created for this
message. After the message has been composed, the Cc property will be updated with this value.

messageSubject
A string argument which specifies the subject for the message. If the argument is not specified, then
no Subject header field will be created for this message. After the message has been composed, the
Subject property will be updated with this value

messageText
An string argument which specifies the body of the message. Each line of text contained in the string
should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the end-of-
line.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ComposeMessage method creates a new mail message, or replaces the current message if one
already exists.

InternetMail.ComposeMessage Method (String, String, String, String,
String)

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ComposeMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Compose a new mail message.

[Visual Basic]
Overloads Public Function ComposeMessage(_
 ByVal messageFrom As String, _
 ByVal messageTo As String, _
 ByVal messageCc As String, _
 ByVal messageBcc As String, _
 ByVal messageSubject As String, _
 ByVal messageText As String _
) As Boolean

[C#]
public bool ComposeMessage(
 string messageFrom,
 string messageTo,
 string messageCc,
 string messageBcc,
 string messageSubject,
 string messageText
);

Parameters
messageFrom

A string argument which specifies the sender's email address. Only a single address should be
specified. After the message has been composed, the From property will be updated with this value.

messageTo
A string argument which specifies one or more recipient email addresses. Multiple email addresses
may be specified by separating them with commas. After the message has been composed, the To
property will be updated with this value.

messageCc
A string argument which specifies one or more additional recipient addresses that will receive a copy
of the message. If this argument is not specified, then no Cc header field will be created for this
message. After the message has been composed, the Cc property will be updated with this value.

messageBcc
A string argument which specifies one or more additional recipient addresses that will receive a "blind"
copy of the message. If this argument is not specified, then no Bcc header field will be created for this
message. After the message has been composed, the Bcc property will be updated with this value.
Note that the Bcc header field is not normally included in the header when the message is exported.

messageSubject
A string argument which specifies the subject for the message. If the argument is not specified, then
no Subject header field will be created for this message. After the message has been composed, the
Subject property will be updated with this value

messageText
An string argument which specifies the body of the message. Each line of text contained in the string
should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the end-of-
line.

InternetMail.ComposeMessage Method (String, String, String, String,
String, String)

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ComposeMessage method creates a new mail message, or replaces the current message if one
already exists.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ComposeMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Compose a new mail message.

[Visual Basic]
Overloads Public Function ComposeMessage(_
 ByVal messageFrom As String, _
 ByVal messageTo As String, _
 ByVal messageCc As String, _
 ByVal messageBcc As String, _
 ByVal messageSubject As String, _
 ByVal messageText As String, _
 ByVal messageHTML As String _
) As Boolean

[C#]
public bool ComposeMessage(
 string messageFrom,
 string messageTo,
 string messageCc,
 string messageBcc,
 string messageSubject,
 string messageText,
 string messageHTML
);

Parameters
messageFrom

A string argument which specifies the sender's email address. Only a single address should be
specified. After the message has been composed, the From property will be updated with this value.

messageTo
A string argument which specifies one or more recipient email addresses. Multiple email addresses
may be specified by separating them with commas. After the message has been composed, the To
property will be updated with this value.

messageCc
A string argument which specifies one or more additional recipient addresses that will receive a copy
of the message. If this argument is not specified, then no Cc header field will be created for this
message. After the message has been composed, the Cc property will be updated with this value.

messageBcc
A string argument which specifies one or more additional recipient addresses that will receive a "blind"
copy of the message. If this argument is not specified, then no Bcc header field will be created for this
message. After the message has been composed, the Bcc property will be updated with this value.
Note that the Bcc header field is not normally included in the header when the message is exported.

messageSubject
A string argument which specifies the subject for the message. If the argument is not specified, then
no Subject header field will be created for this message. After the message has been composed, the
Subject property will be updated with this value

messageText
An string argument which specifies the body of the message. Each line of text contained in the string
should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the end-of-

InternetMail.ComposeMessage Method (String, String, String, String,
String, String, String)

line.

messageHTML
A string argument which specifies an alternate HTML formatted message. If the messageText
argument has been specified, then a multipart message will be created with both plain text and HTML
text as the alternative. This allows mail clients to select which message body they wish to display. If the
messageText argument is an empty string, then the message will only contain HTML. Although this is
supported, it is not recommended because older mail clients may be unable to display the message
correctly.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ComposeMessage method creates a new mail message, or replaces the current message if one
already exists.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ComposeMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Compose a new mail message.

[Visual Basic]
Overloads Public Function ComposeMessage(_
 ByVal messageFrom As String, _
 ByVal messageTo As String, _
 ByVal messageCc As String, _
 ByVal messageBcc As String, _
 ByVal messageSubject As String, _
 ByVal messageText As String, _
 ByVal messageHTML As String, _
 ByVal characterSet As MimeCharacterSet, _
 ByVal encodingType As MimeEncoding _
) As Boolean

[C#]
public bool ComposeMessage(
 string messageFrom,
 string messageTo,
 string messageCc,
 string messageBcc,
 string messageSubject,
 string messageText,
 string messageHTML,
 MimeCharacterSet characterSet,
 MimeEncoding encodingType
);

Parameters
messageFrom

A string argument which specifies the sender's email address. Only a single address should be
specified. After the message has been composed, the From property will be updated with this value.

messageTo
A string argument which specifies one or more recipient email addresses. Multiple email addresses
may be specified by separating them with commas. After the message has been composed, the To
property will be updated with this value.

messageCc
A string argument which specifies one or more additional recipient addresses that will receive a copy
of the message. If this argument is not specified, then no Cc header field will be created for this
message. After the message has been composed, the Cc property will be updated with this value.

messageBcc
A string argument which specifies one or more additional recipient addresses that will receive a "blind"
copy of the message. If this argument is not specified, then no Bcc header field will be created for this
message. After the message has been composed, the Bcc property will be updated with this value.
Note that the Bcc header field is not normally included in the header when the message is exported.

messageSubject
A string argument which specifies the subject for the message. If the argument is not specified, then
no Subject header field will be created for this message. After the message has been composed, the
Subject property will be updated with this value

InternetMail.ComposeMessage Method (String, String, String, String,
String, String, String, MimeCharacterSet, MimeEncoding)

messageText
An string argument which specifies the body of the message. Each line of text contained in the string
should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the end-of-
line.

messageHTML
A string argument which specifies an alternate HTML formatted message. If the messageText
argument has been specified, then a multipart message will be created with both plain text and HTML
text as the alternative. This allows mail clients to select which message body they wish to display. If the
messageText argument is an empty string, then the message will only contain HTML. Although this is
supported, it is not recommended because older mail clients may be unable to display the message
correctly.

characterSet
A MimeCharacterSet enumeration value which specifies the character set to use when composing the
message.

encodingType
A MimeEncoding enumeration value which specifies the encoding type to use when composing the
message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ComposeMessage method creates a new mail message, or replaces the current message if one
already exists.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ComposeMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

Overload List
Establish a connection with a remote host.

public bool Connect();

Establish a connection with a remote host.

public bool Connect(string,int);

Establish a connection with a remote host.

public bool Connect(string,int,int);

Establish a connection with a remote host.

public bool Connect(string,int,int,InternetMailOptions);

Establish a connection with a remote host.

public bool Connect(string,int,string,string);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int);

Establish a connection with a mail server.

public bool Connect(string,int,string,string,int,InternetMailOptions);

Establish a connection with a remote host.

public bool Connect(string,string,string);

See Also
InternetMail Class | SocketTools Namespace | BearerToken Property | Options Property | Password
Property | ServerName Property | ServerPort Property | Timeout Property | UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Connect Method

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect() As Boolean

[C#]
public bool Connect();

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may exchange data with the mail server. If this
method returns false, the connection could not be established and the application should check the value
of the LastError property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the ServerName will be used to determine the host name or address to connect to.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Connect Overload List | BearerToken Property |
Options Property | Password Property | ServerName Property | ServerPort Property | Timeout Property |
UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Connect Method ()

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may exchange data with the mail server. If this
method returns false, the connection could not be established and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Connect Overload List | BearerToken Property |
Options Property | Password Property | ServerName Property | ServerPort Property | Timeout Property |
UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Connect Method (String, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may exchange data with the mail server. If this
method returns false, the connection could not be established and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Connect Overload List | BearerToken Property |
Options Property | Password Property | ServerName Property | ServerPort Property | Timeout Property |
UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Connect Method (String, Int32, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer, _
 ByVal options As InternetMailOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout,
 InternetMailOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller.

options
One or more of the InternetMailOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may exchange data with the mail server. If this
method returns false, the connection could not be established and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Connect Overload List | BearerToken Property |
Options Property | Password Property | ServerName Property | ServerPort Property | Timeout Property |
UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Connect Method (String, Int32, Int32,
InternetMailOptions)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies a username used to authenticate the client session.

userPassword
A string which specifies the password used to authenticate the client session. If the BearerToken
property has been set, this parameter is ignored and OAuth 2.0 will be used for authentication.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may exchange data with the mail server. If this
method returns false, the connection could not be established and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Connect Overload List | BearerToken Property |
Options Property | Password Property | ServerName Property | ServerPort Property | Timeout Property |
UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Connect Method (String, Int32, String, String)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies a username used to authenticate the client session.

userPassword
A string which specifies the password used to authenticate the client session. If the BearerToken
property has been set, this parameter is ignored and OAuth 2.0 will be used for authentication.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may exchange data with the mail server. If this
method returns false, the connection could not be established and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Connect Overload List | BearerToken Property |
Options Property | Password Property | ServerName Property | ServerPort Property | Timeout Property |
UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Connect Method (String, Int32, String, String, Int32)

Establish a connection with a mail server.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer, _
 ByVal options As InternetMailOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout,
 InternetMailOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies a username used to authenticate the client session.

userPassword
A string which specifies the password used to authenticate the client session. If the BearerToken
property has been set, this parameter is ignored and OAuth 2.0 will be used for authentication.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller.

options
One or more of the InternetMailOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may exchange data with the mail server. If this
method returns false, the connection could not be established and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Connect Overload List | BearerToken Property |

InternetMail.Connect Method (String, Int32, String, String, Int32,
InternetMailOptions)

Options Property | Password Property | ServerName Property | ServerPort Property | Timeout Property |
UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

userName
A string which specifies a username used to authenticate the client session.

userPassword
A string which specifies the password used to authenticate the client session. If the BearerToken
property has been set, this parameter is ignored and OAuth 2.0 will be used for authentication.

Return Value
A boolean value which specifies if the connection has been established. A return value of true indicates
that the connection has completed and the application may exchange data with the mail server. If this
method returns false, the connection could not be established and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Connect Overload List | BearerToken Property |
Options Property | Password Property | ServerName Property | ServerPort Property | Timeout Property |
UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Connect Method (String, String, String)

Copy a message from the current mailbox to another mailbox.

[Visual Basic]
Public Function CopyMessage(_
 ByVal messageId As Integer, _
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool CopyMessage(
 int messageId,
 string mailboxName
);

Parameters
messageId

The message identifier which specifies which message will be copied to the mailbox. This value must
be greater than zero and specify a valid message number.

mailboxName
A string which specifies the name of the mailbox that the message will be copied to. The mailbox must
already exist, and the client must have the appropriate access rights to modify the mailbox.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CopyMessage method copies a message from the current mailbox to the specified mailbox. The
message is appended to the mailbox, and the message flags and internal date are preserved. If the
mailbox does not exist, the method will fail. To create a new mailbox, use the CreateMailbox method. A
message can be copied within the same mailbox, in which case the server may flag it as a new message.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CopyMessage Method

Creates a new mailbox on the server.

[Visual Basic]
Public Function CreateMailbox(_
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool CreateMailbox(
 string mailboxName
);

Parameters
mailboxName

A string which specifies the name of the new mailbox to be created.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMailbox method creates a new mailbox on the server. If the mailbox name is suffixed with the
server's hierarchy delimiter, this indicates to the server that the client intends to create mailbox names
under the specified name in the hierarchy. If superior hierarchical names are specified in the mailbox
name, then the server may automatically create them as needed. For example, if the mailbox name
"Mail/Office/Projects" is specified and "Mail/Office" does not exist, it may be automatically created by the
server.

The special mailbox name INBOX is reserved, and cannot be created. It is recommended that mailbox
names only consist of printable ASCII characters, and the special characters "*" and "%" should be
avoided.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CreateMailbox Method

Create a new message.

Overload List
Create a new message.

public bool CreateMessage(byte[],int);

Create a new message.

public bool CreateMessage(byte[],int,ImapFlags);

Create a new message.

public bool CreateMessage(string);

Create a new message.

public bool CreateMessage(string,ImapFlags);

Create a new message.

public bool CreateMessage(string,byte[],int,ImapFlags);

Create a new message.

public bool CreateMessage(string,string,ImapFlags);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CreateMessage Method

Create a new message.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal message As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool CreateMessage(
 byte[] message,
 int length
);

Parameters
message

A byte array that contains the message data.

length
An integer value which specifies the size of the message in bytes. This value cannot be larger than the
size of the message buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the specified
mailbox. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

The message will be created in the mailbox specified by the MailboxName property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.CreateMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CreateMessage Method (Byte[], Int32)

Create a new message.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal message As Byte(), _
 ByVal length As Integer, _
 ByVal messageFlags As ImapFlags _
) As Boolean

[C#]
public bool CreateMessage(
 byte[] message,
 int length,
 ImapFlags messageFlags
);

Parameters
message

A byte array that contains the message data.

length
An integer value which specifies the size of the message in bytes. This value cannot be larger than the
size of the message buffer specified by the caller.

messageFlags

An ImapFlags enumeration value which specifies one or more message flags. One or more of the
following flags may be used:

Flag Description

imapFlagNone The message will be created with no flags set.

imapFlagAnswered The message has been answered.

imapFlagDraft The message is a draft copy.

imapFlagUrgent The message is urgent.

imapFlagSeen The message has already been read.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the specified
mailbox. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

The message will be created in the mailbox specified by the MailboxName property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.CreateMessage Overload List

InternetMail.CreateMessage Method (Byte[], Int32, ImapFlags)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Create a new message.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal message As String _
) As Boolean

[C#]
public bool CreateMessage(
 string message
);

Parameters
message

A string that contains the message data.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the specified
mailbox. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

The message will be created in the mailbox specified by the MailboxName property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.CreateMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CreateMessage Method (String)

Create a new message.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal message As String, _
 ByVal messageFlags As ImapFlags _
) As Boolean

[C#]
public bool CreateMessage(
 string message,
 ImapFlags messageFlags
);

Parameters
message

A string that contains the message data.

messageFlags

An ImapFlags enumeration value which specifies one or more message flags. One or more of the
following flags may be used:

Flag Description

imapFlagNone The message will be created with no flags set.

imapFlagAnswered The message has been answered.

imapFlagDraft The message is a draft copy.

imapFlagUrgent The message is urgent.

imapFlagSeen The message has already been read.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the specified
mailbox. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

The message will be created in the mailbox specified by the MailboxName property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.CreateMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CreateMessage Method (String, ImapFlags)

Create a new message.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal mailboxName As String, _
 ByVal message As Byte(), _
 ByVal length As Integer, _
 ByVal messageFlags As ImapFlags _
) As Boolean

[C#]
public bool CreateMessage(
 string mailboxName,
 byte[] message,
 int length,
 ImapFlags messageFlags
);

Parameters
mailboxName

A string which specifies the name of the mailbox the message will be created in.

message
A byte array that contains the message data.

length
An integer value which specifies the size of the message in bytes. This value cannot be larger than the
size of the message buffer specified by the caller.

messageFlags

An ImapFlags enumeration value which specifies one or more message flags. One or more of the
following flags may be used:

Flag Description

imapFlagNone The message will be created with no flags set.

imapFlagAnswered The message has been answered.

imapFlagDraft The message is a draft copy.

imapFlagUrgent The message is urgent.

imapFlagSeen The message has already been read.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the specified
mailbox. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

InternetMail.CreateMessage Method (String, Byte[], Int32, ImapFlags)

See Also
InternetMail Class | SocketTools Namespace | InternetMail.CreateMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Create a new message.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal mailboxName As String, _
 ByVal message As String, _
 ByVal messageFlags As ImapFlags _
) As Boolean

[C#]
public bool CreateMessage(
 string mailboxName,
 string message,
 ImapFlags messageFlags
);

Parameters
mailboxName

A string which specifies the name of the mailbox the message will be created in.

message
A string that contains the message data.

messageFlags

An ImapFlags enumeration value which specifies one or more message flags. One or more of the
following flags may be used:

Flag Description

imapFlagNone The message will be created with no flags set.

imapFlagAnswered The message has been answered.

imapFlagDraft The message is a draft copy.

imapFlagUrgent The message is urgent.

imapFlagSeen The message has already been read.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the specified
mailbox. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.CreateMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CreateMessage Method (String, String, ImapFlags)

Create an empty message part in a multipart message.

Overload List
Create an empty message part in a multipart message.

public bool CreatePart();

Create a new message part in a multipart message.

public bool CreatePart(string);

Create a new message part in a multipart message.

public bool CreatePart(string,MimeCharacterSet,MimeEncoding);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CreatePart Method

Create an empty message part in a multipart message.

[Visual Basic]
Overloads Public Function CreatePart() As Boolean

[C#]
public bool CreatePart();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreatePart method creates a new empty message part. If the current message is a simple RFC822
formatted message, then this method converts it to a MIME multipart message. The current message part
will be set to the new part that was just created.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.CreatePart Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CreatePart Method ()

Create a new message part in a multipart message.

[Visual Basic]
Overloads Public Function CreatePart(_
 ByVal messageText As String _
) As Boolean

[C#]
public bool CreatePart(
 string messageText
);

Parameters
messageText

A string argument which specifies the body of the new message part. Each line of text contained in the
string should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the
end-of-line.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreatePart method creates a new message part. If the current message is a simple RFC822 formatted
message, then this method converts it to a MIME multipart message. The current message part will be set
to the new part that was just created.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.CreatePart Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CreatePart Method (String)

Create a new message part in a multipart message.

[Visual Basic]
Overloads Public Function CreatePart(_
 ByVal messageText As String, _
 ByVal characterSet As MimeCharacterSet, _
 ByVal encodingType As MimeEncoding _
) As Boolean

[C#]
public bool CreatePart(
 string messageText,
 MimeCharacterSet characterSet,
 MimeEncoding encodingType
);

Parameters
messageText

A string argument which specifies the body of the new message part. Each line of text contained in the
string should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the
end-of-line.

characterSet
A MimeCharacterSet enumeration value which specifies the character set to use when composing the
message.

encodingType
A MimeEncoding enumeration value which specifies the encoding type to use when composing the
message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreatePart method creates a new message part. If the current message is a simple RFC822 formatted
message, then this method converts it to a MIME multipart message. The current message part will be set
to the new part that was just created.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.CreatePart Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.CreatePart Method (String, MimeCharacterSet,
MimeEncoding)

Delete a header field from the specified message part.

Overload List
Delete a header field from the specified message part.

public bool DeleteHeader(int,string);

Delete a header field from the current message part.

public bool DeleteHeader(string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeleteHeader Method

Delete a header field from the specified message part.

[Visual Basic]
Overloads Public Function DeleteHeader(_
 ByVal messagePart As Integer, _
 ByVal headerName As String _
) As Boolean

[C#]
public bool DeleteHeader(
 int messagePart,
 string headerName
);

Parameters
messagePart

An integer which specifies the message part.

headerName
A string which specifies the header field to delete from the specified message part.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A message part of zero specifies the main message part which contains the standard headers such as To,
From and Subject. The number of message parts in the current message is returned by the PartCount
property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.DeleteHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeleteHeader Method (Int32, String)

Delete a header field from the current message part.

[Visual Basic]
Overloads Public Function DeleteHeader(_
 ByVal headerName As String _
) As Boolean

[C#]
public bool DeleteHeader(
 string headerName
);

Parameters
headerName

A string which specifies the header field to delete from the current message part.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The current message part is returned by the Part property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.DeleteHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeleteHeader Method (String)

Deletes the currently selected mailbox from the server.

Overload List
Deletes the currently selected mailbox from the server.

public bool DeleteMailbox();

Deletes a mailbox from the server.

public bool DeleteMailbox(string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeleteMailbox Method

Deletes the currently selected mailbox from the server.

[Visual Basic]
Overloads Public Function DeleteMailbox() As Boolean

[C#]
public bool DeleteMailbox();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The DeleteMailbox method deletes the currently selected mailbox from the server. The current mailbox
will be automatically unselected and any messages marked for deletion will be expunged before the
mailbox is removed. If the delete operation fails, the client will remain in an unselected state until either
the ExamineMailbox or SelectMailbox method is called

A mailbox cannot be deleted if it contains inferior hierarchical names and has the imapFlagNoSelect
attribute. On most systems this is the case when the mailbox name references a directory on the server,
and that directory contains other subdirectories or mailboxes. To remove the current mailbox, you must
first delete any child mailboxes that exist.

The special mailbox named INBOX cannot be deleted.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.DeleteMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeleteMailbox Method ()

Deletes a mailbox from the server.

[Visual Basic]
Overloads Public Function DeleteMailbox(_
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool DeleteMailbox(
 string mailboxName
);

Parameters
mailboxName

A string which specifies the name of the new mailbox to be deleted.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The DeleteMailbox method deletes a mailbox from the server. A mailbox cannot be deleted if it contains
inferior hierarchical names and has the imapFlagNoSelect attribute. On most systems this is the case
when the mailbox name references a directory on the server, and that directory contains other
subdirectories or mailboxes. To remove the mailbox, you must first delete any child mailboxes that exist.

If the mailbox that is deleted is the currently selected mailbox, it will be automatically unselected and any
messages marked for deletion will be expunged before the mailbox is removed. If the delete operation
fails, the client will remain in an unselected state until either the ExamineMailbox or SelectMailbox
method is called.

The special mailbox named INBOX cannot be deleted.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.DeleteMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeleteMailbox Method (String)

Flags a message for deletion from the current mailbox.

[Visual Basic]
Public Function DeleteMessage(_
 ByVal messageId As Integer _
) As Boolean

[C#]
public bool DeleteMessage(
 int messageId
);

Parameters
messageId

Number of message to delete from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method only flags the message for deletion. The message is not actually deleted until the client
disconnects from the server, however the deleted message will no longer be accessible to the client. To
prevent deleted messages from actually being removed from the mailbox, call the Reset method.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeleteMessage Method

Delete the specified message part from the current message.

[Visual Basic]
Public Function DeletePart(_
 ByVal messagePart As Integer _
) As Boolean

[C#]
public bool DeletePart(
 int messagePart
);

Parameters
messagePart

An integer which specifies the message part.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method cannot be used to delete part zero, which is the main body of the message. Instead use the
ClearMessage method to clear the contents of the entire message.

The number of message parts in the current message is returned by the PartCount property.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeletePart Method

Terminate the connection with the remote server.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and closes the handle allocated
by the class. Note that the handle is not immediately released when the connection is terminated and will
enter a wait state for two minutes. After the time wait period has elapsed, the handle will be released by
the operating system. This is a normal safety mechanism to handle any packets that may arrive after the
connection has been closed.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Disconnect Method

Releases all resources used by InternetMail.

Overload List
Releases all resources used by InternetMail.

public void Dispose();

Releases the unmanaged resources allocated by the InternetMail class and optionally releases the
managed resources.

protected virtual void Dispose(bool);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Dispose Method

Releases all resources used by InternetMail.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method explicitly releases the resources allocated for this instance of the class. In some
cases, better performance can be achieved if the programmer explicitly releases resources when they are
no longer being used. The Dispose method provides explicit control over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Dispose Method ()

Releases the unmanaged resources allocated by the InternetMail class and optionally releases the
managed resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method explicitly releases the resources allocated for this instance of the class. In some
cases, better performance can be achieved if the programmer explicitly releases resources when they are
no longer being used. The Dispose method provides explicit control over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the InternetMail class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Dispose Method (Boolean)

Export the current message to a file on the local system.

Overload List
Export the current message to a file on the local system.

public bool ExportMessage(string);

Export the current message to a file on the local system.

public bool ExportMessage(string,MimeExportOptions);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ExportMessage Method

Export the current message to a file on the local system.

[Visual Basic]
Overloads Public Function ExportMessage(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool ExportMessage(
 string fileName
);

Parameters
fileName

A string which specifies the name of the file that will contain the message. If the file does not exist, it
will be created. If it does exist, it will be overwritten with the contents of the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ExportMessage method writes the current message to a file. If the file does not exist, it will be
created. If it does exist, it will be overwritten with the contents of the message.

The value of the Options property determines the default export options, if any have been specified.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ExportMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ExportMessage Method (String)

Export the current message to a file on the local system.

[Visual Basic]
Overloads Public Function ExportMessage(_
 ByVal fileName As String, _
 ByVal options As MimeExportOptions _
) As Boolean

[C#]
public bool ExportMessage(
 string fileName,
 MimeExportOptions options
);

Parameters
fileName

A string which specifies the name of the file that will contain the message. If the file does not exist, it
will be created. If it does exist, it will be overwritten with the contents of the message.

options
A MimeExportOptions enumeration value which specifies one or more export options.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ExportMessage method writes the current message to a file. If the file does not exist, it will be
created. If it does exist, it will be overwritten with the contents of the message.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ExportMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ExportMessage Method (String, MimeExportOptions)

Extract all file attachments from the current message.

Overload List
Extract all file attachments from the current message.

public int ExtractAllFiles();

Extract all file attachments from the current message.

public int ExtractAllFiles(string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ExtractAllFiles Method

Extract all file attachments from the current message.

[Visual Basic]
Overloads Public Function ExtractAllFiles() As Integer

[C#]
public int ExtractAllFiles();

Return Value
This method returns an integer value. If the method succeeds, the return value is the number of
attachments that were extracted from the message. A return value of zero indicates that the message did
not contain any file attachments. If the method faile, the return value is -1. To get extended error
information, check the value of the LastError property.

Remarks
This method will extract all of the files that are attached to the current message and store them in the
current directory on the local system. If a file with the same name as the attachment already exists, it will
be overwritten with the contents of the attachment. If the file attachment was encoded using base64 or
uuencode, this method will automatically decode the contents of the attachment.

To store a file attachment on the local system using a name that is different than the file name of the
attachment, use the ExtractFile method.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ExtractAllFiles Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ExtractAllFiles Method ()

Extract all file attachments from the current message.

[Visual Basic]
Overloads Public Function ExtractAllFiles(_
 ByVal pathName As String _
) As Integer

[C#]
public int ExtractAllFiles(
 string pathName
);

Parameters
pathName

A string that specifies the name of the directory where the file attachments should be stored. If this
parameter is omitted or points to an empty string, the attached files will be stored in the current
working directory on the local system.

Return Value
This method returns an integer value. If the method succeeds, the return value is the number of
attachments that were extracted from the message. A return value of zero indicates that the message did
not contain any file attachments. If the method faile, the return value is -1. To get extended error
information, check the value of the LastError property.

Remarks
This method will extract all of the files that are attached to the current message and store them in the
specified directory. The directory must exist and the current user must have the appropriate permissions
to create files there. If a file with the same name as the attachment already exists, it will be overwritten with
the contents of the attachment. If the file attachment was encoded using base64 or uuencode, this
method will automatically decode the contents of the attachment.

To store a file attachment on the local system using a name that is different than the file name of the
attachment, use the ExtractFile method.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ExtractAllFiles Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ExtractAllFiles Method (String)

Extract the contents of a file attachment and store it on the local system.

Overload List
Extract the contents of a file attachment and store it on the local system.

public bool ExtractFile(int,string);

Extract the contents of a file attachment and store it on the local system.

public bool ExtractFile(string);

Extract the contents of a file attachment and store it on the local system.

public bool ExtractFile(string,string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ExtractFile Method

Extract the contents of a file attachment and store it on the local system.

[Visual Basic]
Overloads Public Function ExtractFile(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool ExtractFile(
 string fileName
);

Parameters
fileName

A string which specifies the name of the file that will contain the file attachment. If the file does not
exist, it will be created. If it does exist, it will be overwritten with the contents of the attachment.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ExtractFile method writes the contents of a message part, typically a file attachment, to a file on the
local system. This method will automatically decode any binary file attachments.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ExtractFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ExtractFile Method (String)

Extract the contents of a file attachment and store it on the local system.

[Visual Basic]
Overloads Public Function ExtractFile(_
 ByVal attachName As String, _
 ByVal fileName As String _
) As Boolean

[C#]
public bool ExtractFile(
 string attachName,
 string fileName
);

Parameters
attachName

A string that specifies the name of the file attachment in the current message. This parameter should
only specify a base file name; it should not include a file path and cannot be an empty string

fileName
A string which specifies the name of the file on the local system that will contain the file attachment. If
the file does not exist, it will be created. If it does exist, it will be overwritten with the contents of the
attachment.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This version of the ExtractFile method will search the current message for a file attachment that matches
the name specified by the attachName parameter. If an attachment with that name is found, its contents
will be stored in the local file specified by the fileName parameter. If the message does not contain an
attachment that matches the name provided, this method will fail.

To search for a file attachment by name, use the FindAttachment method.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ExtractFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ExtractFile Method (String, String)

Extract the contents of a file attachment and store it on the local system.

[Visual Basic]
Overloads Public Function ExtractFile(_
 ByVal messagePart As Integer, _
 ByVal fileName As String _
) As Boolean

[C#]
public bool ExtractFile(
 int messagePart,
 string fileName
);

Parameters
messagePart

An integer which specifies the message part.

fileName
A string which specifies the name of the file that will contain the file attachment. If the file does not
exist, it will be created. If it does exist, it will be overwritten with the contents of the attachment.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ExtractFile method writes the contents of a message part, typically a file attachment, to a file on the
local system. This method will automatically decode any binary file attachments.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ExtractFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ExtractFile Method (Int32, String)

Destroys an instance of the class, releasing the resources allocated for the current message.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Finalize Method

Search for a specific file attachment in the current message.

[Visual Basic]
Public Function FindAttachment(_
 ByVal fileName As String _
) As Integer

[C#]
public int FindAttachment(
 string fileName
);

Parameters
fileName

A string value that specifies the name of the file attachment to search for. This parameter should only
specify a base file name; it should not include a file path and cannot be an empty string.

Return Value
An integer value which specifies the message part number that contains the file attachment with a
matching name. If the message does not contain a file attachment with the specified name, this method
will return -1.

Remarks
The FindAttachment method will search the current message for a attachment that matches the specified
file name. The search is not case-sensitive, however it must match the attachment file name completely.
This method will not match partial file names or names that include wildcard characters.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.FindAttachment Method

Return the first header in the current message part.

[Visual Basic]
Public Function GetFirstHeader(_
 ByRef headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetFirstHeader(
 ref string headerName,
 ref string headerValue
);

Parameters
headerName

A string passed by reference which will contain the name of the first header field when the method
returns.

headerValue
A string passed by reference which will contain the value of the first header field when the method
returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFirstHeader method allows an application to enumerate all of the headers in the current message
part. If the current message part does not contain any header fields, this method will return false.

The current message part is returned by the Part property.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetFirstHeader Method

Return the value of a header field in the specified message part.

Overload List
Return the value of a header field in the specified message part.

public bool GetHeader(int,string,ref string);

Return the value of a header field in the current message part.

public bool GetHeader(string,ref string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetHeader Method

Return the value of a header field in the specified message part.

[Visual Basic]
Overloads Public Function GetHeader(_
 ByVal messagePart As Integer, _
 ByVal headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetHeader(
 int messagePart,
 string headerName,
 ref string headerValue
);

Parameters
messagePart

An integer which specifies the message part.

headerName
A string which specifies the name of the header field.

headerValue
A string passed by reference which will contain the value of the header field when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeader method is used to retrieve the value for a specific header in the specified message part. If
the header field exists, the method will return true and the headerValue argument will contain the header
value. If the header does not exist, the method will return false.

If there are multiple headers with the same name, the first value will be returned. To enumerate all of the
headers in a message, including duplicate header fields, use the GetFirstHeader and GetNextHeader
methods.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetHeader Method (Int32, String, String)

Return the value of a header field in the current message part.

[Visual Basic]
Overloads Public Function GetHeader(_
 ByVal headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetHeader(
 string headerName,
 ref string headerValue
);

Parameters
headerName

A string which specifies the name of the header field.

headerValue
A string passed by reference which will contain the value of the header field when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeader method is used to retrieve the value for a specific header in the current message part. If
the header field exists, the method will return true and the headerValue argument will contain the header
value. If the header does not exist, the method will return false.

If there are multiple headers with the same name, the first value will be returned. To enumerate all of the
headers in a message, including duplicate header fields, use the GetFirstHeader and GetNextHeader
methods.

The current message part is returned by the Part property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetHeader Method (String, String)

Retrieves the headers for the current message from the server.

Overload List
Retrieves the headers for the current message from the server.

public bool GetHeaders();

Retrieves the headers for the current message from the server.

public bool GetHeaders(byte[],ref int);

Retrieves the headers for the specified message from the server.

public bool GetHeaders(int);

Retrieves the headers for the specified message from the server.

public bool GetHeaders(int,byte[],ref int);

Retrieves the headers for the specified message from the server.

public bool GetHeaders(int,ref string);

Retrieves the headers for the current message from the server.

public bool GetHeaders(ref string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetHeaders Method

Retrieves the headers for the current message from the server.

[Visual Basic]
Overloads Public Function GetHeaders() As Boolean

[C#]
public bool GetHeaders();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server, replacing the contents
of the current message with the header values. This method will cause the current thread to block until the
article transfer completes, a timeout occurs or the transfer is canceled. During the transfer, the
OnProgress event will fire periodically, enabling the application to update any user interface objects such
as a progress bar.

This method will clear the contents of the current message, including the body of the current message
text, and replace it with the header values returned by the server.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer.

The current message number is specified by the value of the Message property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetHeaders Method ()

Retrieves the headers for the current message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetHeaders(
 byte[] buffer,
 ref int length
);

Parameters
buffer

A byte array that will contain the message data when the method returns.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into a local
buffer. This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer.

The current message number is specified by the value of the Message property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetHeaders Method (Byte[], Int32)

Retrieves the headers for the specified message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByVal messageId As Integer _
) As Boolean

[C#]
public bool GetHeaders(
 int messageId
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server, replacing the contents
of the current message with the header values. This method will cause the current thread to block until the
article transfer completes, a timeout occurs or the transfer is canceled. During the transfer, the
OnProgress event will fire periodically, enabling the application to update any user interface objects such
as a progress bar.

This method will clear the contents of the current message, including the body of the current message
text, and replace it with the header values returned by the server.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetHeaders Method (Int32)

Retrieves the headers for the specified message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByVal messageId As Integer, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetHeaders(
 int messageId,
 byte[] buffer,
 ref int length
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A byte array that will contain the message data when the method returns.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into a local
buffer. This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetHeaders Method (Int32, Byte[], Int32)

Retrieves the headers for the specified message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByVal messageId As Integer, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetHeaders(
 int messageId,
 ref string buffer
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into a local
buffer. This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetHeaders Method (Int32, String)

Retrieves the headers for the current message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetHeaders(
 ref string buffer
);

Parameters
buffer

A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into a local
buffer. This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer. To retrieve the headers from a specific section of a multipart message, you can use the
GetMessage method and specify the ImapSections.sectionHeader option.

The current message number is specified by the value of the Message property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetHeaders Method (String)

Retrieve a message from the server and replace the current message with its contents.

Overload List
Retrieve a message from the server and replace the current message with its contents.

public bool GetMessage();

Retrieve the current message from the server and return the contents in a byte array.

public bool GetMessage(byte[],ref int);

Retrieve a message from the server and replace the current message with its contents.

public bool GetMessage(int);

Retrieve a message from the server and return the contents in a byte array.

public bool GetMessage(int,byte[],ref int);

Retrieve a message from the server and return the contents in a string.

public bool GetMessage(int,int,ref string);

Retrieve a message from the server and return the contents in a string.

public bool GetMessage(int,int,ref string,ImapSections);

Retrieve a message from the server and return the contents in a string.

public bool GetMessage(int,ref string);

Retrieve a message from the server and return the contents in a string.

public bool GetMessage(int,ref string,ImapSections);

Retrieve the current message from the server and return the contents in a string.

public bool GetMessage(ref string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetMessage Method

Retrieve a message from the server and replace the current message with its contents.

[Visual Basic]
Overloads Public Function GetMessage() As Boolean

[C#]
public bool GetMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and replace the current message
with its contents. This method will cause the current thread to block until the message transfer completes,
a timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire
periodically, enabling the application to update any user interface objects such as a progress bar.

The current message number is specified by the value of the Message property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetMessage Method ()

Retrieve the current message from the server and return the contents in a byte array.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetMessage(
 byte[] buffer,
 ref int length
);

Parameters
buffer

A byte array that the message data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this parameter will be updated with the actual number of bytes copied into the array.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve the current message from the server and copy it into a local
buffer. This method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetMessage Method (Byte[], Int32)

Retrieve a message from the server and replace the current message with its contents.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer _
) As Boolean

[C#]
public bool GetMessage(
 int messageId
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve the specified message from the server and replace the
current message with its contents. This method will cause the current thread to block until the message
transfer completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

The current message number is specified by the value of the Message property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetMessage Method (Int32)

Retrieve a message from the server and return the contents in a byte array.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 byte[] buffer,
 ref int length
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A byte array that the message data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this parameter will be updated with the actual number of bytes copied into the array.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetMessage Method (Int32, Byte[], Int32)

Retrieve a message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByVal messagePart As Integer, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 int messagePart,
 ref string buffer
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

messagePart
An integer value that specifies the message part that should be retrieved. A value of zero specifies that
the complete message should be returned. If the message is a multipart MIME message, message
parts start with a value of one.

buffer
A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetMessage Method (Int32, Int32, String)

Retrieve a message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByVal messagePart As Integer, _
 ByRef buffer As String, _
 ByVal options As ImapSections _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 int messagePart,
 ref string buffer,
 ImapSections options
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

messagePart
An integer value that specifies the message part that should be retrieved. A value of zero specifies that
the complete message should be returned. If the message is a multipart MIME message, message
parts start with a value of one.

buffer
A string passed by reference that will contain the message data when the method returns.

options
An ImapSections enumeration value which specifies which section of the message to return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetMessage Method (Int32, Int32, String, ImapSections)

Retrieve a message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 ref string buffer
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetMessage Method (Int32, String)

Retrieve a message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByRef buffer As String, _
 ByVal options As ImapSections _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 ref string buffer,
 ImapSections options
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A string passed by reference that will contain the message data when the method returns.

options
An ImapSections enumeration value which specifies which section of the message to return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetMessage Method (Int32, String, ImapSections)

Retrieve the current message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetMessage(
 ref string buffer
);

Parameters
buffer

A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve the current message from the server and copy it into a local
buffer. This method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

The current message number is specified by the value of the Message property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetMessage Method (String)

Return the next header in the current message part.

[Visual Basic]
Public Function GetNextHeader(_
 ByRef headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetNextHeader(
 ref string headerName,
 ref string headerValue
);

Parameters
headerName

A string passed by reference which will contain the name of the first header field when the method
returns.

headerValue
A string passed by reference which will contain the value of the first header field when the method
returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetNextHeader method allows an application to enumerate all of the headers in the current
message part. If the current message part does not contain any header fields, this method will return
false.

The current message part is returned by the Part property.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.GetNextHeader Method

Enables mailbox status monitoring for the client session.

Overload List
Enables mailbox status monitoring for the client session.

public bool Idle();

Enables mailbox status monitoring for the client session.

public bool Idle(IdleOptions,int);

See Also
InternetMail Class | SocketTools Namespace | OnUpdate

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Idle Method

Enables mailbox status monitoring for the client session.

[Visual Basic]
Overloads Public Function Idle() As Boolean

[C#]
public bool Idle();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
Many IMAP servers support the ability to asynchronously send status updates to the client, rather than
have the client periodically poll the server. The client enables this feature by calling the Idle method and
providing an event handler for the OnUpdate event. Typically these events inform the client that a new
message has arrived or that a message has been expunged from the mailbox.

The Idle method begins monitoring the client session asynchronously and returns control immediately to
the caller. If the server sends a update notification to the client, the OnUpdate event will fire with
information about the status change. Sending an IMAP command to the server will cause the client to
stop monitoring the session for status changes. To explicitly stop monitoring the session, use the Cancel
method.

This method works by sending the IDLE command to the server and starting a worker thread which
monitors the connection and looks for untagged responses issued by the server. Events will be generated
for EXISTS, EXPUNGE and RECENT messages. Note that some servers may periodically send untagged OK
messages to the client, indicating that the connection is still active; these messages are explicitly ignored.

The OnUpdate event is invoked within the context of the worker thread that is monitoring the client
session. Because of this, applications should not directly update the user interface from within the event
handler. For example, if the server sends a notification that a new email message has arrived, the
application should not attempt to read the new message and update the user interface directly from
within the event handler. Instead, it should create a delegate and use the Control.Invoke method to
marshal the call to the thread that owns the control's window handle. Failure to do this can cause the
application to become unstable. For more information, refer to the Control.Invoke method in the .NET
Framework documentation.

An application should never make an assumption about how a particular server may send update
notifications to the client. Servers can be configured to use different intervals at which notifications are
sent. For example, a server may send new message notifications immediately, but may periodically notify
the client when a message has been expunged. Alternatively, a server may only send notifications at fixed
intervals, in which case the client would not be notified of any new messages until the interval period is
reached. It is not possible for a client to know what a particular server's update interval is. Applications that
require that degree of control should not use the Idle method and should poll the server instead.

This method can only be used when connected to an IMAP server. Attempting to use this method when
connected to a POP3 server will cause the method to fail, returning an error indicating that the feature is
not supported.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Idle Overload List | OnUpdate

InternetMail.Idle Method ()

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Enables mailbox status monitoring for the client session.

[Visual Basic]
Overloads Public Function Idle(_
 ByVal options As IdleOptions, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Idle(
 IdleOptions options,
 int timeout
);

Parameters
options

One or more of the IdleOptions enumeration flags.

timeout
Specifies the timeout period in seconds to wait for a notification from the server. This parameter is only
used when the ImapIdle.idleWait option has been specified.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
Many IMAP servers support the ability to asynchronously send status updates to the client, rather than
have the client periodically poll the server. The client enables this feature by calling the Idle method and
providing an event handler for the OnUpdate event. Typically these events inform the client that a new
message has arrived or that a message has been expunged from the mailbox.

The Idle method can operate in one of two modes, based on the options specified by the caller. If the
option idleNoWait is specified, the method begins monitoring the client session asynchronously and
returns control immediately to the caller. If the server sends a update notification to the client, the
OnUpdate event will fire with information about the status change. If the option idleWait is specified, the
method will block waiting for the server to send a notification message to the client. The method will
return when either a message is received or the timeout period is exceeded. Sending an IMAP command
to the server will cause the client to stop monitoring the session for status changes. To explicitly stop
monitoring the session, use the Cancel method.

This method works by sending the IDLE command to the server and starting a worker thread which
monitors the connection and looks for untagged responses issued by the server. Events will be generated
for EXISTS, EXPUNGE and RECENT messages. Note that some servers may periodically send untagged OK
messages to the client, indicating that the connection is still active; these messages are explicitly ignored.

The OnUpdate event is invoked within the context of the worker thread that is monitoring the client
session. Because of this, applications should not directly update the user interface from within the event
handler. For example, if the server sends a notification that a new email message has arrived, the
application should not attempt to read the new message and update the user interface directly from
within the event handler. Instead, it should create a delegate and use the Control.Invoke method to
marshal the call to the thread that owns the control's window handle. Failure to do this can cause the

InternetMail.Idle Method (IdleOptions, Int32)

application to become unstable. For more information, refer to the Control.Invoke method in the .NET
Framework documentation.

An application should never make an assumption about how a particular server may send update
notifications to the client. Servers can be configured to use different intervals at which notifications are
sent. For example, a server may send new message notifications immediately, but may periodically notify
the client when a message has been expunged. Alternatively, a server may only send notifications at fixed
intervals, in which case the client would not be notified of any new messages until the interval period is
reached. It is not possible for a client to know what a particular server's update interval is. Applications that
require that degree of control should not use the Idle method and should poll the server instead.

This method can only be used when connected to an IMAP server. Attempting to use this method when
connected to a POP3 server will cause the method to fail, returning an error indicating that the feature is
not supported.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Idle Overload List | OnUpdate

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Replace the current message with the contents of a file.

[Visual Basic]
Public Function ImportMessage(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool ImportMessage(
 string fileName
);

Parameters
fileName

A string which specifies the name of the text file to import.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ImportMessage Method

Initialize an instance of the InternetMail class.

Overload List
Initialize an instance of the InternetMail class.

public bool Initialize();

Initialize an instance of the InternetMail class.

public bool Initialize(string);

See Also
InternetMail Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Initialize Method

Initialize an instance of the InternetMail class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the InternetMail class, allocating
resources for the current thread. Typically it is not necessary to explicitly call this method because the
instance of the class is initialized by the class constructor. However, if the Uninitialize method is called,
the class must be re-initialized before any other methods are called.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Initialize Method ()

Initialize an instance of the InternetMail class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the InternetMail class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the InternetMail class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.InternetMail mimeClient = new SocketTools.InternetMail();

if (mimeClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(mimeClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim mimeClient As New SocketTools.InternetMail

If mimeClient.Initialize(strLicenseKey) = False Then
 MsgBox(mimeClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
InternetMail Class | SocketTools Namespace | InternetMail.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Initialize Method (String)

Parse an Internet email address.

Overload List
Parse an Internet email address.

public bool ParseAddress(string,string,ref string);

Parse an Internet email address.

public bool ParseAddress(string,ref string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ParseAddress Method

Parse an Internet email address.

[Visual Basic]
Overloads Public Function ParseAddress(_
 ByVal mailAddress As String, _
 ByVal mailDomain As String, _
 ByRef parsedAddress As String _
) As Boolean

[C#]
public bool ParseAddress(
 string mailAddress,
 string mailDomain,
 ref string parsedAddress
);

Parameters
mailAddress

A string which specifies the email address to be parsed.

mailDomain
A string which specifies a default domain for the address if no domain name is specified in the
mailAddress parameter.

parsedAddress
A string passed by reference which will contain the parsed email address.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ParseAddress method is useful for parsing the email addresses that may be specified in various
header fields in the message. In many cases, the addresses have additional comment characters which are
not part of the address itself. For example, one common format is "User Name" <user@domain.com>. In
this case, the email address is enclosed in angle brackets and the name outside of the brackets is
considered to be a comment which is not part of the address itself.

Another common format is user@domain.com (User Name). In this case, there is the address followed by
a comment which is enclosed in parenthesis. The ParseAddress method recognizes both formats, and
when passed either string, would return the address user@domain.com.

If there was no domain specified in the address, that is just a user name was specified, then the value the
mailDomain parameter is added to the address.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ParseAddress Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ParseAddress Method (String, String, String)

Parse an Internet email address.

[Visual Basic]
Overloads Public Function ParseAddress(_
 ByVal mailAddress As String, _
 ByRef parsedAddress As String _
) As Boolean

[C#]
public bool ParseAddress(
 string mailAddress,
 ref string parsedAddress
);

Parameters
mailAddress

A string which specifies the email address to be parsed.

parsedAddress
A string passed by reference which will contain the parsed email address.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ParseAddress method is useful for parsing the email addresses that may be specified in various
header fields in the message. In many cases, the addresses have additional comment characters which are
not part of the address itself. For example, one common format is "User Name" <user@domain.com>. In
this case, the email address is enclosed in angle brackets and the name outside of the brackets is
considered to be a comment which is not part of the address itself.

Another common format is user@domain.com (User Name). In this case, there is the address followed by
a comment which is enclosed in parenthesis. The ParseAddress method recognizes both formats, and
when passed either string, would return the address user@domain.com.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.ParseAddress Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ParseAddress Method (String, String)

Parse the specified string, adding the contents to the current message.

[Visual Basic]
Public Function ParseMessage(_
 ByVal messageText As String _
) As Boolean

[C#]
public bool ParseMessage(
 string messageText
);

Parameters
messageText

A string which contains the message text to be parsed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ParseMessage method parses a string which contains message data, adding it to the current
message. This method is useful when the application needs to parse an arbitrary block of text and add it
to the current message. If the string contains header fields, the values will be added to the message
header. Once the end of the header block is detected, all subsequent text is added to the body of the
message.

Note that unlike the ImportMessage method, the ParseMessage method does not clear the contents of
the current message and may be called multiple times. Use the ClearMessage method to clear the
current message before calling ParseMessage if necessary.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ParseMessage Method

Change the name of a mailbox.

[Visual Basic]
Public Function RenameMailbox(_
 ByVal oldMailbox As String, _
 ByVal newMailbox As String _
) As Boolean

[C#]
public bool RenameMailbox(
 string oldMailbox,
 string newMailbox
);

Parameters
oldMailbox

A string that specifies the name of the mailbox to be renamed on the server. The mailbox must exist
on the server, otherwise an error will be returned.

newMailbox
A string that specifies the new name for the mailbox. An error will be returned if a mailbox with that
name already exists.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
If the existing mailbox name contains inferior hierarchical names (mailboxes under the specified mailbox)
then those mailboxes will also be renamed. For example, if the mailbox "Mail/Pictures" contains two
mailboxes, "Personal" and "Work" and it is renamed to "Mail/Images" then the two mailboxes under it
would be automatically renamed to "Mail/Images/Personal" and "Mail/Images/Work".

If the mailbox being renamed is the currently selected mailbox, the current mailbox will be unselected and
any messages marked for deletion will be expunged. The new mailbox name will then automatically be re-
selected. To prevent deleted messages from being removed from the mailbox prior to being renamed,
use the UnselectMailbox method to unselect the current mailbox before calling RenameMailbox. Note
that if the rename operation fails, the client may be left in an unselected state.

It is permitted to rename the special mailbox INBOX. In this case, the messages will be moved from the
INBOX mailbox to the new mailbox. If the INBOX mailbox is currently selected, the new mailbox will not
automatically be selected. INBOX will remain the selected mailbox.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RenameMailbox Method

Reselects the current mailbox.

[Visual Basic]
Public Function ReselectMailbox() As Boolean

[C#]
public bool ReselectMailbox();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ReselectMailbox method forces the current mailbox to be reselected and updates those properties
which return information about the mailbox, such as the MailboxFlags property. Deleted messages are
not expunged from the mailbox and remain marked for deletion.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ReselectMailbox Method

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. All properties will be reset to their default values.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Reset Method

Search the current mailbox for messages that match the specified criteria.

Overload List
Search the current mailbox for messages that match the specified criteria.

public int SearchMailbox(string,int[],int);

Search the current mailbox for messages that match the specified criteria and character set.

public int SearchMailbox(string,string,int[],int);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SearchMailbox Method

Search the current mailbox for messages that match the specified criteria.

[Visual Basic]
Overloads Public Function SearchMailbox(_
 ByVal criteria As String, _
 ByVal messageList As Integer(), _
 ByVal maxMessages As Integer _
) As Integer

[C#]
public int SearchMailbox(
 string criteria,
 int[] messageList,
 int maxMessages
);

Parameters
criteria

A string which consists of one or more keywords which are used to define the search criteria. The
following keywords are recognized:

Keyword Description

ANSWERED Match those messages which have the
ImapFlags.flagAnswered flag set.

BCC address Match those messages which contain the
specified address in the BCC header field.

BEFORE date Match those messages which were added to the
mailbox prior to the specified date.

BODY string Match those messages where the body contains
the specified string.

CC address Match those messages which contain the
specified address in the CC header field.

DELETED Match those messages which have the
ImapFlags.flagDeleted flag set.

DRAFT Match those messages which have the
ImapFlags.flagDraft flag set.

FLAGGED Match those messages which have the
ImapFlags.flagUrgent flag set.

FROM address Match those messages which contain the
specified address in the FROM header field.

HEADER field string Match those messages which contain the string
in the specified header field. If no string is
specified, then all messages which contain the
header will be matched.

LARGER size Match those messages which are larger than the

InternetMail.SearchMailbox Method (String, Int32[], Int32)

specified size in bytes.

NEW Match those messages which have the
ImapFlags.flagRecent flag set, but not the
ImapFlags.flagSeen flag.

OLD Match those messages which do not have the
ImapFlags.flagRecent flag set.

ON date Match those messages which were added on the
specified date.

RECENT Match those messages which have the
ImapFlags.flagRecent flag set.

SEEN Match those messages which have the
ImapFlags.flagSeen flag set.

SENTBEFORE date Match those messages whose Date header value
is earlier than the specified date.

SENTON date Match those messages whose Date header value
is the same as the specified date.

SENTSINCE date Match those messages whose Date header value
is later than the specified date.

SINCE date Match those messages added to the mailbox
after the specified date.

SMALLER size Match those messages which are smaller than
the specified size in bytes.

SUBJECT string Match those messages whose Subject header
contains the specified string.

TEXT string Match those messages whose headers or body
contains the specified string.

TO address Match those messages which contain the
specified address in the TO header field.

UID sequence Match those messages with unique identifiers in
the sequence set.

UNANSWERED Match those messages which do not have the
ImapFlags.flagAnswered flag set.

UNDELETED Match those messages which do not have the
ImapFlags.flagDeleted flag set.

UNDRAFT Match those messages which do not have the
ImapFlags.flagDraft flag set.

UNFLAGGED Match those messages which do not have the
ImapFlags.flagUrgent flag set.

UNSEEN Match those messages which do not have the
ImapFlags.flagUnseen flag set.

messageList
An array of integers which will contain the message numbers of those messages which match the
search criteria.

maxMessages
An integer value which specifies the maximum number of message numbers which can be returned in
the messageList array. This value cannot be larger than the size of the array.

Return Value
The number of messages which were found to match the search criteria. If no messages match the criteria,
then the return value will be zero. A return value of -1 indicates an error, and the specific error code can
be determined by checking the value of the LastError property.

Remarks
The SearchMailbox method is used to search a mailbox for messages which match a given criteria and
return a list of the matching message numbers. The search criteria is composed of one or more search
keywords and and optional value to match against. String searches are not case sensitive and partial
matches in the message are returned. The message numbers returned by this method are only valid until
the mailbox is expunged or another mailbox is selected.

In addition to the listed keywords, the keyword NOT may prefix a keyword to return those messages which
do not match the search criteria. For example, "NOT TO user@domain.com" would return those messages
which were not addressed to user@domain.com.

If multiple search keywords are specified, the result is the intersection of all those messages which meet
the search criteria. For example, a search criteria of "DELETED SINCE 1-Jan-2003" would return all those
messages which are marked for deletion and were added to the mailbox after 1 January 2003.

Those search keywords which expect dates must be specified in format dd-mmm-yyyy where the month
is the three letter abbreviation for the month name. Note that the internal date the message was added to
the mailbox is not the same as the value of the Date header field in the message.

If the search keyword requires a string value and the string contains one or more spaces, you must
enclose the search string in quotes as part of the criteria string. The quotes around the search string
prevents the server from interpreting it as a multiple search criteria to be evaluated. If you are using a
search string provided by a user, it is recommended that you always enclose it in quotes to prevent any
potential ambiguity in the search. Even if the search string does not contain any spaces, it is always safe to
enclose it in quotes.

The UID keyword expects a one or more unique message identifiers. These values may provided as
comma separated list, or a range delimited by a colon. For example, "UID 23000:24000" would return all
those messages who have UIDs ranging from 23000 through to 24000.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SearchMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Search the current mailbox for messages that match the specified criteria and character set.

[Visual Basic]
Overloads Public Function SearchMailbox(_
 ByVal criteria As String, _
 ByVal charset As String, _
 ByVal messageList As Integer(), _
 ByVal maxMessages As Integer _
) As Integer

[C#]
public int SearchMailbox(
 string criteria,
 string charset,
 int[] messageList,
 int maxMessages
);

Parameters
criteria

A string which consists of one or more keywords which are used to define the search criteria. The
following keywords are recognized:

Keyword Description

ANSWERED Match those messages which have the
ImapFlags.flagAnswered flag set.

BCC address Match those messages which contain the
specified address in the BCC header field.

BEFORE date Match those messages which were added to the
mailbox prior to the specified date.

BODY string Match those messages where the body contains
the specified string.

CC address Match those messages which contain the
specified address in the CC header field.

DELETED Match those messages which have the
ImapFlags.flagDeleted flag set.

DRAFT Match those messages which have the
ImapFlags.flagDraft flag set.

FLAGGED Match those messages which have the
ImapFlags.flagUrgent flag set.

FROM address Match those messages which contain the
specified address in the FROM header field.

HEADER field string Match those messages which contain the string
in the specified header field. If no string is
specified, then all messages which contain the
header will be matched.

InternetMail.SearchMailbox Method (String, String, Int32[], Int32)

LARGER size Match those messages which are larger than the
specified size in bytes.

NEW Match those messages which have the
ImapFlags.flagRecent flag set, but not the
ImapFlags.flagSeen flag.

OLD Match those messages which do not have the
ImapFlags.flagRecent flag set.

ON date Match those messages which were added on the
specified date.

RECENT Match those messages which have the
ImapFlags.flagRecent flag set.

SEEN Match those messages which have the
ImapFlags.flagSeen flag set.

SENTBEFORE date Match those messages whose Date header value
is earlier than the specified date.

SENTON date Match those messages whose Date header value
is the same as the specified date.

SENTSINCE date Match those messages whose Date header value
is later than the specified date.

SINCE date Match those messages added to the mailbox
after the specified date.

SMALLER size Match those messages which are smaller than
the specified size in bytes.

SUBJECT string Match those messages whose Subject header
contains the specified string.

TEXT string Match those messages whose headers or body
contains the specified string.

TO address Match those messages which contain the
specified address in the TO header field.

UID sequence Match those messages with unique identifiers in
the sequence set.

UNANSWERED Match those messages which do not have the
ImapFlags.flagAnswered flag set.

UNDELETED Match those messages which do not have the
ImapFlags.flagDeleted flag set.

UNDRAFT Match those messages which do not have the
ImapFlags.flagDraft flag set.

UNFLAGGED Match those messages which do not have the
ImapFlags.flagUrgent flag set.

UNSEEN Match those messages which do not have the
ImapFlags.flagUnseen flag set.

charset
An string which specifies the character set to use when searching the mailbox. If this argument is

omitted, the default UTF-8 character set will be used. Note that not all servers support searches using
anything but the default character set.

messageList
An array of integers which will contain the message numbers of those messages which match the
search criteria.

maxMessages
An integer value which specifies the maximum number of message numbers which can be returned in
the messageList array. This value cannot be larger than the size of the array.

Return Value
The number of messages which were found to match the search criteria. If no messages match the criteria,
then the return value will be zero. A return value of -1 indicates an error, and the specific error code can
be determined by checking the value of the LastError property.

Remarks
The SearchMailbox method is used to search a mailbox for messages which match a given criteria and
return a list of the matching message numbers. The search criteria is composed of one or more search
keywords and and optional value to match against. String searches are not case sensitive and partial
matches in the message are returned. The message numbers returned by this method are only valid until
the mailbox is expunged or another mailbox is selected.

In addition to the listed keywords, the keyword NOT may prefix a keyword to return those messages which
do not match the search criteria. For example, "NOT TO user@domain.com" would return those messages
which were not addressed to user@domain.com.

If multiple search keywords are specified, the result is the intersection of all those messages which meet
the search criteria. For example, a search criteria of "DELETED SINCE 1-Jan-2003" would return all those
messages which are marked for deletion and were added to the mailbox after 1 January 2003.

Those search keywords which expect dates must be specified in format dd-mmm-yyyy where the month
is the three letter abbreviation for the month name. Note that the internal date the message was added to
the mailbox is not the same as the value of the Date header field in the message.

If the search keyword requires a string value and the string contains one or more spaces, you must
enclose the search string in quotes as part of the criteria string. The quotes around the search string
prevents the server from interpreting it as a multiple search criteria to be evaluated. If you are using a
search string provided by a user, it is recommended that you always enclose it in quotes to prevent any
potential ambiguity in the search. Even if the search string does not contain any spaces, it is always safe to
enclose it in quotes.

The UID keyword expects a one or more unique message identifiers. These values may provided as
comma separated list, or a range delimited by a colon. For example, "UID 23000:24000" would return all
those messages who have UIDs ranging from 23000 through to 24000.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SearchMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Selects the specified mailbox for read-write access.

[Visual Basic]
Public Function SelectMailbox(_
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool SelectMailbox(
 string mailboxName
);

Parameters
mailboxName

A string argument which specifies the name of the mailbox to be selected.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SelectMailbox method is used to select a mailbox in read-write mode. If the client has a different
mailbox currently selected, that mailbox will be closed and any messages marked for deletion will be
expunged. To prevent deleted messages from being removed from the previous mailbox, use the
UnselectMailbox method prior to selecting the new mailbox.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names may or
may not be case-sensitive depending on the IMAP server's operating system and implementation.

To access a mailbox in read-only mode, use the ExamineMailbox method.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SelectMailbox Method

Submit the current message to a mail server for delivery.

Overload List
Submit the current message to a mail server for delivery.

public bool SendMessage();

Submit the current message to a mail server for delivery.

public bool SendMessage(string,int);

Submit the specified message to a mail server for delivery.

public bool SendMessage(string,int,int);

Submit the current message to a mail server for delivery.

public bool SendMessage(string,int,int,InternetMailOptions);

Submit the current message to a mail server for delivery.

public bool SendMessage(string,int,string,string);

Submit the current message to a mail server for delivery.

public bool SendMessage(string,int,string,string,int);

Submit the current message to a mail server for delivery.

public bool SendMessage(string,int,string,string,int,InternetMailOptions);

Submit the specified message to a mail server for delivery.

public bool SendMessage(string,int,string,string,string,string,string,int,InternetMailOptions);

Submit the current message to a mail server for delivery.

public bool SendMessage(string,string);

Submit the current message to a mail server for delivery.

public bool SendMessage(string,string,string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SendMessage Method

Submit the current message to a mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage() As Boolean

[C#]
public bool SendMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send the current message directly to the recipient's
mail server or through a relay server. The sender's return address is automatically determined by the value
of the From property. The recipient addresses are automatically determined by the value of the To, Cc
and Bcc properties.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

For each recipient specified in the message, the SendMessage method will determine the appropriate
mail exchange server and deliver the message to that user. If the RelayServer and RelayPort properties
are defined, then all messages will be relayed through that specific server, regardless of the recipient
address. Note that the Secure property and related options only affects connections to relay mail servers.
See the RelayServer and RelayPort properties for additional information.

If a relay server is being used, it may require authentication before accepting any messages for delivery.
To enable authentication, specify the optionAuthLogin option by setting the Options property. Prior to
calling the SendMessage method, the UserName and Password properties should be set to the values
that will be used to authenticate the session. If the server does not support authentication, or the user
name or password is invalid, an error will be returned. Note that authentication is only performed if a relay
server is used, otherwise the option is ignored.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SendMessage Method ()

Submit the current message to a mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool SendMessage(
 string hostName,
 int hostPort
);

Parameters
hostName

A string value which specifies the host name or IP address of the mail server that the message will be
submitted to for delivery.

hostPort
An integer value which specifies the port number which should be used to establish a connection with
the mail server. The default port number is 25 for the Simple Mail Transfer Protocol.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send the current email message using the current
mail server. The sender's return address will automatically be determined by the value of the From
property. The recipients for the message will be automatically determined by the value of the To, Cc and
Bcc properties.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The mail server that is specified must be configured to permit relaying messages, or the submission may
fail. In most cases, the server will require that the client authenticate the session with a username and
password. Alternatively, some mail servers require that you connect and authenticate with their POP3
service before the SMTP service will accept a message. Consult the documentation for your mail service
provider for more information on the requirements for submitting messages for delivery.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SendMessage Method (String, Int32)

Submit the specified message to a mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool SendMessage(
 string hostName,
 int hostPort,
 int timeout
);

Parameters
hostName

A string value which specifies the host name or IP address of the mail server that the message will be
submitted to for delivery.

hostPort
An integer value which specifies the port number which should be used to establish a connection with
the mail server. The default port number is 25 for the Simple Mail Transfer Protocol.

timeout
An integer value which specifies a timeout period in seconds. If the message cannot be submitted
within the specified time period, the method will fail. The default timeout value for connections is 20
seconds.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send a formatted email message using the current
mail server. This provides a convenient one-step method of addressing and sending a message.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The mail server that is specified must be configured to permit relaying messages, or the submission may
fail. In most cases, the server will require that the client authenticate the session with a username and
password. Alternatively, some mail servers require that you connect and authenticate with their POP3
service before the SMTP service will accept a message. Consult the documentation for your mail service
provider for more information on the requirements for submitting messages for delivery.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SendMessage Method (String, Int32, Int32)

Submit the current message to a mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer, _
 ByVal options As InternetMailOptions _
) As Boolean

[C#]
public bool SendMessage(
 string hostName,
 int hostPort,
 int timeout,
 InternetMailOptions options
);

Parameters
hostName

A string value which specifies the host name or IP address of the mail server that the message will be
submitted to for delivery.

hostPort
An integer value which specifies the port number which should be used to establish a connection with
the mail server. The default port number is 25 for the Simple Mail Transfer Protocol.

timeout
An integer value which specifies a timeout period in seconds. If the message cannot be submitted
within the specified time period, the method will fail. The default timeout value for connections is 20
seconds.

options
An InternetMailOptions enumeration which specifies the options that can be used when delivering the
message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send the current email message using the current
mail server. The sender's return address will automatically be determined by the value of the From
property. The recipients for the message will be automatically determined by the value of the To, Cc and
Bcc properties.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The mail server that is specified must be configured to permit relaying messages, or the submission may
fail. In most cases, the server will require that the client authenticate the session with a username and

InternetMail.SendMessage Method (String, Int32, Int32,
InternetMailOptions)

password. Alternatively, some mail servers require that you connect and authenticate with their POP3
service before the SMTP service will accept a message. Consult the documentation for your mail service
provider for more information on the requirements for submitting messages for delivery.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submit the current message to a mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool SendMessage(
 string hostName,
 int hostPort,
 string userName,
 string userPassword
);

Parameters
hostName

A string value which specifies the host name or IP address of the mail server that the message will be
submitted to for delivery.

hostPort
An integer value which specifies the port number which should be used to establish a connection with
the mail server. The default port number is 25 for the Simple Mail Transfer Protocol.

userName
A string value which specifies the user name that will be used to authenticate the client session with
the mail server.

userPassword
A string value which specifies the password that will be used to authenticate the client session with the
mail server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send the current email message using the current
mail server. The sender's return address will automatically be determined by the value of the From
property. The recipients for the message will be automatically determined by the value of the To, Cc and
Bcc properties.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The mail server that is specified must be configured to permit relaying messages, or the submission may
fail. In most cases, the server will require that the client authenticate the session with a username and
password. Alternatively, some mail servers require that you connect and authenticate with their POP3
service before the SMTP service will accept a message. Consult the documentation for your mail service

InternetMail.SendMessage Method (String, Int32, String, String)

provider for more information on the requirements for submitting messages for delivery.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submit the current message to a mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool SendMessage(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout
);

Parameters
hostName

A string value which specifies the host name or IP address of the mail server that the message will be
submitted to for delivery.

hostPort
An integer value which specifies the port number which should be used to establish a connection with
the mail server. The default port number is 25 for the Simple Mail Transfer Protocol.

userName
A string value which specifies the user name that will be used to authenticate the client session with
the mail server.

userPassword
A string value which specifies the password that will be used to authenticate the client session with the
mail server.

timeout
An integer value which specifies a timeout period in seconds. If the message cannot be submitted
within the specified time period, the method will fail. The default timeout value for connections is 20
seconds.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send the current email message using the current
mail server. The sender's return address will automatically be determined by the value of the From
property. The recipients for the message will be automatically determined by the value of the To, Cc and
Bcc properties.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the

InternetMail.SendMessage Method (String, Int32, String, String, Int32)

application to update any user interface objects such as a progress bar.

The mail server that is specified must be configured to permit relaying messages, or the submission may
fail. In most cases, the server will require that the client authenticate the session with a username and
password. Alternatively, some mail servers require that you connect and authenticate with their POP3
service before the SMTP service will accept a message. Consult the documentation for your mail service
provider for more information on the requirements for submitting messages for delivery.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submit the current message to a mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer, _
 ByVal options As InternetMailOptions _
) As Boolean

[C#]
public bool SendMessage(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout,
 InternetMailOptions options
);

Parameters
hostName

A string value which specifies the host name or IP address of the mail server that the message will be
submitted to for delivery.

hostPort
An integer value which specifies the port number which should be used to establish a connection with
the mail server. The default port number is 25 for the Simple Mail Transfer Protocol.

userName
A string value which specifies the user name that will be used to authenticate the client session with
the mail server.

userPassword
A string value which specifies the password that will be used to authenticate the client session with the
mail server.

timeout
An integer value which specifies a timeout period in seconds. If the message cannot be submitted
within the specified time period, the method will fail. The default timeout value for connections is 20
seconds.

options
An InternetMailOptions enumeration which specifies the options that can be used when delivering the
message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks

InternetMail.SendMessage Method (String, Int32, String, String, Int32,
InternetMailOptions)

The SendMessage method enables an application to send the current email message using the current
mail server. The sender's return address will automatically be determined by the value of the From
property. The recipients for the message will be automatically determined by the value of the To, Cc and
Bcc properties.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The mail server that is specified must be configured to permit relaying messages, or the submission may
fail. In most cases, the server will require that the client authenticate the session with a username and
password. Alternatively, some mail servers require that you connect and authenticate with their POP3
service before the SMTP service will accept a message. Consult the documentation for your mail service
provider for more information on the requirements for submitting messages for delivery.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submit the specified message to a mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal senderAddress As String, _
 ByVal recipientAddress As String, _
 ByVal messageText As String, _
 ByVal timeout As Integer, _
 ByVal options As InternetMailOptions _
) As Boolean

[C#]
public bool SendMessage(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 string senderAddress,
 string recipientAddress,
 string messageText,
 int timeout,
 InternetMailOptions options
);

Parameters
hostName

A string value which specifies the host name or IP address of the mail server that the message will be
submitted to for delivery.

hostPort
An integer value which specifies the port number which should be used to establish a connection with
the mail server. The default port number is 25 for the Simple Mail Transfer Protocol.

userName
A string value which specifies the user name that will be used to authenticate the client session with
the mail server.

userPassword
A string value which specifies the password that will be used to authenticate the client session with the
mail server.

senderAddress
A string argument which specifies the email address of the person sending the message. This typically
corresponds to the address in the From header of the message, but it is not required that they be the
same.

recipientAddress
A string argument which specifies the email address of the person or persons to receive the message.
Multiple addresses may be specified by separating each address with a comma. It should be noted
that this protocol is only concerned with the delivery of a message and not its contents. Header fields

InternetMail.SendMessage Method (String, Int32, String, String, String,
String, String, Int32, InternetMailOptions)

in the message are not parsed to automatically determine the recipients. This argument should be a
concatenation of all recipients, including carbon copies and blind carbon copies, with each address
separated with a comma.

messageText
A string that contains the message to be delivered to the specified recipients. The message must be
text and conform to the basic structure defined in RFC 822. There must be one or more headers
separated by a blank line, followed by the body of the message. Each line of text must be terminated
by a carriage return and linefeed character sequence.

timeout
An integer value which specifies a timeout period in seconds. If the message cannot be submitted
within the specified time period, the method will fail. The default timeout value for connections is 20
seconds.

options
An InternetMailOptions enumeration which specifies the options that can be used when delivering the
message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send a formatted email message using the current
mail server. This provides a convenient one-step method of addressing and sending a message.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The mail server that is specified must be configured to permit relaying messages, or the submission may
fail. In most cases, the server will require that the client authenticate the session with a username and
password. Alternatively, some mail servers require that you connect and authenticate with their POP3
service before the SMTP service will accept a message. Consult the documentation for your mail service
provider for more information on the requirements for submitting messages for delivery.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submit the current message to a mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal senderAddress As String, _
 ByVal recipientAddress As String _
) As Boolean

[C#]
public bool SendMessage(
 string senderAddress,
 string recipientAddress
);

Parameters
senderAddress

A string argument which specifies the email address of the person sending the message. This typically
corresponds to the address in the From header of the message, but it is not required that they be the
same.

recipientAddress
A string argument which specifies the email address of the person or persons to receive the message.
Multiple addresses may be specified by separating each address with a comma. It should be noted
that this protocol is only concerned with the delivery of a message and not its contents. Header fields
in the message are not parsed to automatically determine the recipients. This argument should be a
concatenation of all recipients, including carbon copies and blind carbon copies, with each address
separated with a comma.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send the current message directly to the recipient's
mail server or through a relay server.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

For each recipient specified, the SendMessage method will determine the appropriate mail exchange
server and deliver the message to that user. If the RelayServer and RelayPort properties are defined,
then all messages will be relayed through that specific server, regardless of the recipient address. Note
that the Secure property and related options only affects connections to relay mail servers. See the
RelayServer and RelayPort properties for additional information.

If a relay server is being used, it may require authentication before accepting any messages for delivery.
To enable authentication, specify the optionAuthLogin option by setting the Options property. Prior to
calling the SendMessage method, the UserName and Password properties should be set to the values
that will be used to authenticate the session. If the server does not support authentication, or the user
name or password is invalid, an error will be returned. Note that authentication is only performed if a relay
server is used, otherwise the option is ignored.

InternetMail.SendMessage Method (String, String)

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submit the current message to a mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal senderAddress As String, _
 ByVal recipientAddress As String, _
 ByVal messageText As String _
) As Boolean

[C#]
public bool SendMessage(
 string senderAddress,
 string recipientAddress,
 string messageText
);

Parameters
senderAddress

A string argument which specifies the email address of the person sending the message. This typically
corresponds to the address in the From header of the message, but it is not required that they be the
same.

recipientAddress
A string argument which specifies the email address of the person or persons to receive the message.
Multiple addresses may be specified by separating each address with a comma. It should be noted
that this protocol is only concerned with the delivery of a message and not its contents. Header fields
in the message are not parsed to automatically determine the recipients. This argument should be a
concatenation of all recipients, including carbon copies and blind carbon copies, with each address
separated with a comma.

messageText
A string that contains the message to be delivered to the specified recipients. The message must be
text and conform to the basic structure defined in RFC 822. There must be one or more headers
separated by a blank line, followed by the body of the message. Each line of text must be terminated
by a carriage return and linefeed character sequence.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send a formatted email message using the current
mail server. This provides a convenient one-step method of addressing and sending a message.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

For each recipient specified, the SendMessage method will determine the appropriate mail exchange
server and deliver the message to that user. If the RelayServer and RelayPort properties are defined,
then all messages will be relayed through that specific server, regardless of the recipient address. Note
that the Secure property and related options only affects connections to relay mail servers. See the

InternetMail.SendMessage Method (String, String, String)

RelayServer and RelayPort properties for additional information.

If a relay server is being used, it may require authentication before accepting any messages for delivery.
To enable authentication, specify the optionAuthLogin option by setting the Options property. Prior to
calling the SendMessage method, the UserName and Password properties should be set to the values
that will be used to authenticate the session. If the server does not support authentication, or the user
name or password is invalid, an error will be returned. Note that authentication is only performed if a relay
server is used, otherwise the option is ignored.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Set the value for a header in the specified message part.

Overload List
Set the value for a header in the specified message part.

public bool SetHeader(int,string,string);

Set the value for a header in the current message part.

public bool SetHeader(string,string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SetHeader Method

Set the value for a header in the specified message part.

[Visual Basic]
Overloads Public Function SetHeader(_
 ByVal messagePart As Integer, _
 ByVal headerName As String, _
 ByVal headerValue As String _
) As Boolean

[C#]
public bool SetHeader(
 int messagePart,
 string headerName,
 string headerValue
);

Parameters
messagePart

An integer which specifies the message part.

headerName
A string which specifies the name of the header field.

headerValue
A string which specifies the value of the header field. If an empty string is specified, the header field is
removed from the header block in the specified message part.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SetHeader Method (Int32, String, String)

Set the value for a header in the current message part.

[Visual Basic]
Overloads Public Function SetHeader(_
 ByVal headerName As String, _
 ByVal headerValue As String _
) As Boolean

[C#]
public bool SetHeader(
 string headerName,
 string headerValue
);

Parameters
headerName

A string which specifies the name of the header field.

headerValue
A string which specifies the value of the header field. If an empty string is specified, the header field is
removed from the header block in the current message part.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The current message part is returned by the Part property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SetHeader Method (String, String)

Retrieve a message from the current mailbox and store it in a file on the local system.

Overload List
Retrieve a message from the current mailbox and store it in a file on the local system.

public bool StoreMessage(int,string);

Retrieve the current message and store it in a file on the local system.

public bool StoreMessage(string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.StoreMessage Method

Retrieve a message from the current mailbox and store it in a file on the local system.

[Visual Basic]
Overloads Public Function StoreMessage(_
 ByVal messageId As Integer, _
 ByVal fileName As String _
) As Boolean

[C#]
public bool StoreMessage(
 int messageId,
 string fileName
);

Parameters
messageId

Number of message to retrieve. This value must be greater than zero. The first message in the mailbox
is message number one.

fileName
A string which specifies the file that the message will be stored in. If the file does not exist, it will be
created. If the file does exist, it will be overwritten with the contents of the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The StoreMessage method retrieves a message from the server and stores it in a file on the local system.
The contents of the message is stored as a text file, using the specified file name. This method will cause
the current thread to block until the message transfer completes, a timeout occurs or the transfer is
canceled. During the transfer, the OnProgress event will fire periodically, enabling the application to
update any user interface objects such as a progress bar.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.StoreMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.StoreMessage Method (Int32, String)

Retrieve the current message and store it in a file on the local system.

[Visual Basic]
Overloads Public Function StoreMessage(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool StoreMessage(
 string fileName
);

Parameters
fileName

A string which specifies the file that the message will be stored in. If the file does not exist, it will be
created. If the file does exist, it will be overwritten with the contents of the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The StoreMessage method retrieves the current message from the server and stores it in a file on the
local system. The contents of the message is stored as a text file, using the specified file name. This
method will cause the current thread to block until the message transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The current message number is specified by the value of the Message property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.StoreMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.StoreMessage Method (String)

Subscribes the user to the current mailbox.

Overload List
Subscribes the user to the current mailbox.

public bool SubscribeMailbox();

Subscribes the user to the specified mailbox.

public bool SubscribeMailbox(string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SubscribeMailbox Method

Subscribes the user to the current mailbox.

[Visual Basic]
Overloads Public Function SubscribeMailbox() As Boolean

[C#]
public bool SubscribeMailbox();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SubscribeMailbox method adds the current mailbox to the current user's list of active or subscribed
mailboxes. The user will remain subscribed to the mailbox across multiple sessions, until the
UnsubscribeMailbox method is called to remove the mailbox from the subscription list.

Note that if a user subscribes to a mailbox and that mailbox is later renamed or deleted, the mailbox will
not be automatically removed from the user's subscription list. To determine if the current mailbox is in
the user's subscription list, check the Subscribed property.

The current mailbox is specified by the value of the MailboxName property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SubscribeMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SubscribeMailbox Method ()

Subscribes the user to the specified mailbox.

[Visual Basic]
Overloads Public Function SubscribeMailbox(_
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool SubscribeMailbox(
 string mailboxName
);

Parameters
mailboxName

A string which specifies the name of the mailbox to subscribe to.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SubscribeMailbox method adds the specified mailbox to the current user's list of active or
subscribed mailboxes. The user will remain subscribed to the mailbox across multiple sessions, until the
UnsubscribeMailbox method is called to remove the mailbox from the subscription list.

Note that if a user subscribes to a mailbox and that mailbox is later renamed or deleted, the mailbox will
not be automatically removed from the user's subscription list. To determine if the current mailbox is in
the user's subscription list, check the Subscribed property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.SubscribeMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SubscribeMailbox Method (String)

Removes the deletion flag for the specified message.

[Visual Basic]
Public Function UndeleteMessage(_
 ByVal messageId As Integer _
) As Boolean

[C#]
public bool UndeleteMessage(
 int messageId
);

Parameters
messageId

Number of message to undelete from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The UndeleteMessage method removes the deletion flag for the specified message in the current
mailbox. To determine if a message has been marked for deletion, set the Message property to the
message number and then check the value of the MessageFlags property to determine if the
imapFlagDeleted bit flag has been set.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UndeleteMessage Method

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method releases resources allocated for the current process. After this method has been
called, no further operations may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
InternetMail Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.Uninitialize Method

Unselects the current mailbox and expunges deleted messages.

Overload List
Unselects the current mailbox and expunges deleted messages.

public bool UnselectMailbox();

Unselects the current mailbox.

public bool UnselectMailbox(bool);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UnselectMailbox Method

Unselects the current mailbox and expunges deleted messages.

[Visual Basic]
Overloads Public Function UnselectMailbox() As Boolean

[C#]
public bool UnselectMailbox();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The UnselectMailbox method unselects the current mailbox. Once the mailbox has been unselected, no
messages in that mailbox can be accessed, and any messages which have been flagged for deletion are
removed.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.UnselectMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UnselectMailbox Method ()

Unselects the current mailbox.

[Visual Basic]
Overloads Public Function UnselectMailbox(_
 ByVal expunge As Boolean _
) As Boolean

[C#]
public bool UnselectMailbox(
 bool expunge
);

Parameters
expunge

An boolean value which determines if deleted messages will be expunged from the mailbox. A value
of true specifies that messages that have been marked for deletion will be removed from the mailbox.
A value of false specifies that no messages will be removed from the mailbox.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The UnselectMailbox method unselects the current mailbox. Once the mailbox has been unselected, no
messages in that mailbox can be accessed.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.UnselectMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UnselectMailbox Method (Boolean)

Unsubscribes the user from the current mailbox.

Overload List
Unsubscribes the user from the current mailbox.

public bool UnsubscribeMailbox();

Unsubscribes the user from the specified mailbox.

public bool UnsubscribeMailbox(string);

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UnsubscribeMailbox Method

Unsubscribes the user from the current mailbox.

[Visual Basic]
Overloads Public Function UnsubscribeMailbox() As Boolean

[C#]
public bool UnsubscribeMailbox();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The UnsubscribeMailbox method removes the current mailbox from the current user's list of active or
subscribed mailboxes. To determine if the current mailbox is in the user's subscription list, check the
Subscribed property.

The current mailbox is specified by the value of the MailboxName property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.UnsubscribeMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UnsubscribeMailbox Method ()

Unsubscribes the user from the specified mailbox.

[Visual Basic]
Overloads Public Function UnsubscribeMailbox(_
 ByVal mailboxName As String _
) As Boolean

[C#]
public bool UnsubscribeMailbox(
 string mailboxName
);

Parameters
mailboxName

A string which specifies the name of the mailbox to unsubscribe from.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The UnsubscribeMailbox method removes the specified mailbox from the current user's list of active or
subscribed mailboxes. To determine if the current mailbox is in the user's subscription list, check the
Subscribed property.

See Also
InternetMail Class | SocketTools Namespace | InternetMail.UnsubscribeMailbox Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UnsubscribeMailbox Method (String)

The events of the InternetMail class are listed below. For a complete list of InternetMail class members,
see the InternetMail Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnDelivered Occurs when a message has been submitted for
delivery.

OnError Occurs when an client operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnRecipient Occurs when a message is about to be submitted
for delivery.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnUpdate Occurs when the server sends a mailbox update
notification to the client.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail Events

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnCancel.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnDelivered.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnError.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnProgress.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnRecipient.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnTimeout.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.OnUpdate.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking network operation, such as sending or receiving a
message, is canceled with the Cancel method. To assist in determining which operation was canceled,
check the value of the Status property.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.OnCancel Event

Occurs when a message has been submitted for delivery.

[Visual Basic]
Public Event OnDelivered As OnDeliveredEventHandler

[C#]
public event OnDeliveredEventHandler OnDelivered;

Event Data
The event handler receives an argument of type InternetMail.DeliveredEventArgs containing data related
to this event. The following InternetMail.DeliveredEventArgs properties provide information specific to
this event.

Property Description

Address Gets the email address of the message recipient.

MessageSize Gets a value which specifies the total number of
bytes in the message.

Remarks
The OnDelivered event is generated when a message has been successfully submitted to the mail server
for delivery. If multiple recipients have been specified for the message, this event will fire for each
recipient, enabling the application to update its user interface as the message is delivered.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.OnDelivered Event

Provides data for the OnDelivered event.

For a list of all members of this type, see InternetMail.DeliveredEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetMail.DeliveredEventArgs

[Visual Basic]
Public Class InternetMail.DeliveredEventArgs
 Inherits EventArgs

[C#]
public class InternetMail.DeliveredEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
DeliveredEventArgs specifies the address of the message recipient and the size of the message that was
delivered in bytes.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
InternetMail.DeliveredEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeliveredEventArgs Class

InternetMail.DeliveredEventArgs overview

Public Instance Constructors

 InternetMail.DeliveredEventArgs Constructor Initializes a new instance of the
InternetMail.DeliveredEventArgs class.

Public Instance Properties

Address Gets the email address of the message recipient.

MessageSize Gets a value which specifies the total number of
bytes in the message.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail.DeliveredEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeliveredEventArgs Members

Initializes a new instance of the InternetMail.DeliveredEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetMail.DeliveredEventArgs();

See Also
InternetMail.DeliveredEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeliveredEventArgs Constructor

The properties of the InternetMail.DeliveredEventArgs class are listed below. For a complete list of
InternetMail.DeliveredEventArgs class members, see the InternetMail.DeliveredEventArgs Members
topic.

Public Instance Properties

Address Gets the email address of the message recipient.

MessageSize Gets a value which specifies the total number of
bytes in the message.

See Also
InternetMail.DeliveredEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeliveredEventArgs Properties

Gets the email address of the message recipient.

[Visual Basic]
Public ReadOnly Property Address As String

[C#]
public string Address {get;}

Property Value
A string value which specifies the recipient of the email message.

Remarks
The Address property returns the email address of the recipient for the message that was submitted to
the mail server for delivery.

See Also
InternetMail.DeliveredEventArgs Class | SocketTools Namespace | MessageSize Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeliveredEventArgs.Address Property

Gets a value which specifies the total number of bytes in the message.

[Visual Basic]
Public ReadOnly Property MessageSize As Integer

[C#]
public int MessageSize {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The MessageSize property specifies the size of the message submitted for delivery to the mail server.

See Also
InternetMail.DeliveredEventArgs Class | SocketTools Namespace | Address Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.DeliveredEventArgs.MessageSize Property

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type InternetMail.ErrorEventArgs containing data related to
this event. The following InternetMail.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see InternetMail.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetMail.ErrorEventArgs

[Visual Basic]
Public Class InternetMail.ErrorEventArgs
 Inherits EventArgs

[C#]
public class InternetMail.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
InternetMail.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ErrorEventArgs Class

InternetMail.ErrorEventArgs overview

Public Instance Constructors

 InternetMail.ErrorEventArgs Constructor Initializes a new instance of the
InternetMail.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ErrorEventArgs Members

Initializes a new instance of the InternetMail.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetMail.ErrorEventArgs();

See Also
InternetMail.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ErrorEventArgs Constructor

The properties of the InternetMail.ErrorEventArgs class are listed below. For a complete list of
InternetMail.ErrorEventArgs class members, see the InternetMail.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
InternetMail.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
InternetMail.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public InternetMail.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
InternetMail.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ErrorEventArgs.Error Property

Occurs as a data stream is being read or written to the client.

[Visual Basic]
Public Event OnProgress As OnProgressEventHandler

[C#]
public event OnProgressEventHandler OnProgress;

Event Data
The event handler receives an argument of type InternetMail.ProgressEventArgs containing data related to
this event. The following InternetMail.ProgressEventArgs properties provide information specific to this
event.

Property Description

Message Gets the message number.

MessageCopied Gets a value which specifies the number of bytes
of data that has been read or written.

MessageSize Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Remarks
The OnProgress event occurs as a data stream is being read or written to the client. If large amounts of
data are being read or written, this event can be used to update a progress bar or other user-interface
component to provide the user with some visual feedback on the progress of the operation.

This event is only generated when the ReadStream, WriteStream or StoreStream methods are called.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.OnProgress Event

Provides data for the OnProgress event.

For a list of all members of this type, see InternetMail.ProgressEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetMail.ProgressEventArgs

[Visual Basic]
Public Class InternetMail.ProgressEventArgs
 Inherits EventArgs

[C#]
public class InternetMail.ProgressEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ProgressEventArgs specifies the number of bytes exchanged with the mail server. This event occurs
when retrieving a message from the server, and when submitting a message to the server for delivery.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
InternetMail.ProgressEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ProgressEventArgs Class

InternetMail.ProgressEventArgs overview

Public Instance Constructors

 InternetMail.ProgressEventArgs Constructor Initializes a new instance of the
InternetMail.ProgressEventArgs class.

Public Instance Properties

Message Gets the message number.

MessageCopied Gets a value which specifies the number of bytes
of data that has been read or written.

MessageSize Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ProgressEventArgs Members

Initializes a new instance of the InternetMail.ProgressEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetMail.ProgressEventArgs();

See Also
InternetMail.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ProgressEventArgs Constructor

The properties of the InternetMail.ProgressEventArgs class are listed below. For a complete list of
InternetMail.ProgressEventArgs class members, see the InternetMail.ProgressEventArgs Members topic.

Public Instance Properties

Message Gets the message number.

MessageCopied Gets a value which specifies the number of bytes
of data that has been read or written.

MessageSize Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

See Also
InternetMail.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ProgressEventArgs Properties

Gets the message number.

[Visual Basic]
Public ReadOnly Property Message As Integer

[C#]
public int Message {get;}

Property Value
An integer value which specifies the message number.

Remarks
The Message property specifies the message number for the current message that is being downloaded
from the mail server to the local host. If the OnProgress event occurs while message data is being
submitted to the server, this property will return a value of zero.

See Also
InternetMail.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ProgressEventArgs.Message Property

Gets a value which specifies the number of bytes of data that has been read or written.

[Visual Basic]
Public ReadOnly Property MessageCopied As Integer

[C#]
public int MessageCopied {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The MessageCopied property specifies the number of bytes that have been read from the client and
stored in the local stream buffer, or written from the stream buffer to the client.

See Also
InternetMail.ProgressEventArgs Class | SocketTools Namespace | MessageSize Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ProgressEventArgs.MessageCopied Property

Gets a value which specifies the total number of bytes in the data stream.

[Visual Basic]
Public ReadOnly Property MessageSize As Integer

[C#]
public int MessageSize {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The MessageSize property specifies the total amount of data being read from the client and stored in the
data stream, or written from the data stream to the client. If the amount of data was unknown or
unspecified at the time the method call was made, then this value will always be the same as the
MessageCopied property.

See Also
InternetMail.ProgressEventArgs Class | SocketTools Namespace | MessageCopied Property | Percent
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ProgressEventArgs.MessageSize Property

Gets a value which specifies the percentage of data that has been read or written.

[Visual Basic]
Public ReadOnly Property Percent As Integer

[C#]
public int Percent {get;}

Property Value
An integer value which specifies a percentage.

Remarks
The Percent property specifies the percentage of data that has been transmitted, expressed as an integer
value between 0 and 100, inclusive. If the maximum size of the data stream was not specified by the caller,
this value will always be 100.

See Also
InternetMail.ProgressEventArgs Class | SocketTools Namespace | MessageCopied Property | MessageSize
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ProgressEventArgs.Percent Property

Occurs when a message is about to be submitted for delivery.

[Visual Basic]
Public Event OnRecipient As OnRecipientEventHandler

[C#]
public event OnRecipientEventHandler OnRecipient;

Event Data
The event handler receives an argument of type InternetMail.RecipientEventArgs containing data related
to this event. The following InternetMail.RecipientEventArgs property provides information specific to
this event.

Property Description

Address Gets the email address of the message recipient.

Remarks
The OnRecipient event is generated when a message is about to be submitted to the mail server for
delivery. If multiple recipients have been specified for the message, this event will fire for each recipient. To
prevent the message from being delivered to the specified recipient, call the Cancel method.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.OnRecipient Event

Provides data for the OnRecipient event.

For a list of all members of this type, see InternetMail.RecipientEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetMail.RecipientEventArgs

[Visual Basic]
Public Class InternetMail.RecipientEventArgs
 Inherits EventArgs

[C#]
public class InternetMail.RecipientEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
RecipientEventArgs specifies recipient of a message that is about to be submitted to the mail server for
delivery.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
InternetMail.RecipientEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecipientEventArgs Class

InternetMail.RecipientEventArgs overview

Public Instance Constructors

 InternetMail.RecipientEventArgs Constructor Initializes a new instance of the
InternetMail.RecipientEventArgs class.

Public Instance Properties

Address Gets the email address of the message recipient.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail.RecipientEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecipientEventArgs Members

Initializes a new instance of the InternetMail.RecipientEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetMail.RecipientEventArgs();

See Also
InternetMail.RecipientEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecipientEventArgs Constructor

The properties of the InternetMail.RecipientEventArgs class are listed below. For a complete list of
InternetMail.RecipientEventArgs class members, see the InternetMail.RecipientEventArgs Members
topic.

Public Instance Properties

Address Gets the email address of the message recipient.

See Also
InternetMail.RecipientEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecipientEventArgs Properties

Gets the email address of the message recipient.

[Visual Basic]
Public ReadOnly Property Address As String

[C#]
public string Address {get;}

Property Value
A string value which specifies the recipient of the email message.

Remarks
The Address property returns the email address of the recipient for the message that is about to be
submitted to the mail server for delivery.

See Also
InternetMail.RecipientEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RecipientEventArgs.Address Property

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

See Also
InternetMail Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.OnTimeout Event

Provides data for the OnUpdate event.

For a list of all members of this type, see InternetMail.UpdateEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetMail.UpdateEventArgs

[Visual Basic]
Public Class InternetMail.UpdateEventArgs
 Inherits EventArgs

[C#]
public class InternetMail.UpdateEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
InternetMail.UpdateEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UpdateEventArgs Class

InternetMail.UpdateEventArgs overview

Public Instance Constructors

 InternetMail.UpdateEventArgs Constructor Initializes a new instance of the
InternetMail.UpdateEventArgs class.

Public Instance Properties

Message Gets the message number.

UpdateType Gets the type of update notification that has been
sent by the server.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail.UpdateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UpdateEventArgs Members

Initializes a new instance of the InternetMail.UpdateEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetMail.UpdateEventArgs();

See Also
InternetMail.UpdateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UpdateEventArgs Constructor

The properties of the InternetMail.UpdateEventArgs class are listed below. For a complete list of
InternetMail.UpdateEventArgs class members, see the InternetMail.UpdateEventArgs Members topic.

Public Instance Properties

Message Gets the message number.

UpdateType Gets the type of update notification that has been
sent by the server.

See Also
InternetMail.UpdateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UpdateEventArgs Properties

Gets the message number.

[Visual Basic]
Public ReadOnly Property Message As Integer

[C#]
public int Message {get;}

Property Value
An integer value which specifies the message number.

Remarks
The Message property specifies the message number for the message that has been added to or
expunged from the current mailbox. A value of zero indicates that the update notification does not
reference a specific message in the mailbox.

See Also
InternetMail.UpdateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UpdateEventArgs.Message Property

Gets the type of update notification that has been sent by the server.

[Visual Basic]
Public ReadOnly Property UpdateType As IdleUpdate

[C#]
public InternetMail.IdleUpdate UpdateType {get;}

Property Value
One or more of the IdleUpdate enumeration flags.

See Also
InternetMail.UpdateEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.UpdateEventArgs.UpdateType Property

Occurs when the server sends a mailbox update notification to the client.

[Visual Basic]
Public Event OnUpdate As OnUpdateEventHandler

[C#]
public event OnUpdateEventHandler OnUpdate;

Event Data
The event handler receives an argument of type InternetMail.UpdateEventArgs containing data related to
this event. The following InternetMail.UpdateEventArgs properties provide information specific to this
event.

Property Description

Message Gets the message number.

UpdateType Gets the type of update notification that has been
sent by the server.

Remarks
This event is only generated when the Idle method has been used to enable mailbox status monitoring.

See Also
InternetMail Class | SocketTools Namespace | Idle Method | OnUpdateEventHandler Delegate

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.OnUpdate Event

Represents the method that will handle the OnDelivered event.

[Visual Basic]
Public Delegate Sub InternetMail.OnDeliveredEventHandler(_
 ByVal sender As Object, _
 ByVal e As DeliveredEventArgs _
)

[C#]
public delegate void InternetMail.OnDeliveredEventHandler(

 object sender,
 DeliveredEventArgs e
);

Parameters
sender

The source of the event.

e
An DeliveredEventArgs that contains the event data.

Remarks
When you create an OnDeliveredEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnDeliveredEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.OnDeliveredEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub InternetMail.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void InternetMail.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.OnErrorEventHandler Delegate

Represents the method that will handle the OnProgress event.

[Visual Basic]
Public Delegate Sub InternetMail.OnProgressEventHandler(_
 ByVal sender As Object, _
 ByVal e As ProgressEventArgs _
)

[C#]
public delegate void InternetMail.OnProgressEventHandler(

 object sender,
 ProgressEventArgs e
);

Parameters
sender

The source of the event.

e
A ProgressEventArgs that contains the event data.

Remarks
When you create an OnProgressEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnProgressEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.OnProgressEventHandler Delegate

Represents the method that will handle the OnRecipient event.

[Visual Basic]
Public Delegate Sub InternetMail.OnRecipientEventHandler(_
 ByVal sender As Object, _
 ByVal e As RecipientEventArgs _
)

[C#]
public delegate void InternetMail.OnRecipientEventHandler(

 object sender,
 RecipientEventArgs e
);

Parameters
sender

The source of the event.

e
An RecipientEventArgs that contains the event data.

Remarks
When you create an OnRecipientEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnRecipientEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.OnRecipientEventHandler Delegate

Represents the method that will handle the OnUpdate event.

[Visual Basic]
Public Delegate Sub InternetMail.OnUpdateEventHandler(_
 ByVal sender As Object, _
 ByVal e As UpdateEventArgs _
)

[C#]
public delegate void InternetMail.OnUpdateEventHandler(

 object sender,
 UpdateEventArgs e
);

Parameters
sender

The source of the event.

e
An UpdateEventArgs that contains the event data.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace | UpdateEventArgs Class

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.OnUpdateEventHandler Delegate

Specifies the error codes returned by the InternetMail class.

[Visual Basic]
Public Enum InternetMail.ErrorCode

[C#]
public enum InternetMail.ErrorCode

Remarks
The InternetMail class uses the ErrorCode enumeration to specify what error has occurred when a
network operation fails. The current error code may be determined by checking the value of the LastError
property.

Note that the last error code is only meaningful if the previous network operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

InternetMail.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote

host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this
session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been

defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or

unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the idle monitoring options that the InternetMail class supports.

[Visual Basic]
Public Enum InternetMail.IdleOptions

[C#]
public enum InternetMail.IdleOptions

Remarks
The Idle method can operate in two modes, based on the options specified by the caller. If the option
imapIdleNoWait is specified, the method begins monitoring the client session asynchronously and
returns control immediately to the caller. If the server sends a update notification to the client, the
OnUpdate event will fire with information about the status change. If the option imapIdleWait is
specified, the method will block waiting for the server to send a notification message to the client. The
method will return when either a message is received or the timeout period is exceeded.

Members

Member Name Description

idleNoWait The Idle method should return immediately after
idle processing has been enabled. When this
option is used, the application may continue to
perform other functions while the client session is
monitored for status updates sent by the server.
The client will continue to monitor status changes
until an IMAP command issued or the client
disconnects from the server. This is the default
option.

idleWait The Idle method should wait until the server sends
a status update, or until the timeout period is
reached. The client will stop monitoring status
changes when the function returns. If this option is
used in a single-threaded application, normal
message processing can be impeded, causing the
application to appear non-responsive until the
timeout period is reached. It is strongly
recommended that single-threaded applications
with a user interface specify the imapIdleNoWait
option instead.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace | Idle Method (SocketTools.InternetMail) | OnUpdate Event
(SocketTools.InternetMail)

InternetMail.IdleOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the types of update notification messages that the InternetMail class supports.

[Visual Basic]
Public Enum InternetMail.IdleUpdate

[C#]
public enum InternetMail.IdleUpdate

Members

Member Name Description

updateUnknown The server has sent an unrecognized notification
message. This does not necessarily reflect an error
condition, as some servers may send additional
notification messages beyond the standard EXISTS,
EXPUNGE and RECENT messages. Most
applications should ignore this type of notification.

updateMessage The server has sent notification message to the
client indicating that a new message has arrived.
Typically this update notification occurs shortly
after the new message has been stored in the
current mailbox.

updateExpunge The server has sent a notification message to the
client indicating that a message has been removed
from the current mailbox. It is recommended that
the application re-examine the mailbox when this
notification is received. Typically this notification is
only sent periodically by the server, and may not
be sent immediately after a message has been
expunged from the mailbox.

updateMailbox The server has sent notification message to the
client indicating that the state of the mailbox has
changed. This message is sent periodically by the
server and may not be sent immediately after a
new message arrives or a message is flagged as
unread. It is recommended that the application re-
examine the mailbox when this notification is
received.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace | OnUpdate

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.IdleUpdate Enumeration

Specifies the mailbox and message flags that the InternetMail class supports when connected to a mail
server using the IMAP4 protocol.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetMail.ImapFlags

[C#]
[Flags]
public enum InternetMail.ImapFlags

Members

Member Name Description Value

flagNone No flags have been set for the current
message or mailbox.

0

flagAnswered The message has been answered. 1

flagDraft The message is a draft copy and has
not been delivered.

2

flagUrgent The message has been flagged for
urgent or special attention.

4

flagSeen The message has been read. 8

flagRecent The message has been added to the
mailbox recent.

256

flagDeleted The message has been marked for
deletion.

512

flagNoInferiors The mailbox does not contain any child
mailboxes. In the IMAP protocol, these
are referred to as inferior hierarchical
mailbox names.

65536

flagNoSelect The mailbox cannot be selected or
examined. This flag is typically used by
servers to indicate that the mailbox
name refers to a directory on the server,
not an actual mailbox.

131072

flagMarked The mailbox is marked as being of
interest to a client. If this flag is used, it
typically means that the mailbox
contains messages. An application
should not depend on this flag being
present for any given mailbox. Some
IMAP servers do not support marked or
unmarked flags for mailboxes.

262144

flagUnmarked The mailbox is marked as not being of 524288

InternetMail.ImapFlags Enumeration

interest to a client. If this flag is used, it
typically means that the mailbox does
not contain any messages. An
application should not depend on this
flag being present for any given
mailbox. Some IMAP servers do not
support marked or unmarked flags for
mailboxes.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the result codes that the InternetMail class supports.

[Visual Basic]
Public Enum InternetMail.ImapResult

[C#]
public enum InternetMail.ImapResult

Members

Member Name Description

resultUnknown An unknown result code was returned by the
server.

resultOk The previous command completed successfully.
The result string contains information about the
results of the command.

resultNo The previous command could not be completed.
The result string contains information about why
the command failed.

resultBad The previous command could not be completed,
the command may be invalid or not supported on
the server. The result string contains information
about why the command failed.

resultContinue The command has executed and is waiting for
additional data from the client.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ImapResult Enumeration

Specifies the message sections that the InternetMail class supports when connected to a mail server using
the IMAP4 protocol.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetMail.ImapSections

[C#]
[Flags]
public enum InternetMail.ImapSections

Members

Member Name Description Value

sectionDefault All headers and the complete body of
the specified message or message part
are to be retrieved. The client
application is responsible for parsing the
header block. If the message is a MIME
multipart message and the complete
message is returned, the application is
responsible for parsing the individual
message parts if necessary.

0

sectionHeader All headers for the specified message or
message part are to be retrieved. The
client application is responsible for
parsing the header block.

1

sectionMimeHeader The MIME headers for the specified
message or message are to be
retrieved. Only those header fields
which are used in MIME messages, such
as Content-Type will be returned to the
client. This is typically useful when
processing the header for a multipart
message which contains file
attachments. The client application is
responsible for parsing the header
block.

2

sectionBody The body of the specified message or
message part will be retrieved. For a
MIME formatted message, this may
include data that is uuencoded or
base64 encoded. The application is
responsible for decoding this data.

4

sectionPreview The message header or body is being
previewed and should not be marked as
read by the server. This prevents the

4096

InternetMail.ImapSections Enumeration

message from having the
IMAP_FLAG_SEEN flag from being
automatically set when the message
data is retrieved.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the options that the InternetMail class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetMail.InternetMailOptions

[C#]
[Flags]
public enum InternetMail.InternetMailOptions

Remarks
The InternetMail class uses the InternetMailOptions enumeration to specify one or more options to be
used when establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionAuthLogin This option specifies the client should
attempt to authenticate with the mail
server when submitting messages for
delivery. This option is typically required
when relaying messages through a
server to a recipient in a different
domain.

1

optionAllHeaders Preserves all headers in the message
when it is exported, including the
Received and Return-Path headers
which are normally excluded.

256

optionKeepOrder Preserves the order of the headers
when it is exported; by default, some
headers may be re-ordered.

512

optionSecure This option specifies the client should
attempt to establish a secure
connection with the server. Note that
the server must support secure
connections using either the SSL or TLS
protocol.

4096

optionExplicitSSL This option specifies the client should
attempt to establish a secure explicit SSL
session. The initial connection to the
server is not encrypted, and the client
will attempt to negotiate a secure
connection by sending a command to
the server. Some servers may require
this option when connecting to the

4096

InternetMail.InternetMailOptions Enumeration

server on ports other than the default
secure port.

optionImplicitSSL This option specifies the client should
attempt to establish a secure implicit
SSL session. The SSL handshake is
initiated immediately after the
connection to the server has been
established.

8192

optionSecureFallback This option specifies the client should
permit the use of less secure cipher
suites for compatibility with legacy
servers. If this option is specified, the
client will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

32768

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

optionNotify Notify the sender of the delivery status
of the message, if the server supports
delivery status notification. This option is
a combination of the
optionNotifySuccess,
optionNotifyFailure, optionNotifyDelay
and optionReturnHeaders options.

983040

optionNotifySuccess If the mail server supports delivery
status notification, this causes a
message to be returned to the sender
once it has been successfully delivered.

65536

optionNotifyFailure If the mail server supports delivery
status notification, this causes a
message to be returned to the sender if
it could not be delivered.

131072

optionNotifyDelay If the mail server supports delivery
status notification, this causes a
message to be returned to the sender if
delivery has been delayed.

262144

optionReturnHeaders If the mail server supports delivery
status notification, this causes a
message to be returned which contains
the headers of the message that was
sent.

524288

optionReturnMessage If the mail server supports delivery
status notification, this causes a
message to be returned which contains
the complete message that was sent.

1048576

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the type of mail server that the client is connected to.

[Visual Basic]
Public Enum InternetMail.MailServerType

[C#]
public enum InternetMail.MailServerType

Members

Member Name Description

serverUnknown The server type has not been explicitly set. The
server type will be automatically determined by
the value of the service port number specified by
the value of the ServerPort property.

serverPop3 The Post Office Protocol is used when establishing
a connection to the mail server.

serverImap4 The Internet Message Access Protocol is used
when establishing a connection to the mail server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace | ServerType Property (SocketTools.InternetMail)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MailServerType Enumeration

Specifies the file attachment options supported by the InternetMail class.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetMail.MimeAttachment

[C#]
[Flags]
public enum InternetMail.MimeAttachment

Remarks
The attachAlternative and attachInline values can be combined with one of the attachment options
using a bitwise OR operator.

Members

Member Name Description Value

attachDefault The file attachment encoding is based
on the file content type. Text files are
not encoded, and binary files are
encoded using the standard base64
encoding algorithm. This is the default
option for file attachments.

0

attachBase64 The file attachment is always encoded
using the standard base64 algorithm,
even if the attached file is a plain text
file.

1

attachUucode The file attachment is always encoded
using the uuencode algorithm, even if
the attached file is a plain text file.

2

attachQuoted The file attachment is always encoded
using the quoted-printable algorithm,
even if the attached file is a plain text
file.

3

attachAlternative The attached data is an alternative
format for the contents of the message.
This can only be used with textual data.

65536

attachInline The attached data will be displayed
inline with the contents of the message.
This is typically used with images that
are to be displayed along with the
message text.

131072

Requirements
Namespace: SocketTools

InternetMail.MimeAttachment Enumeration

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the character sets recognized by the InternetMail class.

[Visual Basic]
Public Enum InternetMail.MimeCharacterSet

[C#]
public enum InternetMail.MimeCharacterSet

Members

Member Name Description

charsetUnknown The character set is unknown.

charsetDefault The default character set. This is the same as
specifying the character set charsetUTF8.

charsetUSASCII A character set using US-ASCII which defines 7-bit
printable characters with values ranging from 20h
to 7Eh. An application that uses this character set
has the broadest compatibility with most mail
servers (MTAs) because it does not require the
server to handle 8-bit characters correctly when
the message is delivered. This is the most
commonly used character set for plain text email
messages in the English language and is the
default character set used by the class.

charsetISO8859_1 An 8-bit character set for most western European
languages such as English, French, Spanish and
German. This character set is also commonly
referred to as Latin1. The Windows code page for
this character set is 28591, however Windows code
page 1252 (Windows-1252) is typically used to
represent this character set in most applications.

charsetISO8859_2 An 8-bit character set for most central and eastern
European languages such as Czech, Hungarian,
Polish and Romanian. This character set is also
commonly referred to as Latin2. This character set
is similar to Windows code page 1250, however
the characters are arranged differently.

charsetISO8859_3 A character set for southern European languages
such as Maltese and Esperanto. This character set
was also used with the Turkish language, but it was
superseded by ISO 8859-9 which is the preferred
character set for Turkish. This character set is not
widely used in mail messages and it is
recommended that you use UTF-8 instead.

charsetISO8859_4 A character set for northern European languages
such as Latvian, Lithuanian and Greenlandic. This
character set is not widely used in mail messages

InternetMail.MimeCharacterSet Enumeration

and it is recommended that you use UTF-8
instead.

charsetISO8859_5 An 8-bit character set for Cyrillic languages such
as Russian, Bulgarian and Serbian. The Windows
code page for this character set is 28595. This
character set is not widely used and it is
recommended that you use UTF-8 instead.

charsetISO8859_6 An 8-bit character set for Arabic languages. Note
that the application is responsible for displaying
text that uses this character set. In particular, any
display engine needs to be able to handle the
reverse writing direction and analyze the context
of the message to correctly combine the glyphs.
This character set is not widely used and it is
recommended that you use UTF-8 instead.

charsetISO8859_7 An 8-bit character set for the Greek language. This
character set is also commonly referred to as
Latin/Greek. The Windows code page for this
character set is 28597.

charsetISO8859_8 An 8-bit character set for the Hebrew language.
Note that similar to Arabic, Hebrew uses a reverse
writing direction. An application which displays this
character should be capable of processing bi-
directional text where a single message may
include both right-to-left and left-to-right
languages, such as Hebrew and English. The
Windows code page for this character set is 28598.

charsetISO8859_9 An 8-bit character set for the Turkish language.
This character set is also commonly referred to as
Latin5. The Windows code page for this character
set is 28599.

charsetISO8859_10 A character set for the Danish, Icelandic,
Norwegian and Swedish languages. This character
set is also commonly referred to as Latin-6 and is
similar to ISO 8859-4.

charsetISO8859_13 A character set for Baltic languages. This character
set is also commonly referred to as Latin-7. This
character set is similar to ISO 8859-4, except it
adds certain Polish characters and does not
support Nordic languages.

charsetISO8859_14 A character set for Gaelic languages such as Irish,
Manx and Scottish Gaelic. This character set is also
commonly referred to as Latin-8. This character set
replaced ISO 8859-12 which was never fully
implemented.

charsetISO8859_15 A character set for western European languages.
This character set is also commonly referred to as
Latin-9 and is nearly identical to ISO8859-1 except

that it replaces lesser-used symbols with the Euro
sign and some letters.

charsetISO2022_JP A multi-byte character encoding for Japanese that
is widely used with mail messages. This is a 7-bit
encoding where all characters start with ASCII and
uses escape sequences to switch to the double-
byte character sets.

charsetISO2022_KR A multi-byte character encoding for Korean which
encodes both ASCII and Korean double-byte
characters. This is a 7-bit encoding which uses the
shift in and shift out control characters to switch to
the double-byte character set.

charsetISO2022_CN A multi-byte character encoding for Simplified
Chinese which encodes both ASCII and Chinese
double-byte characters. This is a 7-bit encoding
which uses the shift in and shift out control
characters to switch to the double-byte character
set.

charsetKOI8R A character set for Russian using the Cyrillic
alphabet. This character set also covers the
Bulgarian language. Most mail messages in the
Russian language use this character set or UTF-8
instead of ISO 8859-5, which was never widely
adopted.

charsetKOI8U A character set for Ukrainian using the Cyrillic
alphabet. This character set is similar to the KOI8-R
character set, but replaces certain symbols with
Ukrainian letters. Most mail messages in the
Ukrainian language use this character set or UTF-8
instead of ISO 8859-5, which was never widely
adopted.

charsetGB2312 A multi-byte character encoding which can
represent ASCII and simplified Chinese characters.
It has been superseded by GB18030, however it
remains widely used in China.

charsetGB18030 A Unicode transformation format which can
represent all Unicode code points and supports
both simplified and traditional Chinese characters.
It is backwards compatible with GB2312 and
supersedes that character set.

charsetBIG5 A multi-byte character set that supports both
ASCII characters and traditional Chinese
characters. It is widely used in Taiwan, Hong Kong
and Macau. It is no longer commonly used in
China, which has developed GB18030 as a
standard encoding. Note that Microsoft's
implementation of Big5 on Windows does not
support all of the extensions and is missing certain

code points.

charsetUTF7 A 7-bit Unicode Transformation Format that uses
variable-length character encoding to represent
Unicode text as a stream of ASCII characters that
are safe to transport between mail servers that
only support 7-bit printable characters. It is
primarily used as an alternative to UTF-8 which
requires that the mail server support 8-bit text or
use quoted-printable encoding.

charsetUTF8 An 8-bit Unicode Transformation Format that uses
multibyte character sequences to represent
Unicode text. It is backwards compatible with the
ASCII character set, however because it uses 8-bit
text, it should be encoded using either quoted-
printable or base64 encoding to ensure that mail
servers that do not support 8-bit characters.

charsetUTF16 A 16-bit Unicode Transformation Format that uses
two bytes to represent each Unicode character.
Messages that use UTF-16 are commonly encoded
using the base64 algorithm. It is recommended
that most applications use the UTF-8 character set,
which is capable of representing all Unicode
characters.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the content types supported by the InternetMail class.

[Visual Basic]
Public Enum InternetMail.MimeContent

[C#]
public enum InternetMail.MimeContent

Members

Member Name Description

contentUnknown The content type is unknown. This value may be
returned if the message handle is invalid, or if the
file extension is unknown and the file could not be
opened for read access.

contentDefault The default content type. This is the same as
specifying the content type contentText.

contentApplication The content is application specific. Examples of this
type of file would be a Microsoft Word document
or an executable program. This is also the default
type for files which have an unrecognized file
name extension and contain binary data.

contentAudio The content is audio data in one of several
standard formats. Examples of this type of file
would be a Windows (.wav) file or MPEG3 (.mp3)
file.

contentImage The content is an image data in one of several
standard formats. Examples of this type of file
would be a GIF or JPEG image file.

contentMessage The content is an email message encapsulated
within the current message.

contentMultipart The content is a multipart MIME email message
which contains additional message parts. For
example, an email message which contains both a
text message and file attachment would be
identified as a multipart message.

contentText The content is textual data. This is also the default
type for files which have an unrecognized file
name extension and contain only printable text.

contentVideo The content is video data in one of several
standard formats. Examples of this type of file
would be a Windows (.avi) or Quicktime (.mov)
video file.

contentWideText The content is Unicode text. This is also the default
type for files which have an unrecognized file

InternetMail.MimeContent Enumeration

name extension. The content must be prefixed
with a byte order mark (BOM) to be recognized as
Unicode text.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the encoding types supported by the InternetMail class.

[Visual Basic]
Public Enum InternetMail.MimeEncoding

[C#]
public enum InternetMail.MimeEncoding

Members

Member Name Description

encodingUnknown The encoding type is unknown.

encodingDefault The encoding type is based on the content type.
Text data is not encoded, and binary data is
encoded using the standard base64 encoding
algorithm. This is the default option for file
attachments.

encoding7Bit Each character is encoded in one or more bytes,
with each byte being 8 bits long, with the most
significant bit cleared. This encoding is most
commonly used with plain text using the US-ASCII
character set, where each character is represented
by a single byte in the range of 20h to 7Eh.

encoding8Bit Each character is encoded in one or more bytes,
with each byte being 8 bits long and all bits are
used. 8-bit encoding is typically used with
multibyte character sets and is the default
encoding used with Unicode text.

encodingBinary The data contains unmodified 8-bit data. This
encoding type is rarely specified for email
messages because not all mail servers are capable
of transmitting 8-bit data. In most cases, messages
which contain binary data are encoded using the
base64 algorithm.

encodingQuoted The data is encoded using quoted-printable
encoding. Printable ASCII characters are left as-is,
with non-printable characters encoded as their
hexadecimal value. Quoted-printable encoding is
commonly used with HTML formatted email
messages.

encodingBase64 The data is encoded using the standard base64
algorithm. This is the most common encoding
method for binary data in an email message.

encodingUucode The data is encoded using the uuencode
algorithm. This encoding method is common for
binary attachments to news articles, but is rarely

InternetMail.MimeEncoding Enumeration

used with email messages.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the export options that the InternetMail class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetMail.MimeExportOptions

[C#]
[Flags]
public enum InternetMail.MimeExportOptions

Members

Member Name Description Value

exportDefault The default export options. The headers
for the message are written out in a
specific consistent order, with custom
headers written to the end of the
header block regardless of the order in
which they were set or imported from
another message. If the message
contains Bcc, Received, Return-Path,
Status or X400-Received header fields,
they will not be exported.

0

exportAllHeaders All headers, including the Bcc, Received,
Return-Path, Status and X400-Received
header fields will be exported. Normally
these headers are not exported because
they are only used by the mail transport
system. This option can be useful when
exporting a message to be stored on
the local system, but should not be used
when exporting a message to be
delivered to another user.

1

exportKeepOrder The original order in which the message
header fields were set or imported are
preserved when the message is
exported.

2

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.MimeExportOptions Enumeration

Specifies the authentication methods supported by the InternetMail class when connected to a mail server
using the POP3 protocol.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetMail.PopAuthentication

[C#]
[Flags]
public enum InternetMail.PopAuthentication

Members

Member Name Description Value

authDefault The default authentication type. This is
the same as specifying the authPass
authentication type.

0

authPassword Standard cleartext username and
password is sent to the server. This
authentication method is supported by
all servers.

0

authApop The APOP authentication method which
uses an MD5 digest of the password.
This method is not supported by all
servers and should only be specified if
required by the server.

1

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.PopAuthentication Enumeration

Specifies the encryption algorithms that the InternetMail class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetMail.SecureCipherAlgorithm

[C#]
[Flags]
public enum InternetMail.SecureCipherAlgorithm

Remarks
The InternetMail class uses the SecureCipherAlgorithm enumeration to identify which encryption
algorithm was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

cipherNone No cipher has been selected. A secure
connection has not been established
with the remote host.

0

cipherRC2 The RC2 block cipher was selected. This
is a variable key length cipher which
supports keys between 40- and 128-bits
in length, in 8-bit increments.

1

cipherRC4 The RC4 stream cipher was selected.
This is a variable key length cipher
which supports keys between 40- and
128-bits in length, in 8-bit increments.

2

cipherRC5 The RC5 block cipher was selected. This
is a variable key length cipher which
supports keys up to 2040 bits, in 8-bit
increments.

4

cipherDES The DES (Data Encryption Standard)
block cipher was selected. This is a fixed
key length cipher using 56-bit keys.

8

cipherDES3 The Triple DES block cipher was
selected. This cipher encrypts the data
three times using different keys,
effectively using a 168-bit key length.

16

cipherDESX A variant of the DES block cipher which
XORs an extra 64-bits of the key before
and after the plaintext has been
encrypted, increasing the key size to
184 bits.

32

cipherAES The Advanced Encryption Standard 64

InternetMail.SecureCipherAlgorithm Enumeration

cipher (also known as the Rijndael
cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits.
This cipher is supported on Windows XP
SP3 SP3 and later versions of the
operating system.

cipherSkipjack The Skipjack block cipher was selected.
This is a fixed key length cipher, using
80-bit keys.

128

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the hash algorithms that the InternetMail class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetMail.SecureHashAlgorithm

[C#]
[Flags]
public enum InternetMail.SecureHashAlgorithm

Remarks
The InternetMail class uses the SecureHashAlgorithm enumeration to identify the message digest (hash)
algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

hashNone No hash algorithm has been selected.
This is not a secure connection with the
server.

0

hashMD5 The MD5 algorithm was selected. This
algorithm produces a 128-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

1

hashSHA The SHA-1 algorithm was selected. This
algorithm produces a 160-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

2

hashSHA256 The SHA-256 algorithm was selected.
This algorithm produces a 256-bit
message digest.

4

hashSHA384 The SHA-384 algorithm was selected.
This algorithm produces a 384-bit
message digest.

8

hashSHA512 The SHA-512 algorithm was selected.
This algorithm produces a 512-bit
message digest.

16

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also

InternetMail.SecureHashAlgorithm Enumeration

SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the key exchange algorithms that the InternetMail class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetMail.SecureKeyAlgorithm

[C#]
[Flags]
public enum InternetMail.SecureKeyAlgorithm

Remarks
The InternetMail class uses the SecureKeyAlgorithm enumeration to identify the key exchange algorithm
that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

keyExchangeNone No key exchange algorithm has been
selected. This is not a secure connection
with the server.

0

keyExchangeRSA The RSA public key exchange algorithm
has been selected.

1

keyExchangeKEA The KEA public key exchange algorithm
has been selected. This is an improved
version of the Diffie-Hellman public key
algorithm.

2

keyExchangeDH The Diffie-Hellman public key exchange
algorithm has been selected.

4

keyExchangeECDH The Elliptic Curve Diffie-Hellman key
exchange algorithm was selected. This is
a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography.
This key exchange algorithm is only
supported on Windows XP SP3 SP3 and
later versions of the operating system.

8

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.SecureKeyAlgorithm Enumeration

Specifies the security certificate status values that may be returned by the InternetMail class.

[Visual Basic]
Public Enum InternetMail.SecurityCertificate

[C#]
public enum InternetMail.SecurityCertificate

Remarks
The InternetMail class uses the SecurityCertificate enumeration to identify the current status of the
certificate that was provided by the remote host when a secure connection was established.

Members

Member Name Description

certificateNone No certificate information is available. A secure
connection was not established with the server.

certificateValid The certificate is valid.

certificateNoMatch The certificate is valid, however the domain name
specified in the certificate does not match the
domain name of the remote host. The application
can examine the CertificateSubject property to
determine the site the certificate was issued to.

certificateExpired The certificate has expired and is no longer valid.
The application can examine the
CertificateExpires property to determine when
the certificate expired.

certificateRevoked The certificate has been revoked and is no longer
valid. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateUntrusted The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the
local host. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateInvalid The certificate is invalid. This typically indicates that
the internal structure of the certificate is damaged.
It is recommended that the application
immediately terminate the connection if this status
is returned.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

InternetMail.SecurityCertificate Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the security protocols that the InternetMail class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetMail.SecurityProtocols

[C#]
[Flags]
public enum InternetMail.SecurityProtocols

Remarks
The InternetMail class uses the SecurityProtocols enumeration to specify one or more security protocols
to be used when establishing a connection with a remote host. Multiple protocols may be specified if
necessary and the actual protocol used will be negotiated with the remote host. It is recommended that
most applications use protocolDefault when creating a secure connection.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

InternetMail.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolDefault The default selection of security
protocols will be used when establishing
a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

16

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the threading model used by the class instance.

[Visual Basic]
Public Enum InternetMail.ThreadingModel

[C#]
public enum InternetMail.ThreadingModel

Remarks
The threading model modelSingleThread does not limit the application to a single thread of execution. It
specifies that only a single thread may invoke methods in a class instance. When a session is established
using the Connect method, that session is attached to the thread that created it. From that point on, until
the session is terminated, only the owner may invoke methods in that instance of the class. The ownership
of the class instance may be transferred from one thread to another using the AttachThread method.

The threading model modelFreeThread disables certain internal safety checks that are performed by the
class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Members

Member Name Description

modelSingleThread Methods in the class instance may only be invoked
by a single thread. This threading model specifies
that only the thread which established the
connection should be permitted to invoke
methods. This is the default threading model.

modelFreeThread Methods in the class instance may be invoked by
any thread. This threading model permits methods
to be invoked across multiple threads without
being explicitly attached to the object.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ThreadingModel Enumeration

Specifies the threading model used by the class instance.

[Visual Basic]
Public Enum InternetMail.ThreadModelAttribute.Model

[C#]
public enum InternetMail.ThreadModelAttribute.Model

Remarks
The threading model SingleThread does not limit the application to a single thread of execution. It
specifies that only a single thread may invoke methods in a class instance. When a session is established
using the Connect method, that session is attached to the thread that created it. From that point on, until
the session is terminated, only the owner may invoke methods in that instance of the class. The ownership
of the class instance may be transferred from one thread to another using the AttachThread method.

The threading model FreeThread disables certain internal safety checks that are performed by the class
and may result in unexpected behavior unless you ensure that access to the class instance is synchronized
across multiple threads. The application must ensure that no two threads will attempt to invoke a blocking
method at the same time. In other words, if one thread invokes a method, the application must ensure
that another thread will not attempt to invoke any other method at the same time using the same instance
of the class.

Members

Member Name Description

SingleThread Methods in the class instance may only be invoked
by a single thread. This threading model specifies
that only the thread which established the
connection should be permitted to invoke
methods. This is the default threading model.

FreeThread Methods in the class instance may be invoked by
any thread. This threading model permits methods
to be invoked across multiple threads without
being explicitly attached to the object.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ThreadModelAttribute.Model Enumeration

Specifies the logging options that the InternetMail class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetMail.TraceOptions

[C#]
[Flags]
public enum InternetMail.TraceOptions

Remarks
The InternetMail class uses the TraceOptions enumeration to specify what kind of debugging information
is written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
SocketTools Namespace

InternetMail.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see InternetMail.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.InternetMail.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class InternetMail.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class InternetMail.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the InternetMail class.

Example

<Assembly: SocketTools.InternetMail.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.InternetMail.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
InternetMail.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RuntimeLicenseAttribute Class

InternetMail.RuntimeLicenseAttribute overview

Public Instance Constructors

 InternetMail.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public InternetMail.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the InternetMail class.

See Also
InternetMail.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RuntimeLicenseAttribute Constructor

The properties of the InternetMail.RuntimeLicenseAttribute class are listed below. For a complete list of
InternetMail.RuntimeLicenseAttribute class members, see the InternetMail.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
InternetMail.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
InternetMail.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.RuntimeLicenseAttribute.LicenseKey Property

Attribute that defines the threading model for the class.

For a list of all members of this type, see InternetMail.ThreadModelAttribute Members.

System.Object
 System.Attribute
 SocketTools.InternetMail.ThreadModelAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False, Inherited:=True)>
Public Class InternetMail.ThreadModelAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False, Inherited=True)]
public class InternetMail.ThreadModelAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not
guaranteed to be thread-safe.

Remarks
The ThreadModel attribute is used to define the threading model that is to be used when an instance of the class is created.
This attribute is defined in the assembly information module for the language, such as AssemblyInfo.cs when programming
C#.

Example

<Assembly:
SocketTools.InternetMail.ThreadModel(SocketTools.InternetMail.ThreadModelAttribute.Model.SingleThread)>

[assembly:
SocketTools.InternetMail.ThreadModel(SocketTools.InternetMail.ThreadModelAttribute.Model.SingleThread)]

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
InternetMail.ThreadModelAttribute Members | SocketTools Namespace | ThreadModel Property (SocketTools.InternetMail)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ThreadModelAttribute Class

InternetMail.ThreadModelAttribute overview

Public Instance Constructors

 InternetMail.ThreadModelAttribute Constructor Constructor for the ThreadModel attribute which
defines the threading model.

Public Instance Properties

ThreadModel Returns the threading model used by the class.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMail.ThreadModelAttribute Class | SocketTools Namespace | ThreadModel Property
(SocketTools.InternetMail)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ThreadModelAttribute Members

Constructor for the ThreadModel attribute which defines the threading model.

[Visual Basic]
Public Sub New(_
 ByVal threadModel As Model _
)

[C#]
public InternetMail.ThreadModelAttribute(
 Model threadModel
);

Parameters
threadModel

A Model enumeration value which specifies the threading model which will be used when creating an
instance of the class. A value of zero specifies a single threaded model, while a non-zero value
specifies a free threaded model.

Remarks
The ThreadModel attribute specifies the threading model that is used by the class instance when a
connection is established. The default threading model is single threaded, which specifies that only the
thread that established the connection should be permitted to invoke methods.

It is important to note that the single threading model does not limit the application to a single thread of
execution. When a session is established using the Connect method, that session is attached to the thread
that created it. From that point on, until the session is terminated, only the owner may invoke methods in
that instance of the class. The ownership of the class instance may be transferred from one thread to
another using the AttachThread method.

Setting this attribute to a non-zero value disables certain internal safety checks that are performed by the
class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this attribute will also change the default value for the ThreadModel property for
all instances of the class.

See Also
InternetMail.ThreadModelAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ThreadModelAttribute Constructor

The properties of the InternetMail.ThreadModelAttribute class are listed below. For a complete list of
InternetMail.ThreadModelAttribute class members, see the InternetMail.ThreadModelAttribute
Members topic.

Public Instance Properties

ThreadModel Returns the threading model used by the class.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
InternetMail.ThreadModelAttribute Class | SocketTools Namespace | ThreadModel Property
(SocketTools.InternetMail)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ThreadModelAttribute Properties

Returns the threading model used by the class.

[Visual Basic]
Public Property ThreadModel As Model

[C#]
public InternetMail.ThreadModelAttribute.Model ThreadModel {get; set;}

Property Value
A Model enumeration value which specifies the threading model which will be used when an instance of
the class is created.

See Also
InternetMail.ThreadModelAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMail.ThreadModelAttribute.ThreadModel Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see InternetMailException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.InternetMailException

[Visual Basic]
Public Class InternetMailException
 Inherits ApplicationException

[C#]
public class InternetMailException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A InternetMailException is thrown by the InternetMail class when an error occurs.

The default constructor for the InternetMailException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetMail (in SocketTools.InternetMail.dll)

See Also
InternetMailException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMailException Class

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

InternetMailException overview

Public Instance Constructors

 InternetMailException Overloaded. Initializes a new instance of the
InternetMailException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

InternetMailException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMailException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Initializes a new instance of the InternetMailException class with the last network error code.

Overload List
Initializes a new instance of the InternetMailException class with the last network error code.

public InternetMailException();

Initializes a new instance of the InternetMailException class with a specified error number.

public InternetMailException(int);

Initializes a new instance of the InternetMailException class with a specified error message.

public InternetMailException(string);

Initializes a new instance of the InternetMailException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

public InternetMailException(string,Exception);

See Also
InternetMailException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMailException Constructor

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Initializes a new instance of the InternetMailException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public InternetMailException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the InternetMail.ErrorCode enumeration.

See Also
InternetMailException Class | SocketTools Namespace | InternetMailException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMailException Constructor ()

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ErrorCode.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Initializes a new instance of the InternetMailException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public InternetMailException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
InternetMailException Class | SocketTools Namespace | InternetMailException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMailException Constructor (String)

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Initializes a new instance of the InternetMailException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public InternetMailException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
InternetMailException Class | SocketTools Namespace | InternetMailException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMailException Constructor (String, Exception)

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Initializes a new instance of the InternetMailException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public InternetMailException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the InternetMail.ErrorCode enumeration.

See Also
InternetMailException Class | SocketTools Namespace | InternetMailException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMailException Constructor (Int32)

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ErrorCode.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

The properties of the InternetMailException class are listed below. For a complete list of
InternetMailException class members, see the InternetMailException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
InternetMailException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMailException Properties

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public InternetMail.ErrorCode ErrorCode {get;}

Property Value
Returns a InternetMail.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the InternetMailException class sets the error code to the last network error
that occurred. For more information about the errors that may occur, refer to the InternetMail.ErrorCode
enumeration.

See Also
InternetMailException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMailException.ErrorCode Property

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ErrorCode.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ErrorCode.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ErrorCode.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.InternetMail.ErrorCode.html
file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
InternetMailException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMailException.Message Property

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
InternetMailException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMailException.Number Property

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

The methods of the InternetMailException class are listed below. For a complete list of
InternetMailException class members, see the InternetMailException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetMailException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMailException Methods

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
InternetMailException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetMailException.ToString Method

file:///C|/Projects/cstools11/pdf/mail/dotnet/SocketTools.html

A general purpose class for developing Internet server applications.

For a list of all members of this type, see InternetServer Members.

System.Object
 SocketTools.InternetServer

[Visual Basic]
Public Class InternetServer
 Implements IDisposable

[C#]
public class InternetServer : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The InternetServer class provides a simplified interface for creating event-driven, multithreaded server
applications using the TCP/IP protocol. The class interface is similar to the SocketWrench class, however
it is designed specifically to make it easier to implement a server application without requiring the need to
manage multiple socket classes. In addition, the InternetServer class supports secure communications
using the Transport Layer Security (TLS) protocol.

Each instance of the class represents a server, and each active client connection is managed internally and
referenced by an integer value which uniquely identifies the client session. All interaction with the server
and the clients connected to it uses an event-driven model, with the server application written to respond
to events such as OnConnect, OnRead and OnWrite.

Developers who have used the SocketWrench class will find the InternetServer class has a familiar
interface, with a subset of properties and methods that are specific to creating a server application. Each
of the network events have an extra parameter which specifies the socket handle which should be used
when communicating with the client. This enables the application to communicate with multiple clients
without having to create multiple socket classes.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer Class

InternetServer overview

Public Instance Constructors

 InternetServer Constructor Initializes a new instance of the InternetServer
class.

Public Instance Fields

AdapterAddress Returns the IP address associated with the
specified network adapter.

ClientHandle Return the socket handle associated with a specific
client session.

Public Instance Properties

AdapterCount Get the number of available local and remote
network adapters.

Backlog Gets and sets the number of client connections
that may be queued by the server.

CertificateName Gets and sets a value that specifies the name of
the server certificate.

CertificatePassword Gets and sets the password associated with the
server certificate.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateUser Gets and sets the user that owns the server
certificate.

ClientAddress Gets a value that specifies the Internet address of
the current client session.

ClientCount Gets the number of active client sessions
connected to the server.

ClientHost Gets a value that specifies the hostname for the
current client session.

ClientId Gets the unique client identifier for the current
client session.

ClientName Gets and sets a unique string moniker that is
associated with the current client session.

ClientPort Gets a value that specifies the port number used
by the current client session.

ClientThread Gets the thread ID for the current client session.

CodePage Gets and sets the code page used when reading
and writing text.

ExternalAddress Gets a value that specifies the external Internet

InternetServer Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.CertificateUser.html

address for the local system.

IdleTime Gets a value which specifies the amount of time a
socket has been idle

IsActive Gets a value which indicates if the server is active.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking socket operation.

IsClosed Gets a value which indicates if the connection to
the client has been closed.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsListening Gets a value which indicates if the server is
listening for client connections.

IsLocked Gets a value which indicates if the server has been
locked.

IsReadable Gets a value which indicates if there is data
available to be read from the current client.

IsWritable Gets a value which indicates if data can be written
to the current client without blocking.

KeepAlive Gets and sets a value which indicates if keep-alive
packets are sent on a connected socket.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

MaxClients Gets and sets the maximum number of clients that
can connect to the server.

NoDelay Gets and sets a value which specifies if the Nagle
algorithm should be enabled or disabled.

Options Gets and sets a value which specifies one or more
server options.

Priority Gets and sets a value which specifies the server
priority.

ReuseAddress Gets and sets a value which indicates if the server
address can be reused.

Secure Gets and sets a value which specifies if client
connections are secure.

SecureProtocol Gets and sets a value which specifies the protocol
used for secure client connections.

ServerAddress Gets and sets the address that will be used by the
server to listen for connections.

ServerHandle Gets the handle to the socket created to listen for
client connections.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.IdleTime.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.IsActive.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.ServerHandle.html

ServerName Gets a value which specifies the host name for the
local system.

ServerPort Gets and sets the port number that will be used by
the server to listen for connections.

ServerThread Gets the thread ID for the current server.

StackSize Gets and sets the size of the stack allocated for
threads created by the server.

Status Gets a value which specifies the current status of
the server.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the network function tracing logfile.

TraceFlags Gets and sets a value which specifies the network
function tracing flags.

Version Gets a value which returns the current version of
the InternetServer class library.

Public Instance Methods

Abort Overloaded. Abort the connection with a remote
host.

Broadcast Overloaded. Broadcast data to all active clients
connected to the server

Cancel Overloaded. Cancel the current blocking socket
operation.

Disconnect Overloaded. Disconnect the specified client
connection from the server.

Dispose Overloaded. Releases all resources used by
InternetServer.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

FindClient Overloaded. Return the socket handle for the
client session with the specified moniker.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.StackSize.html

InternetServer class.

Lock Lock the server to synchronize access to shared
data for all active client sessions.

Peek Overloaded. Read data from the client and store it
in a byte array, but do not remove the data from
the socket buffers.

Read Overloaded. Read data from the client socket and
store it in a byte array.

ReadLine Overloaded. Read up to a line of data from the
client and return it in a string buffer.

Reject Overloaded. Rejects a connection request from a
client.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Resolve Resolves a host name to a host IP address.

Restart Restarts the server and terminates all active client
connections.

Resume Resume accepting new client connections.

Start Overloaded. Start listening for client connections
on the specified IP address and port number.

Stop Stop listening for new client connections and
terminate all active clients already connected to
the server.

Suspend Overloaded. Suspend accepting new client
connections with additional options.

Throttle Overloaded. Limit the maximum number of client
connections, connections per IP address and
connection rate.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the server.

Unlock Unlock the server and allow other server threads
to resume execution.

Write Overloaded. Write one or more bytes of data to a
client.

WriteLine Overloaded. Send a line of text to a client,
terminated by a carriage-return and linefeed.

Public Instance Events

OnAccept Occurs when a client attempts to establish a
connection with the server.

OnCancel Occurs when a blocking socket operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an socket operation fails.

OnIdle Occurs when the there are no clients connected to
the server.

OnRead Occurs when data is available to be read from the
client.

OnStart Occurs when the server starts accepting
connections.

OnStop Occurs when the server stops accepting
connections.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the InternetServer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.OnIdle.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.OnStart.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.OnStop.html

Initializes a new instance of the InternetServer class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer();

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim strLocalAddress As String
Dim nLocalPort As Integer

Server = New SocketTools.InternetServer

strLocalAddress = TextBox1.Text.Trim()
nLocalPort = Val(TextBox2.Text)

If Server.Start(strLocalAddress, nLocalPort) Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer Constructor

The fields of the InternetServer class are listed below. For a complete list of InternetServer class
members, see the InternetServer Members topic.

Public Instance Fields

AdapterAddress Returns the IP address associated with the
specified network adapter.

ClientHandle Return the socket handle associated with a specific
client session.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer Fields

Returns the IP address associated with the specified network adapter.

[Visual Basic]
Public ReadOnly AdapterAddress As AdapterAddressArray

[C#]
public readonly AdapterAddressArray AdapterAddress;

Remarks
The AdapterAddress array returns the IP addresses that are associated with the local network or remote
dial-up network adapters configured on the system. The AdapterCount property can be used to
determine the number of adapters that are available.

Multihomed systems with more than one local network adapter, or a combination of local and dial-up
adapters will not be listed in a specific order. An application should not make the assumption that the first
address returned by AdapterAddress always refers to a local network adapter.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress will return an
empty string. This indicates that the system does not have a physical network adapter with an assigned IP
address, and there are no dial-up networking connections currently active. If a dial-up networking
connection is established at some later point, the AdapterCount property will change to 1, and the
AdapterAddress property will return the IP address allocated for that connection.

See Also
InternetServer Class | SocketTools Namespace | AdapterAddressArray Class | AdapterCount Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AdapterAddress Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.AdapterAddressArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.AdapterAddressArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.AdapterAddressArray.html

Return the socket handle associated with a specific client session.

[Visual Basic]
Public ReadOnly ClientHandle As ClientHandleArray

[C#]
public readonly ClientHandleArray ClientHandle;

Remarks
The ClientHandle array is a read-only, zero-based property array that returns the socket handle allocated
for the client session specified by the Index parameter. An exception will be thrown if the index value
exceeds the maximum number of active client sessions. To determine the number of clients that are
currently connected to the server, use the ClientCount property.

You should always check the value of the ClientCount property prior to enumerating through the client
connections using the ClientHandle array. Never assume that a particular client session will always be
found in the same position in the array. The socket handles returned by the array can be used in
conjunction with the Read and Write methods to exchange data with a particular client session outside of
an event handler.

The index into this array may also be a string which specifies the name of a client session, as set by the
ClientName property. This can be a convenient way to obtain the socket handle for a specific client by
name, rather than a numeric index.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientHandle Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.ClientHandleArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.ClientHandleArray.html

The properties of the InternetServer class are listed below. For a complete list of InternetServer class
members, see the InternetServer Members topic.

Public Instance Properties

AdapterCount Get the number of available local and remote
network adapters.

Backlog Gets and sets the number of client connections
that may be queued by the server.

CertificateName Gets and sets a value that specifies the name of
the server certificate.

CertificatePassword Gets and sets the password associated with the
server certificate.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateUser Gets and sets the user that owns the server
certificate.

ClientAddress Gets a value that specifies the Internet address of
the current client session.

ClientCount Gets the number of active client sessions
connected to the server.

ClientHost Gets a value that specifies the hostname for the
current client session.

ClientId Gets the unique client identifier for the current
client session.

ClientName Gets and sets a unique string moniker that is
associated with the current client session.

ClientPort Gets a value that specifies the port number used
by the current client session.

ClientThread Gets the thread ID for the current client session.

CodePage Gets and sets the code page used when reading
and writing text.

ExternalAddress Gets a value that specifies the external Internet
address for the local system.

IdleTime Gets a value which specifies the amount of time a
socket has been idle

IsActive Gets a value which indicates if the server is active.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking socket operation.

IsClosed Gets a value which indicates if the connection to
the client has been closed.

InternetServer Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.CertificateUser.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.IdleTime.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.IsActive.html

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsListening Gets a value which indicates if the server is
listening for client connections.

IsLocked Gets a value which indicates if the server has been
locked.

IsReadable Gets a value which indicates if there is data
available to be read from the current client.

IsWritable Gets a value which indicates if data can be written
to the current client without blocking.

KeepAlive Gets and sets a value which indicates if keep-alive
packets are sent on a connected socket.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

MaxClients Gets and sets the maximum number of clients that
can connect to the server.

NoDelay Gets and sets a value which specifies if the Nagle
algorithm should be enabled or disabled.

Options Gets and sets a value which specifies one or more
server options.

Priority Gets and sets a value which specifies the server
priority.

ReuseAddress Gets and sets a value which indicates if the server
address can be reused.

Secure Gets and sets a value which specifies if client
connections are secure.

SecureProtocol Gets and sets a value which specifies the protocol
used for secure client connections.

ServerAddress Gets and sets the address that will be used by the
server to listen for connections.

ServerHandle Gets the handle to the socket created to listen for
client connections.

ServerName Gets a value which specifies the host name for the
local system.

ServerPort Gets and sets the port number that will be used by
the server to listen for connections.

ServerThread Gets the thread ID for the current server.

StackSize Gets and sets the size of the stack allocated for
threads created by the server.

Status Gets a value which specifies the current status of

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.ServerHandle.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.StackSize.html

the server.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the network function tracing logfile.

TraceFlags Gets and sets a value which specifies the network
function tracing flags.

Version Gets a value which returns the current version of
the InternetServer class library.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Get the number of available local and remote network adapters.

[Visual Basic]
Public ReadOnly Property AdapterCount As Integer

[C#]
public int AdapterCount {get;}

Property Value
Returns the number of available local and remote network adapters.

Remarks
The AdapterCount property returns the number of local and remote dial-up networking adapters
available on the local system. This value can be used in conjunction with the AdapterAddress array to
enumerate the IP addresses assigned to the various network adapters.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress will return an
empty string. This indicates that the system does not have a physical network adapter with an assigned IP
address, and there are no dial-up networking connections currently active. If a dial-up networking
connection is established at some later point, the AdapterCount property will change to 1, and the
AdapterAddress property will return the IP address allocated for that connection.

See Also
InternetServer Class | SocketTools Namespace | AdapterAddress Field

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AdapterCount Property

Gets and sets the number of client connections that may be queued by the server.

[Visual Basic]
Public Property Backlog As Integer

[C#]
public int Backlog {get; set;}

Property Value
Returns an integer value that specifies the size of the backlog queue. The default value is 5.

Remarks
The Backlog property specifies the maximum size of the queue used to manage pending connections to
the service. If the property is set to value which exceeds the maximum size for the underlying service
provider, it will be silently adjusted to the nearest legal value. There is no standard way to determine what
the maximum backlog value is.

This property should be set to the desired value before the Start method is called. The default backlog
value is 5 on all Windows platforms. The Windows Server platforms support a maximum backlog value of
200.

Note that this property does not specify the total number of connections that the server application may
accept. It only specifies the size of the backlog queue which is used to manage pending client
connections. Once the client connection has been accepted, it is removed from the queue. Set the
MaxClients property to specify the maximum number of clients that may connect with the server.

See Also
InternetServer Class | SocketTools Namespace | IsListening Property | MaxClients Property | Start Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Backlog Property

Gets and sets a value that specifies the name of the server certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the server certificate name.

Remarks
The CertificateName property sets the common name or friendly name of the certificate that should be
used when starting a secure server. If the Secure property is set to True, this property must be specify a
valid certificate name. The certificate must have a private key associated with it, otherwise client
connections will fail because the class will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
InternetServer Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CertificateName Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when security is enabled for the server. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the server certificate will be installed in the user's personal certificate store, and therefore it
is not necessary to set this property value because that is the default location that will be used to search
for the certificate. This property is only used if the CertificateName property is also set to a valid
certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the server certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private key in

InternetServer.CertificateStore Property

PKCS #12 format. If the file is protected by a password, the CertificatePassword property must also be
set to specify the password.

This property may also be used to specify a file that contains the server certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private key in
PKCS #12 format. If the file is protected by a password, the CertificatePassword property must also be
set to specify the password.

See Also
InternetServer Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.CertificatePassword.html

Gets a value that specifies the Internet address of the current client session.

[Visual Basic]
Public ReadOnly Property ClientAddress As String

[C#]
public string ClientAddress {get;}

Property Value
A string which specifies an Internet address in dotted notation.

Remarks
The ClientAddress property returns the address of the current client session which has connected to the
server. This property only returns a meaningful value inside an event handler such as OnAccept or
OnConnect.

If this property is accessed inside an OnAccept event handler, it will return the address of the client that is
requesting the connection. The server application may use this information to determine if it wishes to
accept or reject the client connection.

See Also
InternetServer Class | SocketTools Namespace | ClientHost Property | ClientPort Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientAddress Property

Gets the number of active client sessions connected to the server.

[Visual Basic]
Public ReadOnly Property ClientCount As Integer

[C#]
public int ClientCount {get;}

Property Value
An integer value which specifies the number of active client sessions.

Remarks
The ClientCount read-only property returns the number of active client sessions that have been
established with the server. This property is typically used in conjunction with the ClientHandle array to
enumerate the handles for all client sessions.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientCount Property

Gets a value that specifies the hostname for the current client session.

[Visual Basic]
Public ReadOnly Property ClientHost As String

[C#]
public string ClientHost {get;}

Property Value
A string which specifies the peer host name.

Remarks
The ClientHost property returns the hostname of the current client session which has established a
connection with the server. This property value is only meaningful when accessed within an event handler,
such as the OnConnect event.

Accessing this property causes the class to perform a blocking reverse DNS lookup, attempting to match
the client Internet address with a hostname. Not all addresses have a reverse DNS record, in which case
this property will return an empty string. It is recommended that most applications use the value of the
ClientAddress property rather than use the ClientHost property to distinguish between client
connections.

See Also
InternetServer Class | SocketTools Namespace | ClientAddress Property | ClientPort Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientHost Property

Gets the unique client identifier for the current client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which uniquely identifies the client session.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This value can be
used by the application to identify that client session, and is different than the socket handle allocated for
the client. While it is possible for a client socket handle to be reused by the operating system, client IDs are
unique throughout the life of the server session and are never duplicated.

It is important to note that the actual value of the client ID should be considered opaque. It is only
guaranteed that the value will be greater than zero, and that it will be unique to the client session.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientId Property

Gets and sets a unique string moniker that is associated with the current client session.

[Visual Basic]
Public Property ClientName As String

[C#]
public string ClientName {get; set;}

Property Value
A string moniker which uniquely identifies the client session. If no moniker has been specified for the client
session, this property will return an empty string.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside from its
socket handle. A moniker can be assigned to the client session by setting the ClientName property from
within a class event handler such as the OnConnect event.

Monikers are not case-sensitive, and they must be unique so that no client socket for a particular server
can have the same moniker. The maximum length for a moniker is 127 characters.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

Example
The following example sets the moniker for the client session in the OnConnect event handler.

private void Server1_OnConnect(object sender,
SocketTools.InternetServer.ConnectEventArgs e)
{
 Server1.ClientName = "Client" + Server1.ClientId.ToString();
}

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientName Property

Gets a value that specifies the port number used by the current client session.

[Visual Basic]
Public ReadOnly Property ClientPort As Integer

[C#]
public int ClientPort {get;}

Property Value
An integer value which specifies the peer port number.

Remarks
The ClientPort property returns the port number that the current client has used when establishing a
connection with the server. This property value is only meaningful when accessed within an event handler
such as the OnConnect event.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientPort Property

Gets the thread ID for the current client session.

[Visual Basic]
Public ReadOnly Property ClientThread As Integer

[C#]
public int ClientThread {get;}

Property Value
An integer value which identifies the client thread that was created to manage the client session.

Remarks
Until the thread terminates, the thread identifier uniquely identifies the thread throughout the system.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientThread Property

Gets and sets the code page used when reading and writing text.

[Visual Basic]
Public Property CodePage As Integer

[C#]
public int CodePage {get; set;}

Property Value
An integer value which specifies the current code page. A value of zero specifies the default code page for
the current locale should be used. To preserve the original Unicode text, you can use code page 65001
which specifies UTF-8 character encoding.

Remarks
All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to as
"octets" in networking terminology. However, strings in .NET are Unicode where each character is
represented by 16 bits. To send and receive data using strings, these Unicode strings are converted to a
stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale, mapping
the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into a string buffer,
the stream of bytes received from the remote host are converted to Unicode before they are returned to
your application.

If you are exchanging text with another system and it appears to corrupted or characters are being
replaced with question marks or other symbols, it is likely the system is sending text which is using a
different character encoding. Most services use UTF-8 encoding to represent non-ASCII characters and
selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a string data type is not
recommended when reading or writing binary data to a socket. If possible, you should always use a byte
array as the buffer parameter for the Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, this class defaults to using the code page for the current locale. This property
value directly corresponds to Windows code page identifiers, and will accept any valid code page
supported by the .NET Framework. Setting this property to an invalid code page will generate an
exception.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CodePage Property

Gets a value that specifies the external Internet address for the local system.

[Visual Basic]
Public ReadOnly Property ExternalAddress As String

[C#]
public string ExternalAddress {get;}

Property Value
A string which specifies an Internet address using dotted notation.

Remarks
The ExternalAddress property returns the IP address assigned to the router that connects the local host
to the Internet. This is typically used by an application executing on a system in a local network that uses a
router which performs Network Address Translation (NAT). The ExternalAddress property can be used to
determine the IP address assigned to the router on the Internet side of the connection and can be
particularly useful for servers running on a system behind a NAT router.

Using this property requires that you have an active connection to the Internet; checking the value of this
property on a system that uses dial-up networking may cause the operating system to automatically
connect to the Internet service provider. The class may be unable to determine the external IP address for
the local host for a number of reasons, particularly if the system is behind a firewall or uses a proxy server
that restricts access to external sites on the Internet. If the external address for the local host cannot be
determined, the property will return an empty string.

If the class is able to obtain a valid external address for the local host, that address will be cached for sixty
minutes. Because dial-up connections typically have different IP addresses assigned to them each time the
system is connected to the Internet, it is recommended that this property only be used in conjunction with
broadband connections using a NAT router.

It is important to note that checking this property value may cause the current thread to block until the
external IP address can be resolved.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ExternalAddress Property

Gets a value which indicates if the current thread is performing a blocking socket operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next socket operation will not fail. An application
should always check the return value from a socket operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsBlocked Property

Gets a value which indicates if the connection to the client has been closed.

[Visual Basic]
Public ReadOnly Property IsClosed As Boolean

[C#]
public bool IsClosed {get;}

Property Value
Returns true if the connection has been closed; otherwise returns false.

Remarks
This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsClosed Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsInitialized Property

Gets a value which indicates if the server is listening for client connections.

[Visual Basic]
Public ReadOnly Property IsListening As Boolean

[C#]
public bool IsListening {get;}

Property Value
Returns true if the server is listening for client connections; otherwise returns false.

Remarks
The IsListening property will return true if the Start method was called and the server is currently
accepting incoming client connections. In all other situations, this property will return false.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsListening Property

Gets a value which indicates if the server has been locked.

[Visual Basic]
Public ReadOnly Property IsLocked As Boolean

[C#]
public bool IsLocked {get;}

Property Value
Returns true if the server has been locked; otherwise returns false.

Remarks
The IsLocked property returns true if the server has been locked using the Lock method. When a server
is locked, all background threads created by the server will block, waiting for the lock to be released. If this
property returns a value of true, no client connections can be accepted by the server, and no network
events will be generated.

The Lock method creates a critical section which prevents other threads from performing any network
operation. This is useful when the program needs to update global data and wants to ensure that no
network operations occur while the data is being modified. However, applications must take care to
release the lock as quickly as possible. If a function locks the server, it must make sure that it releases the
lock before exiting that function. Leaving the server locked across function calls or event handlers can
result in the server becoming non-responsive.

See Also
InternetServer Class | SocketTools Namespace | Lock Method | Unlock Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsLocked Property

Gets a value which indicates if there is data available to be read from the current client.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the current client session without causing
the current thread to block. Note that even if this property does return true indicating that there is data
available to be read, applications should always check the return value from the Read method.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsReadable Property

Gets a value which indicates if data can be written to the current client without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the client; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the client without causing the current
thread to block. Note that even if this property does return true indicating that data can be written to the
client, applications should always check the return value from the Write method.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsWritable Property

Gets and sets a value which indicates if keep-alive packets are sent on a connected socket.

[Visual Basic]
Public Property KeepAlive As Boolean

[C#]
public bool KeepAlive {get; set;}

Property Value
Returns true if keep-alive packets are enabled, otherwise returns false. The default value is false.

Remarks
Setting the KeepAlive property to a value of true specifies that special packets are to be sent to the
remote system when no data is being exchanged to ensure the connection remains active. This property
can only be set for sockets that were created with the Protocol property set to a value of
SocketProtocol.protocolStream.

It is important to note that the system will not start generating keep-alive packets until two hours after it
has been enabled, so this option is only relevant for connections that will be maintained for long periods
of time. The actual interval for the keep-alive period can only be changed in the system registry and
affects all sockets, system-wide. For more information, refer to Microsoft Knowledge Base article 314053.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.KeepAlive Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public InternetServer.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.LastErrorString Property

Gets and sets the maximum number of clients that can connect to the server.

[Visual Basic]
Public Property MaxClients As Integer

[C#]
public int MaxClients {get; set;}

Property Value
An integer value which specifies the maximum number of client sessions that will be accepted by the
server. A value of zero specifies that there is no fixed limit to the maximum number of clients.

Remarks
The MaxClients property specifies the maximum number of client connections that will be accepted by
the server. Once the maximum number of connections has been established, the server will reject any
subsequent connections until the number of active client connections drops below the specified value. A
value of zero specifies that there should be no limit on the number of clients.

Changing the value of this property while a server is actively listening for connections will modify the
maximum number of client connections permitted, but it will not affect connections that have already
been established.

By default, there are no limits on the number of client connections or the connection rate when a server is
started. Use the Throttle method to change the maximum number of client connections per IP address or
the overall connection rate threshold for the server.

It is important to note that regardless of the maximum number of clients specified by this property, the
actual number of client connections that can be managed by the server depends on the number of
sockets that can be allocated from the operating system. The amount of physical memory installed on the
system affects the number of connections that can be maintained because each connection allocates
memory for the socket context from the non-paged memory pool.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.MaxClients Property

Gets and sets a value which specifies if the Nagle algorithm should be enabled or disabled.

[Visual Basic]
Public Property NoDelay As Boolean

[C#]
public bool NoDelay {get; set;}

Property Value
Returns true if the Nagle algorithm has been disabled; otherwise it returns false. The default value is
false.

Remarks
The NoDelay property is used to enable or disable the Nagle algorithm, which buffers unacknowledged
data and insures that a full-size packet can be sent to the remote host. By default this property value is set
to false, which enables the Nagle algorithm (in other words, the data being written may not actually be
sent until it is optimal to do so). Setting this property to true disables the Nagle algorithm, maintaining the
time delays between the data packets being sent.

This property should be set to true only if it is absolutely required and the implications of doing so are
understood. Disabling the Nagle algorithm can have a significant negative impact on the performance of
your server.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.NoDelay Property

Gets and sets a value which specifies one or more server options.

[Visual Basic]
Public Property Options As ServerOptions

[C#]
public InternetServer.ServerOptions Options {get; set;}

Property Value
Returns one or more ServerOptions enumeration flags which specify the options for the server. The
default value for this property is serverOptionNone.

Remarks
The Options property specifies one or more default options which are used when starting the server
using the Start method.

See Also
InternetServer Class | SocketTools Namespace | Start Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Options Property

Gets and sets a value which specifies the server priority.

[Visual Basic]
Public Property Priority As ServerPriority

[C#]
public InternetServer.ServerPriority Priority {get; set;}

Property Value
Returns a ServerPriority enumeration value which specifies the current server priority. The default value for
this property is priorityNormal.

Remarks
The Priority property can be used to control the processor usage, memory and network bandwidth
allocated by the server for client sessions. The default priority balances resource utilization and client
throughput while ensuring that the user interface remains responsive to the user. Lower priorities reduce
the overall resource utilization at the expense of throughput.

Higher priority values increases the thread priority and processor utilization for the client sessions. It is not
recommended that you increase the server priority unless you understand the implications of doing so
and have thoroughly tested your application. Raising the priority of the server can have a negative impact
on the responsiveness of the user interface.

See Also
InternetServer Class | SocketTools Namespace | ServerPriority Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Priority Property

Gets and sets a value which indicates if the server address can be reused.

[Visual Basic]
Public Property ReuseAddress As Boolean

[C#]
public bool ReuseAddress {get; set;}

Property Value
Returns true if an address can be reused; otherwise returns false. The default value is true.

Remarks
The ReuseAddress property is used to determine if the local address and port number can be reused
when starting a new instance of the server. Setting this property to true enables a server application to
listen for connections using the specified address and port number even if they were in use recently. This
is typically used to enable the server to close the listening socket and immediately reopen it without
getting an error that the address is in use.

When a listening socket closed, the socket will normally go into a TIME-WAIT state where the local
address and port number cannot be immediately reused. A consequence of this is that calling the Stop
method immediately followed by the Start method using the same address and port number values may
result in an error indicating that the specified address is already in use. By setting this property to true,
that error is avoided and the listening socket can be created immediately without waiting for the TIME-
WAIT period to elapse. Note that calling the Restart method allows the local address and port number to
be reused, regardless of this property value.

If you wish to determine if a local port number is already in use by another application, set this property to
false and attempt to start the server using that port number. If another application is already using that
port number, an error will be generated indicating that the address is in use and the server could not be
started.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReuseAddress Property

Gets and sets a value which specifies if client connections are secure.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connections are enabled; otherwise returns false. The default value is false.

Remarks
The Secure property determines if client connections are encrypted using the standard SSL or TLS security
protocols. The default value for this property is false, which specifies that clients will use a standard,
unencrypted connection to the server. To enable secure connections, the application should set this
property value to true prior to calling the Start method.

When secure connections are enabled, the server will accept the client connection and then wait for the
client to initiate the handshake where both the client and server negotiate the various encryption options
available. This process is handled automatically by the server, and all that is required is that the application
specify the server certificate which should be used. This is done by setting the CertificateName property,
and optionally the CertificateStore property if required.

It is recommended that the application use exception handling to catch any errors that may occur when
changing the value of this property. If the class is unable to initialize the Windows security libraries, an
exception will be thrown when this property value is modified.

See Also
InternetServer Class | SocketTools Namespace | CertificateName Property | CertificateStore Property |
SecureProtocol Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Secure Property

Gets and sets a value which specifies the protocol used for secure client connections.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public InternetServer.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when accepting a secure
client connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when accepting a
secure connection. By default, the class will attempt to use either SSL v3 or TLS v1 to accept the
connection, with the appropriate protocol automatically selected based on the capabilities of the client. It
is recommended that you only change this property value if you fully understand the implications of doing
so. Assigning a value to this property will override the default protocol and force the class to attempt to
use only the protocol specified.

Attempting to set this property after the server has been started will result in an exception being thrown.
This property should only be set after setting the Secure property to true and before calling the Start
method.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.SecureProtocol Property

Gets and sets the address that will be used by the server to listen for connections.

[Visual Basic]
Public Property ServerAddress As String

[C#]
public string ServerAddress {get; set;}

Property Value
A string which specifies the IP address that the server will use to listen for incoming client connections. An
empty string indicates that the server will accept connections on any valid network interface configured for
the local system.

Remarks
The ServerAddress property is used to specify the default address that the server will use when listening
for connections. Setting this property to the value 0.0.0.0 or an empty string indicates that the server
should listen for client connections using any valid network interface. If an address is specified, it must be a
valid Internet address that is bound to a network adapter configured on the local system. Clients will only
be able to connect to the server using that specific address.

It is common to set this property to the value 127.0.0.1 for testing purposes. It is a non-routable address
that specifies the local system, and most software firewalls are configured so they do not block
applications using this address.

See Also
InternetServer Class | SocketTools Namespace | ServerName Property | ServerPort Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ServerAddress Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property ServerName As String

[C#]
public string ServerName {get;}

Property Value
A string which specifies the local host name.

Remarks
The ServerName property returns the fully-qualified host name assigned to the local system. This consists
of the local computer name and its domain name. The actual value returned depends on the system
configuration. If no domain has been specified for the system, then only the machine name will be
returned.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ServerName Property

Gets and sets the port number that will be used by the server to listen for connections.

[Visual Basic]
Public Property ServerPort As Integer

[C#]
public int ServerPort {get; set;}

Property Value
An integer value which specifies the port number.

Remarks
The ServerPort property is used to set the port number that server will use to listen for incoming client
connections. Valid port numbers are in the range of 1 to 65535. It is recommended that most custom
servers specify a port number larger than 5000 to avoid potential conflicts with standard Internet services
and ephemeral ports used by client applications.

If a port number is specified that is already in use by another application, the OnError event will fire and
the background server thread will terminate. To enable a server to be stopped and immediately restarted
using the same address and port number, make sure that the ReuseAddress property is set to a value of
true.

See Also
InternetServer Class | SocketTools Namespace | ServerAddress Property | ServerName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ServerPort Property

Gets the thread ID for the current server.

[Visual Basic]
Public ReadOnly Property ServerThread As Integer

[C#]
public int ServerThread {get;}

Property Value
An integer value which identifies the server thread that was created. A return value of zero specifies that
no server has been started.

Remarks
Until the thread terminates, the thread identifier uniquely identifies the thread throughout the system.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ServerThread Property

Gets a value which specifies the current status of the server.

[Visual Basic]
Public ReadOnly Property Status As ServerStatus

[C#]
public InternetServer.ServerStatus Status {get;}

Property Value
A ServerStatus enumeration value which specifies the current server status.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Status Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a socket operation fails and returns an
error.

For most server applications it is recommended the timeout period be set between 10 and 20 seconds. It
is not recommended that you set the timeout period to zero.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Trace Property

Gets and sets a value which specifies the name of the network function tracing logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TraceFile Property

Gets and sets a value which specifies the network function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public InternetServer.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TraceFlags Property

Gets a value which returns the current version of the InternetServer class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the InternetServer
class library. This value can be used by an application for validation and debugging purposes.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Version Property

The methods of the InternetServer class are listed below. For a complete list of InternetServer class
members, see the InternetServer Members topic.

Public Instance Methods

Abort Overloaded. Abort the connection with a remote
host.

Broadcast Overloaded. Broadcast data to all active clients
connected to the server

Cancel Overloaded. Cancel the current blocking socket
operation.

Disconnect Overloaded. Disconnect the specified client
connection from the server.

Dispose Overloaded. Releases all resources used by
InternetServer.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

FindClient Overloaded. Return the socket handle for the
client session with the specified moniker.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
InternetServer class.

Lock Lock the server to synchronize access to shared
data for all active client sessions.

Peek Overloaded. Read data from the client and store it
in a byte array, but do not remove the data from
the socket buffers.

Read Overloaded. Read data from the client socket and
store it in a byte array.

ReadLine Overloaded. Read up to a line of data from the
client and return it in a string buffer.

Reject Overloaded. Rejects a connection request from a
client.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Resolve Resolves a host name to a host IP address.

Restart Restarts the server and terminates all active client
connections.

InternetServer Methods

Resume Resume accepting new client connections.

Start Overloaded. Start listening for client connections
on the specified IP address and port number.

Stop Stop listening for new client connections and
terminate all active clients already connected to
the server.

Suspend Overloaded. Suspend accepting new client
connections with additional options.

Throttle Overloaded. Limit the maximum number of client
connections, connections per IP address and
connection rate.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the server.

Unlock Unlock the server and allow other server threads
to resume execution.

Write Overloaded. Write one or more bytes of data to a
client.

WriteLine Overloaded. Send a line of text to a client,
terminated by a carriage-return and linefeed.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the InternetServer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Abort the connection with a remote host.

Overload List
Abort the connection with a remote host.

public void Abort();

Abort the connection with a remote host.

public void Abort(int);

See Also
InternetServer Class | SocketTools Namespace | Disconnect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Abort Method

Abort the connection with a remote host.

[Visual Basic]
Overloads Public Sub Abort()

[C#]
public void Abort();

Remarks
The Abort method immediately terminates the client connection, without waiting for any remaining data
in the socket buffer to be written out. This method should only be used when the connection must be
closed immediately. If this method is used, the client will see the connection as being terminated
abnormally.

It is recommended that applications using the Disconnect method unless it is absolutely necessary to
terminate the connection and immediately release the socket handle.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Abort method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Abort Overload List | Disconnect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Abort Method ()

Abort the connection with a remote host.

[Visual Basic]
Overloads Public Sub Abort(_
 ByVal handle As Integer _
)

[C#]
public void Abort(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the client session.

Remarks
The Abort method immediately terminates the client connection, without waiting for any remaining data
in the socket buffers to be written out. This method should only be used when the connection must be
closed immediately. If this method is used, the client will see the connection as being terminated
abnormally.

It is recommended that applications using the Disconnect method unless it is absolutely necessary to
terminate the connection and immediately release the socket handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Abort Overload List | Disconnect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Abort Method (Int32)

Broadcast data to all active clients connected to the server

Overload List
Broadcast data to all active clients connected to the server

public int Broadcast(byte[]);

Broadcast data to all active clients connected to the server

public int Broadcast(byte[],int);

Broadcast data to all active clients connected to the server

public int Broadcast(string);

Broadcast data to all active clients connected to the server

public int Broadcast(string,int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Broadcast Method

Broadcast data to all active clients connected to the server

[Visual Basic]
Overloads Public Function Broadcast(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Broadcast(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data that will be broadcast.

Return Value
An integer value which specifies the number of clients that the data was broadcast to. A return value of -1
indicates an error condition, and the value of the LastError property will indicate the cause of the failure.

Remarks
The Broadcast method broadcasts contents of the specified byte array to all clients connected to the
server. If this method is called inside a server event handler, the message is broadcast to all clients except
for the current, active client that is processing the event notification. If this method is called outside of an
event handler, the data is broadcast to all connected clients.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Broadcast Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Broadcast Method (Byte[])

Broadcast data to all active clients connected to the server

[Visual Basic]
Overloads Public Function Broadcast(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Broadcast(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data that will be broadcast.

length
An integer value which specifies the maximum number of bytes of data to broadcast. This value
cannot be larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of clients that the data was broadcast to. A return value of -1
indicates an error condition, and the value of the LastError property will indicate the cause of the failure.

Remarks
The Broadcast method broadcasts contents of the specified byte array to all clients connected to the
server. If this method is called inside a server event handler, the message is broadcast to all clients except
for the current, active client that is processing the event notification. If this method is called outside of an
event handler, the data is broadcast to all connected clients.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Broadcast Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Broadcast Method (Byte[], Int32)

Broadcast data to all active clients connected to the server

[Visual Basic]
Overloads Public Function Broadcast(_
 ByVal buffer As String _
) As Integer

[C#]
public int Broadcast(
 string buffer
);

Parameters
buffer

A string that contains the data that will be broadcast.

Return Value
An integer value which specifies the number of clients that the data was broadcast to. A return value of -1
indicates an error condition, and the value of the LastError property will indicate the cause of the failure.

Remarks
The Broadcast method broadcasts contents of the specified string to all clients connected to the server. If
this method is called inside a server event handler, the message is broadcast to all clients except for the
current, active client that is processing the event notification. If this method is called outside of an event
handler, the data is broadcast to all connected clients.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Broadcast Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Broadcast Method (String)

Broadcast data to all active clients connected to the server

[Visual Basic]
Overloads Public Function Broadcast(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Broadcast(
 string buffer,
 int length
);

Parameters
buffer

A string that contains the data that will be broadcast.

length
An integer value which specifies the maximum number of bytes of data to broadcast. This value
cannot be larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of clients that the data was broadcast to. A return value of -1
indicates an error condition, and the value of the LastError property will indicate the cause of the failure.

Remarks
The Broadcast method broadcasts contents of the specified string to all clients connected to the server. If
this method is called inside a server event handler, the message is broadcast to all clients except for the
current, active client that is processing the event notification. If this method is called outside of an event
handler, the data is broadcast to all connected clients.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Broadcast Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Broadcast Method (String, Int32)

Cancel the current blocking socket operation.

Overload List
Cancel the current blocking socket operation.

public void Cancel();

Cancel the current blocking socket operation.

public void Cancel(int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Cancel Method

Cancel the current blocking socket operation.

[Visual Basic]
Overloads Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking socket operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Cancel method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Cancel Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Cancel Method ()

Cancel the current blocking socket operation.

[Visual Basic]
Overloads Public Sub Cancel(_
 ByVal handle As Integer _
)

[C#]
public void Cancel(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the client session.

Remarks
When the Cancel method is called, the blocking socket operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Cancel Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Cancel Method (Int32)

Disconnect the specified client connection from the server.

Overload List
Disconnect the specified client connection from the server.

public void Disconnect();

Disconnect the specified client connection from the server.

public void Disconnect(int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Disconnect Method

Disconnect the specified client connection from the server.

[Visual Basic]
Overloads Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the specified client connection with the server and closes the socket
handle allocated by the class. Note that the client socket is not immediately released when the connection
is terminated and will enter a wait state for two minutes. After the time wait period has elapsed, the socket
will be released by the operating system. This is a normal safety mechanism to handle any packets that
may arrive after the connection has been closed.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Disconnect method outside of an
event handler, you must explicitly specify the client handle.

To immediately terminate the connection and release the socket, use the Abort method.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Disconnect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Disconnect Method ()

Disconnect the specified client connection from the server.

[Visual Basic]
Overloads Public Sub Disconnect(_
 ByVal handle As Integer _
)

[C#]
public void Disconnect(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the client session.

Remarks
The Disconnect method terminates the specified client connection with the server and closes the socket
handle allocated by the class. Note that the client socket is not immediately released when the connection
is terminated and will enter a wait state for two minutes. After the time wait period has elapsed, the socket
will be released by the operating system. This is a normal safety mechanism to handle any packets that
may arrive after the connection has been closed.

To immediately terminate the connection and release the socket, use the Abort method.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Disconnect Overload List | Abort Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Disconnect Method (Int32)

Releases all resources used by InternetServer.

Overload List
Releases all resources used by InternetServer.

public void Dispose();

Releases the unmanaged resources allocated by the InternetServer class and optionally releases the
managed resources.

protected void Dispose(bool);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Dispose Method

Releases all resources used by InternetServer.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method stops the server, terminates all active client sessions and explicitly releases the
resources allocated for this instance of the class. In some cases, better performance can be achieved if the
programmer explicitly releases resources when they are no longer being used. The Dispose method
provides explicit control over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Dispose Method ()

Releases the unmanaged resources allocated by the InternetServer class and optionally releases the
managed resources.

[Visual Basic]
Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the InternetServer class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Finalize Method

Return the socket handle for the client session with the specified ID.

Overload List
Return the socket handle for the client session with the specified ID.

public int FindClient(int);

Return the socket handle for the client session with the specified moniker.

public int FindClient(string);

See Also
InternetServer Class | SocketTools Namespace | ClientId Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.FindClient Method

Return the socket handle for the client session with the specified ID.

[Visual Basic]
Overloads Public Function FindClient(_
 ByVal clientId As Integer _
) As Integer

[C#]
public int FindClient(
 int clientId
);

Parameters
clientId

An integer value which uniquely identifies the client session.

Return Value
An integer value which specifies the socket handle for the client session. If the specified client ID does not
match an active client session, the method will return a value of -1 and the value of the LastError
property will indicate the cause of the failure.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This value can be
used by the application to identify that client session, and is different than the socket handle allocated for
the client. While it is possible for a client socket handle to be reused by the operating system, client IDs are
unique throughout the life of the server session and are never duplicated.

The application can determine the ID assigned to the current client session using the ClientId property
from within an event handler such as OnConnect.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.FindClient Overload List | ClientId Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.FindClient Method (Int32)

Return the socket handle for the client session with the specified moniker.

[Visual Basic]
Overloads Public Function FindClient(_
 ByVal clientName As String _
) As Integer

[C#]
public int FindClient(
 string clientName
);

Parameters
clientName

A string which specifies the moniker for the client session.

Return Value
An integer value which specifies the socket handle for the client session. If the specified moniker does not
match an active client session, the method will return a value of -1 and the value of the LastError
property will indicate the cause of the failure.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside from its
socket handle. A moniker can be assigned to the client session by setting the ClientName property from
within a class event handler such as the OnConnect event.

Monikers are not case-sensitive, and they must be unique so that no client socket for a particular server
can have the same moniker. The maximum length for a moniker is 127 characters.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.FindClient Overload List | ClientName
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.FindClient Method (String)

Initialize an instance of the InternetServer class.

Overload List
Initialize an instance of the InternetServer class.

public bool Initialize();

Initialize an instance of the InternetServer class.

public bool Initialize(string);

See Also
InternetServer Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Initialize Method

Initialize an instance of the InternetServer class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the InternetServer class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Initialize Method ()

Initialize an instance of the InternetServer class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the InternetServer class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of InternetServer can be generated using the License Manager
utility that is included with the product. Note that if you have installed an evaluation license, you will not
have a runtime license key and cannot redistribute any applications which use the InternetServer class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.InternetServer server = new SocketTools.InternetServer();

if (server.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(server.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim Server As New SocketTools.InternetServer

If Server.Initialize(strLicenseKey) = False Then
 MsgBox(Server.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Initialize Overload List |
RuntimeLicenseAttribute Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Initialize Method (String)

Lock the server to synchronize access to shared data for all active client sessions.

[Visual Basic]
Public Function Lock() As Boolean

[C#]
public bool Lock();

Return Value
A boolean value which specifies if the server was locked. A return value of true specifies that the server
was locked, and all other threads being managed by the server have been blocked. A return value of false
indicates that the server could not be locked, typically because a potential deadlock was detected.

Remarks
The Lock method causes the server to enter a locked state where only the current thread may interact
with the server and the clients that are connected to it. While a server is locked, all other threads will block
when they attempt to perform a network operation. When the server is unlocked, the blocked threads will
resume normal execution.

This method should be used carefully, and a server should never be left in a locked state for an extended
period of time. It is meant to be used when the server process updates a global data structure and it must
prevent any other threads from performing a network operation during the update. Only one server can
be locked at any one time, and once a server has been locked, it can only be unlocked by the same
thread.

The program should always check the return value from this method, and should never assume that the
lock has been established. If more than one thread attempts to lock a server at the same time, there is no
guarantee as to which thread will actually establish the lock. If a potential deadlock situation is detected,
this function will fail and return a value of false.

Every time the Lock method is called, an internal lock counter is incremented, and the lock will not be
released until the lock count drops to zero. This means that each call to the Lock method must be
matched by an equal number of calls to the Unlock method. Failure to do so will result in the server
becoming non-responsive as it remains in a locked state.

The IsLocked property can be used to determine if the server has been locked.

See Also
InternetServer Class | SocketTools Namespace | Unlock Method | IsLocked Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Lock Method

Return the number of bytes available to be read from the client socket.

Overload List
Return the number of bytes available to be read from the client socket.

public int Peek();

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

public int Peek(byte[]);

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

public int Peek(byte[],int);

Return the number of bytes available to be read from the client socket.

public int Peek(int);

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

public int Peek(int,byte[]);

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

public int Peek(int,byte[],int);

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

public int Peek(int,ref string);

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

public int Peek(int,ref string,int);

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

public int Peek(ref string);

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

public int Peek(ref string,int);

See Also
InternetServer Class | SocketTools Namespace | IsReadable Property | OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method

Return the number of bytes available to be read from the client socket.

[Visual Basic]
Overloads Public Function Peek() As Integer

[C#]
public int Peek();

Return Value
An integer value which specifies the number of bytes available to be read from the client socket. A return
value of zero specifies that there is no data available to be read. If an error occurs, a value of -1 is
returned and the application should check the value of the LastError property to determine the cause of
the failure.

Remarks
The Peek method returns the number of bytes that can be read in a single operation. However, it is
important to note that it may not indicate the total amount of data available to be read from the socket at
that time.

If no data is available to be read, the method will return a value of zero. Using this method in a loop to
poll a socket can cause the application to become non-responsive. To determine if there is data available
to be read, use the IsReadable property.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Peek method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | IsReadable Property |
OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method ()

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Peek(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the client. The data returned by this method
is not removed from the socket buffers. It must be consumed by a subsequent call to the Read method.
The return value indicates the number of bytes that can be read in a single operation. However, it is
important to note that it may not indicate the total amount of data available to be read from the socket at
that time.

If no data is available to be read, the method will return a value of zero. To determine if there is data
available to be read, use the IsReadable property.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Peek method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
IsReadable Property | OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Byte[])

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Peek(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the socket, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

If no data is available to be read, the method will return a value of zero. To determine if there is data
available to be read, use the IsReadable property.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Peek method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
IsReadable Property | OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Byte[], Int32)

Return the number of bytes available to be read from the client socket.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal handle As Integer _
) As Integer

[C#]
public int Peek(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the client session.

Return Value
An integer value which specifies the number of bytes available to be read from the specified client socket.
A return value of zero specifies that there is no data available to be read. If an error occurs, a value of -1 is
returned and the application should check the value of the LastError property to determine the cause of
the failure.

Remarks
The Peek method returns the number of bytes that can be read in a single operation. However, it is
important to note that it may not indicate the total amount of data available to be read from the socket at
that time.

If no data is available to be read, the method will return a value of zero. Using this method in a loop to
poll a socket can cause the application to become non-responsive. To determine if there is data available
to be read, use the IsReadable property.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Int32)

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal handle As Integer, _
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Peek(
 int handle,
 byte[] buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the client, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Int32, Byte[])

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal handle As Integer, _
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Peek(
 int handle,
 byte[] buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the client, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Int32, Byte[], Int32)

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal handle As Integer, _
 ByRef buffer As String _
) As Integer

[C#]
public int Peek(
 int handle,
 ref string buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string that will contain the data read from the socket.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the socket, up to a maximum of 8192 bytes.
The data returned by this method is not removed from the socket buffers. It must be consumed by a
subsequent call to the Read method. The return value indicates the number of bytes that can be read in a
single operation. However, it is important to note that it may not indicate the total amount of data
available to be read from the socket at that time.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Int32, String)

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal handle As Integer, _
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Peek(
 int handle,
 ref string buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the client, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Int32, String, Int32)

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByRef buffer As String _
) As Integer

[C#]
public int Peek(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the socket.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the client, up to a maximum of 8192 bytes.
The data returned by this method is not removed from the socket buffers. It must be consumed by a
subsequent call to the Read method. The return value indicates the number of bytes that can be read in a
single operation. However, it is important to note that it may not indicate the total amount of data
available to be read from the socket at that time.

If no data is available to be read, the method will return a value of zero. To determine if there is data
available to be read, use the IsReadable property.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Peek method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
IsReadable Property | OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (String)

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Peek(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the socket, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

If no data is available to be read, the method will return a value of zero. To determine if there is data
available to be read, use the IsReadable property.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Peek method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
IsReadable Property | OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (String, Int32)

Read data from the client socket and store it in a byte array.

Overload List
Read data from the client socket and store it in a byte array.

public int Read(byte[]);

Read data from the client socket and store it in a byte array.

public int Read(byte[],int);

Read data from the client socket and store it in a byte array.

public int Read(int,byte[]);

Read data from the client socket and store it in a byte array.

public int Read(int,byte[],int);

Read data from the client socket and store it in a string.

public int Read(int,ref string);

Read data from the client socket and store it in a string.

public int Read(int,ref string,int);

Read data from the client socket and store it in a string.

public int Read(ref string);

Read data from the client socket and store it in a string.

public int Read(ref string,int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method

Read data from the client socket and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the size of the byte array
passed to the method. If no data is available to be read, the calling thread will block until data is received
from the server or the connection is closed.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Read method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (Byte[])

Read data from the client socket and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the number of bytes specified. If
no data is available to be read, the calling thread will block until data is received from the server or the
connection is closed.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Read method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (Byte[], Int32)

Read data from the client socket and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal handle As Integer, _
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 int handle,
 byte[] buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the specified client socket. A
return value of zero specifies that the remote host has closed the connection and there is no more data
available to be read. If an error occurs, a value of -1 is returned and the application should check the
value of the LastError property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the size of the byte array
passed to the method. If no data is available to be read, the calling thread will block until data is received
from the server or the connection is closed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (Int32, Byte[])

Read data from the client socket and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal handle As Integer, _
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 int handle,
 byte[] buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the specified client socket. A
return value of zero specifies that the remote host has closed the connection and there is no more data
available to be read. If an error occurs, a value of -1 is returned and the application should check the
value of the LastError property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the number of bytes specified. If
no data is available to be read, the calling thread will block until data is received from the server or the
connection is closed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (Int32, Byte[], Int32)

Read data from the client socket and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByVal handle As Integer, _
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 int handle,
 ref string buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string that will contain the data read from the socket.

Return Value
An integer value which specifies the number of bytes actually read from the specified client socket. A
return value of zero specifies that the remote host has closed the connection and there is no more data
available to be read. If an error occurs, a value of -1 is returned and the application should check the
value of the LastError property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to a maximum of 8192 bytes. If no
data is available to be read, the calling thread will block until data is received from the server or the
connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (Int32, String)

Read data from the client socket and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByVal handle As Integer, _
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 int handle,
 ref string buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string that will contain the data read from the socket.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the specified client socket. A
return value of zero specifies that the remote host has closed the connection and there is no more data
available to be read. If an error occurs, a value of -1 is returned and the application should check the
value of the LastError property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the specified client socket, up to the number of
bytes specified. If no data is available to be read, the calling thread will block until data is received from
the server or the connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (Int32, String, Int32)

Read data from the client socket and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the client.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the client, up to a maximum of 8192 bytes. If no
data is available to be read, the calling thread will block until data is received from the server or the
connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Read method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (String)

Read data from the client socket and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the client, up to the number of bytes specified. If
no data is available to be read, the calling thread will block until data is received from the server or the
connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Read method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (String, Int32)

Read up to a line of data from the client and return it in a string buffer.

Overload List
Read up to a line of data from the client and return it in a string buffer.

public bool ReadLine(int,ref string);

Read up to a line of data from the client and return it in a string buffer.

public bool ReadLine(int,ref string,int);

Read up to a line of data from the client and return it in a string buffer.

public bool ReadLine(ref string);

Read up to a line of data from the client and return it in a string buffer.

public bool ReadLine(ref string,int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadLine Method

Read up to a line of data from the client and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByVal handle As Integer, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool ReadLine(
 int handle,
 ref string buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer

A string which will contain the data read from the client.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the client until an end-of-line character sequence is encountered.
Unlike the Read method which reads arbitrary bytes of data, this method is specifically designed to return
a single line of text data in a string variable. When an end-of-line character sequence is encountered, the
method will stop and return the data up to that point; the string will not contain the carriage-return or
linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the calling thread to block until an end-of-line character sequence is processed, the
read operation times out or the remote host closes its end of the socket connection.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadLine Method (Int32, String)

Read up to a line of data from the client and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByVal handle As Integer, _
 ByRef buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool ReadLine(
 int handle,
 ref string buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer

A string which will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the client up to the specified number of bytes or until an end-of-
line character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
method is specifically designed to return a single line of text data in a string variable. When an end-of-line
character sequence is encountered, the method will stop and return the data up to that point; the string
will not contain the carriage-return or linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the calling thread to block until an end-of-line character sequence is processed, the
read operation times out or the remote host closes its end of the socket connection.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

InternetServer.ReadLine Method (Int32, String, Int32)

See Also
InternetServer Class | SocketTools Namespace | InternetServer.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read up to a line of data from the client and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool ReadLine(
 ref string buffer
);

Parameters
buffer

A string which will contain the data read from the client.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the client until an end-of-line character sequence is encountered.
Unlike the Read method which reads arbitrary bytes of data, this method is specifically designed to return
a single line of text data in a string variable. When an end-of-line character sequence is encountered, the
method will stop and return the data up to that point; the string will not contain the carriage-return or
linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the calling thread to block until an end-of-line character sequence is processed, the
read operation times out or the remote host closes its end of the socket connection.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the ReadLine method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadLine Method (String)

Read up to a line of data from the client and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool ReadLine(
 ref string buffer,
 int length
);

Parameters
buffer

A string which will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the client up to the specified number of bytes or until an end-of-
line character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
method is specifically designed to return a single line of text data in a string variable. When an end-of-line
character sequence is encountered, the method will stop and return the data up to that point; the string
will not contain the carriage-return or linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the calling thread to block until an end-of-line character sequence is processed, the
read operation times out or the remote host closes its end of the socket connection.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the ReadLine method outside of an event
handler, you must explicitly specify the client handle.

See Also

InternetServer.ReadLine Method (String, Int32)

InternetServer Class | SocketTools Namespace | InternetServer.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Rejects a connection request from a client.

Overload List
Rejects a connection request from a client.

public bool Reject();

Rejects a connection request from a client.

public bool Reject(int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Reject Method

Rejects a connection request from a client.

[Visual Basic]
Overloads Public Function Reject() As Boolean

[C#]
public bool Reject();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the connection
being aborted. If there are no pending client connections at the time, this method will immediately return
with an error indicating that the operation would cause the thread to block.

This method is typically called from within the OnAccept event handler when the application determines
that it does not wish to accept the incoming client connection.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Reject method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Reject Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Reject Method ()

Rejects a connection request from a client.

[Visual Basic]
Overloads Public Function Reject(_
 ByVal handle As Integer _
) As Boolean

[C#]
public bool Reject(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the client session.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the connection
being aborted. If there are no pending client connections at the time, this method will immediately return
with an error indicating that the operation would cause the thread to block.

This method is typically called from within the OnAccept event handler when the application determines
that it does not wish to accept the incoming client connection.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Reject Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Reject Method (Int32)

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a server has been started, it will be stopped
and any active client connections will be terminated. All properties will be reset to their default values.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Reset Method

Resolves a host name to a host IP address.

[Visual Basic]
Public Function Resolve(_
 ByVal hostName As String, _
 ByRef hostAddress As String _
) As Boolean

[C#]
public bool Resolve(
 string hostName,
 ref string hostAddress
);

Parameters
hostName

A string which specifies the host name to be resolved.

hostAddress
A string which will contain the Internet address for the specified host.

Return Value
This method returns a Boolean value. If the host name can be resolved, the return value is true. If the host
name cannot be resolved, the return value is false. To get extended error information, check the value of
the LastError property.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Resolve Method

Restarts the server and terminates all active client connections.

[Visual Basic]
Public Function Restart() As Boolean

[C#]
public bool Restart();

Return Value
A boolean value which specifies if the server was restarted. A return value of true specifies that the server
has been successfully restarted. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The Restart method terminates all active client connections, recreates a new listening socket bound to the
same address and port number, and then resumes accepting new client connections.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Restart Method

Resume accepting new client connections.

[Visual Basic]
Public Function Resume() As Boolean

[C#]
public bool Resume();

Return Value
A boolean value which specifies if the server has resumed accepting client connections. A return value of
true specifies that the operation was successful. If an error occurs, the method returns false and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Resume method instructs the server to resume accepting new client connections. Any pending client
connections that were requested while the server was suspended will be accepted.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Resume Method

Start listening for client connections.

Overload List
Start listening for client connections.

public bool Start();

Start listening for client connections on the specified port number.

public bool Start(int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,int,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,int,int,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,int,int,int,ServerOptions);

See Also
InternetServer Class | SocketTools Namespace | Backlog Property | MaxClients Property | Options Property
| ServerAddress Property | ServerPort Property | Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Start Method

Start listening for client connections.

[Visual Basic]
Overloads Public Function Start() As Boolean

[C#]
public bool Start();

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the default local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

The value of the Backlog property will determine the default size of the queue for incoming client
connections. The value of the MaxClients property will determine the maximum number of clients that
may connect to the server. The value of the Options property will determine the default options used
when starting the server. The value of the ServerAddress and ServerPort properties will determine the
address and port number that the server will accept client connections on. The value of the Timeout
property will determine the default timeout period.

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer

Server = New SocketTools.InternetServer
Server.ServerAddress = TextBox1.Text.Trim()
Server.ServerPort = Val(TextBox2.Text)

If Server.Start() Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List | Backlog Property |
MaxClients Property | Options Property | ServerAddress Property | ServerPort Property | Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Start Method ()

Start listening for client connections on the specified port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Start(
 int localPort
);

Parameters
localPort

An integer value which specifies the port number that the server should use when listening for
incoming client connections. Valid port numbers are in the range of 1 through 65535.

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

The value of the Backlog property will determine the default size of the queue for incoming client
connections. The value of the MaxClients property will determine the maximum number of clients that
may connect to the server. The value of the Options property will determine the default options used
when starting the server. The value of the ServerAddress property will determine the address that the
server will accept client connections on. The value of the Timeout property will determine the default
timeout period.

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim nLocalPort As Integer

nLocalPort = Val(TextBox1.Text)

If Server.Start(nLocalPort) Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List | Backlog Property |

InternetServer.Start Method (Int32)

MaxClients Property | Options Property | ServerAddress Property | Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort
);

Parameters
localAddress

A string value which specifies the IP address of the network adapter that the control should use when
listening for connection requests. If this is an empty string or the special address "0.0.0.0" is specified,
the server will listen for connection on all valid network interfaces configured for the local system.

localPort
An integer value which specifies the port number that the server should use when listening for
incoming client connections. Valid port numbers are in the range of 1 through 65535.

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

The value of the Backlog property will determine the default size of the queue for incoming client
connections. The value of the MaxClients property will determine the maximum number of clients that
may connect to the server. The value of the Options property will determine the default options used
when starting the server. The value of the Timeout property will determine the default timeout period.

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim strLocalAddress As String
Dim nLocalPort As Integer

Server = New SocketTools.InternetServer

strLocalAddress = TextBox1.Text.Trim()
nLocalPort = Val(TextBox2.Text)

If Server.Start(strLocalAddress, nLocalPor) Then
 StatusBar1.Text = "The server has started listening for connections"

InternetServer.Start Method (String, Int32)

Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List | Backlog Property |
MaxClients Property | Options Property | Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal maxClients As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 int maxClients
);

Parameters
localAddress

A string value which specifies the IP address of the network adapter that the control should use when
listening for connection requests. If this is an empty string or the special address "0.0.0.0" is specified,
the server will listen for connection on all valid network interfaces configured for the local system.

localPort
An integer value which specifies the port number that the server should use when listening for
incoming client connections. Valid port numbers are in the range of 1 through 65535.

maxClients
An integer value which specifies the maximum number of clients that may connect to the server. A
value of zero specifies that there is no fixed limit to the number of active client connections that may
be established with the server. This value can be adjusted after the server has been created by calling
the Throttle method.

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

The value of the Backlog property will determine the default size of the queue for incoming client
connections. The value of the Options property will determine the default options used when starting the
server. The value of the Timeout property will determine the default timeout period.

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim strLocalAddress As String
Dim nLocalPort As Integer
Dim nMaxClients As Integer

InternetServer.Start Method (String, Int32, Int32)

Server = New SocketTools.InternetServer

strLocalAddress = TextBox1.Text.Trim()
nLocalPort = Val(TextBox2.Text)
nMaxClients = Val(TextBox4.Text)

If Server.Start(strLocalAddress, nLocalPort, nMaxClients) Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List | Backlog Property |
Options Property | Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal backlog As Integer, _
 ByVal maxClients As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 int backlog,
 int maxClients
);

Parameters
localAddress

A string value which specifies the IP address of the network adapter that the control should use when
listening for connection requests. If this is an empty string or the special address "0.0.0.0" is specified,
the server will listen for connection on all valid network interfaces configured for the local system.

localPort
An integer value which specifies the port number that the server should use when listening for
incoming client connections. Valid port numbers are in the range of 1 through 65535.

backlog
An integer value which specifies the maximum size of the queue used to manage pending connections
to the service. If the argument is set to value which exceeds the maximum size for the underlying
service provider, it will be silently adjusted to the nearest legal value. On Windows workstations, the
maximum backlog value is 5. On Windows servers, the maximum value is 200.

maxClients
An integer value which specifies the maximum number of clients that may connect to the server. A
value of zero specifies that there is no fixed limit to the number of active client connections that may
be established with the server. This value can be adjusted after the server has been created by calling
the Throttle method.

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

The value of the Options property will determine the default options used when starting the server. The
value of the Timeout property will determine the default timeout period.

Example

InternetServer.Start Method (String, Int32, Int32, Int32)

The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim strLocalAddress As String
Dim nLocalPort As Integer
Dim nBacklog As Integer
Dim nMaxClients As Integer

Server = New SocketTools.InternetServer

strLocalAddress = TextBox1.Text.Trim()
nLocalPort = Val(TextBox2.Text)
nBacklog = Val(TextBox3.Text)
nMaxClients = Val(TextBox4.Text)

If Server.Start(strLocalAddress, nLocalPort, nBacklog, nMaxClients) Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List | Options Property |
Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal backlog As Integer, _
 ByVal maxClients As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 int backlog,
 int maxClients,
 int timeout
);

Parameters
localAddress

A string value which specifies the IP address of the network adapter that the control should use when
listening for connection requests. If this is an empty string or the special address "0.0.0.0" is specified,
the server will listen for connection on all valid network interfaces configured for the local system.

localPort
An integer value which specifies the port number that the server should use when listening for
incoming client connections. Valid port numbers are in the range of 1 through 65535.

backlog
An integer value which specifies the maximum size of the queue used to manage pending connections
to the service. If the argument is set to value which exceeds the maximum size for the underlying
service provider, it will be silently adjusted to the nearest legal value. On Windows workstations, the
maximum backlog value is 5. On Windows servers, the maximum value is 200.

maxClients
An integer value which specifies the maximum number of clients that may connect to the server. A
value of zero specifies that there is no fixed limit to the number of active client connections that may
be established with the server. This value can be adjusted after the server has been created by calling
the Throttle method.

timeout
An integer value which specifies the number of seconds the control will wait for a network operation to
complete. The default timeout period of 20 seconds is sufficient for most applications.

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port number.

InternetServer.Start Method (String, Int32, Int32, Int32, Int32)

The server is started in its own thread and manages the client sessions independently of the calling thread.

The value of the Options property determines the default options that will be used when starting the
server.

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim strLocalAddress As String
Dim nLocalPort As Integer
Dim nBacklog As Integer
Dim nMaxClients As Integer
Dim nTimeout As Integer

Server = New SocketTools.InternetServer

strLocalAddress = TextBox1.Text.Trim()
nLocalPort = Val(TextBox2.Text)
nBacklog = Val(TextBox3.Text)
nMaxClients = Val(TextBox4.Text)
nTimeout = Val(TextBox5.Text)

If Server.Start(strLocalAddress, nLocalPort, nBacklog, nMaxClients, nTimeout) Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List | Options Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal backlog As Integer, _
 ByVal maxClients As Integer, _
 ByVal timeout As Integer, _
 ByVal options As ServerOptions _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 int backlog,
 int maxClients,
 int timeout,
 ServerOptions options
);

Parameters
localAddress

A string value which specifies the IP address of the network adapter that the control should use when
listening for connection requests. If this is an empty string or the special address "0.0.0.0" is specified,
the server will listen for connection on all valid network interfaces configured for the local system.

localPort
An integer value which specifies the port number that the server should use when listening for
incoming client connections. Valid port numbers are in the range of 1 through 65535.

backlog
An integer value which specifies the maximum size of the queue used to manage pending connections
to the service. If the argument is set to value which exceeds the maximum size for the underlying
service provider, it will be silently adjusted to the nearest legal value. On Windows workstations, the
maximum backlog value is 5. On Windows servers, the maximum value is 200.

maxClients
An integer value which specifies the maximum number of clients that may connect to the server. A
value of zero specifies that there is no fixed limit to the number of active client connections that may
be established with the server. This value can be adjusted after the server has been created by calling
the Throttle method.

timeout
An integer value which specifies the number of seconds the control will wait for a network operation to
complete. The default timeout period of 20 seconds is sufficient for most applications.

options
One or more of the ServerOptions enumeration flags.

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the

InternetServer.Start Method (String, Int32, Int32, Int32, Int32,
ServerOptions)

operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim strLocalAddress As String
Dim nLocalPort As Integer
Dim nBacklog As Integer
Dim nMaxClients As Integer
Dim nTimeout As Integer

Server = New SocketTools.InternetServer

strLocalAddress = TextBox1.Text.Trim()
nLocalPort = Val(TextBox2.Text)
nBacklog = Val(TextBox3.Text)
nMaxClients = Val(TextBox4.Text)
nTimeout = Val(TextBox5.Text)

If Server.Start(strLocalAddress, nLocalPort, nBacklog, nMaxClients, nTimeout) Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Stop listening for new client connections and terminate all active clients already connected to the server.

[Visual Basic]
Public Function Stop() As Boolean

[C#]
public bool Stop();

Return Value
A boolean value which specifies if the server was stopped. A return value of true specifies that the server
has been successfully stopped. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The Stop method instructs the server to stop accepting client connections, disconnects all active client
connections and terminates the thread that is managing the server session.

If this method is called when there is one or more clients connected to the server, it will signal each client
thread to terminate and then wait for the server thread to terminate. As the client sessions are terminated,
the OnDisconnect event handler will not be invoked. If you wish to ensure that all clients are
disconnected normally before stopping the server, call the Suspend method with the
suspendDisconnect option and then stop the server after the last client has disconnected.

After the server has been terminated, the closed listening socket will go into a TIME-WAIT state which
prevents an application from reusing the same address and port number bound to that socket for a brief
period of time, typically two to four minutes. This is normal behavior designed to prevent delayed or
misrouted packets of data from being read by a subsequent connection. To immediately start a new
server using the same local address and port number, set the ReuseAddress property to a value of true.

See Also
InternetServer Class | SocketTools Namespace | Restart Method | Resume Method | Start Method | Throttle
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Stop Method

Suspend accepting new client connections.

Overload List
Suspend accepting new client connections.

public bool Suspend();

Suspend accepting new client connections with additional options.

public bool Suspend(SuspendOptions);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Suspend Method

Suspend accepting new client connections with additional options.

[Visual Basic]
Overloads Public Function Suspend(_
 ByVal options As SuspendOptions _
) As Boolean

[C#]
public bool Suspend(
 SuspendOptions options
);

Parameters
options

One or more of the SuspendOptions enumeration flags.

Return Value
A boolean value which specifies if the server was suspended. A return value of true specifies that the
server has suspended accepting new client connections. If an error occurs, the method returns false and
the application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. By default, any
incoming client connections will be queued up to the maximum backlog value specified when the server
was started. To resume accepting client connections, call the Resume method.

If the suspendDisconnect option is specified, the server will signal each client to disconnect and will stop
accepting new connections. The OnDisconnect event handler will be invoked for each client that
disconnects from the server. If the suspendWait option is also specified, this method will wait until the last
client has disconnected from the server before returning to the caller. If there are a large number of clients
connected to the server, this process may cause the application to block for an extended period of time
and appear to be non-responsive to the user. For this reason, you should not specify the suspendWait
option if the method is being called from the application's main UI thread.

To perform a graceful shutdown of the server, it is recommended that you call the Suspend method with
the suspendReject and suspendDisconnect options. This will allow each client to disconnect from the
server and the server will reject any new incoming connections. After the last client has disconnected from
the server, the OnIdle event handler will be invoked and the application can call the Stop method to
complete the shutdown process.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Suspend Overload List | SuspendOptions
Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Suspend Method (SuspendOptions)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.SuspendOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.SuspendOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.SuspendOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.SuspendOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.SuspendOptions.html

Suspend accepting new client connections.

[Visual Basic]
Overloads Public Function Suspend() As Boolean

[C#]
public bool Suspend();

Return Value
A boolean value which specifies if the server was suspended. A return value of true specifies that the
server has suspended accepting new client connections. If an error occurs, the method returns false and
the application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. By default, any
incoming client connections will be queued up to the maximum backlog value specified when the server
was started. To resume accepting client connections, call the Resume method.

It is not recommended that you leave a server in a suspended state for extended periods of time. Once
the connection backlog queue has filled, subsequent incoming client connections will be rejected. If you
wish to suspend the server for more than a few seconds, call the overloaded version of this method and
specify the suspendReject option. This will reject all incoming client connections to the server, rather than
forcing clients to wait.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Suspend Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Suspend Method ()

Limit the maximum number of client connections.

Overload List
Limit the maximum number of client connections.

public bool Throttle(int);

Limit the maximum number of client connections and connections per IP address.

public bool Throttle(int,int);

Limit the maximum number of client connections, connections per IP address and connection rate.

public bool Throttle(int,int,int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Throttle Method

Limit the maximum number of client connections.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Throttle Method (Int32)

Limit the maximum number of client connections and connections per IP address.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer, _
 ByVal maxClientsPerAddress As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients,
 int maxClientsPerAddress
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

maxClientsPerAddress
An integer value that specifies the maximum number of clients that may connect to the server from
the same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is no limit on the number of client connections per address.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Throttle Method (Int32, Int32)

Limit the maximum number of client connections, connections per IP address and connection rate.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer, _
 ByVal maxClientsPerAddress As Integer, _
 ByVal connectionRate As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients,
 int maxClientsPerAddress,
 int connectionRate
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

maxClientsPerAddress
An integer value that specifies the maximum number of clients that may connect to the server from
the same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is no limit on the number of client connections per address.

connectionRate
An integer value that specifies a restriction on the rate of client connections, limiting the number of
connections that will be accepted within that period of time. A value of zero specifies that there is no
restriction on the rate of client connections. The higher this value, the fewer the number of
connections that will be accepted within a specific period of time. By default, there is no limit on the
client connection rate.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

Increasing the connection rate value will force the server to slow down the rate at which it will accept
incoming client connection requests. For example, setting this parameter to a value of 1000 would limit
the server to accepting one client connection every second, while a value of 250 would allow the server to
accept four client connections per second. Note that significantly increasing the amount of time the server
must wait to accept client connections can exceed the connection backlog queue, resulting in client

InternetServer.Throttle Method (Int32, Int32, Int32)

connections being rejected.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Uninitialize the class library and release any resources allocated for the server.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the server and
unloads the networking library. After this method has been called, no further network operations may be
performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
InternetServer Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Uninitialize Method

Unlock the server and allow other server threads to resume execution.

[Visual Basic]
Public Function Unlock() As Boolean

[C#]
public bool Unlock();

Return Value
A boolean value which specifies if the server was unlocked. A return value of true specifies that the server
was unlocked, and the threads being managed by the server have resumed normal execution. A return
value of false indicates that the server could not be unlocked, typically because a potential deadlock was
detected.

Remarks
The Unlock method releases the lock on the server and allows any blocked threads to resume execution.
Only one server may be locked at any one time, and only the thread which established the lock can unlock
the server.

Every time the Lock method is called, an internal lock counter is incremented, and the lock will not be
released until the lock count drops to zero. This means that each call to the Lock method must be
matched by an equal number of calls to the Unlock method. Failure to do so will result in the server
becoming non-responsive as it remains in a locked state.

The program should always check the return value from this method, and should never assume that the
lock has been released. If a potential deadlock situation is detected, this method will fail and return a value
of false.

The IsLocked property can be used to determine if the server has been locked.

See Also
InternetServer Class | SocketTools Namespace | Lock Method | IsLocked Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Unlock Method

Write one or more bytes of data to a client.

Overload List
Write one or more bytes of data to a client.

public int Write(byte[]);

Write one or more bytes of data to a client.

public int Write(byte[],int);

Write one or more bytes of data to a client.

public int Write(int,byte[]);

Write one or more bytes of data to a client.

public int Write(int,byte[],int);

Write a string of characters to a client.

public int Write(int,string);

Write a string of characters to a client.

public int Write(int,string,int);

Write a string of characters to a client.

public int Write(string);

Write a string of characters to a client.

public int Write(string,int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method

Write one or more bytes of data to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the client.

Return Value
An integer value which specifies the number of bytes actually written to the client. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to a client. If there is enough room in the client
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space the method will
block the current thread until the data can be sent.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Write method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (Byte[])

Write one or more bytes of data to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the client.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the client. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to a client. If there is enough room in the client
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space the method will
block the current thread until the data can be sent.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Write method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (Byte[], Int32)

Write one or more bytes of data to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal handle As Integer, _
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 int handle,
 byte[] buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A byte array that contains the data to be written to the client.

Return Value
An integer value which specifies the number of bytes actually written to the client. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the specified client. If there is enough room in the
client socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and
control immediately returns to the caller. If amount of data exceeds the available buffer space the method
will block the current thread until the data can be sent.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (Int32, Byte[])

Write one or more bytes of data to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal handle As Integer, _
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 int handle,
 byte[] buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A byte array that contains the data to be written to the client.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the client. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the specified client. If there is enough room in the
client socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and
control immediately returns to the caller. If amount of data exceeds the available buffer space the method
will block the current thread until the data can be sent.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List | Broadcast Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (Int32, Byte[], Int32)

Write a string of characters to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal handle As Integer, _
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 int handle,
 string buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string which contains the data to be written to the client.

Return Value
An integer value which specifies the number of characters actually written to the client. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to a client. If there is enough room in the socket's internal
send buffer to accommodate all of the data, it is copied to the send buffer and control immediately
returns to the caller. If amount of data exceeds the available buffer space the method will block the
current thread until the data can be sent.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (Int32, String)

Write a string of characters to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal handle As Integer, _
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 int handle,
 string buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string which contains the data to be written to the client.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the client. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to a client. If there is enough room in the socket's internal
send buffer to accommodate all of the data, it is copied to the send buffer and control immediately
returns to the caller. If amount of data exceeds the available buffer space the method will block the
current thread until the data can be sent.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

You should never use strings to read and write binary data. Always use byte arrays to ensure that no
character conversion is performed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (Int32, String, Int32)

Write a string of characters to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the client.

Return Value
An integer value which specifies the number of characters actually written to the client. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to a client. If there is enough room in the socket's internal
send buffer to accommodate all of the data, it is copied to the send buffer and control immediately
returns to the caller. If amount of data exceeds the available buffer space the method will block the
current thread until the data can be sent.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Write method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (String)

Write a string of characters to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the client.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the client. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to a client. If there is enough room in the socket's internal
send buffer to accommodate all of the data, it is copied to the send buffer and control immediately
returns to the caller. If amount of data exceeds the available buffer space the method will block the
current thread until the data can be sent.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Write method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (String, Int32)

Send an empty line of text to a client, terminated by a carriage-return and linefeed.

Overload List
Send an empty line of text to a client, terminated by a carriage-return and linefeed.

public bool WriteLine();

Send an empty line of text to a client, terminated by a carriage-return and linefeed.

public bool WriteLine(int);

Send a line of text to a client, terminated by a carriage-return and linefeed.

public bool WriteLine(int,string);

Send a line of text to a client, terminated by a carriage-return and linefeed.

public bool WriteLine(int,string,ref int);

Send a line of text to a client, terminated by a carriage-return and linefeed.

public bool WriteLine(string);

Send a line of text to a client, terminated by a carriage-return and linefeed.

public bool WriteLine(string,ref int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteLine Method

Send an empty line of text to a client, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine() As Boolean

[C#]
public bool WriteLine();

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method will send an empty line of text to the client, terminated by a carriage-return and
linefeed. Calling this method will force the calling thread to block until the complete line of text has been
written, the write operation times out or the remote host aborts the connection.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the WriteLine method outside of an event
handler, you must explicitly specify the client handle.

The Write and WriteLine methods can be safely intermixed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteLine Method ()

Send an empty line of text to a client, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal handle As Integer _
) As Boolean

[C#]
public bool WriteLine(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the client session.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method will send an empty line of text to the specified client, terminated by a carriage-
return and linefeed. Calling this method will force the calling thread to block until the complete line of text
has been written, the write operation times out or the remote host aborts the connection.

The Write and WriteLine methods can be safely intermixed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteLine Method (Int32)

Send a line of text to a client, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal handle As Integer, _
 ByVal buffer As String _
) As Boolean

[C#]
public bool WriteLine(
 int handle,
 string buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string which contains the data that will be sent to the specified client. The data will always be
terminated with a carriage-return and linefeed control character sequence. If the string is empty, then
a only a carriage-return and linefeed are written to the socket. Note that if the string contains a null
character, any data that follows the null character will be discarded.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection.

The Write and WriteLine methods can be safely intermixed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteLine Method (Int32, String)

Send a line of text to a client, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal handle As Integer, _
 ByVal buffer As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool WriteLine(
 int handle,
 string buffer,
 ref int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string which contains the data that will be sent to the specified client. The data will always be
terminated with a carriage-return and linefeed control character sequence. If the string is empty, then
a only a carriage-return and linefeed are written to the client. Note that if the string contains a null
character, any data that follows the null character will be discarded.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

You should never use strings to read and write binary data. Always use byte arrays to ensure that no
character conversion is performed.

The Write and WriteLine methods can be safely intermixed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.WriteLine Overload List

InternetServer.WriteLine Method (Int32, String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Send a line of text to a client, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool WriteLine(
 string buffer
);

Parameters
buffer

A string which contains the data that will be sent to the client. The data will always be terminated with
a carriage-return and linefeed control character sequence. If the string is empty, then a only a
carriage-return and linefeed are written to the socket. Note that if the string contains a null character,
any data that follows the null byte will be discarded.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the WriteLine method outside of an event
handler, you must explicitly specify the client handle.

The Write and WriteLine methods can be safely intermixed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteLine Method (String)

Send a line of text to a client, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal buffer As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool WriteLine(
 string buffer,
 ref int length
);

Parameters
buffer

A string which contains the data that will be sent to the client. The data will always be terminated with
a carriage-return and linefeed control character sequence. If the string is empty, then a only a
carriage-return and linefeed are written to the socket. Note that if the string contains a null character,
any data that follows the null byte will be discarded.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the WriteLine method outside of an event
handler, you must explicitly specify the client handle.

The Write and WriteLine methods can be safely intermixed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteLine Method (String, Int32)

The events of the InternetServer class are listed below. For a complete list of InternetServer class
members, see the InternetServer Members topic.

Public Instance Events

OnAccept Occurs when a client attempts to establish a
connection with the server.

OnCancel Occurs when a blocking socket operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an socket operation fails.

OnIdle Occurs when the there are no clients connected to
the server.

OnRead Occurs when data is available to be read from the
client.

OnStart Occurs when the server starts accepting
connections.

OnStop Occurs when the server stops accepting
connections.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer Events

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.OnIdle.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.OnStart.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServer.OnStop.html

Occurs when a client attempts to establish a connection with the server.

[Visual Basic]
Public Event OnAccept As OnAcceptEventHandler

[C#]
public event OnAcceptEventHandler OnAccept;

Event Data
The event handler receives an argument of type InternetServer.AcceptEventArgs containing data related
to this event. The following InternetServer.AcceptEventArgs properties provide information specific to
this event.

Property Description

ClientAddress Gets a value that specifies the Internet address of
the current client session.

ClientPort Gets a value that specifies the port number used
by the current client session.

Handle Gets a value that specifies the socket handle for
the listening server.

Remarks
The OnAccept event occurs when a client attempts to connect to the local system. A connection is not
actually established until it has been accepted by the server.

The ClientAddress or ClientHost properties may be used to determine the Internet address and host
name of the remote host that is establishing the connection. To prevent the client from completing the
connection, call the Reject method.

After the client connection has been established and the worker thread for that client session has started,
the OnConnect event will fire.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the server thread, not the thread that
created the class instance, you cannot directly modify a control from within this event handler. Instead,
you must create a delegate and use the Invoke method to marshal invocations to the associated UI
thread. For more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnAccept Event

Provides data for the OnAccept event.

For a list of all members of this type, see InternetServer.AcceptEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.AcceptEventArgs

[Visual Basic]
Public Class InternetServer.AcceptEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.AcceptEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
AcceptEventArgs specifies the socket handle for the server that should accept the incoming client
connection.

The OnAccept event occurs when a remote host attempts to establish a connection with the local system.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.AcceptEventArgs Members | SocketTools Namespace | OnAccept Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs Class

InternetServer.AcceptEventArgs overview

Public Instance Constructors

 InternetServer.AcceptEventArgs Constructor Initializes a new instance of the
InternetServer.AcceptEventArgs class.

Public Instance Properties

ClientAddress Gets a value that specifies the Internet address of
the current client session.

ClientPort Gets a value that specifies the port number used
by the current client session.

Handle Gets a value that specifies the socket handle for
the listening server.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.AcceptEventArgs Class | SocketTools Namespace | OnAccept Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs Members

Initializes a new instance of the InternetServer.AcceptEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.AcceptEventArgs();

See Also
InternetServer.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs Constructor

The properties of the InternetServer.AcceptEventArgs class are listed below. For a complete list of
InternetServer.AcceptEventArgs class members, see the InternetServer.AcceptEventArgs Members
topic.

Public Instance Properties

ClientAddress Gets a value that specifies the Internet address of
the current client session.

ClientPort Gets a value that specifies the port number used
by the current client session.

Handle Gets a value that specifies the socket handle for
the listening server.

See Also
InternetServer.AcceptEventArgs Class | SocketTools Namespace | OnAccept Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs Properties

Gets a value that specifies the Internet address of the current client session.

[Visual Basic]
Public ReadOnly Property ClientAddress As String

[C#]
public string ClientAddress {get;}

Remarks
The ClientAddress property will return the address of the client that is requesting the connection. The
server application may use this information to determine if it wishes to accept or reject the client
connection.

See Also
InternetServer.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs.ClientAddress Property

Gets a value that specifies the port number used by the current client session.

[Visual Basic]
Public ReadOnly Property ClientPort As Integer

[C#]
public int ClientPort {get;}

Remarks
The ClientPort property returns the port number that the client has used when establishing a connection
with the server.

See Also
InternetServer.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs.ClientPort Property

Gets a value that specifies the socket handle for the listening server.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the server socket handle.

Remarks
The Handle property returns the socket handle for the server that generated the event. This value is used
for identification purposes only and should not be used in conjunction with methods such as Read and
Write, which may only be used with client handles.

See Also
InternetServer.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs.Handle Property

Occurs when a blocking socket operation is canceled.

[Visual Basic]
Public Event OnCancel As OnCancelEventHandler

[C#]
public event OnCancelEventHandler OnCancel;

Event Data
The event handler receives an argument of type InternetServer.CancelEventArgs containing data related
to this event. The following InternetServer.CancelEventArgs property provides information specific to
this event.

Property Description

Handle Gets a value that specifies the socket handle for
the client session.

Remarks
The OnCancel event is generated when a blocking socket operation, such as sending or receiving data, is
canceled with the Cancel method.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the client thread, not the thread that created
the class instance, you cannot directly modify a control from within this event handler. Instead, you must
create a delegate and use the Invoke method to marshal invocations to the associated UI thread. For
more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnCancel Event

Provides data for the OnCancel event.

For a list of all members of this type, see InternetServer.CancelEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.CancelEventArgs

[Visual Basic]
Public Class InternetServer.CancelEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.CancelEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
CancelEventArgs specifies the socket handle for the current client session.

The OnCancel event occurs when a blocking network operation has been canceled.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.CancelEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CancelEventArgs Class

InternetServer.CancelEventArgs overview

Public Instance Constructors

 InternetServer.CancelEventArgs Constructor Initializes a new instance of the
InternetServer.CancelEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.CancelEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CancelEventArgs Members

Initializes a new instance of the InternetServer.CancelEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.CancelEventArgs();

See Also
InternetServer.CancelEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CancelEventArgs Constructor

The properties of the InternetServer.CancelEventArgs class are listed below. For a complete list of
InternetServer.CancelEventArgs class members, see the InternetServer.CancelEventArgs Members topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

See Also
InternetServer.CancelEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CancelEventArgs Properties

Gets a value that specifies the socket handle for the client session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the client socket handle.

Remarks
The Handle property returns the socket handle for the client that generated the event. This handle can be
used in conjunction with methods such as Read and Write to exchange data with the client.

See Also
InternetServer.CancelEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CancelEventArgs.Handle Property

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As OnConnectEventHandler

[C#]
public event OnConnectEventHandler OnConnect;

Event Data
The event handler receives an argument of type InternetServer.ConnectEventArgs containing data related
to this event. The following InternetServer.ConnectEventArgs property provides information specific to
this event.

Property Description

Handle Gets a value that specifies the socket handle for
the client session.

Remarks
The OnConnect event occurs when the client connection to the server has completed.

The ClientAddress property can be used to determine the IP address of the client which established the
connection. To terminate the client connection, use the Disconnect method.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the client thread, not the thread that created
the class instance, you cannot directly modify a control from within this event handler. Instead, you must
create a delegate and use the Invoke method to marshal invocations to the associated UI thread. For
more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnConnect Event

Provides data for the OnConnect event.

For a list of all members of this type, see InternetServer.ConnectEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.ConnectEventArgs

[Visual Basic]
Public Class InternetServer.ConnectEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.ConnectEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ConnectEventArgs specifies the socket handle for the current client session.

The OnConnect event occurs when the client connection to the server has completed. The Handle
property specifies the handle to the client socket that was allocated for the session. This handle can be
used with methods such as Read and Write to exchange information with the client.

The ClientAddress property can be used to determine the IP address of the client which established the
connection. To terminate the client connection, use the Disconnect method.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.ConnectEventArgs Members | SocketTools Namespace | OnConnect Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ConnectEventArgs Class

InternetServer.ConnectEventArgs overview

Public Instance Constructors

 InternetServer.ConnectEventArgs Constructor Initializes a new instance of the
InternetServer.ConnectEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.ConnectEventArgs Class | SocketTools Namespace | OnConnect Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ConnectEventArgs Members

Initializes a new instance of the InternetServer.ConnectEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.ConnectEventArgs();

See Also
InternetServer.ConnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ConnectEventArgs Constructor

The properties of the InternetServer.ConnectEventArgs class are listed below. For a complete list of
InternetServer.ConnectEventArgs class members, see the InternetServer.ConnectEventArgs Members
topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

See Also
InternetServer.ConnectEventArgs Class | SocketTools Namespace | OnConnect Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ConnectEventArgs Properties

Gets a value that specifies the socket handle for the client session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the client socket handle.

Remarks
The Handle property returns the socket handle for the client that generated the event. This handle can be
used in conjunction with methods such as Read and Write to exchange data with the client.

See Also
InternetServer.ConnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ConnectEventArgs.Handle Property

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As OnDisconnectEventHandler

[C#]
public event OnDisconnectEventHandler OnDisconnect;

Event Data
The event handler receives an argument of type InternetServer.DisconnectEventArgs containing data
related to this event. The following InternetServer.DisconnectEventArgs property provides information
specific to this event.

Property Description

Handle Gets a value that specifies the socket handle for
the client session.

Remarks
The OnDisconnect event is generated when the connection is terminated by the client and there is no
more data available to be read.

It is not necessary to call the Disconnect method inside the OnDisconnect event handler because the
client session is already in the process of disconnecting from the server.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the client thread, not the thread that created
the class instance, you cannot directly modify a control from within this event handler. Instead, you must
create a delegate and use the Invoke method to marshal invocations to the associated UI thread. For
more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnDisconnect Event

Provides data for the OnDisconnect event.

For a list of all members of this type, see InternetServer.DisconnectEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.DisconnectEventArgs

[Visual Basic]
Public Class InternetServer.DisconnectEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.DisconnectEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
DisconnectEventArgs specifies the socket handle for the current client session.

The OnDisconnect event is generated when the connection is terminated by the client and there is no
more data available to be read. The Handle property specifies the socket handle of the client session
which has terminated. It is important to note that the client handle is provided for informational purposes
only and the application should not attempt to read or write data using this handle from within this event
handler.

It is not necessary to call the Disconnect method inside the OnDisconnect event handler because the
client session is already in the process of disconnecting from the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.DisconnectEventArgs Members | SocketTools Namespace | OnDisconnect Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.DisconnectEventArgs Class

InternetServer.DisconnectEventArgs overview

Public Instance Constructors

 InternetServer.DisconnectEventArgs
Constructor

Initializes a new instance of the
InternetServer.DisconnectEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.DisconnectEventArgs Class | SocketTools Namespace | OnDisconnect Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.DisconnectEventArgs Members

Initializes a new instance of the InternetServer.DisconnectEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.DisconnectEventArgs();

See Also
InternetServer.DisconnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.DisconnectEventArgs Constructor

The properties of the InternetServer.DisconnectEventArgs class are listed below. For a complete list of
InternetServer.DisconnectEventArgs class members, see the InternetServer.DisconnectEventArgs
Members topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

See Also
InternetServer.DisconnectEventArgs Class | SocketTools Namespace | OnDisconnect Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.DisconnectEventArgs Properties

Gets a value that specifies the socket handle for the client session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the client socket handle.

Remarks
The Handle property returns the socket handle for the client that generated the event. This handle can be
used in conjunction with methods such as Read and Write to exchange data with the client.

See Also
InternetServer.DisconnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.DisconnectEventArgs.Handle Property

Occurs when an socket operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type InternetServer.ErrorEventArgs containing data related to
this event. The following InternetServer.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Handle Gets a value that specifies the socket handle that
generated the error.

Remarks
The OnError event occurs when a socket operation fails.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event may be generated in the context of the client or server thread, not the
thread that created the class instance, you cannot directly modify a control from within this event handler.
Instead, you must create a delegate and use the Invoke method to marshal invocations to the associated
UI thread. For more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see InternetServer.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.ErrorEventArgs

[Visual Basic]
Public Class InternetServer.ErrorEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs Class

InternetServer.ErrorEventArgs overview

Public Instance Constructors

 InternetServer.ErrorEventArgs Constructor Initializes a new instance of the
InternetServer.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Handle Gets a value that specifies the socket handle that
generated the error.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs Members

Initializes a new instance of the InternetServer.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.ErrorEventArgs();

See Also
InternetServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs Constructor

The properties of the InternetServer.ErrorEventArgs class are listed below. For a complete list of
InternetServer.ErrorEventArgs class members, see the InternetServer.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Handle Gets a value that specifies the socket handle that
generated the error.

See Also
InternetServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
InternetServer.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public InternetServer.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
InternetServer.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs.Error Property

Gets a value that specifies the socket handle that generated the error.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies a socket handle.

Remarks
The Handle property returns the socket handle for the client or server that generated the event. If no
server is active, then this property will return a value of -1.

See Also
InternetServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs.Handle Property

Occurs when data is available to be read from the client.

[Visual Basic]
Public Event OnRead As OnReadEventHandler

[C#]
public event OnReadEventHandler OnRead;

Event Data
The event handler receives an argument of type InternetServer.ReadEventArgs containing data related to
this event. The following InternetServer.ReadEventArgs property provides information specific to this
event.

Property Description

Handle Gets a value that specifies the socket handle for
the client session.

Remarks
The OnRead event is generated when the client sends data to the server. The Handle event argument
property specifies the handle to the client socket which can be used with the Read or ReadLine methods
to read the data that was sent.

When this event fires, it guarantees that data can be read from the specified client without causing the
current thread to enter a blocked state. However, calling this method multiple times inside the event
handler may cause the current thread to block when there is no more data available to read. The
IsReadable property can be used to determine if there is additional data available to be read.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the client thread, not the thread that created
the class instance, you cannot directly modify a control from within this event handler. Instead, you must
create a delegate and use the Invoke method to marshal invocations to the associated UI thread. For
more information, refer to the documentation for the control.

Example

Private Sub Server_OnRead(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Socket.OnRead
 Dim strBuffer As String
 Dim nRead As Integer

 ' Read up to m_nBufferSize bytes of data from the client
 nRead = Server1.Read(e.Handle, strBuffer, m_nBufferSize)

 If nRead > 0 Then
 ' Process the data that has been read from the client
 ProcessData(strBuffer)
 End If
End Sub

See Also

InternetServer.OnRead Event

InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Provides data for the OnRead event.

For a list of all members of this type, see InternetServer.ReadEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.ReadEventArgs

[Visual Basic]
Public Class InternetServer.ReadEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.ReadEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ReadEventArgs specifies the socket handle for the current client session.

The OnRead event is generated when the client sends data to the server. The Handle event argument
property specifies the handle to the client socket which can be used with the Read or ReadLine methods
to read the data that was sent.

When this event fires, it guarantees that data can be read from the specified client without causing the
current thread to enter a blocked state. However, calling this method multiple times inside the event
handler may cause the current thread to block when there is no more data available to read. The
IsReadable property can be used to determine if there is additional data available to be read.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.ReadEventArgs Members | SocketTools Namespace | OnRead Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadEventArgs Class

InternetServer.ReadEventArgs overview

Public Instance Constructors

 InternetServer.ReadEventArgs Constructor Initializes a new instance of the
InternetServer.ReadEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.ReadEventArgs Class | SocketTools Namespace | OnRead Event (SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadEventArgs Members

Initializes a new instance of the InternetServer.ReadEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.ReadEventArgs();

See Also
InternetServer.ReadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadEventArgs Constructor

The properties of the InternetServer.ReadEventArgs class are listed below. For a complete list of
InternetServer.ReadEventArgs class members, see the InternetServer.ReadEventArgs Members topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

See Also
InternetServer.ReadEventArgs Class | SocketTools Namespace | OnRead Event (SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadEventArgs Properties

Gets a value that specifies the socket handle for the client session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the client socket handle.

Remarks
The Handle property returns the socket handle for the client that generated the event. This handle can be
used in conjunction with methods such as Read and Write to exchange data with the client.

See Also
InternetServer.ReadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadEventArgs.Handle Property

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As OnTimeoutEventHandler

[C#]
public event OnTimeoutEventHandler OnTimeout;

Event Data
The event handler receives an argument of type InternetServer.TimeoutEventArgs containing data related
to this event. The following InternetServer.TimeoutEventArgs property provides information specific to
this event.

Property Description

Handle Gets a value that specifies the socket handle for
the client session.

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the
socket, fails to complete before the specified timeout period elapses. The timeout period for a blocking
operation can be adjusted by setting the Timeout property.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the client thread, not the thread that created
the class instance, you cannot directly modify a control from within this event handler. Instead, you must
create a delegate and use the Invoke method to marshal invocations to the associated UI thread. For
more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnTimeout Event

Provides data for the OnTimeout event.

For a list of all members of this type, see InternetServer.TimeoutEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.TimeoutEventArgs

[Visual Basic]
Public Class InternetServer.TimeoutEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.TimeoutEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
TimeoutEventArgs specifies the socket handle for the current client session.

The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the socket,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.TimeoutEventArgs Members | SocketTools Namespace | OnTimeout Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TimeoutEventArgs Class

InternetServer.TimeoutEventArgs overview

Public Instance Constructors

 InternetServer.TimeoutEventArgs Constructor Initializes a new instance of the
InternetServer.TimeoutEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.TimeoutEventArgs Class | SocketTools Namespace | OnTimeout Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TimeoutEventArgs Members

Initializes a new instance of the InternetServer.TimeoutEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.TimeoutEventArgs();

See Also
InternetServer.TimeoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TimeoutEventArgs Constructor

The properties of the InternetServer.TimeoutEventArgs class are listed below. For a complete list of
InternetServer.TimeoutEventArgs class members, see the InternetServer.TimeoutEventArgs Members
topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

See Also
InternetServer.TimeoutEventArgs Class | SocketTools Namespace | OnTimeout Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TimeoutEventArgs Properties

Gets a value that specifies the socket handle for the client session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the client socket handle.

Remarks
The Handle property returns the socket handle for the client that generated the event. This handle can be
used in conjunction with methods such as Read and Write to exchange data with the client.

See Also
InternetServer.TimeoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TimeoutEventArgs.Handle Property

Occurs when data can be written to the client.

[Visual Basic]
Public Event OnWrite As OnWriteEventHandler

[C#]
public event OnWriteEventHandler OnWrite;

Event Data
The event handler receives an argument of type InternetServer.WriteEventArgs containing data related to
this event. The following InternetServer.WriteEventArgs property provides information specific to this
event.

Property Description

Handle Gets a value that specifies the socket handle for
the client session.

Remarks
The OnWrite event is generated when the client can accept data from the server. The Handle event
argument property specifies the handle to the client socket and can be used in conjunction with the Write
or WriteLine methods.

This event is typically fired once when the client connection is established with the server, the session
thread starts and the client socket enters a writable state. If the internal send buffer for the client socket
becomes full, this event will fire again when more data can be written to the socket. It is important to note
that this event is level-triggered and will not fire repeatedly if the client socket is writable. Under most
circumstances this event fire only once for each client session after the initial connection has been
established.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the client thread, not the thread that created
the class instance, you cannot directly modify a control from within this event handler. Instead, you must
create a delegate and use the Invoke method to marshal invocations to the associated UI thread. For
more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnWrite Event

Provides data for the OnWrite event.

For a list of all members of this type, see InternetServer.WriteEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.WriteEventArgs

[Visual Basic]
Public Class InternetServer.WriteEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.WriteEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
WriteEventArgs specifies the socket handle for the current client session.

The OnWrite event is generated when the client can accept data from the server. The Handle event
argument property specifies the handle to the client socket and can be used in conjunction with the Write
or WriteLine methods.

This event is typically fired once when the client connection is established with the server, the session
thread starts and the client socket enters a writable state. If the internal send buffer for the client socket
becomes full, this event will fire again when more data can be written to the socket. It is important to note
that this event is level-triggered and will not fire repeatedly if the client socket is writable. Under most
circumstances this event fire only once for each client session after the initial connection has been
established.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.WriteEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteEventArgs Class

InternetServer.WriteEventArgs overview

Public Instance Constructors

 InternetServer.WriteEventArgs Constructor Initializes a new instance of the
InternetServer.WriteEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.WriteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteEventArgs Members

Initializes a new instance of the InternetServer.WriteEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.WriteEventArgs();

See Also
InternetServer.WriteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteEventArgs Constructor

The properties of the InternetServer.WriteEventArgs class are listed below. For a complete list of
InternetServer.WriteEventArgs class members, see the InternetServer.WriteEventArgs Members topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

See Also
InternetServer.WriteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteEventArgs Properties

Gets a value that specifies the socket handle for the client session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the client socket handle.

Remarks
The Handle property returns the socket handle for the client that generated the event. This handle can be
used in conjunction with methods such as Read and Write to exchange data with the client.

See Also
InternetServer.WriteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteEventArgs.Handle Property

Represents the method that will handle the OnAccept event.

[Visual Basic]
Public Delegate Sub InternetServer.OnAcceptEventHandler(_
 ByVal sender As Object, _
 ByVal e As AcceptEventArgs _
)

[C#]
public delegate void InternetServer.OnAcceptEventHandler(

 object sender,
 AcceptEventArgs e
);

Parameters
sender

The source of the event.

e
An AcceptEventArgs that contains the event data.

Remarks
When you create an OnAcceptEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnAcceptEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnAcceptEventHandler Delegate

Represents the method that will handle the OnCancel event.

[Visual Basic]
Public Delegate Sub InternetServer.OnCancelEventHandler(_
 ByVal sender As Object, _
 ByVal e As CancelEventArgs _
)

[C#]
public delegate void InternetServer.OnCancelEventHandler(

 object sender,
 CancelEventArgs e
);

Parameters
sender

The source of the event.

e
An CancelEventArgs that contains the event data.

Remarks
When you create an OnCancelEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnCancelEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnCancelEventHandler Delegate

Represents the method that will handle the OnConnect event.

[Visual Basic]
Public Delegate Sub InternetServer.OnConnectEventHandler(_
 ByVal sender As Object, _
 ByVal e As ConnectEventArgs _
)

[C#]
public delegate void InternetServer.OnConnectEventHandler(

 object sender,
 ConnectEventArgs e
);

Parameters
sender

The source of the event.

e
An ConnectEventArgs that contains the event data.

Remarks
When you create an OnConnectEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnConnectEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnConnectEventHandler Delegate

Represents the method that will handle the OnDisconnect event.

[Visual Basic]
Public Delegate Sub InternetServer.OnDisconnectEventHandler(_
 ByVal sender As Object, _
 ByVal e As DisconnectEventArgs _
)

[C#]
public delegate void InternetServer.OnDisconnectEventHandler(

 object sender,
 DisconnectEventArgs e
);

Parameters
sender

The source of the event.

e
An DisconnectEventArgs that contains the event data.

Remarks
When you create an OnDisconnectEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnDisconnectEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnDisconnectEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub InternetServer.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void InternetServer.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnErrorEventHandler Delegate

Represents the method that will handle the OnRead event.

[Visual Basic]
Public Delegate Sub InternetServer.OnReadEventHandler(_
 ByVal sender As Object, _
 ByVal e As ReadEventArgs _
)

[C#]
public delegate void InternetServer.OnReadEventHandler(

 object sender,
 ReadEventArgs e
);

Parameters
sender

The source of the event.

e
An ReadEventArgs that contains the event data.

Remarks
When you create an OnReadEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnReadEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnReadEventHandler Delegate

Represents the method that will handle the OnTimeout event.

[Visual Basic]
Public Delegate Sub InternetServer.OnTimeoutEventHandler(_
 ByVal sender As Object, _
 ByVal e As TimeoutEventArgs _
)

[C#]
public delegate void InternetServer.OnTimeoutEventHandler(

 object sender,
 TimeoutEventArgs e
);

Parameters
sender

The source of the event.

e
An TimeoutEventArgs that contains the event data.

Remarks
When you create an OnTimeoutEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnTimeoutEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnTimeoutEventHandler Delegate

Represents the method that will handle the OnWrite event.

[Visual Basic]
Public Delegate Sub InternetServer.OnWriteEventHandler(_
 ByVal sender As Object, _
 ByVal e As WriteEventArgs _
)

[C#]
public delegate void InternetServer.OnWriteEventHandler(

 object sender,
 WriteEventArgs e
);

Parameters
sender

The source of the event.

e
An WriteEventArgs that contains the event data.

Remarks
When you create an OnWriteEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnWriteEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnWriteEventHandler Delegate

Specifies the error codes returned by the InternetServer class.

[Visual Basic]
Public Enum InternetServer.ErrorCode

[C#]
public enum InternetServer.ErrorCode

Remarks
The InternetServer class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

InternetServer.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the security protocols that the InternetServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetServer.SecurityProtocols

[C#]
[Flags]
public enum InternetServer.SecurityProtocols

Remarks
The InternetServer class uses the SecurityProtocols enumeration to specify one or more security
protocols to be used when establishing a connection with a remote host. Multiple protocols may be
specified if necessary and the actual protocol used will be negotiated with the remote host. It is
recommended that most applications use protocolDefault when starting a secure server.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

InternetServer.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolDefault The default selection of security
protocols will be used when establishing
a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

16

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the options that the InternetServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetServer.ServerOptions

[C#]
[Flags]
public enum InternetServer.ServerOptions

Remarks
The InternetServer class uses the ServerOptions enumeration to specify one or more options to be used
when establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionDontRoute This option specifies default routing
should not be used. This option should
not be specified unless absolutely
necessary.

2

optionKeepAlive This option specifies that packets are to
be sent to the remote system when no
data is being exchanged to keep the
connection active. This option is only
valid for stream sockets.

4

optionReuseAddress This option specifies the local address
can be reused. This option is commonly
used by server applications.

8

optionNoDelay This option disables the Nagle
algorithm, which buffers
unacknowledged data and insures that
a full-size packet can be sent to the
remote host.

16

optionSecure This option specifies that a secure,
encrypted connection will be
established with the remote host.

4096

optionSecureFallback This option specifies the server should
permit the use of less secure cipher
suites for compatibility with legacy
clients. If this option is specified, the
server will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

32768

InternetServer.ServerOptions Enumeration

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the priorities that the InternetServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetServer.ServerPriority

[C#]
[Flags]
public enum InternetServer.ServerPriority

Members

Member Name Description Value

priorityBackground This priority significantly reduces the
memory, processor and network
resource utilization for the server. It is
typically used with lightweight services
running in the background that are
designed for few client connections.
Each client thread will be assigned a
lower scheduling priority and will be
frequently forced to yield execution to
other threads.

0

priorityLow This priority lowers the overall resource
utilization for the client session and
meters the processor utilization for the
client session. Each client thread will be
assigned a lower scheduling priority and
will occasionally be forced to yield
execution to other threads.

1

priorityNormal The default priority which balances
resource and processor utilization. It is
recommended that most applications
use this priority.

2

priorityHigh This priority increases the overall
resource utilization for each client
session and their threads will be given
higher scheduling priority. It is not
recommended that this priority be used
on a system with a single processor.

3

priorityCritical This priority can significantly increase
processor, memory and network
utilization. Each client thread will be
given higher scheduling priority and will
be more responsive to network events.
It is not recommended that this priority
be used on a system with a single

4

InternetServer.ServerPriority Enumeration

processor.

priorityInvalid An invalid transfer priority which
indicates an error condition.

-1

priorityDefault The default server priority. This is the
same as specifying priorityNormal.

2

priorityLowest The lowest valid server priority. This is
the same as specifying
priorityBackground.

0

priorityHighest The highest valid server priority. This is
the same as specifying priorityCritical.

4

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the status values that may be returned by the InternetServer class.

[Visual Basic]
Public Enum InternetServer.ServerStatus

[C#]
public enum InternetServer.ServerStatus

Remarks
The InternetServer class uses the ServerStatus enumeration to identify the current status of the server.

Members

Member Name Description

serverInactive The server is currently inactive. This status is
returned when no server has been started, or after
a server has been stopped.

serverStarted The server has initialized and is preparing to listen
for client connections. This status is returned after
the server thread has been started, but before the
listening socket has been created.

serverListening The server is actively listening for incoming client
connections. This status is returned after the server
thread has been started and the listening socket
has been created.

serverSuspended The server has been suspended and is no longer
accepting client connections. Any incoming client
connection is queued, and will be accepted when
the server resumes normal operation.

serverShutdown The server has been stopped and is in the process
of terminating all active client sessions.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ServerStatus Enumeration

Specifies the logging options that the InternetServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetServer.TraceOptions

[C#]
[Flags]
public enum InternetServer.TraceOptions

Remarks
The InternetServer class uses the TraceOptions enumeration to specify what kind of debugging
information is written to the trace logfile. These options are only meaningful when trace logging is
enabled by setting the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

InternetServer.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see InternetServer.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.InternetServer.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class InternetServer.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class InternetServer.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key can be generated using the License Manager utility that is included with the
product. Note that if you have installed an evaluation license, you will not have a runtime license key and
cannot redistribute any applications which use the InternetServer class.

Example

<Assembly: SocketTools.InternetServer.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.InternetServer.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.RuntimeLicenseAttribute Class

InternetServer.RuntimeLicenseAttribute overview

Public Instance Constructors

 InternetServer.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public InternetServer.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key can be generated using the License Manager utility that is included with the
product. Note that if you have installed an evaluation license, you will not have a runtime license key and
cannot redistribute any applications which use the InternetServer class.

See Also
InternetServer.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.RuntimeLicenseAttribute Constructor

The properties of the InternetServer.RuntimeLicenseAttribute class are listed below. For a complete list
of InternetServer.RuntimeLicenseAttribute class members, see the
InternetServer.RuntimeLicenseAttribute Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
InternetServer.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
InternetServer.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a socket error occurs.

For a list of all members of this type, see InternetServerException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.InternetServerException

[Visual Basic]
Public Class InternetServerException
 Inherits ApplicationException

[C#]
public class InternetServerException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A InternetServerException is thrown by the InternetServer class when an error occurs.

The default constructor for the InternetServerException class sets the ErrorCode property to the last
socket error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServerException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServerException Class

InternetServerException overview

Public Instance Constructors

 InternetServerException Overloaded. Initializes a new instance of the
InternetServerException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

Handle Gets a value which specifies the socket handle that
generated the error.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

InternetServerException Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServerException.Handle.html

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the InternetServerException class with the last network error code.

Overload List
Initializes a new instance of the InternetServerException class with the last network error code.

public InternetServerException();

Initializes a new instance of the InternetServerException class with the last network error code for the
specified socket.

public InternetServerException(int);

Initializes a new instance of the InternetServerException class with a specified error number.

public InternetServerException(int,int);

Initializes a new instance of the InternetServerException class with a specified error message.

public InternetServerException(int,string);

Initializes a new instance of the InternetServerException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

public InternetServerException(int,string,Exception);

See Also
InternetServerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServerException Constructor

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServerExceptionConstructor5.html

Initializes a new instance of the InternetServerException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public InternetServerException();

Remarks
The ctor constructor sets the ErrorCode property to the last socket error that occurred. For more
information about the errors that may occur, refer to the InternetServer.ErrorCode enumeration.

See Also
InternetServerException Class | SocketTools Namespace | InternetServerException Constructor Overload
List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServerException Constructor ()

Initializes a new instance of the InternetServerException class with the last network error code for the
specified socket.

[Visual Basic]
Overloads Public Sub New(_
 ByVal handle As Integer _
)

[C#]
public InternetServerException(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the socket which generated the error.

Remarks
The ctor constructor sets the ErrorCode property to the last socket error that occurred. For more
information about the errors that may occur, refer to the InternetServer.ErrorCode enumeration.

See Also
InternetServerException Class | SocketTools Namespace | InternetServerException Constructor Overload
List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServerException Constructor (Int32)

Initializes a new instance of the InternetServerException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal handle As Integer, _
 ByVal message As String _
)

[C#]
public InternetServerException(
 int handle,
 string message
);

Parameters
handle

An integer value which specifies the handle to the socket which generated the error.

message
The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
InternetServerException Class | SocketTools Namespace | InternetServerException Constructor Overload
List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServerException Constructor (Int32, String)

Initializes a new instance of the InternetServerException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal handle As Integer, _
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public InternetServerException(
 int handle,
 string message,
 Exception innerException
);

Parameters
handle

An integer value which specifies the handle to the socket which generated the error.

message
The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
InternetServerException Class | SocketTools Namespace | InternetServerException Constructor Overload
List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServerException Constructor (Int32, String, Exception)

The properties of the InternetServerException class are listed below. For a complete list of
InternetServerException class members, see the InternetServerException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

Handle Gets a value which specifies the socket handle that
generated the error.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
InternetServerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServerException Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.InternetServerException.Handle.html

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public InternetServer.ErrorCode ErrorCode {get;}

Property Value
Returns a InternetServer.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the InternetServerException class sets the error code to the last network error
that occurred. For more information about the errors that may occur, refer to the
InternetServer.ErrorCode enumeration.

See Also
InternetServerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServerException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
InternetServerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServerException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value may be the same as values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
InternetServerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServerException.Number Property

The methods of the InternetServerException class are listed below. For a complete list of
InternetServerException class members, see the InternetServerException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServerException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
InternetServerException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServerException.ToString Method

Implements the Multipurpose Internet Mail Extensions standard.

For a list of all members of this type, see MailMessage Members.

System.Object
 SocketTools.MailMessage

[Visual Basic]
Public Class MailMessage
 Implements IDisposable

[C#]
public class MailMessage : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The MailMessage class provides an interface for composing and processing email messages and
newsgroup articles which are structured according to the Multipurpose Internet Mail Extensions (MIME)
standard. Using this class, an application can easily create complex messages which include multiple
alternative content types, such as plain text and styled HTML text, file attachments and customized
headers.

It is not required that the developer understand the complex MIME standard; a single method can be
used to create multipart message, complete with a styled HTML text body and support for international
character sets. The MailMessage class can be easily integrated with the other mail related protocol classes,
making it extremely easy to create and process MIME formatted messages.

Requirements
Namespace: SocketTools

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

See Also
MailMessage Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage Class

MailMessage overview

Public Instance Constructors

 MailMessage Constructor Initializes a new instance of the MailMessage class.

Public Instance Fields

Recipient Gets the recipients specified in the current
message.

Public Instance Properties

AllHeaders Gets a value which returns a list of all message
recipients.

AllRecipients Gets a value which returns a list of all message
recipients.

Attachment Gets and sets the name of the current file
attachment.

Bcc Gets and sets the blind carbon-copy header field
value.

Boundary Gets the boundary string used to separate parts in
a multipart message.

Cc Gets and sets the carbon-copy header field value.

ContentId Gets the content identifier for the current message
part.

ContentLength Gets the size of the data stored in the current
message part.

ContentType Gets and sets the content type of the selected
message part.

Date Gets and sets the date for the current message.

Encoding Gets and sets the content encoding method used
for the current message part.

From Gets and sets the address of the user who sent the
message.

Handle Gets a value that specifies the client handle
allocated for the current message.

HeaderField Gets and sets the current header field name.

HeaderValue Gets and sets the value of the current header field.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

MailMessage Members

LastErrorString Gets a value which describes the last error that has
occurred.

Localize Gets and sets a value which specifies if date and
time values should be localized.

Mailer Gets and sets the name of the mailer application.

Message Gets and sets the current message headers and
body.

MessageID Gets the current message identifier.

MimeVersion Gets and sets the MIME version number for the
current message.

Options Gets and sets a value which specifies one or more
message export options.

Organization Gets and sets the name of the organization that
originated the message.

Part Gets and sets the current message part.

PartCount Gets the number of parts in the current message.

Priority Gets and sets the current message priority.

Recipients Gets the number of recipients specified in the
current message.

ReplyTo Gets and sets the address of the user who should
receive replies to this message.

Sender Gets and sets the address of the user who
originated the message.

StoreCount Gets the number of messages in the current
storage file, not including deleted messages.

StoreFile Gets and sets the name of the file used to store
messages.

StoreIndex Gets and sets the current message index for the
current storage file.

StoreSize Gets the total number of messages in the current
storage file, including deleted messages.

Subject Gets and sets the subject of the current message.

Text Gets and sets the text body of the current
message part.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

TimeZone Gets and sets the current timezone offset in
seconds.

To Gets and sets the address of the message
recipient.

Version Gets a value which returns the current version of
the MailMessage class library.

Public Instance Methods

AddHeaders Add one or more headers to the current message.

AppendMessage Append text to the body of the current message
part.

AttachData Overloaded. Attach the contents of a byte array to
the current message.

AttachFile Overloaded. Attach the specified file to the current
message.

AttachImage Overloaded. Attach an inline image to the current
message.

AttachThread Obsolete. Attach an instance of the class to the
current thread.

ClearMessage Clear the header and body of the current
message.

CloseStore Close the current message storage file.

ComposeMessage Overloaded. Compose a new mail message.

CreatePart Overloaded. Create a new message part in a
multipart message.

DecodeText Overloaded. Decode a string which was previously
encoded using base64 or quoted-printable
encoding.

DeleteHeader Overloaded. Delete a header field from the
specified message part.

DeleteMessage Overloaded. Remove the specified message from
the current message store.

DeletePart Delete the specified message part from the current
message.

Dispose Overloaded. Releases all resources used by
MailMessage.

EncodeText Overloaded. Encodes a string using base64 or
quoted-printable encoding.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

ExportMessage Overloaded. Export the current message to a file
on the local system.

ExtractAllFiles Overloaded. Extract all file attachments from the
current message.

ExtractFile Overloaded. Extract the contents of a file
attachment and store it on the local system.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.MailMessage.AttachImage_overloads.html

FindAttachment Search for a specific file attachment in the current
message.

FindMessage Overloaded. Search for a message in the current
message store.

GetFirstHeader Return the first header in the current message
part.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeader Overloaded. Return the value of a header field in
the specified message part.

GetNextHeader Return the next header in the current message
part.

GetType (inherited from Object) Gets the Type of the current instance.

ImportMessage Replace the current message with the contents of
a file.

Initialize Overloaded. Initialize an instance of the
MailMessage class.

OpenStore Overloaded. Open the specified message storage
file.

ParseAddress Overloaded. Parse an Internet email address.

ParseMessage Parse the specified string, adding the contents to
the current message.

PurgeStore Purge all deleted messages from the current
message store.

ReadStore Overloaded. Retrieve a message from the
message store, replacing the current message.

ReplaceMessage Overloaded. Replace the specified message in the
current message store.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SetHeader Overloaded. Set the value for a header in the
specified message part.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

WriteStore Store the current message in the message store.

Public Instance Events

OnError Occurs when an client operation fails.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the MailMessage class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the current message.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the MailMessage class.

[Visual Basic]
Public Sub New()

[C#]
public MailMessage();

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage Constructor

The properties of the MailMessage class are listed below. For a complete list of MailMessage class
members, see the MailMessage Members topic.

Public Instance Properties

AllHeaders Gets a value which returns a list of all message
recipients.

AllRecipients Gets a value which returns a list of all message
recipients.

Attachment Gets and sets the name of the current file
attachment.

Bcc Gets and sets the blind carbon-copy header field
value.

Boundary Gets the boundary string used to separate parts in
a multipart message.

Cc Gets and sets the carbon-copy header field value.

ContentId Gets the content identifier for the current message
part.

ContentLength Gets the size of the data stored in the current
message part.

ContentType Gets and sets the content type of the selected
message part.

Date Gets and sets the date for the current message.

Encoding Gets and sets the content encoding method used
for the current message part.

From Gets and sets the address of the user who sent the
message.

Handle Gets a value that specifies the client handle
allocated for the current message.

HeaderField Gets and sets the current header field name.

HeaderValue Gets and sets the value of the current header field.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

Localize Gets and sets a value which specifies if date and
time values should be localized.

Mailer Gets and sets the name of the mailer application.

MailMessage Properties

Message Gets and sets the current message headers and
body.

MessageID Gets the current message identifier.

MimeVersion Gets and sets the MIME version number for the
current message.

Options Gets and sets a value which specifies one or more
message export options.

Organization Gets and sets the name of the organization that
originated the message.

Part Gets and sets the current message part.

PartCount Gets the number of parts in the current message.

Priority Gets and sets the current message priority.

Recipients Gets the number of recipients specified in the
current message.

ReplyTo Gets and sets the address of the user who should
receive replies to this message.

Sender Gets and sets the address of the user who
originated the message.

StoreCount Gets the number of messages in the current
storage file, not including deleted messages.

StoreFile Gets and sets the name of the file used to store
messages.

StoreIndex Gets and sets the current message index for the
current storage file.

StoreSize Gets the total number of messages in the current
storage file, including deleted messages.

Subject Gets and sets the subject of the current message.

Text Gets and sets the text body of the current
message part.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

TimeZone Gets and sets the current timezone offset in
seconds.

To Gets and sets the address of the message
recipient.

Version Gets a value which returns the current version of
the MailMessage class library.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets a value which returns a list of all message recipients.

[Visual Basic]
Public ReadOnly Property AllHeaders As String

[C#]
public string AllHeaders {get;}

Property Value
A string which contains the complete RFC822 headers for the message.

Remarks
The AllHeaders property will return all of the RFC 822 header values in a string. This includes the message
headers that are most commonly referred to, such as the To, From and Subject headers. Each header and
its value are separated by a colon, and terminated with a carriage return and linefeed (CRLF) pair.

The headers and their values returned by this property will not be identical to the header block in the
original message. If a header value is split across multiple lines, the text returned by this property will be
folded, with the complete header value on a single line of text and removing any extraneous whitespace. If
the header value has been encoded by the mail client, this property will return the decoded value, not the
original encoded value.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AllHeaders Property

Gets a value which returns a list of all message recipients.

[Visual Basic]
Public ReadOnly Property AllRecipients As String

[C#]
public string AllRecipients {get;}

Property Value
A string which contains a comma-separated list of all message recipients.

Remarks
The AllRecipients property returns a string value that contains a comma-separated list of all message
recipients. To individually enumerate through each of the recipient addresses, you can use the Recipient
property array and Recipients property.

Note that this property value will include those addresses specified by the Bcc property, even though they
are not included in the message header.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AllRecipients Property

Gets and sets the name of the current file attachment.

[Visual Basic]
Public ReadOnly Property Attachment As String

[C#]
public string Attachment {get;}

Property Value
A string which specifies the name of an attached file.

Remarks
The Attachment property specifies the name of the file attachment in a multipart message. When a new
part is selected that contains an attached file, the Attachment property is updated to reflect the attached
file's name.

This property is used by the attach and extract actions to specify the local file name that will be used.
Changing its value does not change the attached file name in the multipart message itself.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Attachment Property

Gets and sets the blind carbon-copy header field value.

[Visual Basic]
Public Property Bcc As String

[C#]
public string Bcc {get; set;}

Property Value
A string which specifies one or more blind carbon-copy recipients.

Remarks
The Bcc property returns the list of addresses that are to receive blind carbon copies of the message.
Setting the property creates or modifies the Bcc header field. Multiple addresses can be specified by
separating them with commas.

A blind carbon copy is when a copy of a message is delivered to a recipient, but that recipient is not listed
in the message headers. Because the other recipients of that same message will not see the address in the
headers, they will not know it was delivered to that person. As a result, the Bcc header field is not normally
exported when the ExportMessage method is called, or when the contents of the message are
referenced using the Message property. To include the Bcc header in the message, use the
exportAllHeaders option. Of course, if this option is specified, the addresses in the Bcc list will no longer
be blind to the other recipients.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Bcc Property

Gets the boundary string used to separate parts in a multipart message.

[Visual Basic]
Public ReadOnly Property Boundary As String

[C#]
public string Boundary {get;}

Property Value
A string which specifies the current boundary in a multipart message.

Remarks
The Boundary property returns the current boundary string being used in a multipart message. When the
class is used to create a multipart message, a unique boundary string is created and the Boundary
property is updated to reflect it's value.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Boundary Property

Gets and sets the carbon-copy header field value.

[Visual Basic]
Public Property Cc As String

[C#]
public string Cc {get; set;}

Property Value
A string which specifies one or more carbon-copy recipients.

Remarks
The Cc property returns the list of addresses that were delivered carbon copies of the message. Setting
the property creates or modifies the Cc header field. Multiple addresses can be specified by separating
them with commas.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Cc Property

Gets the content identifier for the current message part.

[Visual Basic]
Public ReadOnly Property ContentId As String

[C#]
public string ContentId {get;}

Property Value
A string which specifies the content identifier.

Remarks
The ContentId property returns the unique content identifier string for the current message part. This
multipart header field is not commonly used, and if undefined, will return an empty string.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ContentId Property

Gets the size of the data stored in the current message part.

[Visual Basic]
Public ReadOnly Property ContentLength As Integer

[C#]
public int ContentLength {get;}

Property Value
An integer which specifies the size of the current message part in bytes.

Remarks
The ContentLength property returns the size of the data stored in the selected message part. This
property is read-only, and is updated when the current message part changes.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ContentLength Property

Gets and sets the content type of the selected message part.

[Visual Basic]
Public Property ContentType As String

[C#]
public string ContentType {get; set;}

Property Value
A string which specifies the content type.

Remarks
The ContentType property returns the MIME type for the currently selected message part. The type string
consists of a primary type and secondary sub-type separated by a slash, followed by one or more optional
parameters delimited by semi-colons. For example, this is a common content type for text messages:

text/plain; charset=utf-8

The text designation indicates that this message part contains readable text, and the plain sub-type
indicates that the text does not contain any special encoding. The optional parameter which follows the
content type provides additional information about the content. In this example, it specifies which
character set should be used to display the text. The two common character sets used are UTF-8 and US-
ASCII.

There are seven predefined, standard content types, each with their own sub-types. The following table
lists these types, along with some common sub-types that are found in messages:

Type Description

text Indicates that the message part contains text. This
is the most common type found in mail messages;
if no content type is explicitly defined, then it is
assumed to be plain text. Examples are text/plain,
text/richtext and text/html.

image Indicates that the message part contains a
graphics image. Examples are image/gif and
image/jpeg.

audio Indicates that the message part contains audio
data; the basic sub-type is 8-bit PCM encoded
audio (commonly found with the .au filename
extension). Examples are audio/basic, audio/aiff
and audio/wav.

video Indicates that the message part contains a video
clip in the specified format. Examples are
video/mpeg and video/avi.

application Indicates that the message part contains
application specific data, typically used with the
octet-stream sub-type to indicate binary file
attachments for executable programs, compressed

MailMessage.ContentType Property

file archives, etc. Examples are application/octet-
stream and application/postscript.

message Indicates that the message part contains a
complete RFC 822 compliant message, complete
with headers. An example is message/rfc822.

multipart Indicates that this is part of a mixed message (a
message that contains multiple parts of different
content types). Examples are multipart/alternative
and multipart/mixed.

The three most common content types that are used in applications are text/plain for the mail message
body, application/octet-stream for binary file attachments and multipart/mixed for messages that contain
both text and attached files. For more information about the different content types, refer to the
Multipurpose Internet Mail Extensions (MIME) standards document RFC 1521.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets the date for the current message.

[Visual Basic]
Public Property Date As String

[C#]
public string Date {get; set;}

Property Value
A string which specifies the date in RFC 822 format.

Remarks
The Date property returns the value of the date field in the current message header. Setting this property
causes the date field to be updated with the specified value. When setting the date, any one of the
following formats may be used:

Format Example

mm/dd/yy[yy] hh:mm[:ss] 03/01/2006 12:00:00

yy[yy]/mm/dd hh:mm[:ss] 2006/03/01 12:00:00

dd mmm yy[yy] hh:mm[:ss] 01 Mar 2006 12:00:00

mmm dd yy[yy] hh:mm[:ss] Mar 01 2006 12:00:00

Any extraneous information that may be included in the date string, such as the day of the week, is
ignored. In addition to the date and time, the string may also include a time zone specification at the end.
If no time zone is specified, the current time zone is used.

When specifying a time zone, the value should either be prefixed by a plus sign (+) to indicate that the
time zone is to the east of GMT, or a minus sign (-) to indicates that it's to the west. Four digits follow, with
the first two indicating the number of hours east or west of GMT, and the last two digits indicating the
number of minutes. Therefore, a value of -0800 means that the time zone is eight hours to the west of
GMT, or in other words, the Pacific time zone.

Regardless of the format of the string assigned to the property, it always returns the date in the same
format (which conforms to the RFC 822 specification). Using the above examples, the date would be
returned as "Wed, 01 Mar 2006 12:00:00 -0800" if you are located in the Pacific timezone.

The Localize property affects how dates are processed by the control. If enabled, dates are automatically
adjusted for the local time zone. By default, localization is disabled.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Date Property

Gets and sets the content encoding method used for the current message part.

[Visual Basic]
Public Property Encoding As String

[C#]
public string Encoding {get; set;}

Property Value
A string which specifies the encoding type.

Remarks
The Encoding property returns the method used for encoding the current message part. Setting this
property causes the Content-Transfer-Encoding header value to be updated. The following values are
commonly used:

Type Description

7bit Printable ASCII text characters that only use 7-bit
characters This may be used for backwards
compatibility with older mail servers that do not
support 8-bit message text.

8bit Printable ANSI characters, including those
characters with the high-bit set. This includes UTF-
8 and the ISO Latin-1 character set.

binary All characters; binary transfer encoding is rarely
used.

quoted-printable Printable ASCII characters, with non-printable or
extended characters represented using their
hexadecimal equivalents.

base64 The transfer encoding type commonly used to
convert binary data into 7-bit ASCII characters so
that it may be transported safely through the mail
system.

x-uuencode A transfer encoding type similar in function to the
base64 encoding method.

Note that setting this property only updates the Content-Transfer-Encoding header value. To control the
actual encoding method used for attachments, specify the encoding method when calling the AttachFile
method.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Encoding Property

Gets and sets the address of the user who sent the message.

[Visual Basic]
Public Property From As String

[C#]
public string From {get; set;}

Property Value
A string which specifies the sender of the message.

Remarks
The From property returns the address of the user who sent the message. Setting the property causes the
From header field to be updated with the new value.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.From Property

Gets a value that specifies the client handle allocated for the current message.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no current message, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current message.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Handle Property

Gets and sets the current header field name.

[Visual Basic]
Public Property HeaderField As String

[C#]
public string HeaderField {get; set;}

Property Value
A string which specifies the current header field.

Remarks
The HeaderField property returns the name of the current header field. Setting this property causes the
control to determine if that header field exists, and if it does, to update the HeaderValue property with it's
value. This property can be used to obtain the value of any header in the current message part, and in
conjunction with the HeaderValue property, can be used to create new headers.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.HeaderField Property

Gets and sets the value of the current header field.

[Visual Basic]
Public Property HeaderValue As String

[C#]
public string HeaderValue {get; set;}

Property Value
A string which specifies the value of the current header field.

Remarks
The HeaderValue property returns the value of the header specified by the HeaderField property.
Setting this property updates the specified header value. If the HeaderField property refers to a header
field that does not exist, then it is created in the current message part.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.HeaderValue Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required libraries or not
being able to access the system registry.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.IsInitialized Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public MailMessage.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.LastErrorString Property

Gets and sets a value which specifies if date and time values should be localized.

[Visual Basic]
Public Property Localize As Boolean

[C#]
public bool Localize {get; set;}

Property Value
A boolean value which specifies if date and time values should be localized.

Remarks
The Localize property is used to enable or disable localization features of the class. Currently this only
affects the way in which dates are processed by the class. If set to true, the control will adjust for the local
time zone when setting and reading the Date property. The default value for this property is false.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Localize Property

Gets and sets the name of the mailer application.

[Visual Basic]
Public Property Mailer As String

[C#]
public string Mailer {get; set;}

Property Value
A string which specifies the name of the mailer application.

Remarks
The Mailer property returns the value of the X-Mailer field in the current message header. Setting this
property causes the field to be updated with the specified value. This is typically used to identify the
program which generated the message.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Mailer Property

Gets and sets the current message headers and body.

[Visual Basic]
Public Property Message As String

[C#]
public string Message {get; set;}

Property Value
A string which contains the complete message.

Remarks
The Message property returns the current message, including the headers and all message parts, as a
string. Setting this property will cause the current message to be cleared and replaced by the new value.
The contents must follow the standard specifications for a message. If the property is set to an empty
string, the current message is cleared.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Message Property

Gets the current message identifier.

[Visual Basic]
Public Property MessageID As String

[C#]
public string MessageID {get; set;}

Property Value
A string which specifies the message identifier.

Remarks
The MessageID property returns a unique string that can be used to identify the message.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.MessageID Property

Gets and sets the MIME version number for the current message.

[Visual Basic]
Public Property MimeVersion As String

[C#]
public string MimeVersion {get; set;}

Property Value
A string that specifies the version number.

Remarks
The MimeVersion property returns the version number for the current message. Setting this property
causes the MIME-Version header value to be changed to the specified value. An empty string causes the
MIME version number to be set to the default value of "1.0". It is recommended that you do not change
the value of this property.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.MimeVersion Property

Gets and sets a value which specifies one or more message export options.

[Visual Basic]
Public Property Options As MimeExportOptions

[C#]
public MailMessage.MimeExportOptions Options {get; set;}

Property Value
Returns one or more MimeExportOptions enumeration flags which specify the options for the exporting
the contents of a message. The default value for this property is exportDefault.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Options Property

Gets and sets the name of the organization that originated the message.

[Visual Basic]
Public Property Organization As String

[C#]
public string Organization {get; set;}

Property Value
A string which specifies the organization name.

Remarks
The Organization property returns the name of the organization that originated the current message.
Setting this property updates the specified header value. Note that many mail clients do not generate an
Organization header field, in which case the property value will be an empty string.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Organization Property

Gets and sets the current message part.

[Visual Basic]
Public Property Part As Integer

[C#]
public int Part {get; set;}

Property Value
An integer which specifies the current message part.

Remarks
The Part property returns the current message part index. All messages have at least one part, which
consists of one or more header fields, followed by the body of the message. The default part, part 0,
refers to the main message header and body. If the message contains multiple parts (as with a message
that contains one or more attached files), the Part property can be set to refer to that specific part of the
message.

For example, messages with file attachments typically consist of a message part which describes the
contents of the attachment, followed by the attachment itself. For a message with one attached file, there
would be a total of three parts. Part 0 would refer to the main message part, which contains the headers
such as From, To, Subject, Date and so on. For multipart messages, part 0 typically does not have a
message body, since any text is usually created as a separate part (for those messages that do not contain
multiple parts, the part 0 body contains the text message). Part 1 would contain the text describing the
attachment, and part 2 would contain the attachment itself. If the attached file is binary, then the transfer
encoding type would usually be base64.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Part Property

Gets the number of parts in the current message.

[Visual Basic]
Public ReadOnly Property PartCount As Integer

[C#]
public int PartCount {get;}

Property Value
An integer value which specifies the number of message parts.

Remarks
The PartCount property returns the number of parts in the current message. All messages have at least
one part, referenced as part 0. Multipart messages will consist of additional parts which may be accessed
by setting the Part property.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.PartCount Property

Gets and sets the current message priority.

[Visual Basic]
Public Property Priority As String

[C#]
public string Priority {get; set;}

Property Value
A string which specifies the message priority.

Remarks
The Priority property returns the current priority for the message. Setting this property value causes the
X-Priority header to be updated with the specified value.

There is no standard for specifying message priority. The convention is to use a number from 1-5, with 1
indicating the highest priority, 3 as normal priority and 5 as the lowest priority. Some mailers follow the
number with a space and then text that describes the priority level.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Priority Property

Gets the recipients specified in the current message.

[Visual Basic]
Public ReadOnly Recipient As RecipientArray

[C#]
public readonly RecipientArray Recipient;

Remarks
The Recipient array is used to enumerate the recipient addresses that have been specified in the current
message. This includes all of the addresses listed in the To, Cc and Bcc header fields. Only the address
itself will be returned, not any comments or extraneous text such as the full name of the recipient. This
array is zero based, meaning that the first index value is zero. The total number of recipients specified in
the message can be determined by checking the value of the Recipients property.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Recipient Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.MailMessage.RecipientArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.MailMessage.RecipientArray.html

Gets the number of recipients specified in the current message.

[Visual Basic]
Public ReadOnly Property Recipients As Integer

[C#]
public int Recipients {get;}

Property Value
An integer which specifies the number of recipients.

Remarks
The Recipients property returns the number of recipient addresses that have been specified in the
current message. This includes all of the addresses listed in the To, Cc and Bcc header fields. This property
can be used in conjunction with the Recipient array to enumerate all of the recipient addresses in the
message.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Recipients Property

Gets and sets the address of the user who should receive replies to this message.

[Visual Basic]
Public Property ReplyTo As String

[C#]
public string ReplyTo {get; set;}

Property Value
A string that specifies an email address.

Remarks
The ReplyTo property returns the address of the user who should receive replies to the current message.
Setting this property updates the Reply-To header with the specified value.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ReplyTo Property

Gets and sets the address of the user who originated the message.

[Visual Basic]
Public Property Sender As String

[C#]
public string Sender {get; set;}

Property Value
A string which specifies the sender's email address.

Remarks
The Sender property returns the address of the user who originated the message. Setting this property
updates the X-Sender header with the specified value.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Sender Property

Gets the number of messages in the current storage file, not including deleted messages.

[Visual Basic]
Public ReadOnly Property StoreCount As Integer

[C#]
public int StoreCount {get;}

Property Value
An integer value which specifies the number of messages in the message store, not including those
messages that have been marked for deletion.

Remarks
The StoreCount property returns the number of messages in the message store. It is important to note
that does not count those messages which have been marked for deletion. This means that the value
returned by this method will decrease as messages are deleted. To determine the total number of
messages, including deleted messages, use the StoreSize property.

See Also
MailMessage Class | SocketTools Namespace | StoreIndex Property | StoreSize Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.StoreCount Property

Gets and sets the name of the file used to store messages.

[Visual Basic]
Public Property StoreFile As String

[C#]
public string StoreFile {get; set;}

Property Value
A string value which specifies the name of the storage file.

Remarks
The StoreFile property returns the name of the current storage file. Setting this property changes the
default filename that is used when opening a new storage file.

See Also
MailMessage Class | SocketTools Namespace | StoreCount Property | StoreIndex Property | StoreSize
Property | OpenStore Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.StoreFile Property

Gets and sets the current message index for the current storage file.

[Visual Basic]
Public Property StoreIndex As Integer

[C#]
public int StoreIndex {get; set;}

Property Value
An integer value which specifies the current message index into the storage file.

Remarks
The StoreIndex property returns the current message index for the message store. Setting this property
changes the current message index. When no storage file has been opened, this property will return a
value of zero. After a storage file has been opened, it is changed to a value of one, the first message in
the message store. The maximum value for this property is the number of messages in the store, as
returned by the StoreSize property. Attempting to set this property to a value less than one or greater
than the number of messages in the store will result in an exception being thrown.

This property value is updated whenever the ReadStore or ReplaceStore methods are used. When the
WriteStore method is used to store the current message in the message store, this property will be
updated to reflect the message index of the newly added message.

See Also
MailMessage Class | SocketTools Namespace | StoreCount Property | StoreSize Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.StoreIndex Property

Gets the total number of messages in the current storage file, including deleted messages.

[Visual Basic]
Public ReadOnly Property StoreSize As Integer

[C#]
public int StoreSize {get;}

Property Value
An integer value which specifies the total number of messages in the storage file.

Remarks
The StoreSize property returns the total number of messages in the message store, including those
messages that have been deleted. Because the StoreCount property value will decrease as messages are
deleted, it is recommended that you use this property value when iterating through all of the messages in
the message store.

See Also
MailMessage Class | SocketTools Namespace | StoreCount Property | StoreIndex Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.StoreSize Property

Gets and sets the subject of the current message.

[Visual Basic]
Public Property Subject As String

[C#]
public string Subject {get; set;}

Property Value
A string which specifies the subject of the message.

Remarks
The Subject property returns the subject of the current message. Setting this property updates the
Subject header with the specified value. Note that not all messages have subjects, in which case this
property will be set to an empty string.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Subject Property

Gets and sets the text body of the current message part.

[Visual Basic]
Public Property Text As String

[C#]
public string Text {get; set;}

Property Value
A string which contains the body of the current message part.

Remarks
The Text property returns the body of the current message part. Setting this property replaces the body
of the current message part with the new text.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Text Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ThrowError Property

Gets and sets the current timezone offset in seconds.

[Visual Basic]
Public Property TimeZone As Integer

[C#]
public int TimeZone {get; set;}

Property Value
An integer value which specifies the current timezone offset.

Remarks
The TimeZone property returns the current offset from UTC in seconds. Setting the property changes the
current timezone offset to the specified value. The value of this property is initially determined by the date
and time settings on the local system.

The TimeZone property value is used in conjunction with the Localize property to control how message
date and time localization is handled.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.TimeZone Property

Gets and sets the address of the message recipient.

[Visual Basic]
Public Property To As String

[C#]
public string To {get; set;}

Property Value
A string which specifies the recipient of the message.

Remarks
The To property returns the address of the message recipient. Setting this property causes the To header
to be updated with the specified value. Multiple addresses can be specified by separating them with
commas.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.To Property

Gets a value which returns the current version of the MailMessage class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the MailMessage
class library. This value can be used by an application for validation and debugging purposes.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Version Property

The methods of the MailMessage class are listed below. For a complete list of MailMessage class
members, see the MailMessage Members topic.

Public Instance Methods

AddHeaders Add one or more headers to the current message.

AppendMessage Append text to the body of the current message
part.

AttachData Overloaded. Attach the contents of a byte array to
the current message.

AttachFile Overloaded. Attach the specified file to the current
message.

AttachImage Overloaded. Attach an inline image to the current
message.

AttachThread Obsolete. Attach an instance of the class to the
current thread.

ClearMessage Clear the header and body of the current
message.

CloseStore Close the current message storage file.

ComposeMessage Overloaded. Compose a new mail message.

CreatePart Overloaded. Create a new message part in a
multipart message.

DecodeText Overloaded. Decode a string which was previously
encoded using base64 or quoted-printable
encoding.

DeleteHeader Overloaded. Delete a header field from the
specified message part.

DeleteMessage Overloaded. Remove the specified message from
the current message store.

DeletePart Delete the specified message part from the current
message.

Dispose Overloaded. Releases all resources used by
MailMessage.

EncodeText Overloaded. Encodes a string using base64 or
quoted-printable encoding.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

ExportMessage Overloaded. Export the current message to a file
on the local system.

ExtractAllFiles Overloaded. Extract all file attachments from the
current message.

MailMessage Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.MailMessage.AttachImage_overloads.html

ExtractFile Overloaded. Extract the contents of a file
attachment and store it on the local system.

FindAttachment Search for a specific file attachment in the current
message.

FindMessage Overloaded. Search for a message in the current
message store.

GetFirstHeader Return the first header in the current message
part.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeader Overloaded. Return the value of a header field in
the specified message part.

GetNextHeader Return the next header in the current message
part.

GetType (inherited from Object) Gets the Type of the current instance.

ImportMessage Replace the current message with the contents of
a file.

Initialize Overloaded. Initialize an instance of the
MailMessage class.

OpenStore Overloaded. Open the specified message storage
file.

ParseAddress Overloaded. Parse an Internet email address.

ParseMessage Parse the specified string, adding the contents to
the current message.

PurgeStore Purge all deleted messages from the current
message store.

ReadStore Overloaded. Retrieve a message from the
message store, replacing the current message.

ReplaceMessage Overloaded. Replace the specified message in the
current message store.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SetHeader Overloaded. Set the value for a header in the
specified message part.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

WriteStore Store the current message in the message store.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources

allocated by the MailMessage class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the current message.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add one or more headers to the current message.

[Visual Basic]
Public Function AddHeaders(_
 ByVal headerList As String _
) As Boolean

[C#]
public bool AddHeaders(
 string headerList
);

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false.

Remarks
The AddHeaders method enables your application to set multiple header values by providing a list of
name/value pairs separated by a colon, with each pair separated with a newline character. This function is
similar to calling the SetHeader method for each value. When the list of header values is parsed,
extraneous whitespace is ignored.

This method will only add or update header vaues in the main header block for the message. It cannot be
used to update header values in a specific section of a multipart message. If you need to add or change a
header value in a specific message part, use the SetHeader method.

See Also
MailMessage Class | SocketTools Namespace | GetHeader Method | SetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AddHeaders Method

Append text to the body of the current message part.

[Visual Basic]
Public Function AppendMessage(_
 ByVal messageText As String _
) As Boolean

[C#]
public bool AppendMessage(
 string messageText
);

Parameters
messageText

A string which specifies the message text to be appended to the current message part.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AppendMessage Method

Attach the contents of a byte array to the current message.

Overload List
Attach the contents of a byte array to the current message.

public bool AttachData(byte[],int);

Attach the contents of a byte array to the current message.

public bool AttachData(byte[],int,string);

Attach the contents of a byte array to the current message.

public bool AttachData(byte[],int,string,string);

Attach the contents of a byte array to the current message.

public bool AttachData(byte[],int,string,string,MimeAttachment);

Attach the contents of a string to the current message.

public bool AttachData(string);

Attach the contents of a string to the current message.

public bool AttachData(string,string);

Attach the contents of a string to the current message.

public bool AttachData(string,string,string);

Attach the contents of a string to the current message.

public bool AttachData(string,string,string,MimeAttachment);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachData Method

Attach the contents of a byte array to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool AttachData(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be attached to the message.

length
An integer value which specifies the maximum number of bytes top copy from the buffer. This value
cannot be larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The contents of the buffer will be attached to the message as inline content.

The buffer will be examined to determine what kind of data it contains. If there is only text characters, then
the content type will be specified as text/plain. If the buffer contains binary data, then the content type will
be specified as application/octet-stream, which is appropriate for any type of data.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachData Method (Byte[], Int32)

Attach the contents of a byte array to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As Byte(), _
 ByVal length As Integer, _
 ByVal contentName As String _
) As Boolean

[C#]
public bool AttachData(
 byte[] buffer,
 int length,
 string contentName
);

Parameters
buffer

A byte array that contains the data to be attached to the message.

length
An integer value which specifies the maximum number of bytes top copy from the buffer. This value
cannot be larger than the size of the buffer specified by the caller.

contentName
An string argument which specifies a name for the data being attached to the message. This typically
is used as a file name by the mail client to store the data in. If this parameter is omitted or passed as
an empty string then no name is defined and the data is attached as inline content. Note that if a file
name is specified with a path, only the base file name will be used.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The buffer will be examined to determine what kind of data it contains. If there is only text characters, then
the content type will be specified as text/plain. If the buffer contains binary data, then the content type will
be specified as application/octet-stream, which is appropriate for any type of data.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachData Method (Byte[], Int32, String)

Attach the contents of a byte array to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As Byte(), _
 ByVal length As Integer, _
 ByVal contentName As String, _
 ByVal contentType As String _
) As Boolean

[C#]
public bool AttachData(
 byte[] buffer,
 int length,
 string contentName,
 string contentType
);

Parameters
buffer

A byte array that contains the data to be attached to the message.

length
An integer value which specifies the maximum number of bytes top copy from the buffer. This value
cannot be larger than the size of the buffer specified by the caller.

contentName
An string argument which specifies a name for the data being attached to the message. This typically
is used as a file name by the mail client to store the data in. Note that if a file name is specified with a
path, only the base file name will be used.

contentType
An string argument which specifies the type of data being attached. The value must be a valid MIME
content type. If the buffer contains only text characters, then the content type will be specified as
text/plain. If the buffer contains binary data, then the content type will be specified as
application/octet-stream, which is appropriate for any type of data.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachData Method (Byte[], Int32, String, String)

Attach the contents of a byte array to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As Byte(), _
 ByVal length As Integer, _
 ByVal contentName As String, _
 ByVal contentType As String, _
 ByVal options As MimeAttachment _
) As Boolean

[C#]
public bool AttachData(
 byte[] buffer,
 int length,
 string contentName,
 string contentType,
 MimeAttachment options
);

Parameters
buffer

A byte array that contains the data to be attached to the message.

length
An integer value which specifies the maximum number of bytes top copy from the buffer. This value
cannot be larger than the size of the buffer specified by the caller.

contentName
An string argument which specifies a name for the data being attached to the message. This typically
is used as a file name by the mail client to store the data in. Note that if a file name is specified with a
path, only the base file name will be used.

contentType
An string argument which specifies the type of data being attached. The value must be a valid MIME
content type. If the buffer contains only text characters, then the content type will be specified as
text/plain. If the buffer contains binary data, then the content type will be specified as
application/octet-stream, which is appropriate for any type of data.

options
A MimeAttachment enumeration which specifies how the data should be attached to the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachData Method (Byte[], Int32, String, String,
MimeAttachment)

Attach the contents of a string to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool AttachData(
 string buffer
);

Parameters
buffer

A string that contains the data to be attached to the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The contents of the buffer will be attached to the message as inline content with a content type of
text/plain.

This implementation of the method should never be used to attach binary data to a message. If you need
to attach binary data, use the implementation of that accepts a byte array as the buffer parameter.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachData Method (String)

Attach the contents of a string to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As String, _
 ByVal contentName As String _
) As Boolean

[C#]
public bool AttachData(
 string buffer,
 string contentName
);

Parameters
buffer

A string that contains the data to be attached to the message.

contentName
An string argument which specifies a name for the data being attached to the message. This typically
is used as a file name by the mail client to store the data in. Note that if a file name is specified with a
path, only the base file name will be used.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The content will be attached using the content type of text/plain.

This implementation of the method should never be used to attach binary data to a message. If you need
to attach binary data, use the implementation of that accepts a byte array as the buffer parameter.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachData Method (String, String)

Attach the contents of a string to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As String, _
 ByVal contentName As String, _
 ByVal contentType As String _
) As Boolean

[C#]
public bool AttachData(
 string buffer,
 string contentName,
 string contentType
);

Parameters
buffer

A string that contains the data to be attached to the message.

contentName
An string argument which specifies a name for the data being attached to the message. This typically
is used as a file name by the mail client to store the data in.Note that if a file name is specified with a
path, only the base file name will be used.

contentType
An string argument which specifies the type of data being attached. The value must be a valid MIME
content type. If the buffer contains only text characters, then the content type will be specified as
"text/plain". If the buffer contains binary data, then the content type will be specified as
"application/octet-stream", which is appropriate for any type of data.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This implementation of the method should never be used to attach binary data to a message. If you need
to attach binary data, use the implementation of that accepts a byte array as the buffer parameter.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachData Method (String, String, String)

Attach the contents of a string to the current message.

[Visual Basic]
Overloads Public Function AttachData(_
 ByVal buffer As String, _
 ByVal contentName As String, _
 ByVal contentType As String, _
 ByVal options As MimeAttachment _
) As Boolean

[C#]
public bool AttachData(
 string buffer,
 string contentName,
 string contentType,
 MimeAttachment options
);

Parameters
buffer

A string that contains the data to be attached to the message.

contentName
An string argument which specifies a name for the data being attached to the message. This typically
is used as a file name by the mail client to store the data in.Note that if a file name is specified with a
path, only the base file name will be used.

contentType
An string argument which specifies the type of data being attached. The value must be a valid MIME
content type. If the buffer contains only text characters, then the content type will be specified as
text/plain. If the buffer contains binary data, then the content type will be specified as
application/octet-stream, which is appropriate for any type of data.

options
A MimeAttachment enumeration which specifies how the data should be attached to the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This implementation of the method should never be used to attach binary data to a message. If you need
to attach binary data, use the implementation of that accepts a byte array as the buffer parameter.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.AttachData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachData Method (String, String, String,
MimeAttachment)

Attach the specified file to the current message.

Overload List
Attach the specified file to the current message.

public bool AttachFile(string);

Attach the specified file to the current message.

public bool AttachFile(string,MimeAttachment);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachFile Method

Attach the specified file to the current message.

[Visual Basic]
Overloads Public Function AttachFile(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool AttachFile(
 string fileName
);

Parameters
fileName

A string which specifies the name of the file to be attached to the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AttachFile method attaches the specified file to the current message. If the message already contains
one or more file attachments, then it is added to the end of the message. If the message does not contain
any attached files, then it is converted to a multipart message and the file is appended to the message.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.AttachFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachFile Method (String)

Attach the specified file to the current message.

[Visual Basic]
Overloads Public Function AttachFile(_
 ByVal fileName As String, _
 ByVal options As MimeAttachment _
) As Boolean

[C#]
public bool AttachFile(
 string fileName,
 MimeAttachment options
);

Parameters
fileName

A string which specifies the name of the file to be attached to the message.

options
A MimeAttachment enumeration which specifies how the data should be attached to the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AttachFile method attaches the specified file to the current message. If the message already contains
one or more file attachments, then it is added to the end of the message. If the message does not contain
any attached files, then it is converted to a multipart message and the file is appended to the message.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.AttachFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachFile Method (String, MimeAttachment)

NOTE: This method is now obsolete.

The AttachThread method has been deprecated

Attach an instance of the class to the current thread.

[Visual Basic]
<Obsolete(Message:="The AttachThread method has been deprecated", IsError:=False)>
Public Function AttachThread() As Boolean

[C#]
[Obsolete(Message="The AttachThread method has been deprecated", IsError=False)]
public bool AttachThread();

Return Value
A boolean value which specifies if the message could be attached to the current thread. If this method
returns false, the message could not be attached to the thread and the application should check the value
of the LastError property to determine the cause of the failure.

Remarks
This method has been deprecated and should no longer be used. The current version of the MailMessage
class uses a free threading model which permits any thread to access methods and properties. However,
applications must take care to synchronize access to the class instance across multiple threads if they are
modifying the message contents.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.AttachThread Method

Clear the header and body of the current message.

[Visual Basic]
Public Function ClearMessage() As Boolean

[C#]
public bool ClearMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ClearMessage method clears the current message, releasing the memory allocated for the message
and any attachments.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ClearMessage Method

Close the current message storage file.

[Visual Basic]
Public Function CloseStore() As Boolean

[C#]
public bool CloseStore();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CloseStore method closes the storage file that was previously opened, releasing all of the memory
allocated for the message store and purging all deleted messages. This method must be called when the
application has finished accessing the messages in the message store.

When the control instance is released by its container, the storage file will automatically be closed. To
prevent deleted messages from being removed from the message store, use the Reset method.

See Also
MailMessage Class | SocketTools Namespace | OpenStore Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.CloseStore Method

Compose a new mail message.

Overload List
Compose a new mail message.

public bool ComposeMessage(string,string,string,string);

Compose a new mail message.

public bool ComposeMessage(string,string,string,string,string);

Compose a new mail message.

public bool ComposeMessage(string,string,string,string,string,string);

Compose a new mail message.

public bool ComposeMessage(string,string,string,string,string,string,string);

Compose a new mail message.

public bool ComposeMessage(string,string,string,string,string,string,string,MimeCharacterSet,MimeEncoding);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ComposeMessage Method

Compose a new mail message.

[Visual Basic]
Overloads Public Function ComposeMessage(_
 ByVal messageFrom As String, _
 ByVal messageTo As String, _
 ByVal messageSubject As String, _
 ByVal messageText As String _
) As Boolean

[C#]
public bool ComposeMessage(
 string messageFrom,
 string messageTo,
 string messageSubject,
 string messageText
);

Parameters
messageFrom

A string argument which specifies the sender's email address. Only a single address should be
specified. After the message has been composed, the From property will be updated with this value.

messageTo
A string argument which specifies one or more recipient email addresses. Multiple email addresses
may be specified by separating them with commas. After the message has been composed, the To
property will be updated with this value.

messageSubject
A string argument which specifies the subject for the message. If the argument is not specified, then
no Subject header field will be created for this message. After the message has been composed, the
Subject property will be updated with this value

messageText
An string argument which specifies the body of the message. Each line of text contained in the string
should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the end-of-
line.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ComposeMessage method creates a new mail message, or replaces the current message if one
already exists.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ComposeMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ComposeMessage Method (String, String, String, String)

Compose a new mail message.

[Visual Basic]
Overloads Public Function ComposeMessage(_
 ByVal messageFrom As String, _
 ByVal messageTo As String, _
 ByVal messageCc As String, _
 ByVal messageSubject As String, _
 ByVal messageText As String _
) As Boolean

[C#]
public bool ComposeMessage(
 string messageFrom,
 string messageTo,
 string messageCc,
 string messageSubject,
 string messageText
);

Parameters
messageFrom

A string argument which specifies the sender's email address. Only a single address should be
specified. After the message has been composed, the From property will be updated with this value.

messageTo
A string argument which specifies one or more recipient email addresses. Multiple email addresses
may be specified by separating them with commas. After the message has been composed, the To
property will be updated with this value.

messageCc
A string argument which specifies one or more additional recipient addresses that will receive a copy
of the message. If this argument is not specified, then no Cc header field will be created for this
message. After the message has been composed, the Cc property will be updated with this value.

messageSubject
A string argument which specifies the subject for the message. If the argument is not specified, then
no Subject header field will be created for this message. After the message has been composed, the
Subject property will be updated with this value

messageText
An string argument which specifies the body of the message. Each line of text contained in the string
should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the end-of-
line.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ComposeMessage method creates a new mail message, or replaces the current message if one
already exists.

MailMessage.ComposeMessage Method (String, String, String, String,
String)

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ComposeMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Compose a new mail message.

[Visual Basic]
Overloads Public Function ComposeMessage(_
 ByVal messageFrom As String, _
 ByVal messageTo As String, _
 ByVal messageCc As String, _
 ByVal messageBcc As String, _
 ByVal messageSubject As String, _
 ByVal messageText As String _
) As Boolean

[C#]
public bool ComposeMessage(
 string messageFrom,
 string messageTo,
 string messageCc,
 string messageBcc,
 string messageSubject,
 string messageText
);

Parameters
messageFrom

A string argument which specifies the sender's email address. Only a single address should be
specified. After the message has been composed, the From property will be updated with this value.

messageTo
A string argument which specifies one or more recipient email addresses. Multiple email addresses
may be specified by separating them with commas. After the message has been composed, the To
property will be updated with this value.

messageCc
A string argument which specifies one or more additional recipient addresses that will receive a copy
of the message. If this argument is not specified, then no Cc header field will be created for this
message. After the message has been composed, the Cc property will be updated with this value.

messageBcc
A string argument which specifies one or more additional recipient addresses that will receive a "blind"
copy of the message. If this argument is not specified, then no Bcc header field will be created for this
message. After the message has been composed, the Bcc property will be updated with this value.
Note that the Bcc header field is not normally included in the header when the message is exported.

messageSubject
A string argument which specifies the subject for the message. If the argument is not specified, then
no Subject header field will be created for this message. After the message has been composed, the
Subject property will be updated with this value

messageText
An string argument which specifies the body of the message. Each line of text contained in the string
should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the end-of-
line.

MailMessage.ComposeMessage Method (String, String, String, String,
String, String)

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ComposeMessage method creates a new mail message, or replaces the current message if one
already exists.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ComposeMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Compose a new mail message.

[Visual Basic]
Overloads Public Function ComposeMessage(_
 ByVal messageFrom As String, _
 ByVal messageTo As String, _
 ByVal messageCc As String, _
 ByVal messageBcc As String, _
 ByVal messageSubject As String, _
 ByVal messageText As String, _
 ByVal messageHTML As String _
) As Boolean

[C#]
public bool ComposeMessage(
 string messageFrom,
 string messageTo,
 string messageCc,
 string messageBcc,
 string messageSubject,
 string messageText,
 string messageHTML
);

Parameters
messageFrom

A string argument which specifies the sender's email address. Only a single address should be
specified. After the message has been composed, the From property will be updated with this value.

messageTo
A string argument which specifies one or more recipient email addresses. Multiple email addresses
may be specified by separating them with commas. After the message has been composed, the To
property will be updated with this value.

messageCc
A string argument which specifies one or more additional recipient addresses that will receive a copy
of the message. If this argument is not specified, then no Cc header field will be created for this
message. After the message has been composed, the Cc property will be updated with this value.

messageBcc
A string argument which specifies one or more additional recipient addresses that will receive a "blind"
copy of the message. If this argument is not specified, then no Bcc header field will be created for this
message. After the message has been composed, the Bcc property will be updated with this value.
Note that the Bcc header field is not normally included in the header when the message is exported.

messageSubject
A string argument which specifies the subject for the message. If the argument is not specified, then
no Subject header field will be created for this message. After the message has been composed, the
Subject property will be updated with this value

messageText
An string argument which specifies the body of the message. Each line of text contained in the string
should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the end-of-

MailMessage.ComposeMessage Method (String, String, String, String,
String, String, String)

line.

messageHTML
A string argument which specifies an alternate HTML formatted message. If the messageText
argument has been specified, then a multipart message will be created with both plain text and HTML
text as the alternative. This allows mail clients to select which message body they wish to display. If the
messageText argument is an empty string, then the message will only contain HTML. Although this is
supported, it is not recommended because older mail clients may be unable to display the message
correctly.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ComposeMessage method creates a new mail message, or replaces the current message if one
already exists.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ComposeMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Compose a new mail message.

[Visual Basic]
Overloads Public Function ComposeMessage(_
 ByVal messageFrom As String, _
 ByVal messageTo As String, _
 ByVal messageCc As String, _
 ByVal messageBcc As String, _
 ByVal messageSubject As String, _
 ByVal messageText As String, _
 ByVal messageHTML As String, _
 ByVal characterSet As MimeCharacterSet, _
 ByVal encodingType As MimeEncoding _
) As Boolean

[C#]
public bool ComposeMessage(
 string messageFrom,
 string messageTo,
 string messageCc,
 string messageBcc,
 string messageSubject,
 string messageText,
 string messageHTML,
 MimeCharacterSet characterSet,
 MimeEncoding encodingType
);

Parameters
messageFrom

A string argument which specifies the sender's email address. Only a single address should be
specified. After the message has been composed, the From property will be updated with this value.

messageTo
A string argument which specifies one or more recipient email addresses. Multiple email addresses
may be specified by separating them with commas. After the message has been composed, the To
property will be updated with this value.

messageCc
A string argument which specifies one or more additional recipient addresses that will receive a copy
of the message. If this argument is not specified, then no Cc header field will be created for this
message. After the message has been composed, the Cc property will be updated with this value.

messageBcc
A string argument which specifies one or more additional recipient addresses that will receive a "blind"
copy of the message. If this argument is not specified, then no Bcc header field will be created for this
message. After the message has been composed, the Bcc property will be updated with this value.
Note that the Bcc header field is not normally included in the header when the message is exported.

messageSubject
A string argument which specifies the subject for the message. If the argument is not specified, then
no Subject header field will be created for this message. After the message has been composed, the
Subject property will be updated with this value

MailMessage.ComposeMessage Method (String, String, String, String,
String, String, String, MimeCharacterSet, MimeEncoding)

messageText
An string argument which specifies the body of the message. Each line of text contained in the string
should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the end-of-
line.

messageHTML
A string argument which specifies an alternate HTML formatted message. If the messageText
argument has been specified, then a multipart message will be created with both plain text and HTML
text as the alternative. This allows mail clients to select which message body they wish to display. If the
messageText argument is an empty string, then the message will only contain HTML. Although this is
supported, it is not recommended because older mail clients may be unable to display the message
correctly.

characterSet
A MimeCharacterSet enumeration value which specifies the character set to use when composing the
message.

encodingType
A MimeEncoding enumeration value which specifies the encoding type to use when composing the
message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ComposeMessage method creates a new mail message, or replaces the current message if one
already exists.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ComposeMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Create an empty message part in a multipart message.

Overload List
Create an empty message part in a multipart message.

public bool CreatePart();

Create a new message part in a multipart message.

public bool CreatePart(string);

Create a new message part in a multipart message.

public bool CreatePart(string,MimeCharacterSet,MimeEncoding);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.CreatePart Method

Create an empty message part in a multipart message.

[Visual Basic]
Overloads Public Function CreatePart() As Boolean

[C#]
public bool CreatePart();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreatePart method creates a new empty message part. If the current message is a simple RFC822
formatted message, then this method converts it to a MIME multipart message. The current message part
will be set to the new part that was just created.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.CreatePart Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.CreatePart Method ()

Create a new message part in a multipart message.

[Visual Basic]
Overloads Public Function CreatePart(_
 ByVal messageText As String _
) As Boolean

[C#]
public bool CreatePart(
 string messageText
);

Parameters
messageText

A string argument which specifies the body of the new message part. Each line of text contained in the
string should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the
end-of-line.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreatePart method creates a new message part. If the current message is a simple RFC822 formatted
message, then this method converts it to a MIME multipart message. The current message part will be set
to the new part that was just created.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.CreatePart Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.CreatePart Method (String)

Create a new message part in a multipart message.

[Visual Basic]
Overloads Public Function CreatePart(_
 ByVal messageText As String, _
 ByVal characterSet As MimeCharacterSet, _
 ByVal encodingType As MimeEncoding _
) As Boolean

[C#]
public bool CreatePart(
 string messageText,
 MimeCharacterSet characterSet,
 MimeEncoding encodingType
);

Parameters
messageText

A string argument which specifies the body of the new message part. Each line of text contained in the
string should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as the
end-of-line.

characterSet
A MimeCharacterSet enumeration value which specifies the character set to use when composing the
message.

encodingType
A MimeEncoding enumeration value which specifies the encoding type to use when composing the
message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreatePart method creates a new message part. If the current message is a simple RFC822 formatted
message, then this method converts it to a MIME multipart message. The current message part will be set
to the new part that was just created.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.CreatePart Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.CreatePart Method (String, MimeCharacterSet,
MimeEncoding)

Decode a string which was previously encoded using base64 or quoted-printable encoding.

Overload List
Decode a string which was previously encoded using base64 or quoted-printable encoding.

public int DecodeText(string,ref string);

Decode a string which was previously encoded using base64 or quoted-printable encoding.

public int DecodeText(string,ref string,MimeCharacterSet,MimeEncoding);

Decode a string which was previously encoded using base64 or quoted-printable encoding.

public int DecodeText(string,ref string,MimeEncoding);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.DecodeText Method

Decode a string which was previously encoded using base64 or quoted-printable encoding.

[Visual Basic]
Overloads Public Function DecodeText(_
 ByVal encodedText As String, _
 ByRef messageText As String, _
 ByVal charSet As MimeCharacterSet, _
 ByVal encoding As MimeEncoding _
) As Integer

[C#]
public int DecodeText(
 string encodedText,
 ref string messageText,
 MimeCharacterSet charSet,
 MimeEncoding encoding
);

Parameters
encodedText

A string which contains the encoded text which should be decoded.

messageText
A string variable passed by reference which will contain the decoded text when the method returns.

charSet
A MimeCharacterSet enumeration which specifies the character set to use when decoding the
encoded text. If this value does not match the character set used when the text was originally
encoded, the resulting output text may be invalid.

encoding
A MimeEncoding enumeration which specifies the content encoding type to use when decoding the
text.

Return Value
The number of characters of decoded text. A return value of zero indicates no text has been decoded. If
the method fails, it will return -1 and the LastError property can be used to determine the cause of the
failure. In most cases where the method fails, it is because an invalid character set or encoding type has
been specified.

Remarks
This method provides a means to decode text that was previously encoded using either base64 or
quoted-printable encoding. In most cases, it is not necessary to use this method because the message
parser will detect which character set and encoding was used, then automatically decode the message text
if necessary.

The value of the charSet parameter does not affect the resulting output text, it is only used when
decoding the input text. The previous contents of the messageText string will be replaced by the decoded
text, and the output string will always be Unicode.

If the charSet parameter is specified as charsetUTF16, the encoding type must be encodingBase64.
Other encoding methods are not supported for Unicode strings and will cause the method to fail. In most

MailMessage.DecodeText Method (String, String, MimeCharacterSet,
MimeEncoding)

cases, it is preferable to always use encodingBase64 as the encoding method, with quoted-printable
encoding only used for legacy support. If an unsupported encoding type is specified, this method will
return -1 and the output text string will be empty. This method cannot be used to decode uuencoded
text.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.DecodeText Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Decode a string which was previously encoded using base64 or quoted-printable encoding.

[Visual Basic]
Overloads Public Function DecodeText(_
 ByVal encodedText As String, _
 ByRef messageText As String, _
 ByVal encoding As MimeEncoding _
) As Integer

[C#]
public int DecodeText(
 string encodedText,
 ref string messageText,
 MimeEncoding encoding
);

Parameters
encodedText

A string which contains the encoded text which should be decoded.

messageText
A string variable passed by reference which will contain the decoded text when the method returns.

encoding
A MimeEncoding enumeration which specifies the content encoding type to use when decoding the
text.

Return Value
The number of characters of decoded text. A return value of zero indicates no text has been decoded. If
the method fails, it will return -1 and the LastError property can be used to determine the cause of the
failure. In most cases where the method fails, it is because an invalid character set or encoding type has
been specified.

Remarks
This method provides a means to decode text that was previously encoded using either base64 or
quoted-printable encoding. In most cases, it is not necessary to use this method because the message
parser will detect which character set and encoding was used, then automatically decode the message text
if necessary.

The value of the charSet parameter does not affect the resulting output text, it is only used when
decoding the input text. The previous contents of the messageText string will be replaced by the decoded
text, and the output string will always be Unicode.

In most cases, it is preferable to always use encodingBase64 as the encoding method, with quoted-
printable encoding only used for legacy support. If an unsupported encoding type is specified, this
method will return -1 and the output text string will be empty.

This version of the method will default to decoding the text as UTF-8. If the original text used something
other than UTF-8, call the overloaded version of this method to specify the character set.

This method cannot be used to deocde uuencoded text.

See Also

MailMessage.DecodeText Method (String, String, MimeEncoding)

MailMessage Class | SocketTools Namespace | MailMessage.DecodeText Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Decode a string which was previously encoded using base64 or quoted-printable encoding.

[Visual Basic]
Overloads Public Function DecodeText(_
 ByVal encodedText As String, _
 ByRef messageText As String _
) As Integer

[C#]
public int DecodeText(
 string encodedText,
 ref string messageText
);

Parameters
encodedText

A string which contains the encoded text which should be decoded.

messageText
A string variable passed by reference which will contain the decoded text when the method returns.

Return Value
The number of characters of decoded text. A return value of zero indicates no text has been decoded. If
the method fails, it will return -1 and the LastError property can be used to determine the cause of the
failure. In most cases where the method fails, it is because an invalid character set or encoding type has
been specified.

Remarks
This method provides a means to decode text that was previously encoded using base64 encoding. In
most cases, it is not necessary to use this method because the message parser will detect which character
set and encoding was used, then automatically decode the message text if necessary.

This version of the method will default to using base64 encoding and will decode the text as UTF-8. If the
original text used something other than UTF-8, call the overloaded version of this method to specify the
character set.

This method cannot be used to deocde uuencoded text.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.DecodeText Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.DecodeText Method (String, String)

Delete a header field from the specified message part.

Overload List
Delete a header field from the specified message part.

public bool DeleteHeader(int,string);

Delete a header field from the current message part.

public bool DeleteHeader(string);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.DeleteHeader Method

Delete a header field from the specified message part.

[Visual Basic]
Overloads Public Function DeleteHeader(_
 ByVal messagePart As Integer, _
 ByVal headerName As String _
) As Boolean

[C#]
public bool DeleteHeader(
 int messagePart,
 string headerName
);

Parameters
messagePart

An integer which specifies the message part.

headerName
A string which specifies the header field to delete from the specified message part.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
A message part of zero specifies the main message part which contains the standard headers such as To,
From and Subject. The number of message parts in the current message is returned by the PartCount
property.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.DeleteHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.DeleteHeader Method (Int32, String)

Delete a header field from the current message part.

[Visual Basic]
Overloads Public Function DeleteHeader(_
 ByVal headerName As String _
) As Boolean

[C#]
public bool DeleteHeader(
 string headerName
);

Parameters
headerName

A string which specifies the header field to delete from the current message part.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The current message part is returned by the Part property.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.DeleteHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.DeleteHeader Method (String)

Remove the current message from the current message store.

Overload List
Remove the current message from the current message store.

public bool DeleteMessage();

Remove the specified message from the current message store.

public bool DeleteMessage(int);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.DeleteMessage Method

Remove the specified message from the current message store.

[Visual Basic]
Overloads Public Function DeleteMessage(_
 ByVal messageIndex As Integer _
) As Boolean

[C#]
public bool DeleteMessage(
 int messageIndex
);

Parameters
messageIndex

An integer value which specifies the message that will be removed from the message store.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The DeleteMessage method marks the specified message for deletion from the storage file. When the
message store is closed or purged, the message is removed from the file.

Once a message has been marked for deletion, it may no longer be referenced by the application. For
example, you cannot access the contents of a message that has been deleted.

The message store must be opened with write access. This method will fail if you attempt to delete a
message from a storage file that has been opened for read-only access. If the application needs to delete
messages in the message store, it is recommended that the file be opened for exclusive access using the
storeLock option when calling the OpenStore method.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.DeleteMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.DeleteMessage Method (Int32)

Remove the current message from the current message store.

[Visual Basic]
Overloads Public Function DeleteMessage() As Boolean

[C#]
public bool DeleteMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The DeleteMessage method marks the current message for deletion from the storage file. When the
message store is closed or purged, the message is removed from the file. The value of the StoreIndex
property specifies the current message.

Once a message has been marked for deletion, it may no longer be referenced by the application. For
example, you cannot access the contents of a message that has been deleted.

The message store must be opened with write access. This method will fail if you attempt to delete a
message from a storage file that has been opened for read-only access. If the application needs to delete
messages in the message store, it is recommended that the file be opened for exclusive access using the
storeLock option when calling the OpenStore method.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.DeleteMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.DeleteMessage Method ()

Delete the specified message part from the current message.

[Visual Basic]
Public Function DeletePart(_
 ByVal messagePart As Integer _
) As Boolean

[C#]
public bool DeletePart(
 int messagePart
);

Parameters
messagePart

An integer which specifies the message part.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method cannot be used to delete part zero, which is the main body of the message. Instead use the
ClearMessage method to clear the contents of the entire message.

The number of message parts in the current message is returned by the PartCount property.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.DeletePart Method

Releases all resources used by MailMessage.

Overload List
Releases all resources used by MailMessage.

public void Dispose();

Releases the unmanaged resources allocated by the MailMessage class and optionally releases the
managed resources.

protected virtual void Dispose(bool);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Dispose Method

Releases all resources used by MailMessage.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method explicitly releases the resources allocated for this instance of the class. In some
cases, better performance can be achieved if the programmer explicitly releases resources when they are
no longer being used. The Dispose method provides explicit control over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Dispose Method ()

Releases the unmanaged resources allocated by the MailMessage class and optionally releases the
managed resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method explicitly releases the resources allocated for this instance of the class. In some
cases, better performance can be achieved if the programmer explicitly releases resources when they are
no longer being used. The Dispose method provides explicit control over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the MailMessage class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Dispose Method (Boolean)

Encodes a string using base64 or quoted-printable encoding.

Overload List
Encodes a string using base64 or quoted-printable encoding.

public int EncodeText(string,ref string);

Encodes a string using base64 or quoted-printable encoding.

public int EncodeText(string,ref string,MimeCharacterSet,MimeEncoding);

Encodes a string using base64 or quoted-printable encoding.

public int EncodeText(string,ref string,MimeEncoding);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.EncodeText Method

Encodes a string using base64 or quoted-printable encoding.

[Visual Basic]
Overloads Public Function EncodeText(_
 ByVal messageText As String, _
 ByRef encodedText As String, _
 ByVal charSet As MimeCharacterSet, _
 ByVal encoding As MimeEncoding _
) As Integer

[C#]
public int EncodeText(
 string messageText,
 ref string encodedText,
 MimeCharacterSet charSet,
 MimeEncoding encoding
);

Parameters
messageText

A string that contains the text which should be encoded.

encodedText
A string variable passed by reference which will contain the encoded text when the method returns.

charSet
A MimeCharacterSet enumeration which specifies the character set to use when encoding the
message text. It is recommended that you use UTF-8 whenever possible.

encoding
A MimeEncoding enumeration which specifies the content encoding type to use when encoding the
text.

Return Value
The number of characters of encoded text. A return value of zero indicates no text has been encoded. If
the method fails, it will return -1 and the LastError property can be used to determine the cause of the
failure. In most cases where the method fails, it is because an invalid character set or encoding type has
been specified.

Remarks
This method provides a means to encode text using either base64 or quoted-printable encoding. It is not
necessary to use this method to encode text when assigning a value to Text property. The class will
automatically encode message text which contains non-ASCII characters using the character set specified
when the message is created.

If the charSet parameter is specified, the method will convert the message text using the ANSI code page
associated with the character set, and then the text will be encoded.

If the charsetUTF16 character set is specified, you must also specify encodingBase64 as the encoding
method. Other encoding methods are not supported and this will cause the method to fail. It is not
recommended you encode text as UTF-16 unless there is a specific requirement to use that character set.

It is recommended that you use the charsetUTF8 character set whenever possible. It is capable of

MailMessage.EncodeText Method (String, String, MimeCharacterSet,
MimeEncoding)

encoding all Unicode code points, and is a standard for virtually all modern Internet applications. In most
cases, it is preferable to use encodingBase64 as the encoding method, with quoted-printable encoding
only used for legacy support.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.EncodeText Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Encodes a string using base64 or quoted-printable encoding.

[Visual Basic]
Overloads Public Function EncodeText(_
 ByVal messageText As String, _
 ByRef encodedText As String, _
 ByVal encoding As MimeEncoding _
) As Integer

[C#]
public int EncodeText(
 string messageText,
 ref string encodedText,
 MimeEncoding encoding
);

Parameters
messageText

A string that contains the text which will be encoded.

encodedText
A string variable passed by reference which will contain the encoded text when the method returns.

encoding
A MimeEncoding enumeration which specifies the content encoding type to use when decoding the
text.

Return Value
The number of characters of encoded text. A return value of zero indicates no text has been encoded. If
the method fails, it will return -1 and the LastError property can be used to determine the cause of the
failure. In most cases where the method fails, it is because an invalid character set or encoding type has
been specified.

Remarks
This method provides a means to encode text using either base64 or quoted-printable encoding. It is not
necessary to use this method to encode text when assigning a value to the Text property. The class will
automatically encode message text which contains non-ASCII characters using the character set specified
when the message is created.

In most cases, it is preferable to use encodingBase64 as the encoding method, with quoted-printable
encoding only used for legacy support.

This version of the method will convert the message text to UTF-8 prior to encoding the text.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.EncodeText Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.EncodeText Method (String, String, MimeEncoding)

Encodes a string using base64 or quoted-printable encoding.

[Visual Basic]
Overloads Public Function EncodeText(_
 ByVal messageText As String, _
 ByRef encodedText As String _
) As Integer

[C#]
public int EncodeText(
 string messageText,
 ref string encodedText
);

Parameters
messageText

A string that contains the text which will be encoded.

encodedText
A string variable passed by reference which will contain the encoded text when the method returns.

Return Value
The number of characters of encoded text. A return value of zero indicates no text has been encoded. If
the method fails, it will return -1 and the LastError property can be used to determine the cause of the
failure. In most cases where the method fails, it is because an invalid character set or encoding type has
been specified.

Remarks
This method provides a means to encode text using base64. It is not necessary to use this method to
encode text when assigning a value to the Text property. The class will automatically encode message text
which contains non-ASCII characters using the character set specified when the message is created.

This version of the method will convert the message text to UTF-8 and then encode it using the base64
algorithm.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.EncodeText Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.EncodeText Method (String, String)

Export the current message to a file on the local system.

Overload List
Export the current message to a file on the local system.

public bool ExportMessage(string);

Export the current message to a file on the local system.

public bool ExportMessage(string,MimeExportOptions);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ExportMessage Method

Export the current message to a file on the local system.

[Visual Basic]
Overloads Public Function ExportMessage(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool ExportMessage(
 string fileName
);

Parameters
fileName

A string which specifies the name of the file that will contain the message. If the file does not exist, it
will be created. If it does exist, it will be overwritten with the contents of the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ExportMessage method writes the current message to a file. If the file does not exist, it will be
created. If it does exist, it will be overwritten with the contents of the message.

The value of the Options property determines the default export options, if any have been specified.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ExportMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ExportMessage Method (String)

Export the current message to a file on the local system.

[Visual Basic]
Overloads Public Function ExportMessage(_
 ByVal fileName As String, _
 ByVal options As MimeExportOptions _
) As Boolean

[C#]
public bool ExportMessage(
 string fileName,
 MimeExportOptions options
);

Parameters
fileName

A string which specifies the name of the file that will contain the message. If the file does not exist, it
will be created. If it does exist, it will be overwritten with the contents of the message.

options
A MimeExportOptions enumeration value which specifies one or more export options.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ExportMessage method writes the current message to a file. If the file does not exist, it will be
created. If it does exist, it will be overwritten with the contents of the message.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ExportMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ExportMessage Method (String, MimeExportOptions)

Extract all file attachments from the current message.

Overload List
Extract all file attachments from the current message.

public int ExtractAllFiles();

Extract all file attachments from the current message.

public int ExtractAllFiles(string);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ExtractAllFiles Method

Extract all file attachments from the current message.

[Visual Basic]
Overloads Public Function ExtractAllFiles() As Integer

[C#]
public int ExtractAllFiles();

Return Value
This method returns an integer value. If the method succeeds, the return value is the number of
attachments that were extracted from the message. A return value of zero indicates that the message did
not contain any file attachments. If the method faile, the return value is -1. To get extended error
information, check the value of the LastError property.

Remarks
This method will extract all of the files that are attached to the current message and store them in the
current directory on the local system. If a file with the same name as the attachment already exists, it will
be overwritten with the contents of the attachment. If the file attachment was encoded using base64 or
uuencode, this method will automatically decode the contents of the attachment.

To store a file attachment on the local system using a name that is different than the file name of the
attachment, use the ExtractFile method.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ExtractAllFiles Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ExtractAllFiles Method ()

Extract all file attachments from the current message.

[Visual Basic]
Overloads Public Function ExtractAllFiles(_
 ByVal pathName As String _
) As Integer

[C#]
public int ExtractAllFiles(
 string pathName
);

Parameters
pathName

A string that specifies the name of the directory where the file attachments should be stored. If this
parameter is omitted or points to an empty string, the attached files will be stored in the current
working directory on the local system.

Return Value
This method returns an integer value. If the method succeeds, the return value is the number of
attachments that were extracted from the message. A return value of zero indicates that the message did
not contain any file attachments. If the method faile, the return value is -1. To get extended error
information, check the value of the LastError property.

Remarks
This method will extract all of the files that are attached to the current message and store them in the
specified directory. The directory must exist and the current user must have the appropriate permissions
to create files there. If a file with the same name as the attachment already exists, it will be overwritten with
the contents of the attachment. If the file attachment was encoded using base64 or uuencode, this
method will automatically decode the contents of the attachment.

To store a file attachment on the local system using a name that is different than the file name of the
attachment, use the ExtractFile method.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ExtractAllFiles Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ExtractAllFiles Method (String)

Extract the contents of a file attachment and store it on the local system.

Overload List
Extract the contents of a file attachment and store it on the local system.

public bool ExtractFile(int,string);

Extract the contents of a file attachment and store it on the local system.

public bool ExtractFile(string);

Extract the contents of a file attachment and store it on the local system.

public bool ExtractFile(string,string);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ExtractFile Method

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.MailMessage.ExtractFile_overload_3.html

Extract the contents of a file attachment and store it on the local system.

[Visual Basic]
Overloads Public Function ExtractFile(_
 ByVal messagePart As Integer, _
 ByVal fileName As String _
) As Boolean

[C#]
public bool ExtractFile(
 int messagePart,
 string fileName
);

Parameters
messagePart

An integer which specifies the message part.

fileName
A string which specifies the name of the file that will contain the file attachment. If the file does not
exist, it will be created. If it does exist, it will be overwritten with the contents of the attachment.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ExtractFile method writes the contents of a message part, typically a file attachment, to a file on the
local system. This method will automatically decode any binary file attachments.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ExtractFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ExtractFile Method (Int32, String)

Extract the contents of a file attachment and store it on the local system.

[Visual Basic]
Overloads Public Function ExtractFile(_
 ByVal attachName As String, _
 ByVal fileName As String _
) As Boolean

[C#]
public bool ExtractFile(
 string attachName,
 string fileName
);

Parameters
attachName

A string that specifies the name of the file attachment in the current message. This parameter should
only specify a base file name; it should not include a file path and cannot be an empty string

fileName
A string which specifies the name of the file on the local system that will contain the file attachment. If
the file does not exist, it will be created. If it does exist, it will be overwritten with the contents of the
attachment.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This version of the ExtractFile method will search the current message for a file attachment that matches
the name specified by the attachName parameter. If an attachment with that name is found, its contents
will be stored in the local file specified by the fileName parameter. If the message does not contain an
attachment that matches the name provided, this method will fail.

To search for a file attachment by name, use the FindAttachment method.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ExtractFile Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ExtractFile Method (String, String)

Destroys an instance of the class, releasing the resources allocated for the current message.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Finalize Method

Search for a specific file attachment in the current message.

[Visual Basic]
Public Function FindAttachment(_
 ByVal fileName As String _
) As Integer

[C#]
public int FindAttachment(
 string fileName
);

Parameters
fileName

A string value that specifies the name of the file attachment to search for. This parameter should only
specify a base file name; it should not include a file path and cannot be an empty string.

Return Value
An integer value which specifies the message part number that contains the file attachment with a
matching name. If the message does not contain a file attachment with the specified name, this method
will return -1.

Remarks
The FindAttachment method will search the current message for a attachment that matches the specified
file name. The search is not case-sensitive, however it must match the attachment file name completely.
This method will not match partial file names or names that include wildcard characters.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.FindAttachment Method

Search for a message in the current message store.

Overload List
Search for a message in the current message store.

public int FindMessage(int,string,string);

Search for a message in the current message store.

public int FindMessage(int,string,string,MimeSearch);

Search for a message in the current message store.

public int FindMessage(string,string);

Search for a message in the current message store.

public int FindMessage(string,string,MimeSearch);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.FindMessage Method

Search for a message in the current message store.

[Visual Basic]
Overloads Public Function FindMessage(_
 ByVal messageIndex As Integer, _
 ByVal headerField As String, _
 ByVal headerValue As String, _
 ByVal searchOptions As MimeSearch _
) As Integer

[C#]
public int FindMessage(
 int messageIndex,
 string headerField,
 string headerValue,
 MimeSearch searchOptions
);

Parameters
messageIndex

An integer value which specifies the message number that should be used when starting the search.

headerField
A string which specifies the name of the header field that should be searched. The header field name
is not case sensitive.

headerValue
A string which specifies the header value that should be searched for. The search options can be used
to specify if the search is case-sensitive, and whether the search should return partial matches to the
string.

searchOptions
A MimeSearch enumeration which specifies the options to be used when searching for a message.

Return Value
An integer value which specifies the message index for the message that matched the search criteria. If no
matching message was found, this method will return zero.

Remarks
The FindMessage method is used to search the message store for a message which matches a specific
header field value. For example, it can be used to find every message which is addressed to a specific
recipient or has a subject which matches a particular string value.

When searching for specific email addresses, it is recommended that you use the searchPartialMatch
option because of the different ways that addresses can be annotated.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.FindMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.FindMessage Method (Int32, String, String, MimeSearch)

Search for a message in the current message store.

[Visual Basic]
Overloads Public Function FindMessage(_
 ByVal messageIndex As Integer, _
 ByVal headerField As String, _
 ByVal headerValue As String _
) As Integer

[C#]
public int FindMessage(
 int messageIndex,
 string headerField,
 string headerValue
);

Parameters
messageIndex

An integer value which specifies the message number that should be used when starting the search.

headerField
A string which specifies the name of the header field that should be searched. The header field name
is not case sensitive.

headerValue
A string which specifies the header value that should be searched for. The search options can be used
to specify if the search is case-sensitive, and whether the search should return partial matches to the
string.

Return Value
An integer value which specifies the message index for the message that matched the search criteria. If no
matching message was found, this method will return zero.

Remarks
The FindMessage method is used to search the message store for a message which matches a specific
header field value. For example, it can be used to find every message which is addressed to a specific
recipient or has a subject which matches a particular string value.

This implementation searches for a complete match to the specified header value, and the comparison is
not case-sensitive.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.FindMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.FindMessage Method (Int32, String, String)

Search for a message in the current message store.

[Visual Basic]
Overloads Public Function FindMessage(_
 ByVal headerField As String, _
 ByVal headerValue As String, _
 ByVal searchOptions As MimeSearch _
) As Integer

[C#]
public int FindMessage(
 string headerField,
 string headerValue,
 MimeSearch searchOptions
);

Parameters
headerField

A string which specifies the name of the header field that should be searched. The header field name
is not case sensitive.

headerValue
A string which specifies the header value that should be searched for. The search options can be used
to specify if the search is case-sensitive, and whether the search should return partial matches to the
string.

searchOptions
A MimeSearch enumeration which specifies the options to be used when searching for a message.

Return Value
An integer value which specifies the message index for the message that matched the search criteria. If no
matching message was found, this method will return zero.

Remarks
The FindMessage method is used to search the message store for a message which matches a specific
header field value. For example, it can be used to find every message which is addressed to a specific
recipient or has a subject which matches a particular string value.

When searching for specific email addresses, it is recommended that you use the searchPartialMatch
option because of the different ways that addresses can be annotated.

This implementation of the method always begins the search with the first message in the message store.
To iterate through multiple matches to a header value, you must specify a message index.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.FindMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.FindMessage Method (String, String, MimeSearch)

Search for a message in the current message store.

[Visual Basic]
Overloads Public Function FindMessage(_
 ByVal headerField As String, _
 ByVal headerValue As String _
) As Integer

[C#]
public int FindMessage(
 string headerField,
 string headerValue
);

Parameters
headerField

A string which specifies the name of the header field that should be searched. The header field name
is not case sensitive.

headerValue
A string which specifies the header value that should be searched for. The search options can be used
to specify if the search is case-sensitive, and whether the search should return partial matches to the
string.

Return Value
An integer value which specifies the message index for the message that matched the search criteria. If no
matching message was found, this method will return zero.

Remarks
The FindMessage method is used to search the message store for a message which matches a specific
header field value. For example, it can be used to find every message which is addressed to a specific
recipient or has a subject which matches a particular string value.

This implementation searches for a complete match to the specified header value, and the comparison is
not case-sensitive. The search always begins with the first message in the message store. To iterate
through multiple matches to a header value, you must specify a message index.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.FindMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.FindMessage Method (String, String)

Return the first header in the current message part.

[Visual Basic]
Public Function GetFirstHeader(_
 ByRef headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetFirstHeader(
 ref string headerName,
 ref string headerValue
);

Parameters
headerName

A string passed by reference which will contain the name of the first header field when the method
returns.

headerValue
A string passed by reference which will contain the value of the first header field when the method
returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFirstHeader method allows an application to enumerate all of the headers in the current message
part. If the current message part does not contain any header fields, this method will return false.

The current message part is returned by the Part property.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.GetFirstHeader Method

Return the value of a header field in the specified message part.

Overload List
Return the value of a header field in the specified message part.

public bool GetHeader(int,string,ref string);

Return the value of a header field in the current message part.

public bool GetHeader(string,ref string);

See Also
MailMessage Class | SocketTools Namespace | AddHeaders Method | SetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.GetHeader Method

Return the value of a header field in the specified message part.

[Visual Basic]
Overloads Public Function GetHeader(_
 ByVal messagePart As Integer, _
 ByVal headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetHeader(
 int messagePart,
 string headerName,
 ref string headerValue
);

Parameters
messagePart

An integer which specifies the message part.

headerName
A string which specifies the name of the header field.

headerValue
A string passed by reference which will contain the value of the header field when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeader method is used to retrieve the value for a specific header in the specified message part. If
the header field exists, the method will return true and the headerValue argument will contain the header
value. If the header does not exist, the method will return false.

If there are multiple headers with the same name, the first value will be returned. To enumerate all of the
headers in a message, including duplicate header fields, use the GetFirstHeader and GetNextHeader
methods.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.GetHeader Overload List | AddHeaders
Method | SetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.GetHeader Method (Int32, String, String)

Return the value of a header field in the current message part.

[Visual Basic]
Overloads Public Function GetHeader(_
 ByVal headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetHeader(
 string headerName,
 ref string headerValue
);

Parameters
headerName

A string which specifies the name of the header field.

headerValue
A string passed by reference which will contain the value of the header field when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeader method is used to retrieve the value for a specific header in the current message part. If
the header field exists, the method will return true and the headerValue argument will contain the header
value. If the header does not exist, the method will return false.

If there are multiple headers with the same name, the first value will be returned. To enumerate all of the
headers in a message, including duplicate header fields, use the GetFirstHeader and GetNextHeader
methods.

The current message part is returned by the Part property.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.GetHeader Overload List | AddHeaders
Method | SetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.GetHeader Method (String, String)

Return the next header in the current message part.

[Visual Basic]
Public Function GetNextHeader(_
 ByRef headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetNextHeader(
 ref string headerName,
 ref string headerValue
);

Parameters
headerName

A string passed by reference which will contain the name of the first header field when the method
returns.

headerValue
A string passed by reference which will contain the value of the first header field when the method
returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetNextHeader method allows an application to enumerate all of the headers in the current
message part. If the current message part does not contain any header fields, this method will return
false.

The current message part is returned by the Part property.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.GetNextHeader Method

Replace the current message with the contents of a file.

[Visual Basic]
Public Function ImportMessage(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool ImportMessage(
 string fileName
);

Parameters
fileName

A string which specifies the name of the text file to import.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ImportMessage Method

Initialize an instance of the MailMessage class.

Overload List
Initialize an instance of the MailMessage class.

public bool Initialize();

Initialize an instance of the MailMessage class.

public bool Initialize(string);

See Also
MailMessage Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Initialize Method

Initialize an instance of the MailMessage class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the MailMessage class, allocating
resources for the current thread. Typically it is not necessary to explicitly call this method because the
instance of the class is initialized by the class constructor. However, if the Uninitialize method is called,
the class must be re-initialized before any other methods are called.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Initialize Method ()

Initialize an instance of the MailMessage class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the MailMessage class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the MailMessage class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.MailMessage mimeClient = new SocketTools.MailMessage();

if (mimeClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(mimeClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim mimeClient As New SocketTools.MailMessage

If mimeClient.Initialize(strLicenseKey) = False Then
 MsgBox(mimeClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
MailMessage Class | SocketTools Namespace | MailMessage.Initialize Overload List |
RuntimeLicenseAttribute Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Initialize Method (String)

Open the specified message storage file for read-only access.

Overload List
Open the specified message storage file for read-only access.

public bool OpenStore(string);

Open the specified message storage file.

public bool OpenStore(string,MimeStorage);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.OpenStore Method

Open the specified message storage file.

[Visual Basic]
Overloads Public Function OpenStore(_
 ByVal fileName As String, _
 ByVal openMode As MimeStorage _
) As Boolean

[C#]
public bool OpenStore(
 string fileName,
 MimeStorage openMode
);

Parameters
fileName

A string which specifies the name of the storage file.

openMode
A MimeStorage enumeration which specifies how the storage file should be opened.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenStore method opens a message storage file which contains one or more messages. If the
storage file is opened for read access, the application can search the message store and extract messages
but it cannot add or delete messages. To add new messages or delete existing messages from the store, it
must be opened with write access.

The message store is designed to be a simple, effective way to store multiple messages together in a
single file. When the message store is opened, the contents are indexed in memory. Although there is no
specific limit to the number of messages that can be stored, there must be sufficient memory available to
build an index of each message and its headers. If the application must store and manage a very large
number of messages, it is recommended that you use a database rather than a flat-file message store.

Message Store Format
Each message is prefixed by a control sequence of five ASCII 01 characters followed by an ASCII 10 and
ASCII 13 character. The messages themselves are stored unmodified in their original text format. The
length of each message is calculated based on the location of the control sequence that delimits each
message, and explicit message lengths are not stored in the file. This means that it is safe to manually
change the message contents, as long as the message delimiters are preserved.

If the message store is compressed, the contents of the storage file are expanded when the file is opened
and then re-compressed when the storage file is closed. Using the MimeStorage.storeCompress option
reduces the size of the storage file and prevents the contents of the message store from being read using
a text file editor. However, enabling compression will increase the amount of memory allocated by the
class and can increase the amount of time that it takes to open and close the storage file.

The class also has a backwards compatibility mode where it will recognize storage files that use the UNIX
mbox format. While this format is supported for accessing existing files, it is not recommended that you
use it when creating new message stores or adding messages to an existing store. There are a number of

MailMessage.OpenStore Method (String, MimeStorage)

different variants on the mbox format that have been used by different Mail Transfer Agents (MTAs) on
the UNIX platform. For example, the mboxrd variant looks identical to the mboxcl2 variant, and they are
programmatically indistinguishable from one another, but they are not compatible. For this reason, the
use of the mbox format is strongly discouraged.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.OpenStore Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Open the specified message storage file for read-only access.

[Visual Basic]
Overloads Public Function OpenStore(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool OpenStore(
 string fileName
);

Parameters
fileName

A string which specifies the name of the storage file.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenStore method opens a message storage file for read-only access. The application can search
the message store and extract messages but it cannot add or delete messages. To add new messages or
delete existing messages from the store, it must be opened with write access.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.OpenStore Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.OpenStore Method (String)

Parse an Internet email address.

Overload List
Parse an Internet email address.

public bool ParseAddress(string,string,ref string);

Parse an Internet email address.

public bool ParseAddress(string,ref string);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ParseAddress Method

Parse an Internet email address.

[Visual Basic]
Overloads Public Function ParseAddress(_
 ByVal mailAddress As String, _
 ByVal mailDomain As String, _
 ByRef parsedAddress As String _
) As Boolean

[C#]
public bool ParseAddress(
 string mailAddress,
 string mailDomain,
 ref string parsedAddress
);

Parameters
mailAddress

A string which specifies the email address to be parsed.

mailDomain
A string which specifies a default domain for the address if no domain name is specified in the
mailAddress parameter.

parsedAddress
A string passed by reference which will contain the parsed email address.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ParseAddress method is useful for parsing the email addresses that may be specified in various
header fields in the message. In many cases, the addresses have additional comment characters which are
not part of the address itself. For example, one common format is "User Name" <user@domain.com>. In
this case, the email address is enclosed in angle brackets and the name outside of the brackets is
considered to be a comment which is not part of the address itself.

Another common format is user@domain.com (User Name). In this case, there is the address followed by
a comment which is enclosed in parenthesis. The ParseAddress method recognizes both formats, and
when passed either string, would return the address user@domain.com.

If there was no domain specified in the address, that is just a user name was specified, then the value the
mailDomain parameter is added to the address.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ParseAddress Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ParseAddress Method (String, String, String)

Parse an Internet email address.

[Visual Basic]
Overloads Public Function ParseAddress(_
 ByVal mailAddress As String, _
 ByRef parsedAddress As String _
) As Boolean

[C#]
public bool ParseAddress(
 string mailAddress,
 ref string parsedAddress
);

Parameters
mailAddress

A string which specifies the email address to be parsed.

parsedAddress
A string passed by reference which will contain the parsed email address.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ParseAddress method is useful for parsing the email addresses that may be specified in various
header fields in the message. In many cases, the addresses have additional comment characters which are
not part of the address itself. For example, one common format is "User Name" <user@domain.com>. In
this case, the email address is enclosed in angle brackets and the name outside of the brackets is
considered to be a comment which is not part of the address itself.

Another common format is user@domain.com (User Name). In this case, there is the address followed by
a comment which is enclosed in parenthesis. The ParseAddress method recognizes both formats, and
when passed either string, would return the address user@domain.com.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ParseAddress Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ParseAddress Method (String, String)

Parse the specified string, adding the contents to the current message.

[Visual Basic]
Public Function ParseMessage(_
 ByVal messageText As String _
) As Boolean

[C#]
public bool ParseMessage(
 string messageText
);

Parameters
messageText

A string which contains the message text to be parsed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ParseMessage method parses a string which contains message data, adding it to the current
message. This method is useful when the application needs to parse an arbitrary block of text and add it
to the current message. If the string contains header fields, the values will be added to the message
header. Once the end of the header block is detected, all subsequent text is added to the body of the
message.

Note that unlike the ImportMessage method, the ParseMessage method does not clear the contents of
the current message and may be called multiple times. Use the ClearMessage method to clear the
current message before calling ParseMessage if necessary.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ParseMessage Method

Purge all deleted messages from the current message store.

[Visual Basic]
Public Function PurgeStore() As Boolean

[C#]
public bool PurgeStore();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PurgeStore method purges all deleted messages from the message store. If the storage file has been
opened in read-only mode or there are no messages marked for deletion, this method will take no action.

When the CloseStore method is called, the storage file will automatically be purged. To prevent deleted
messages from being removed from the message store, use the Reset method.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.PurgeStore Method

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. All properties will be reset to their default values.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Reset Method

Retrieve a message from the message store, replacing the current message.

Overload List
Retrieve a message from the message store, replacing the current message.

public bool ReadStore();

Retrieve a message from the message store, replacing the current message.

public bool ReadStore(int);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ReadStore Method

Retrieve a message from the message store, replacing the current message.

[Visual Basic]
Overloads Public Function ReadStore(_
 ByVal messageIndex As Integer _
) As Boolean

[C#]
public bool ReadStore(
 int messageIndex
);

Parameters
messageIndex

An integer value which specifies the message that will be removed from the message store.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ReadStore method reads the specified message from the message store, and the contents of that
message will replace the current message.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ReadStore Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ReadStore Method (Int32)

Retrieve a message from the message store, replacing the current message.

[Visual Basic]
Overloads Public Function ReadStore() As Boolean

[C#]
public bool ReadStore();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ReadStore method reads a message from the message store, and the contents of that message will
replace the current message. The StoreIndex property specifies the current message index into the
storage file.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ReadStore Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ReadStore Method ()

Replace the current message in the message store.

Overload List
Replace the current message in the message store.

public bool ReplaceMessage();

Replace the specified message in the current message store.

public bool ReplaceMessage(int);

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ReplaceMessage Method

Replace the specified message in the current message store.

[Visual Basic]
Overloads Public Function ReplaceMessage(_
 ByVal messageIndex As Integer _
) As Boolean

[C#]
public bool ReplaceMessage(
 int messageIndex
);

Parameters
messageIndex

An integer value which specifies the message that will be replaced in the message store.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ReplaceMessage method replaces the specified message with a new message. The message number
may be a message that has been previously marked for deletion. It is important to note that the change
will not be reflected in the physical storage file until it has been closed. This method will update the
current message index in the storage file.

The message store must be opened with write access. This method will fail if you attempt to replace a
message from a storage file that has been opened for read-only access. If the application needs to replace
messages in the message store, it is recommended that the file be opened for exclusive access using the
storeLock option when calling the OpenStore method.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ReplaceMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ReplaceMessage Method (Int32)

Replace the current message in the message store.

[Visual Basic]
Overloads Public Function ReplaceMessage() As Boolean

[C#]
public bool ReplaceMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ReplaceMessage method replaces the current message in the message store. The current message
index into the storage file is specified by the StoreIndex property and this may be a message that has
been previously marked for deletion. It is important to note that the change will not be reflected in the
physical storage file until it has been closed. This method will update the current message index in the
storage file.

The message store must be opened with write access. This method will fail if you attempt to replace a
message from a storage file that has been opened for read-only access. If the application needs to replace
messages in the message store, it is recommended that the file be opened for exclusive access using the
storeLock option when calling the OpenStore method.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.ReplaceMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ReplaceMessage Method ()

Set the value for a header in the specified message part.

Overload List
Set the value for a header in the specified message part.

public bool SetHeader(int,string,string);

Set the value for a header in the current message part.

public bool SetHeader(string,string);

See Also
MailMessage Class | SocketTools Namespace | AddHeaders Method | GetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.SetHeader Method

Set the value for a header in the specified message part.

[Visual Basic]
Overloads Public Function SetHeader(_
 ByVal messagePart As Integer, _
 ByVal headerName As String, _
 ByVal headerValue As String _
) As Boolean

[C#]
public bool SetHeader(
 int messagePart,
 string headerName,
 string headerValue
);

Parameters
messagePart

An integer which specifies the message part.

headerName
A string which specifies the name of the header field.

headerValue
A string which specifies the value of the header field. If an empty string is specified, the header field is
removed from the header block in the specified message part.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.SetHeader Overload List | AddHeaders
Method | GetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.SetHeader Method (Int32, String, String)

Set the value for a header in the current message part.

[Visual Basic]
Overloads Public Function SetHeader(_
 ByVal headerName As String, _
 ByVal headerValue As String _
) As Boolean

[C#]
public bool SetHeader(
 string headerName,
 string headerValue
);

Parameters
headerName

A string which specifies the name of the header field.

headerValue
A string which specifies the value of the header field. If an empty string is specified, the header field is
removed from the header block in the current message part.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The current message part is returned by the Part property.

See Also
MailMessage Class | SocketTools Namespace | MailMessage.SetHeader Overload List | AddHeaders
Method | GetHeader Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.SetHeader Method (String, String)

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method releases resources allocated for the current process. After this method has been
called, no further operations may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
MailMessage Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.Uninitialize Method

Store the current message in the message store.

[Visual Basic]
Public Function WriteStore() As Boolean

[C#]
public bool WriteStore();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The WriteStore method will always append the current message to the storage file. If you want to replace
a message in the message store, you should use the ReplaceMessage method.

This method will update the value of the StoreIndex property to specify the message number for the new
message that has been added to the storage file.

See Also
MailMessage Class | SocketTools Namespace | ReplaceMessage Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.WriteStore Method

The events of the MailMessage class are listed below. For a complete list of MailMessage class
members, see the MailMessage Members topic.

Public Instance Events

OnError Occurs when an client operation fails.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage Events

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type MailMessage.ErrorEventArgs containing data related to
this event. The following MailMessage.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
MailMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see MailMessage.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.MailMessage.ErrorEventArgs

[Visual Basic]
Public Class MailMessage.ErrorEventArgs
 Inherits EventArgs

[C#]
public class MailMessage.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

See Also
MailMessage.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ErrorEventArgs Class

MailMessage.ErrorEventArgs overview

Public Instance Constructors

 MailMessage.ErrorEventArgs Constructor Initializes a new instance of the
MailMessage.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
MailMessage.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ErrorEventArgs Members

Initializes a new instance of the MailMessage.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public MailMessage.ErrorEventArgs();

See Also
MailMessage.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ErrorEventArgs Constructor

The properties of the MailMessage.ErrorEventArgs class are listed below. For a complete list of
MailMessage.ErrorEventArgs class members, see the MailMessage.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
MailMessage.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
MailMessage.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public MailMessage.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
MailMessage.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.ErrorEventArgs.Error Property

Specifies the error codes returned by the MailMessage class.

[Visual Basic]
Public Enum MailMessage.ErrorCode

[C#]
public enum MailMessage.ErrorCode

Remarks
The MailMessage class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

MailMessage.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the file attachment options supported by the MailMessage class.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum MailMessage.MimeAttachment

[C#]
[Flags]
public enum MailMessage.MimeAttachment

Remarks
The attachAlternative and attachInline values can be combined with one of the attachment options
using a bitwise OR operator.

Members

Member Name Description Value

attachDefault The file attachment encoding is based
on the file content type. Text files are
not encoded, and binary files are
encoded using the standard base64
encoding algorithm. This is the default
option for file attachments.

0

attachBase64 The file attachment is always encoded
using the standard base64 algorithm,
even if the attached file is a plain text
file.

1

attachUucode The file attachment is always encoded
using the uuencode algorithm, even if
the attached file is a plain text file.

2

attachQuoted The file attachment is always encoded
using the quoted-printable algorithm,
even if the attached file is a plain text
file.

3

attachAlternative The attached data is an alternative
format for the contents of the message.
This can only be used with textual data.

65536

attachInline The attached data will be displayed
inline with the contents of the message.
This is typically used with images that
are to be displayed along with the
message text.

131072

Requirements
Namespace: SocketTools

MailMessage.MimeAttachment Enumeration

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the character sets recognized by the MailMessage class.

[Visual Basic]
Public Enum MailMessage.MimeCharacterSet

[C#]
public enum MailMessage.MimeCharacterSet

Members

Member Name Description

charsetUnknown The character set is unknown.

charsetDefault The default character set. This is the same as
specifying the character set charsetUTF8.

charsetUSASCII A character set using US-ASCII which defines 7-bit
printable characters with values ranging from 20h
to 7Eh. An application that uses this character set
has the broadest compatibility with most mail
servers (MTAs) because it does not require the
server to handle 8-bit characters correctly when
the message is delivered. This is the most
commonly used character set for plain text email
messages in the English language and is the
default character set used by the class.

charsetISO8859_1 An 8-bit character set for most western European
languages such as English, French, Spanish and
German. This character set is also commonly
referred to as Latin1. The Windows code page for
this character set is 28591, however Windows code
page 1252 (Windows-1252) is typically used to
represent this character set in most applications.

charsetISO8859_2 An 8-bit character set for most central and eastern
European languages such as Czech, Hungarian,
Polish and Romanian. This character set is also
commonly referred to as Latin2. This character set
is similar to Windows code page 1250, however
the characters are arranged differently.

charsetISO8859_3 A character set for southern European languages
such as Maltese and Esperanto. This character set
was also used with the Turkish language, but it was
superseded by ISO 8859-9 which is the preferred
character set for Turkish. This character set is not
widely used in mail messages and it is
recommended that you use UTF-8 instead.

charsetISO8859_4 A character set for northern European languages
such as Latvian, Lithuanian and Greenlandic. This
character set is not widely used in mail messages

MailMessage.MimeCharacterSet Enumeration

and it is recommended that you use UTF-8
instead.

charsetISO8859_5 An 8-bit character set for Cyrillic languages such
as Russian, Bulgarian and Serbian. The Windows
code page for this character set is 28595. This
character set is not widely used and it is
recommended that you use UTF-8 instead.

charsetISO8859_6 An 8-bit character set for Arabic languages. Note
that the application is responsible for displaying
text that uses this character set. In particular, any
display engine needs to be able to handle the
reverse writing direction and analyze the context
of the message to correctly combine the glyphs.
This character set is not widely used and it is
recommended that you use UTF-8 instead.

charsetISO8859_7 An 8-bit character set for the Greek language. This
character set is also commonly referred to as
Latin/Greek. The Windows code page for this
character set is 28597.

charsetISO8859_8 An 8-bit character set for the Hebrew language.
Note that similar to Arabic, Hebrew uses a reverse
writing direction. An application which displays this
character should be capable of processing bi-
directional text where a single message may
include both right-to-left and left-to-right
languages, such as Hebrew and English. The
Windows code page for this character set is 28598.

charsetISO8859_9 An 8-bit character set for the Turkish language.
This character set is also commonly referred to as
Latin5. The Windows code page for this character
set is 28599.

charsetISO8859_10 A character set for the Danish, Icelandic,
Norwegian and Swedish languages. This character
set is also commonly referred to as Latin-6 and is
similar to ISO 8859-4.

charsetISO8859_13 A character set for Baltic languages. This character
set is also commonly referred to as Latin-7. This
character set is similar to ISO 8859-4, except it
adds certain Polish characters and does not
support Nordic languages.

charsetISO8859_14 A character set for Gaelic languages such as Irish,
Manx and Scottish Gaelic. This character set is also
commonly referred to as Latin-8. This character set
replaced ISO 8859-12 which was never fully
implemented.

charsetISO8859_15 A character set for western European languages.
This character set is also commonly referred to as
Latin-9 and is nearly identical to ISO8859-1 except

that it replaces lesser-used symbols with the Euro
sign and some letters.

charsetISO2022_JP A multi-byte character encoding for Japanese that
is widely used with mail messages. This is a 7-bit
encoding where all characters start with ASCII and
uses escape sequences to switch to the double-
byte character sets.

charsetISO2022_KR A multi-byte character encoding for Korean which
encodes both ASCII and Korean double-byte
characters. This is a 7-bit encoding which uses the
shift in and shift out control characters to switch to
the double-byte character set.

charsetISO2022_CN A multi-byte character encoding for Simplified
Chinese which encodes both ASCII and Chinese
double-byte characters. This is a 7-bit encoding
which uses the shift in and shift out control
characters to switch to the double-byte character
set.

charsetKOI8R A character set for Russian using the Cyrillic
alphabet. This character set also covers the
Bulgarian language. Most mail messages in the
Russian language use this character set or UTF-8
instead of ISO 8859-5, which was never widely
adopted.

charsetKOI8U A character set for Ukrainian using the Cyrillic
alphabet. This character set is similar to the KOI8-R
character set, but replaces certain symbols with
Ukrainian letters. Most mail messages in the
Ukrainian language use this character set or UTF-8
instead of ISO 8859-5, which was never widely
adopted.

charsetGB2312 A multi-byte character encoding which can
represent ASCII and simplified Chinese characters.
It has been superseded by GB18030, however it
remains widely used in China.

charsetGB18030 A Unicode transformation format which can
represent all Unicode code points and supports
both simplified and traditional Chinese characters.
It is backwards compatible with GB2312 and
supersedes that character set.

charsetBIG5 A multi-byte character set that supports both
ASCII characters and traditional Chinese
characters. It is widely used in Taiwan, Hong Kong
and Macau. It is no longer commonly used in
China, which has developed GB18030 as a
standard encoding. Note that Microsoft's
implementation of Big5 on Windows does not
support all of the extensions and is missing certain

code points.

charsetUTF7 A 7-bit Unicode Transformation Format that uses
variable-length character encoding to represent
Unicode text as a stream of ASCII characters that
are safe to transport between mail servers that
only support 7-bit printable characters. It is
primarily used as an alternative to UTF-8 which
requires that the mail server support 8-bit text or
use quoted-printable encoding.

charsetUTF8 An 8-bit Unicode Transformation Format that uses
multibyte character sequences to represent
Unicode text. It is backwards compatible with the
ASCII character set, however because it uses 8-bit
text, it should be encoded using either quoted-
printable or base64 encoding to ensure that mail
servers that do not support 8-bit characters.

charsetUTF16 A 16-bit Unicode Transformation Format that uses
two bytes to represent each Unicode character.
Messages that use UTF-16 are commonly encoded
using the base64 algorithm. It is recommended
that most applications use the UTF-8 character set,
which is capable of representing all Unicode
characters.

Requirements
Namespace: SocketTools

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the content types supported by the MailMessage class.

[Visual Basic]
Public Enum MailMessage.MimeContent

[C#]
public enum MailMessage.MimeContent

Members

Member Name Description

contentUnknown The content type is unknown. This value may be
returned if the message handle is invalid, or if the
file extension is unknown and the file could not be
opened for read access.

contentDefault The default content type. This is the same as
specifying the content type contentText.

contentApplication The content is application specific. Examples of this
type of file would be a Microsoft Word document
or an executable program. This is also the default
type for files which have an unrecognized file
name extension and contain binary data.

contentAudio The content is audio data in one of several
standard formats. Examples of this type of file
would be a Windows (.wav) file or MPEG3 (.mp3)
file.

contentImage The content is an image data in one of several
standard formats. Examples of this type of file
would be a GIF or JPEG image file.

contentMessage The content is an email message encapsulated
within the current message.

contentMultipart The content is a multipart MIME email message
which contains additional message parts. For
example, an email message which contains both a
text message and file attachment would be
identified as a multipart message.

contentText The content is textual data. This is also the default
type for files which have an unrecognized file
name extension and contain only printable text.

contentVideo The content is video data in one of several
standard formats. Examples of this type of file
would be a Windows (.avi) or Quicktime (.mov)
video file.

contentWideText The content is Unicode text. This is also the default
type for files which have an unrecognized file

MailMessage.MimeContent Enumeration

name extension. The content must be prefixed
with a byte order mark (BOM) to be recognized as
Unicode text.

Requirements
Namespace: SocketTools

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the encoding types supported by the MailMessage class.

[Visual Basic]
Public Enum MailMessage.MimeEncoding

[C#]
public enum MailMessage.MimeEncoding

Members

Member Name Description

encodingUnknown The encoding type is unknown.

encodingDefault The encoding type is based on the content type.
Textual data is not encoded, and binary data is
encoded using the standard base64 encoding
algorithm. This is the default option for file
attachments.

encoding7Bit The data contains printable UTF-8 and ANSI text
characters. This is the default encoding type for
most email messages.

encoding8Bit The data contains printable ASCII characters as
well as printable characters using UTF-8 encoding
and the ISO8859 (Latin1) character set. In some
cases, it may be necessary to use basse64
encoding if the mail server cannot accept 8-bit
characters.

encodingBinary The data contains unmodified 8-bit binary data.
Messages which contain binary data should be
encoded using the base64 algorithm.

encodingQuoted The data is encoded using quoted-printable
encoding. Printable ASCII characters are left as-is,
with non-printable characters encoded as their
hexadecimal value. Quoted-printable encoding is
commonly used with HTML formatted email
messages.

encodingBase64 The data is encoded using the standard base64
algorithm. This is the most common encoding
method for binary data in an email message.

encodingUucode The data is encoded using the uuencode
algorithm. This encoding method is common for
binary attachments to news articles, but is rarely
used with email messages.

Requirements
Namespace: SocketTools

MailMessage.MimeEncoding Enumeration

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the export options that the MailMessage class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum MailMessage.MimeExportOptions

[C#]
[Flags]
public enum MailMessage.MimeExportOptions

Members

Member Name Description Value

exportDefault The default export options. The headers
for the message are written out in a
specific consistent order, with custom
headers written to the end of the
header block regardless of the order in
which they were set or imported from
another message. If the message
contains Bcc, Received, Return-Path,
Status or X400-Received header fields,
they will not be exported.

0

exportAllHeaders All headers, including the Bcc, Received,
Return-Path, Status and X400-Received
header fields will be exported. Normally
these headers are not exported because
they are only used by the mail transport
system. This option can be useful when
exporting a message to be stored on
the local system, but should not be used
when exporting a message to be
delivered to another user.

1

exportKeepOrder The original order in which the message
header fields were set or imported are
preserved when the message is
exported.

2

exportNoHeaders When exporting a message, the main
header block will not be included. This
can be useful when creating a multipart
message for services which expect
MIME formatted data, such as HTTP
POST requests. This option should
never be used for email messages being
submitted using SMTP.

4

Requirements

MailMessage.MimeExportOptions Enumeration

Namespace: SocketTools

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the search options supported by the MailMessage class.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum MailMessage.MimeSearch

[C#]
[Flags]
public enum MailMessage.MimeSearch

Members

Member Name Description Value

searchDefault Perform a complete match against the
specified header value. The comparison
is not case-sensitive. It is the default
search option used if a search option is
not specified.

0

searchCaseSensitive The header value comparison will be
case-sensitive. Note that this does not
affect header field names. Matches for
header names are always case-
insensitive.

1

searchPartialMatch Perform a partial match against the
specified header value. It recommended
that this option be used when searching
for matches to email addresses.

2

searchDecodeHeaders Decode any encoded message headers
before comparing them to the specified
value. This option can increase the
amount of time required to search the
message store and should only be used
when necessary.

4

Requirements
Namespace: SocketTools

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

See Also
SocketTools Namespace | FindMessage Method (SocketTools.MailMessage)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.MimeSearch Enumeration

Specifies the message store access options supported by the MailMessage class.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum MailMessage.MimeStorage

[C#]
[Flags]
public enum MailMessage.MimeStorage

Members

Member Name Description Value

storeRead The message store will be opened for
read access. The contents of the
message store can be accessed, but
cannot be modified by the process
unless it has also been opened for
writing.

0

storeWrite The message store will be opened for
writing. This mode also implies read
access and must be specified if the
application needs to modify the
contents of the message store.

1

storeCreate The message store will be created if the
storage file does not exist. If the file
exists, it will be truncated. This mode
implies read and write access.

2

storeLock The message store will be opened so
that it may only be accessed and
modified by the current process.

4

storeCompress The contents of the message store are
compressed. This option is automatically
enabled if a compressed message store
is opened for reading or writing.

4096

storeMailbox The message store should use the UNIX
mbox format when reading and storing
messages. This option is provided for
backwards compatibility and is not
recommended for general use.

8192

Requirements
Namespace: SocketTools

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

MailMessage.MimeStorage Enumeration

See Also
SocketTools Namespace | OpenStore Method (SocketTools.MailMessage)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub MailMessage.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void MailMessage.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.OnErrorEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see MailMessage.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.MailMessage.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class MailMessage.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class MailMessage.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the MailMessage class.

Example

<Assembly: SocketTools.MailMessage.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.MailMessage.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

See Also
MailMessage.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.RuntimeLicenseAttribute Class

MailMessage.RuntimeLicenseAttribute overview

Public Instance Constructors

 MailMessage.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
MailMessage.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public MailMessage.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the MailMessage class.

See Also
MailMessage.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.RuntimeLicenseAttribute Constructor

The properties of the MailMessage.RuntimeLicenseAttribute class are listed below. For a complete list
of MailMessage.RuntimeLicenseAttribute class members, see the
MailMessage.RuntimeLicenseAttribute Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
MailMessage.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
MailMessage.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessage.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see MailMessageException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.MailMessageException

[Visual Basic]
Public Class MailMessageException
 Inherits ApplicationException

[C#]
public class MailMessageException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A MailMessageException is thrown by the MailMessage class when an error occurs.

The default constructor for the MailMessageException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.MailMessage (in SocketTools.MailMessage.dll)

See Also
MailMessageException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessageException Class

MailMessageException overview

Public Instance Constructors

 MailMessageException Overloaded. Initializes a new instance of the
MailMessageException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

MailMessageException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
MailMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the MailMessageException class with the last network error code.

Overload List
Initializes a new instance of the MailMessageException class with the last network error code.

public MailMessageException();

Initializes a new instance of the MailMessageException class with a specified error number.

public MailMessageException(int);

Initializes a new instance of the MailMessageException class with a specified error message.

public MailMessageException(string);

Initializes a new instance of the MailMessageException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

public MailMessageException(string,Exception);

See Also
MailMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessageException Constructor

Initializes a new instance of the MailMessageException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public MailMessageException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the MailMessage.ErrorCode enumeration.

See Also
MailMessageException Class | SocketTools Namespace | MailMessageException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessageException Constructor ()

Initializes a new instance of the MailMessageException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public MailMessageException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
MailMessageException Class | SocketTools Namespace | MailMessageException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessageException Constructor (String)

Initializes a new instance of the MailMessageException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public MailMessageException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
MailMessageException Class | SocketTools Namespace | MailMessageException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessageException Constructor (String, Exception)

Initializes a new instance of the MailMessageException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public MailMessageException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the MailMessage.ErrorCode enumeration.

See Also
MailMessageException Class | SocketTools Namespace | MailMessageException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessageException Constructor (Int32)

The properties of the MailMessageException class are listed below. For a complete list of
MailMessageException class members, see the MailMessageException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
MailMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessageException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public MailMessage.ErrorCode ErrorCode {get;}

Property Value
Returns a MailMessage.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the MailMessageException class sets the error code to the last network error
that occurred. For more information about the errors that may occur, refer to the MailMessage.ErrorCode
enumeration.

See Also
MailMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessageException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
MailMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessageException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
MailMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessageException.Number Property

The methods of the MailMessageException class are listed below. For a complete list of
MailMessageException class members, see the MailMessageException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
MailMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessageException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
MailMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

MailMessageException.ToString Method

Implements the Network News Transfer Protocol.

For a list of all members of this type, see NntpClient Members.

System.Object
 SocketTools.NntpClient

[Visual Basic]
Public Class NntpClient
 Implements IDisposable

[C#]
public class NntpClient : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The Network News Transfer Protocol (NNTP) is used with servers that provide news services. This is similar
in functionality to bulletin boards or message boards, where topics are organized hierarchically into
groups, called newsgroups. Users can browse and search for messages, called news articles, which have
been posted by other users. On many servers, they can also post their own articles which can be read by
others. The largest collection of public newsgroups available is called USENET, a world-wide distributed
discussion system. In addition, there are a large number of smaller news servers. For example, Microsoft
operates a news server which functions as a forum for technical questions and announcements.

The NntpClient class provides a comprehensive interface for accessing newsgroups, retrieving articles and
posting new articles. In combination with the MailMessage class to process the news articles, this class can
be used to integrate newsgroup access with an existing email application, or you can implement your own
full-featured newsgroup client.

This class supports secure connections using the standard SSL and TLS protocols.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
NntpClient Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient Class

NntpClient overview

Public Static (Shared) Fields

nntpPortDefault A constant value which specifies the default port
number.

nntpPortSecure A constant value which specifies the default port
number for a secure connection.

nntpTimeout A constant value which specifies the default
timeout period.

Public Instance Constructors

 NntpClient Constructor Initializes a new instance of the NntpClient class.

Public Instance Properties

Article Gets and sets the current article number in the
selected newsgroup.

ArticleCount Gets the number of available articles in the current
newsgroup.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

NntpClient Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.nntpPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.nntpPortSecure.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.nntpTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.CertificateUser.html

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

FirstArticle Gets the first available article in the selected
newsgroup.

GroupName Gets and sets the name of the currently selected
newsgroup.

GroupTitle Gets the title associated with the currently selected
newsgroup.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

LastArticle Gets the last available article in the selected
newsgroup.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

Localize Gets a value that specifies if the date and time are
localized.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

MessageId Gets the unique message identifier for the current

news article.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client session.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the client.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.RemoteService.html

Version Gets a value which returns the current version of
the NntpClient class library.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Authenticate Overloaded. Authenticate the client session with a
username and password.

Cancel Cancel the current blocking client operation.

CloseArticle Closes the current article that has been opened or
created.

Command Overloaded. Send a custom command to the
server.

Connect Overloaded. Establish a connection with a remote
host.

CreateArticle Creates a new article in the current newsgroup.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
NntpClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetArticle Overloaded. Retrieve an article from the server.

GetFirstArticle Overloaded. Return information about a selected
range of articles in the current newsgroup.

GetFirstGroup Overloaded. Return information about
newsgroups created after the specified date.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeaders Overloaded. Retrieves the headers for the
specified article from the server.

GetNextArticle Return information about the next article available
in the current newsgroup.

GetNextGroup Return information about the next available
newsgroup.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the NntpClient
class.

OpenArticle Overloaded. Opens the specified article in the
currently selected newsgroup.

PostArticle Overloaded. Post a new article to the currently
selected newsgroup.

Read Overloaded. Read data from the server and store
it in a byte array.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SelectGroup Selects the specified newsgroup as the current
newsgroup.

StoreArticle Overloaded. Retrieve an article from the selected
newsgroup and store it in a file.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the server.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnCommand Occurs when the client sends a command to the
remote host and receives a reply indicating the
result of that command.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the NntpClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also

NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the NntpClient class.

[Visual Basic]
Public Sub New()

[C#]
public NntpClient();

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient Constructor

This structure is used by the GetFirstArticle and GetNextArticle methods return information about a news
article on the server.

For a list of all members of this type, see NntpClient.NewsArticle Members.

System.Object
 System.ValueType
 SocketTools.NntpClient.NewsArticle

[Visual Basic]
Public Structure NntpClient.NewsArticle

[C#]
public struct NntpClient.NewsArticle

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
NntpClient.NewsArticle Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsArticle Structure

NntpClient.NewsArticle overview

Public Instance Fields

Article Get the news article number.

Author Gets the author of the message.

DatePosted Gets the date and time the news article was
posted.

Lines Gets the number of lines of text in the article.

MessageId Gets the unique message ID for the news article.

References Gets the references to the news article.

Size Gets the size of the article in bytes.

Subject Gets the subject of the news article.

Public Instance Methods

Equals (inherited from ValueType) Indicates whether this instance and a specified
object are equal.

GetHashCode (inherited from ValueType) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from ValueType) Returns the fully qualified type name of this
instance.

See Also
NntpClient.NewsArticle Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsArticle Members

The fields of the NntpClient.NewsArticle structure are listed below. For a complete list of
NntpClient.NewsArticle structure members, see the NntpClient.NewsArticle Members topic.

Public Instance Fields

Article Get the news article number.

Author Gets the author of the message.

DatePosted Gets the date and time the news article was
posted.

Lines Gets the number of lines of text in the article.

MessageId Gets the unique message ID for the news article.

References Gets the references to the news article.

Size Gets the size of the article in bytes.

Subject Gets the subject of the news article.

See Also
NntpClient.NewsArticle Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsArticle Fields

Get the news article number.

[Visual Basic]
Public Article As Integer

[C#]
public int Article;

See Also
NntpClient.NewsArticle Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsArticle.Article Field

Gets the author of the message.

[Visual Basic]
Public Author As String

[C#]
public string Author;

See Also
NntpClient.NewsArticle Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsArticle.Author Field

Gets the date and time the news article was posted.

[Visual Basic]
Public DatePosted As Date

[C#]
public DateTime DatePosted;

See Also
NntpClient.NewsArticle Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsArticle.DatePosted Field

Gets the number of lines of text in the article.

[Visual Basic]
Public Lines As Integer

[C#]
public int Lines;

See Also
NntpClient.NewsArticle Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsArticle.Lines Field

Gets the unique message ID for the news article.

[Visual Basic]
Public MessageId As String

[C#]
public string MessageId;

See Also
NntpClient.NewsArticle Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsArticle.MessageId Field

Gets the references to the news article.

[Visual Basic]
Public References As String

[C#]
public string References;

See Also
NntpClient.NewsArticle Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsArticle.References Field

Gets the size of the article in bytes.

[Visual Basic]
Public Size As Integer

[C#]
public int Size;

See Also
NntpClient.NewsArticle Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsArticle.Size Field

Gets the subject of the news article.

[Visual Basic]
Public Subject As String

[C#]
public string Subject;

See Also
NntpClient.NewsArticle Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsArticle.Subject Field

This structure is used by the GetFirstGroup and GetNextGroup methods return information about a news
article on the server.

For a list of all members of this type, see NntpClient.NewsGroup Members.

System.Object
 System.ValueType
 SocketTools.NntpClient.NewsGroup

[Visual Basic]
Public Structure NntpClient.NewsGroup

[C#]
public struct NntpClient.NewsGroup

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
NntpClient.NewsGroup Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsGroup Structure

NntpClient.NewsGroup overview

Public Instance Fields

Access Gets the access permissions for the newsgroup.

FirstArticle Gets the first available article number.

LastArticle Gets the last available article number.

Name Gets the name of the newsgroup.

Public Instance Methods

Equals (inherited from ValueType) Indicates whether this instance and a specified
object are equal.

GetHashCode (inherited from ValueType) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from ValueType) Returns the fully qualified type name of this
instance.

See Also
NntpClient.NewsGroup Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsGroup Members

The fields of the NntpClient.NewsGroup structure are listed below. For a complete list of
NntpClient.NewsGroup structure members, see the NntpClient.NewsGroup Members topic.

Public Instance Fields

Access Gets the access permissions for the newsgroup.

FirstArticle Gets the first available article number.

LastArticle Gets the last available article number.

Name Gets the name of the newsgroup.

See Also
NntpClient.NewsGroup Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsGroup Fields

Gets the access permissions for the newsgroup.

[Visual Basic]
Public Access As NewsGroupAccess

[C#]
public NewsGroupAccess Access;

See Also
NntpClient.NewsGroup Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsGroup.Access Field

Gets the first available article number.

[Visual Basic]
Public FirstArticle As Integer

[C#]
public int FirstArticle;

See Also
NntpClient.NewsGroup Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsGroup.FirstArticle Field

Gets the last available article number.

[Visual Basic]
Public LastArticle As Integer

[C#]
public int LastArticle;

See Also
NntpClient.NewsGroup Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsGroup.LastArticle Field

Gets the name of the newsgroup.

[Visual Basic]
Public Name As String

[C#]
public string Name;

See Also
NntpClient.NewsGroup Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsGroup.Name Field

The properties of the NntpClient class are listed below. For a complete list of NntpClient class members,
see the NntpClient Members topic.

Public Instance Properties

Article Gets and sets the current article number in the
selected newsgroup.

ArticleCount Gets the number of available articles in the current
newsgroup.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

FirstArticle Gets the first available article in the selected
newsgroup.

GroupName Gets and sets the name of the currently selected
newsgroup.

GroupTitle Gets the title associated with the currently selected
newsgroup.

Handle Gets a value that specifies the client handle

NntpClient Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.CertificateUser.html

allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

LastArticle Gets the last available article in the selected
newsgroup.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

Localize Gets a value that specifies if the date and time are
localized.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

MessageId Gets the unique message identifier for the current
news article.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client session.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.RemoteService.html

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the client.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the NntpClient class library.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets the current article number in the selected newsgroup.

[Visual Basic]
Public Property Article As Integer

[C#]
public int Article {get; set;}

Property Value
An integer value which specifies the article number.

Remarks
When a newsgroup is selected using the SelectGroup method, the value of this property is initialized to
the first available news article in the group.

Setting the Article property updates the MessageId property to reflect the specified article's message ID.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Article Property

Gets the number of available articles in the current newsgroup.

[Visual Basic]
Public ReadOnly Property ArticleCount As Integer

[C#]
public int ArticleCount {get;}

Property Value
An integer value which specifies the number of available news articles.

Remarks
This property value is only meaningful after the SelectGroup method has been called.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ArticleCount Property

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.AutoResolve Property

Gets and sets a value which indicates if the client is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the client is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if client operations complete synchronously or asynchronously.
If set to true, then each client operation (such as sending or receiving data) will return when the operation
has completed or timed-out. If set to false, client operations will return immediately. If the operation
would result in the client blocking (such as attempting to read data when no data has been sent by the
remote host), an error is generated.

It is important to note that certain events, such as OnDisconnect, OnRead and OnWrite are only fired if
the client is in non-blocking mode.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Blocking Property

Get a value that specifies the date that the security certificate expires.

[Visual Basic]
Public ReadOnly Property CertificateExpires As String

[C#]
public string CertificateExpires {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateExpires property returns a string that specifies the date and time that the security
certificate expires. This property will return an empty string if a secure connection has not been
established with the remote host.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CertificateExpires Property

Get a value that specifies the date that the security certificate was issued.

[Visual Basic]
Public ReadOnly Property CertificateIssued As String

[C#]
public string CertificateIssued {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateIssued property returns a string that specifies the date and time that the security certificate
was issued. This property will return an empty string if a secure connection has not been established with
the remote host.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CertificateIssued Property

Get a value that provides information about the organization that issued the certificate.

[Visual Basic]
Public ReadOnly Property CertificateIssuer As String

[C#]
public string CertificateIssuer {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateIssuer property returns a string that contains information about the organization that
issued the server certificate. The string value is a comma separated list of tagged name and value pairs. In
the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CertificateIssuer Property

Gets and sets a value that specifies the name of the client certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the certificate name.

Remarks
The CertificateName property is used to specify the name of a client certificate to use when establishing
a secure connection. It is only required that you set this property value if the server requires a client
certificate for authentication. If this property is not set, a client certificate will not be provided to the server.
If a certificate name is specified, the certificate must have a private key associated with it, otherwise the
connection attempt will fail because the control will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
NntpClient Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CertificateName Property

Gets a value which indicates the status of the security certificate returned by the remote host.

[Visual Basic]
Public ReadOnly Property CertificateStatus As SecurityCertificate

[C#]
public NntpClient.SecurityCertificate CertificateStatus {get;}

Property Value
A SecurityCertificate enumeration value which specifies the status of the certificate.

Remarks
The CertificateStatus property is used to determine the status of the security certificate returned by the
remote host when a secure connection has been established. This property value should be checked after
the connection to the server has completed, but prior to beginning a transaction.

Note that if the certificate cannot be validated, the secure connection will not be automatically terminated.
It is the responsibility of your application to determine the best course of action to take if the certificate is
invalid. Even if the security certificate cannot be validated, the data exchanged with the remote host will
still be encrypted.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CertificateStatus Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when establishing a secure connection. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and therefore it is
not necessary to set this property value because that is the default location that will be used to search for
the certificate. This property is only used if the CertificateName property is also set to a valid certificate
name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the property
should specify the full path to the file and must contain both the certificate and private key in PKCS #12

NntpClient.CertificateStore Property

format. If the file is protected by a password, the CertificatePassword property must also be set to
specify the password.

See Also
NntpClient Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.CertificatePassword.html

Gets a value that provides information about the organization that the server certificate was issued to.

[Visual Basic]
Public ReadOnly Property CertificateSubject As String

[C#]
public string CertificateSubject {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateSubject property returns a string that contains information about the organization that the
server certificate was issued to. The string value is a comma separated list of tagged name and value pairs.
In the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CertificateSubject Property

Gets a value that indicates the length of the key used by the encryption algorithm for a secure connection.

[Visual Basic]
Public ReadOnly Property CipherStrength As Integer

[C#]
public int CipherStrength {get;}

Property Value
An integer value which specifies the encryption key length if a secure connection has been established;
otherwise a value of 0 is returned.

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure data
stream. Common values returned by this property are 128 and 256. A key length of 40 or 56 bits is
considered insecure and subject to brute force attacks. 128-bit and 256-bit keys are considered secure. If
this property returns a value of 0, this means that a secure connection has not been established with the
remote host.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CipherStrength Property

Gets the first available article in the selected newsgroup.

[Visual Basic]
Public Property FirstArticle As Integer

[C#]
public int FirstArticle {get; set;}

Property Value
An integer value which specifies the first article number.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.FirstArticle Property

Gets and sets the name of the currently selected newsgroup.

[Visual Basic]
Public Property GroupName As String

[C#]
public string GroupName {get; set;}

Property Value
A string which specifies the current newsgroup name.

Remarks
Setting this property value is similar to calling the SelectGroup method. The current newsgroup will
change to the specified newsgroup and the current article will be changed to the first available article in
the group.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GroupName Property

Gets the title associated with the currently selected newsgroup.

[Visual Basic]
Public ReadOnly Property GroupTitle As String

[C#]
public string GroupTitle {get;}

Property Value
A string describing the currently selected newsgroup.

Remarks
The news server must support the XGTITLE command so that the group description can be obtained when
the newsgroup is selected. If this command is not recognized, then no description will be returned.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GroupTitle Property

Gets a value that specifies the client handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current client session.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Handle Property

Gets a value which specifies the length of the message digest that was selected for a secure connection.

[Visual Basic]
Public ReadOnly Property HashStrength As Integer

[C#]
public int HashStrength {get;}

Property Value
An integer value which specifies the length of the message digest if a secure connection has been
established; otherwise a value of 0 is returned.

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that was
selected. Common values returned by this property are 128 and 160. If this property returns a value of 0,
this means that a secure connection has not been established with the remote host.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.HashStrength Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.HostAddress Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.HostName Property

Gets a value which indicates if the current thread is performing a blocking client operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next client operation will not fail. An application
should always check the return value from a client operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.IsBlocked Property

Gets a value which indicates if a connection to the remote host has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the remote
host. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.IsInitialized Property

Gets a value which indicates if there is data available to be read from the socket connection to the server.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to read the client. Note
that even if this property does return true indicating that there is data available to be read, applications
should always check the return value from the Read method.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.IsReadable Property

Gets a value which indicates if data can be written to the client without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the client; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to write data to the client.
Note that even if this property does return true indicating that data can be written to the client,
applications should always check the return value from the Write method.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.IsWritable Property

Gets the last available article in the selected newsgroup.

[Visual Basic]
Public Property LastArticle As Integer

[C#]
public int LastArticle {get; set;}

Property Value
An integer value which specifies the last article number.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.LastArticle Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public NntpClient.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.LastErrorString Property

Gets the local Internet address that the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local Internet address that the client is bound to when a
connection is established with a remote host. This property may return either an IPv4 or IPv6 formatted
address, depending on the type of connection that was established.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.LocalAddress Property

Gets a value that specifies if the date and time are localized.

[Visual Basic]
Public Property Localize As Boolean

[C#]
public bool Localize {get; set;}

Property Value
A boolean value which specifies if the date and time is localized.

Remarks
Setting the Localize property controls how date and time values are localized. If the property is set to
true, then the date and time will be adjusted to the current timezone. If the property is set to false, the
date and time are returned as UTC (Coordinated Universal Time) values.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Localize Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.LocalName Property

Gets the local port number the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalPort As Integer

[C#]
public int LocalPort {get;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to identify the local port number that the client is bound to to when a
connection is established with a remote host.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.LocalPort Property

Gets the unique message identifier for the current news article.

[Visual Basic]
Public Property MessageId As String

[C#]
public string MessageId {get; set;}

Property Value
A string that specifies the unique message identifier for the current article.

Remarks
Setting this property will cause the current article number to change to match the article that the message
identifier specifies. If no such article exists, an exception will be generated.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.MessageId Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As NewsOptions

[C#]
public NntpClient.NewsOptions Options {get; set;}

Property Value
Returns one or more NewsOptions enumeration flags which specify the options for the client. The default
value for this property is NewsOptions.optionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Options Property

Gets and sets the password used to authenticate the client session.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password.

Remarks
If a password is not specified when the Connect method is called, the value of this property will be used
as the default password when establishing a connection with the server.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Password Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.RemotePort Property

Gets a value which specifies the last result code returned by the server.

[Visual Basic]
Public ReadOnly Property ResultCode As Integer

[C#]
public int ResultCode {get;}

Property Value
An integer value which specifies the last result code returned by the server.

Remarks
Result codes are three-digit numeric values returned by the remote server and may be broken down into
the following ranges:

ResultCode Description

100-199 Positive preliminary result. This indicates that the
requested action is being initiated, and the client
should expect another reply from the server
before proceeding.

200-299 Positive completion result. This indicates that the
server has successfully completed the requested
action.

300-399 Positive intermediate result. This indicates that the
requested action cannot complete until additional
information is provided to the server.

400-499 Transient negative completion result. This indicates
that the requested action did not take place, but
the error condition is temporary and may be
attempted again.

500-599 Permanent negative completion result. This
indicates that the requested action did not take
place.

It is important to note that while some result codes have become standardized, not all servers respond to
commands using the same result codes. For example, one server may respond with a result code of 221
to indicate success, while another may respond with a value of 235. It is recommended that applications
check for ranges of values to determine if a command was successful, not a specific value.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ResultCode Property

Gets a string value which describes the result of the previous command.

[Visual Basic]
Public ReadOnly Property ResultString As String

[C#]
public string ResultString {get;}

Property Value
A string which describes the result of the previous command executed on the server.

Remarks
The ResultString property returns the result string from the last action taken by the client. This string is
generated by the remote server, and typically is used to describe the result code. For example, if an error
is indicated by the result code, the result string may describe the condition that caused the error.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ResultString Property

Gets and sets a value which specifies if a secure connection is established.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connection is established; otherwise returns false. The default value is false.

Remarks
The Secure property determines if a secure connection is established with the remote host. The default
value for this property is false, which specifies that a standard connection to the server is used. To
establish a secure connection, the application should set this property value to true prior to calling the
Connect method. Once the connection has been established, the client may exchange data with the
server as with standard connections.

It is strongly recommended that any application that sets this property true use error handling to trap an
errors that may occur. If the control is unable to initialize the security libraries, or otherwise cannot create
a secure session for the client, an exception may be generated when this property value is set.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Secure Property

Gets a value that specifies the encryption algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureCipher As SecureCipherAlgorithm

[C#]
public NntpClient.SecureCipherAlgorithm SecureCipher {get;}

Property Value
A SecureCipherAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureCipher property returns a value which identifies the algorithm used to encrypt the data
stream. If a secure connection has not been established, this property will return a value of cipherNone.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.SecureCipher Property

Gets a value that specifies the message digest algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureHash As SecureHashAlgorithm

[C#]
public NntpClient.SecureHashAlgorithm SecureHash {get;}

Property Value
A SecureHashAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureHash property returns a value which identifies the message digest (hash) algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of hashNone.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.SecureHash Property

Gets a value that specifies the key exchange algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureKeyExchange As SecureKeyAlgorithm

[C#]
public NntpClient.SecureKeyAlgorithm SecureKeyExchange {get;}

Property Value
A SecureKeyAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureKeyExchange property returns a value which identifies the key exchange algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of keyExchangeNone.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.SecureKeyExchange Property

Gets and sets a value which specifies the protocol used for a secure connection.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public NntpClient.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when establishing a secure
connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when establishing a
secure connection with a server or accepting a secure connection from a client. By default, the class will
attempt to use either SSL v3 or TLS v1 to establish the connection, with the appropriate protocol
automatically selected based on the capabilities of the remote host. It is recommended that you only
change this property value if you fully understand the implications of doing so. Assigning a value to this
property will override the default protocol and force the class to attempt to use only the protocol
specified.

Multiple security protocols may be specified by combining them using a bitwise or operator. After a
connection has been established, this property will identify the protocol that was selected. Attempting to
set this property after a connection has been established will result in an exception being thrown. This
property should only be set after setting the Secure property to true and before calling the Accept or
Connect methods.

In some cases, a server may only accept a secure connection if the TLS v1 protocol is specified. If the
security protocol is not compatible with the server, then the connection will fail with an error indicating
that the control is unable to establish a security context for the session. In this case, try assigning the
property to protocolTLS1 and attempt the connection again.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.SecureProtocol Property

Gets a value which specifies the current status of the client.

[Visual Basic]
Public ReadOnly Property Status As NewsStatus

[C#]
public NntpClient.NewsStatus Status {get;}

Property Value
A NewsStatus enumeration value which specifies the current client status.

Remarks
The Status property returns the current status of the client. This property can be used to check on
blocking connections to determine if the client is interacting with the remote host before taking some
action.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Status Property

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public NntpClient.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
NntpClient Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Timeout Property

Gets and sets the current timezone offset in seconds.

[Visual Basic]
Public Property TimeZone As Integer

[C#]
public int TimeZone {get; set;}

Property Value
An integer value which specifies the current timezone offset in seconds.

Remarks
The TimeZone property returns the current offset from UTC in seconds. Setting the property changes the
current timezone offset to the specified value. The value of this property is initially determined by the date
and time settings on the local system.

This property value is used in conjunction with the Localize property to control how date and time
localization is handled.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.TimeZone Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public NntpClient.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.TraceFlags Property

Gets and sets the username used to authenticate the client session.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username.

Remarks
If a username is not specified when the Connect method is called, the value of this property will be used
as the default username when establishing a connection with the server.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.UserName Property

Gets a value which returns the current version of the NntpClient class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the NntpClient class
library. This value can be used by an application for validation and debugging purposes.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Version Property

The methods of the NntpClient class are listed below. For a complete list of NntpClient class members,
see the NntpClient Members topic.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Authenticate Overloaded. Authenticate the client session with a
username and password.

Cancel Cancel the current blocking client operation.

CloseArticle Closes the current article that has been opened or
created.

Command Overloaded. Send a custom command to the
server.

Connect Overloaded. Establish a connection with a remote
host.

CreateArticle Creates a new article in the current newsgroup.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
NntpClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetArticle Overloaded. Retrieve an article from the server.

GetFirstArticle Overloaded. Return information about a selected
range of articles in the current newsgroup.

GetFirstGroup Overloaded. Return information about
newsgroups created after the specified date.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeaders Overloaded. Retrieves the headers for the
specified article from the server.

GetNextArticle Return information about the next article available
in the current newsgroup.

GetNextGroup Return information about the next available
newsgroup.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the NntpClient
class.

OpenArticle Overloaded. Opens the specified article in the
currently selected newsgroup.

NntpClient Methods

PostArticle Overloaded. Post a new article to the currently
selected newsgroup.

Read Overloaded. Read data from the server and store
it in a byte array.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SelectGroup Selects the specified newsgroup as the current
newsgroup.

StoreArticle Overloaded. Retrieve an article from the selected
newsgroup and store it in a file.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the server.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the NntpClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the client could be attached to the current thread. If this method returns
false, the client could not be attached to the thread and the application should check the value of the
LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.AttachThread Method

Authenticate the client session.

Overload List
Authenticate the client session.

public bool Authenticate();

Authenticate the client session with a username and password.

public bool Authenticate(string,string);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Authenticate Method

Authenticate the client session.

[Visual Basic]
Overloads Public Function Authenticate() As Boolean

[C#]
public bool Authenticate();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Authenticate method identifies the client to the news server, which may be required to access certain
newsgroups or to post articles. If the user name or password is invalid, an error will occur. This method
should only be used if the server indicates that authentication is required by returning an error.

The value of the UserName property is used to specify the username and the value of the Password
property is used to specify the password.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Authenticate Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Authenticate Method ()

Authenticate the client session with a username and password.

[Visual Basic]
Overloads Public Function Authenticate(_
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Authenticate(
 string userName,
 string userPassword
);

Parameters
userName

A string which specifies the username used to authenticate the client session.

userPassword
A string which specifies the password used to authenticate the client session.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Authenticate method identifies the client to the news server, which may be required to access certain
newsgroups or to post articles. If the user name or password is invalid, an error will occur. This method
should only be used if the server indicates that authentication is required by returning an error.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Authenticate Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Authenticate Method (String, String)

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Cancel Method

Closes the current article that has been opened or created.

[Visual Basic]
Public Function CloseArticle() As Boolean

[C#]
public bool CloseArticle();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CloseArticle method closes the current article that has been opened or created. If an article is being
created, this method actually submits the article to the server. Note that the client application is
responsible for generating the message headers as well as the body of the message. News articles
conform to the same general characteristics of an email message.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CloseArticle Method

Send a custom command to the server.

Overload List
Send a custom command to the server.

public bool Command(string);

Send a custom command to the server.

public bool Command(string,bool);

Send a custom command to the server.

public bool Command(string,string);

Send a custom command to the server.

public bool Command(string,string,bool);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Command Method

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String _
) As Boolean

[C#]
public bool Command(
 string command
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Command Method (String)

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal isMultiLine As Boolean _
) As Boolean

[C#]
public bool Command(
 string command,
 bool isMultiLine
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

isMultiLine
A boolean value which specifies if the command will result in multiple lines of output from the server.
For more information about a specific command, consult the standards documentation for the
protocol.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

The isMultiLine parameter is used by the method to determine if multiple lines of data will be returned by
the server as the result of a command. Unlike a single line response, which consists of a result code and
result string, a multi-line response consists of one or more lines of text, terminated by a special end-of-
data marker.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Command Method (String, Boolean)

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal parameters As String _
) As Boolean

[C#]
public bool Command(
 string command,
 string parameters
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

parameters
An string which specifies one or more parameters to be sent along with the command. If more than
one parameter is required, they must be separated by a single space character. Consult the protocol
standard and/or technical reference documentation for the server to determine what parameters
should be provided when issuing a specific command.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Command Method (String, String)

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal parameters As String, _
 ByVal isMultiLine As Boolean _
) As Boolean

[C#]
public bool Command(
 string command,
 string parameters,
 bool isMultiLine
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

parameters
An string which specifies one or more parameters to be sent along with the command. If more than
one parameter is required, they must be separated by a single space character. Consult the protocol
standard and/or technical reference documentation for the server to determine what parameters
should be provided when issuing a specific command.

isMultiLine
A boolean value which specifies if the command will result in multiple lines of output from the server.
For more information about a specific command, consult the standards documentation for the
protocol.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

The isMultiLine parameter is used by the method to determine if multiple lines of data will be returned by
the server as the result of a command. Unlike a single line response, which consists of a result code and
result string, a multi-line response consists of one or more lines of text, terminated by a special end-of-
data marker.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also

NntpClient.Command Method (String, String, Boolean)

NntpClient Class | SocketTools Namespace | NntpClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

Overload List
Establish a connection with a remote host.

public bool Connect();

Establish a connection with a remote host.

public bool Connect(string);

Establish a connection with a remote host.

public bool Connect(string,int);

Establish a connection with a remote host.

public bool Connect(string,int,int);

Establish a connection with a remote host.

public bool Connect(string,int,int,NewsOptions);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int,NewsOptions);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Connect Method

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect() As Boolean

[C#]
public bool Connect();

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the HostName or HostAddress property will be used to determine the host name or
address to connect to.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Connect Method ()

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String _
) As Boolean

[C#]
public bool Connect(
 string hostName
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Connect Method (String)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Connect Method (String, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Connect Method (String, Int32, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer, _
 ByVal options As NewsOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout,
 NewsOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the NewsOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Connect Method (String, Int32, Int32, NewsOptions)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer, _
 ByVal options As NewsOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout,
 NewsOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the username which will be used to authenticate the client session with the
remote host. Not all news servers require the client to authenticate the session.

userPassword
A string which specifies the password which will be used to authenticate the client session with the
remote host. Not all news servers require the client to authenticate the session.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the NewsOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns

NntpClient.Connect Method (String, Int32, String, String, Int32,
NewsOptions)

false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Creates a new article in the current newsgroup.

[Visual Basic]
Public Function CreateArticle() As Boolean

[C#]
public bool CreateArticle();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateArticle method sends the POST command to the news server. Not all servers permit clients to
post articles. The client application is responsible for generating the message headers as well as the body
of the message. News articles conform to the same general characteristics of an email message.

The CloseArticle method must be called once the contents of the article has been written to the server.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CreateArticle Method

Terminate the connection with a remote host.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and releases the client handle
allocated by the class. Note that the socket is not immediately released when the connection is terminated
and will enter a wait state for two minutes. After the time wait period has elapsed, the client will be
released by the operating system. This is a normal safety mechanism to handle any packets that may
arrive after the connection has been closed.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Disconnect Method

Releases all resources used by NntpClient.

Overload List
Releases all resources used by NntpClient.

public void Dispose();

Releases the unmanaged resources allocated by the NntpClient class and optionally releases the managed
resources.

protected virtual void Dispose(bool);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Dispose Method

Releases all resources used by NntpClient.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Dispose Method ()

Releases the unmanaged resources allocated by the NntpClient class and optionally releases the managed
resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the NntpClient class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Finalize Method

Retrieve an article from the server.

Overload List
Retrieve an article from the server.

public bool GetArticle(int,byte[],ref int);

Retrieve an article from the server.

public bool GetArticle(int,ref string);

Retrieve an article from the server.

public bool GetArticle(string,byte[],ref int);

Retrieve an article from the server.

public bool GetArticle(string,ref string);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetArticle Method

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.GetArticle_overload_3.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.GetArticle_overload_4.html

Retrieve an article from the server.

[Visual Basic]
Overloads Public Function GetArticle(_
 ByVal articleId As Integer, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetArticle(
 int articleId,
 byte[] buffer,
 ref int length
);

Parameters
articleId

An integer value which specifies the number of the article to retrieve from the server. This value must
be greater than zero.

buffer
A byte array that the news article will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetArticle method is used to retrieve an article from the server and copy it into a local buffer. This
method will cause the current thread to block until the article transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The first available article in the newsgroup can be determined by checking the value of the FirstArticle
property. The last available article in the newsgroup is returned by the LastArticle property.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.GetArticle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetArticle Method (Int32, Byte[], Int32)

Retrieve an article from the server.

[Visual Basic]
Overloads Public Function GetArticle(_
 ByVal messageId As String, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetArticle(
 string messageId,
 byte[] buffer,
 ref int length
);

Parameters
messageId

A string value which specifies the message ID of the article to retrieve from the server.

buffer
A byte array that the news article will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetArticle method is used to retrieve an article from the server and copy it into a local buffer. This
method will cause the current thread to block until the article transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.GetArticle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetArticle Method (String, Byte[], Int32)

Return information about all articles available in the current newsgroup.

Overload List
Return information about all articles available in the current newsgroup.

public bool GetFirstArticle(ref NewsArticle);

Return information about a selected range of articles in the current newsgroup.

public bool GetFirstArticle(int,int,ref NewsArticle);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetFirstArticle Method

Return information about all articles available in the current newsgroup.

[Visual Basic]
Overloads Public Function GetFirstArticle(_
 ByRef article As NewsArticle _
) As Boolean

[C#]
public bool GetFirstArticle(
 ref NewsArticle article
);

Parameters
article

A NewsArticle structure which will contain information about the article when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFirstArticle method returns information about the first article in the currently selected newsgroup.
This method is used in conjunction with the GetNextArticle method to enumerate all of the articles in the
newsgroup. Typically this is used to provide the user with a list of articles to access.

While the articles in the newsgroup are being listed, the client cannot retrieve the contents of a specific
article. For example, the GetArticle method cannot be called while inside a loop calling GetNextArticle.
The client should store those articles which it wants to retrieve in an array, and then once all of the articles
have been listed, it can begin calling GetArticle for each article number to retrieve the article text.

The values of the FirstArticle and LastArticle properties determines the ranges of articles returned by this
method.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.GetFirstArticle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetFirstArticle Method (NewsArticle)

Return information about a selected range of articles in the current newsgroup.

[Visual Basic]
Overloads Public Function GetFirstArticle(_
 ByVal firstArticle As Integer, _
 ByVal lastArticle As Integer, _
 ByRef article As NewsArticle _
) As Boolean

[C#]
public bool GetFirstArticle(
 int firstArticle,
 int lastArticle,
 ref NewsArticle article
);

Parameters
firstArticle

An integer which specifies the first article to return. A value of -1 specifies that the first available article
in the newsgroup should be returned.

lastArticle
An integer which specifies the last article to return. A value of -1 specifies that the last available article
in the newsgroup should be returned.

article
A NewsArticle structure which will contain information about the article when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFirstArticle method returns information about the first article in the currently selected newsgroup.
This method is used in conjunction with the GetNextArticle method to enumerate all of the articles in the
newsgroup. Typically this is used to provide the user with a list of articles to access.

While the articles in the newsgroup are being listed, the client cannot retrieve the contents of a specific
article. For example, the GetArticle method cannot be called while inside a loop calling GetNextArticle.
The client should store those articles which it wants to retrieve in an array, and then once all of the articles
have been listed, it can begin calling GetArticle for each article number to retrieve the article text.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.GetFirstArticle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetFirstArticle Method (Int32, Int32, NewsArticle)

Return information about all available newsgroups.

Overload List
Return information about all available newsgroups.

public bool GetFirstGroup(ref NewsGroup);

Return information about newsgroups created after the specified date.

public bool GetFirstGroup(DateTime,ref NewsGroup);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetFirstGroup Method

Return information about all available newsgroups.

[Visual Basic]
Overloads Public Function GetFirstGroup(_
 ByRef group As NewsGroup _
) As Boolean

[C#]
public bool GetFirstGroup(
 ref NewsGroup group
);

Parameters
group

A NewsGroup structure which will contain information about the newsgroup when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFirstGroup method returns information about the first newsgroup on the server. This method is
used in conjunction with the GetNextGroup method to enumerate all of the available newsgroups.
Typically this is used to provide the user with a list of newsgroups to select. If the LastUpdate property is
set, then only newsgroups that have been created since that date will be returned.

While the the newsgroups are being listed, the client cannot select a newsgroup or retrieve the contents
of a specific article. The client should store those newsgroups which it wants to retrieve articles from, and
then once all of the newsgroups have been listed, it can then select each newsgroup and retrieve the
available articles from that group.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.GetFirstGroup Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetFirstGroup Method (NewsGroup)

Return information about newsgroups created after the specified date.

[Visual Basic]
Overloads Public Function GetFirstGroup(_
 ByVal lastUpdate As Date, _
 ByRef group As NewsGroup _
) As Boolean

[C#]
public bool GetFirstGroup(
 DateTime lastUpdate,
 ref NewsGroup group
);

Parameters
lastUpdate

A System.DateTime structure. Only those newsgroups which were created after this date and time
will be returned. This is useful for checking for newsgroups that have been recently added to the
server without incurring the overhead of listing every available newsgroup.

group
A NewsGroup structure which will contain information about the newsgroup when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetFirstGroup method returns information about the first newsgroup on the server. This method is
used in conjunction with the GetNextGroup method to enumerate all of the available newsgroups.
Typically this is used to provide the user with a list of newsgroups to select.

While the the newsgroups are being listed, the client cannot select a newsgroup or retrieve the contents
of a specific article. The client should store those newsgroups which it wants to retrieve articles from, and
then once all of the newsgroups have been listed, it can then select each newsgroup and retrieve the
available articles from that group.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.GetFirstGroup Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetFirstGroup Method (DateTime, NewsGroup)

Retrieves the headers for the specified article from the server.

Overload List
Retrieves the headers for the specified article from the server.

public bool GetHeaders(int,byte[],ref int);

Retrieves the headers for the specified article from the server.

public bool GetHeaders(int,ref string);

Retrieves the headers for the specified article from the server.

public bool GetHeaders(string,byte[],ref int);

Retrieves the headers for the specified article from the server.

public bool GetHeaders(string,ref string);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetHeaders Method

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.GetHeaders_overload_3.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NntpClient.GetHeaders_overload_4.html

Retrieves the headers for the specified article from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByVal articleId As Integer, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetHeaders(
 int articleId,
 byte[] buffer,
 ref int length
);

Parameters
articleId

An integer value which specifies the article to retrieve from the server. This value must be greater than
zero.

buffer
A byte array that will contain the article headers when the method returns.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve an article header block from the server and copy it into a
local buffer. This method will cause the current thread to block until the article transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

The first available article in the newsgroup can be determined by checking the value of the FirstArticle
property. The last available article in the newsgroup is returned by the LastArticle property.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetHeaders Method (Int32, Byte[], Int32)

Retrieves the headers for the specified article from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByVal messageId As String, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetHeaders(
 string messageId,
 byte[] buffer,
 ref int length
);

Parameters
messageId

A string value which specifies the message number of the article to retrieve from the server.

buffer
A byte array that will contain the article headers when the method returns.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve an article header block from the server and copy it into a
local buffer. This method will cause the current thread to block until the article transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetHeaders Method (String, Byte[], Int32)

Return information about the next article available in the current newsgroup.

[Visual Basic]
Public Function GetNextArticle(_
 ByRef article As NewsArticle _
) As Boolean

[C#]
public bool GetNextArticle(
 ref NewsArticle article
);

Parameters
article

A NewsArticle structure which will contain information about the article when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetNextArticle method returns information about the next available article in the currently selected
newsgroup. This method is used in conjunction with the GetFirstArticle method to enumerate all of the
articles in the newsgroup. Typically this is used to provide the user with a list of articles to access.

While the articles in the newsgroup are being listed, the client cannot retrieve the contents of a specific
article. For example, the GetArticle method cannot be called while inside a loop calling GetNextArticle.
The client should store those articles which it wants to retrieve in an array, and then once all of the articles
have been listed, it can begin calling GetArticle for each article number to retrieve the article text.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetNextArticle Method

Return information about the next available newsgroup.

[Visual Basic]
Public Function GetNextGroup(_
 ByRef group As NewsGroup _
) As Boolean

[C#]
public bool GetNextGroup(
 ref NewsGroup group
);

Parameters
group

A NewsGroup structure which will contain information about the newsgroup when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetNextGroup method returns information about the next available newsgroup on the server. This
method is used in conjunction with the GetFirstGroup method to enumerate all of the available
newsgroups. Typically this is used to provide the user with a list of newsgroups to select. If the
LastUpdate property is set, then only newsgroups that have been created since that date will be returned.

While the the newsgroups are being listed, the client cannot select a newsgroup or retrieve the contents
of a specific article. The client should store those newsgroups which it wants to retrieve articles from, and
then once all of the newsgroups have been listed, it can then select each newsgroup and retrieve the
available articles from that group.

A program should use either the ListGroups method or the GetFirstGroup and GetNextGroup
methods, but never in combination with one another.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.GetNextGroup Method

Initialize an instance of the NntpClient class.

Overload List
Initialize an instance of the NntpClient class.

public bool Initialize();

Initialize an instance of the NntpClient class.

public bool Initialize(string);

See Also
NntpClient Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Initialize Method

Initialize an instance of the NntpClient class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the NntpClient class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Initialize Method ()

Initialize an instance of the NntpClient class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the NntpClient class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the NntpClient class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.NntpClient nntpClient = new SocketTools.NntpClient();

if (nntpClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(nntpClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim nntpClient As New SocketTools.NntpClient

If nntpClient.Initialize(strLicenseKey) = False Then
 MsgBox(nntpClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Initialize Method (String)

Opens the current article in the currently selected newsgroup.

Overload List
Opens the current article in the currently selected newsgroup.

public bool OpenArticle();

Opens the specified article in the currently selected newsgroup.

public bool OpenArticle(int);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OpenArticle Method

Opens the current article in the currently selected newsgroup.

[Visual Basic]
Overloads Public Function OpenArticle() As Boolean

[C#]
public bool OpenArticle();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenArticle method opens the specified article in the currently selected newsgroup. The article data
can be read using the Read method, and once all of the data has been returned, the CloseArticle
method should be used to close the article on the server.

The Article property returns the current article number.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.OpenArticle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OpenArticle Method ()

Opens the specified article in the currently selected newsgroup.

[Visual Basic]
Overloads Public Function OpenArticle(_
 ByVal articleId As Integer _
) As Boolean

[C#]
public bool OpenArticle(
 int articleId
);

Parameters
articleId

An integer value which specifies the number of the article to retrieve from the server. This value must
be greater than zero and it becomes the current article number for the selected newsgroup.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenArticle method opens the specified article in the currently selected newsgroup. The article data
can be read using the Read method, and once all of the data has been returned, the CloseArticle
method should be used to close the article on the server.

The first available article in the current newsgroup can be determined by checking the value of the
FirstArticle property. The last available article in the current newsgroup is returned by the LastArticle
property.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.OpenArticle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OpenArticle Method (Int32)

Post a new article to the currently selected newsgroup.

Overload List
Post a new article to the currently selected newsgroup.

public bool PostArticle(byte[],int);

Post a new article to the currently selected newsgroup.

public bool PostArticle(string);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.PostArticle Method

Post a new article to the currently selected newsgroup.

[Visual Basic]
Overloads Public Function PostArticle(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PostArticle(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array which contains the data to be posted to the server.

length
An integer value which specifies the number of bytes to write to the server. This value cannot be larger
than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostArticle method is used to submit the contents of the specified buffer to the server as a new
article in the current newsgroup. This method will cause the current thread to block until the article
transfer completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

Not all newsgroups permit new articles to be posted, and some newsgroups may require that you email
the article to a moderator for approval instead of posting directly to the group. It may be required that the
client authenticate itself using the Authenticate method prior to posting the article.

A news article is similar to an email message in that it contains one or more header fields, followed by an
empty line, followed by the body of the article. Each line of text should be terminated by a carriage
return/linefeed sequence of characters. The SocketTools.MailMessage class can be used to compose
the news article if needed. Note that the article header must contain a header field named "Newsgroups"
with a value that specifies the newsgroup or newsgroups the article is being posted to. If this header field
is missing, the news server will reject the article.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.PostArticle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.PostArticle Method (Byte[], Int32)

Post a new article to the currently selected newsgroup.

[Visual Basic]
Overloads Public Function PostArticle(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool PostArticle(
 string buffer
);

Parameters
buffer

A string which contains the data to be posted to the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The PostArticle method is used to submit the contents of the specified buffer to the server as a new
article in the current newsgroup. This method will cause the current thread to block until the article
transfer completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

Not all newsgroups permit new articles to be posted, and some newsgroups may require that you email
the article to a moderator for approval instead of posting directly to the group. It may be required that the
client authenticate itself using the Authenticate method prior to posting the article.

A news article is similar to an email message in that it contains one or more header fields, followed by an
empty line, followed by the body of the article. Each line of text should be terminated by a carriage
return/linefeed sequence of characters. The SocketTools.MailMessage class can be used to compose
the news article if needed. Note that the article header must contain a header field named "Newsgroups"
with a value that specifies the newsgroup or newsgroups the article is being posted to. If this header field
is missing, the news server will reject the article.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.PostArticle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.PostArticle Method (String)

Read data from the server and store it in a byte array.

Overload List
Read data from the server and store it in a byte array.

public int Read(byte[]);

Read data from the server and store it in a byte array.

public int Read(byte[],int);

Read data from the server and store it in a string.

public int Read(ref string);

Read data from the server and store it in a string.

public int Read(ref string,int);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Read Method

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the size of the byte array passed
to the method. If no data is available to be read, an error will be generated if the client is in non-blocking
mode. If the client is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Read Method (Byte[])

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Read Method (Byte[], Int32)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the client.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to a maximum of 4096 bytes. If no
data is available to be read, an error will be generated if the client is in non-blocking mode. If the client is
in blocking mode, the program will stop until data is received from the server or the connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Read Method (String)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Read Method (String, Int32)

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Reset Method

Selects the specified newsgroup as the current newsgroup.

[Visual Basic]
Public Function SelectGroup(_
 ByVal groupName As String _
) As Boolean

[C#]
public bool SelectGroup(
 string groupName
);

Parameters
groupName

A string which specifies the name of the newsgroup to select.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SelectGroup method selects a newsgroup and updates the control with information about the group.

The values of the FirstArticle and LastArticle properties will be updated to reflect the range of available
articles in the newsgroup. The value of the Article property will be set to the first available article in the
newsgroup.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.SelectGroup Method

Retrieve an article from the selected newsgroup and store it in a file.

Overload List
Retrieve an article from the selected newsgroup and store it in a file.

public bool StoreArticle(int,string);

Retrieve the current article from the selected newsgroup and store it in a file.

public bool StoreArticle(string);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.StoreArticle Method

Retrieve an article from the selected newsgroup and store it in a file.

[Visual Basic]
Overloads Public Function StoreArticle(_
 ByVal articleId As Integer, _
 ByVal fileName As String _
) As Boolean

[C#]
public bool StoreArticle(
 int articleId,
 string fileName
);

Parameters
articleId

An integer value which specifies the number of the article to retrieve from the server. This value must
be greater than zero.

fileName
A string which specifies the name of the file that will contain the article. If the file does not exist, it will
be created. If the file already exists, it will be overwritten.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The StoreArticle method retrieves an article from the server and stores it in a file on the local system. The
contents of the article is stored as a text file, using the specified file name. This method will cause the
current thread to block until the message transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

The first available article in the current newsgroup can be determined by checking the value of the
FirstArticle property. The last available article in the current newsgroup is returned by the LastArticle
property.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.StoreArticle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.StoreArticle Method (Int32, String)

Retrieve the current article from the selected newsgroup and store it in a file.

[Visual Basic]
Overloads Public Function StoreArticle(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool StoreArticle(
 string fileName
);

Parameters
fileName

A string which specifies the name of the file that will contain the article. If the file does not exist, it will
be created. If the file already exists, it will be overwritten.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The StoreArticle method retrieves an article from the server and stores it in a file on the local system. The
contents of the article is stored as a text file, using the specified file name. This method will cause the
current thread to block until the message transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

The Article property returns the current article number.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.StoreArticle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.StoreArticle Method (String)

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
NntpClient Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Uninitialize Method

Write one or more bytes of data to the server.

Overload List
Write one or more bytes of data to the server.

public int Write(byte[]);

Write one or more bytes of data to the server.

public int Write(byte[],int);

Write a string of characters to the server.

public int Write(string);

Write a string of characters to the server.

public int Write(string,int);

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Write Method

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the server.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Write Method (Byte[])

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the server.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Write Method (Byte[], Int32)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Write Method (String)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the server.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
NntpClient Class | SocketTools Namespace | NntpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.Write Method (String, Int32)

The events of the NntpClient class are listed below. For a complete list of NntpClient class members, see
the NntpClient Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnCommand Occurs when the client sends a command to the
remote host and receives a reply indicating the
result of that command.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OnCancel Event

Occurs when the client sends a command to the remote host and receives a reply indicating the result of
that command.

[Visual Basic]
Public Event OnCommand As OnCommandEventHandler

[C#]
public event OnCommandEventHandler OnCommand;

Event Data
The event handler receives an argument of type NntpClient.CommandEventArgs containing data related
to this event. The following NntpClient.CommandEventArgs properties provide information specific to
this event.

Property Description

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Remarks
The OnCommand event is generated when the client receives a reply from the server after some action
has been taken.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OnCommand Event

Provides data for the OnCommand event.

For a list of all members of this type, see NntpClient.CommandEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.NntpClient.CommandEventArgs

[Visual Basic]
Public Class NntpClient.CommandEventArgs
 Inherits EventArgs

[C#]
public class NntpClient.CommandEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
CommandEventArgs specifies the result code and result string for the last command executed by the
server.

The OnCommand event occurs whenever a command is executed on the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
NntpClient.CommandEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CommandEventArgs Class

NntpClient.CommandEventArgs overview

Public Instance Constructors

 NntpClient.CommandEventArgs Constructor Initializes a new instance of the
NntpClient.CommandEventArgs class.

Public Instance Properties

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NntpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CommandEventArgs Members

Initializes a new instance of the NntpClient.CommandEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public NntpClient.CommandEventArgs();

See Also
NntpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CommandEventArgs Constructor

The properties of the NntpClient.CommandEventArgs class are listed below. For a complete list of
NntpClient.CommandEventArgs class members, see the NntpClient.CommandEventArgs Members
topic.

Public Instance Properties

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

See Also
NntpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CommandEventArgs Properties

Gets a value which specifies the last result code returned by the server.

[Visual Basic]
Public ReadOnly Property ResultCode As Integer

[C#]
public int ResultCode {get;}

Property Value
An integer value which specifies the last result code returned by the server.

Remarks
This property should be checked after the Command method is used to execute a command on the
server to determine if the operation was successful. Result codes are three-digit numeric values returned
by the remote server and may be broken down into the following ranges:

ResultCode Description

100-199 Positive preliminary result. This indicates that the
requested action is being initiated, and the client
should expect another reply from the server
before proceeding.

200-299 Positive completion result. This indicates that the
server has successfully completed the requested
action.

300-399 Positive intermediate result. This indicates that the
requested action cannot complete until additional
information is provided to the server.

400-499 Transient negative completion result. This indicates
that the requested action did not take place, but
the error condition is temporary and may be
attempted again.

500-599 Permanent negative completion result. This
indicates that the requested action did not take
place.

It is important to note that while some result codes have become standardized, not all servers respond to
commands using the same result codes. For example, one server may respond with a result code of 221
to indicate success, while another may respond with a value of 235. It is recommended that applications
check for ranges of values to determine if a command was successful, not a specific value.

See Also
NntpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CommandEventArgs.ResultCode Property

Gets a string value which describes the result of the previous command.

[Visual Basic]
Public ReadOnly Property ResultString As String

[C#]
public string ResultString {get;}

Property Value
A string which describes the result of the previous command executed on the server.

Remarks
This string is generated by the remote server, and typically is used to describe the result code. For
example, if an error is indicated by the result code, the result string may describe the condition that
caused the error.

See Also
NntpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.CommandEventArgs.ResultString Property

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a remote host as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a socket is
created but the connection is not actually established until after this event occurs. Between the time
connection process is started and this event fires, no operation may be performed on the client other than
calling the Disconnect method.

This event is only generated if the client is in non-blocking mode.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OnConnect Event

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the remote host closes its connection, terminating the client
session with the application. Because there may still be data in the client receive buffers, you should
continue to read data from the client until the Read method returns a value of 0. Once all of the data has
been read, you should call the Disconnect method to close the local socket and release the resources
allocated for the client.

This event is only generated if the client is in non-blocking mode.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OnDisconnect Event

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type NntpClient.ErrorEventArgs containing data related to this
event. The following NntpClient.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see NntpClient.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.NntpClient.ErrorEventArgs

[Visual Basic]
Public Class NntpClient.ErrorEventArgs
 Inherits EventArgs

[C#]
public class NntpClient.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
NntpClient.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ErrorEventArgs Class

NntpClient.ErrorEventArgs overview

Public Instance Constructors

 NntpClient.ErrorEventArgs Constructor Initializes a new instance of the
NntpClient.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NntpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ErrorEventArgs Members

Initializes a new instance of the NntpClient.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public NntpClient.ErrorEventArgs();

See Also
NntpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ErrorEventArgs Constructor

The properties of the NntpClient.ErrorEventArgs class are listed below. For a complete list of
NntpClient.ErrorEventArgs class members, see the NntpClient.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
NntpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
NntpClient.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public NntpClient.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
NntpClient.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ErrorEventArgs.Error Property

Occurs as a data stream is being read or written to the client.

[Visual Basic]
Public Event OnProgress As OnProgressEventHandler

[C#]
public event OnProgressEventHandler OnProgress;

Event Data
The event handler receives an argument of type NntpClient.ProgressEventArgs containing data related to
this event. The following NntpClient.ProgressEventArgs properties provide information specific to this
event.

Property Description

Article Gets the current article number.

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Remarks
The OnProgress event occurs as a data stream is being read or written to the client. If large amounts of
data are being read or written, this event can be used to update a progress bar or other user-interface
component to provide the user with some visual feedback on the progress of the operation.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OnProgress Event

Provides data for the OnProgress event.

For a list of all members of this type, see NntpClient.ProgressEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.NntpClient.ProgressEventArgs

[Visual Basic]
Public Class NntpClient.ProgressEventArgs
 Inherits EventArgs

[C#]
public class NntpClient.ProgressEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ProgressEventArgs specifies the number of bytes copied from the data stream, the total number of bytes
in the data stream and a completion percentage.

The OnProgress event occurs as a data stream is being read or written to the client.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
NntpClient.ProgressEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ProgressEventArgs Class

NntpClient.ProgressEventArgs overview

Public Instance Constructors

 NntpClient.ProgressEventArgs Constructor Initializes a new instance of the
NntpClient.ProgressEventArgs class.

Public Instance Properties

Article Gets the current article number.

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NntpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ProgressEventArgs Members

Initializes a new instance of the NntpClient.ProgressEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public NntpClient.ProgressEventArgs();

See Also
NntpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ProgressEventArgs Constructor

The properties of the NntpClient.ProgressEventArgs class are listed below. For a complete list of
NntpClient.ProgressEventArgs class members, see the NntpClient.ProgressEventArgs Members topic.

Public Instance Properties

Article Gets the current article number.

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

See Also
NntpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ProgressEventArgs Properties

Gets the current article number.

[Visual Basic]
Public ReadOnly Property Article As Integer

[C#]
public int Article {get;}

Property Value
An integer value which specifies the article number.

Remarks
The Article property specifies the article number that is currently being retrieved from the news server. If
the OnProgress event occurs while a new article is being posted to the server, this property will return a
value of zero.

See Also
NntpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ProgressEventArgs.Article Property

Gets a value which specifies the number of bytes of data that has been read or written.

[Visual Basic]
Public ReadOnly Property BytesCopied As Integer

[C#]
public int BytesCopied {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesCopied property specifies the number of bytes that have been read from the client and stored
in the local stream buffer, or written from the stream buffer to the client.

See Also
NntpClient.ProgressEventArgs Class | SocketTools Namespace | BytesTotal Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ProgressEventArgs.BytesCopied Property

Gets a value which specifies the total number of bytes in the data stream.

[Visual Basic]
Public ReadOnly Property BytesTotal As Integer

[C#]
public int BytesTotal {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesTotal property specifies the total amount of data being read from the client and stored in the
data stream, or written from the data stream to the client. If the amount of data was unknown or
unspecified at the time the method call was made, then this value will always be the same as the
BytesCopied property.

See Also
NntpClient.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ProgressEventArgs.BytesTotal Property

Gets a value which specifies the percentage of data that has been read or written.

[Visual Basic]
Public ReadOnly Property Percent As Integer

[C#]
public int Percent {get;}

Property Value
An integer value which specifies a percentage.

Remarks
The Percent property specifies the percentage of data that has been transmitted, expressed as an integer
value between 0 and 100, inclusive. If the maximum size of the data stream was not specified by the caller,
this value will always be 100.

See Also
NntpClient.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | BytesTotal
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.ProgressEventArgs.Percent Property

Occurs when data is available to be read from the client.

[Visual Basic]
Public Event OnRead As EventHandler

[C#]
public event EventHandler OnRead;

Remarks
The OnRead event occurs when data is available to be read from the client. This event is level-triggered,
which means that once this event fires, it will not occur again until some data has been read from the
client. This design prevents an application from being flooded with event notifications. It is recommended
that your application read all of the available data from the server and store it in a local buffer for
processing. See the example below.

This event is only generated if the client is in non-blocking mode.

Example

Private Sub Socket_OnRead(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Socket.OnRead
 Dim strBuffer As String
 Dim nRead As Integer

 Do
 ' Read up to m_nBufferSize bytes of data from the server
 nRead = Socket.Read(strBuffer, m_nBufferSize)

 If nRead > 0 Then
 ' Append the data to an internal buffer for processing
 m_dataBuffer = m_dataBuffer + strBuffer
 End If
 Loop Until nRead < 1

 ProcessData()
End Sub

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OnRead Event

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OnTimeout Event

Occurs when data can be written to the client.

[Visual Basic]
Public Event OnWrite As EventHandler

[C#]
public event EventHandler OnWrite;

Remarks
The OnWrite event occurs when the application can write data to the client. This event will typically occur
when a connection is first established with the remote host, and after the Write method has failed
because there was insufficient memory available in the client send buffers. In the second case, when some
of the buffered data has been successfully sent to the remote host and there is space available in the send
buffers, this event is used to signal the application that it may attempt to send more data.

This event is only generated if the client is in non-blocking mode.

See Also
NntpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OnWrite Event

Specifies the error codes returned by the NntpClient class.

[Visual Basic]
Public Enum NntpClient.ErrorCode

[C#]
public enum NntpClient.ErrorCode

Remarks
The NntpClient class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

NntpClient.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the newsgroup access modes that the NntpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum NntpClient.NewsGroupAccess

[C#]
[Flags]
public enum NntpClient.NewsGroupAccess

Members

Member Name Description Value

groupReadOnly The group is read-only and cannot be
modified. Attempts to post articles to
the newsgroup will result in an error.

0

groupReadWrite Articles can be posted to the
newsgroup. Even though a newsgroup
is read-write, it may require that the
client authenticate before being given
permission to post articles to the server.

1

groupModerated The newsgroup is moderated and
articles can only be posted by the group
moderator. To request that an article be
posted to the newsgroup, you must
email the message to the moderator.

2

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsGroupAccess Enumeration

Specifies the options that the NntpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum NntpClient.NewsOptions

[C#]
[Flags]
public enum NntpClient.NewsOptions

Remarks
The NntpClient class uses the NewsOptions enumeration to specify one or more options to be used
when establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionDefault The default connection option. This is
the same as specifying optionNone.

0

optionTunnel This option specifies that a tunneled
TCP connection and/or port-forwarding
is being used to establish the
connection to the server. This changes
the behavior of the client with regards
to internal checks of the destination IP
address and remote port number,
default capability selection and how the
connection is established. This option
also forces all connections to be
outbound and enables the firewall
compatibility features in the client.

1024

optionTrustedSite This option specifies the server is
trusted. The server certificate will not be
validated and the connection will always
be permitted. This option only affects
connections using either the SSL or TLS
protocols.

2048

optionSecure This option specifies the client should
attempt to establish a secure
connection with the server. Note that
the server must support secure
connections using either the SSL or TLS
protocol.

4096

optionSecureFallback This option specifies the client should
permit the use of less secure cipher

32768

NntpClient.NewsOptions Enumeration

suites for compatibility with legacy
servers. If this option is specified, the
client will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

optionPreferIPv6 This option specifies the client should
prefer the use of IPv6 if the server
hostname can be resolved to both an
IPv6 and IPv4 address. This option is
ignored if the local system does not
have IPv6 enabled, or when the
hostname can only be resolved to an
IPv4 address. If the server hostname can
only be resolved to an IPv6 address, the
client will attempt to establish a
connection using IPv6 regardless if this
option has been specified.

262144

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the status values that may be returned by the NntpClient class.

[Visual Basic]
Public Enum NntpClient.NewsStatus

[C#]
public enum NntpClient.NewsStatus

Remarks
The NntpClient class uses the NewsStatus enumeration to identify the current status of the client.

Members

Member Name Description

statusUnused A client session has not been created. Attempts to
perform any network operations, such as sending
or receiving data, will generate an error.

statusIdle A client session has been created, but is not
currently in use. A blocking socket operation can
be executed at this point.

statusConnect The client is in the process of establishing a
connection with a remote host.

statusRead The client is in the process of receiving data from a
remote host.

statusWrite The client is in the process of sending data to a
remote host.

statusDisconnect The client session is being closed and subsequent
attempts to access the client will result in an error.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.NewsStatus Enumeration

Specifies the encryption algorithms that the NntpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum NntpClient.SecureCipherAlgorithm

[C#]
[Flags]
public enum NntpClient.SecureCipherAlgorithm

Remarks
The NntpClient class uses the SecureCipherAlgorithm enumeration to identify which encryption
algorithm was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

cipherNone No cipher has been selected. A secure
connection has not been established
with the remote host.

0

cipherRC2 The RC2 block cipher was selected. This
is a variable key length cipher which
supports keys between 40- and 128-bits
in length, in 8-bit increments.

1

cipherRC4 The RC4 stream cipher was selected.
This is a variable key length cipher
which supports keys between 40- and
128-bits in length, in 8-bit increments.

2

cipherRC5 The RC5 block cipher was selected. This
is a variable key length cipher which
supports keys up to 2040 bits, in 8-bit
increments.

4

cipherDES The DES (Data Encryption Standard)
block cipher was selected. This is a fixed
key length cipher using 56-bit keys.

8

cipherDES3 The Triple DES block cipher was
selected. This cipher encrypts the data
three times using different keys,
effectively using a 168-bit key length.

16

cipherDESX A variant of the DES block cipher which
XORs an extra 64-bits of the key before
and after the plaintext has been
encrypted, increasing the key size to
184 bits.

32

cipherAES The Advanced Encryption Standard 64

NntpClient.SecureCipherAlgorithm Enumeration

cipher (also known as the Rijndael
cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits.
This cipher is supported on Windows XP
SP3 SP3 and later versions of the
operating system.

cipherSkipjack The Skipjack block cipher was selected.
This is a fixed key length cipher, using
80-bit keys.

128

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the hash algorithms that the NntpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum NntpClient.SecureHashAlgorithm

[C#]
[Flags]
public enum NntpClient.SecureHashAlgorithm

Remarks
The NntpClient class uses the SecureHashAlgorithm enumeration to identify the message digest (hash)
algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

hashNone No hash algorithm has been selected.
This is not a secure connection with the
server.

0

hashMD5 The MD5 algorithm was selected. This
algorithm produces a 128-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

1

hashSHA The SHA-1 algorithm was selected. This
algorithm produces a 160-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

2

hashSHA256 The SHA-256 algorithm was selected.
This algorithm produces a 256-bit
message digest.

4

hashSHA384 The SHA-384 algorithm was selected.
This algorithm produces a 384-bit
message digest.

8

hashSHA512 The SHA-512 algorithm was selected.
This algorithm produces a 512-bit
message digest.

16

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also

NntpClient.SecureHashAlgorithm Enumeration

SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the key exchange algorithms that the NntpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum NntpClient.SecureKeyAlgorithm

[C#]
[Flags]
public enum NntpClient.SecureKeyAlgorithm

Remarks
The NntpClient class uses the SecureKeyAlgorithm enumeration to identify the key exchange algorithm
that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

keyExchangeNone No key exchange algorithm has been
selected. This is not a secure connection
with the server.

0

keyExchangeRSA The RSA public key exchange algorithm
has been selected.

1

keyExchangeKEA The KEA public key exchange algorithm
has been selected. This is an improved
version of the Diffie-Hellman public key
algorithm.

2

keyExchangeDH The Diffie-Hellman public key exchange
algorithm has been selected.

4

keyExchangeECDH The Elliptic Curve Diffie-Hellman key
exchange algorithm was selected. This is
a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography.
This key exchange algorithm is only
supported on Windows XP SP3 SP3 and
later versions of the operating system.

8

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.SecureKeyAlgorithm Enumeration

Specifies the security certificate status values that may be returned by the NntpClient class.

[Visual Basic]
Public Enum NntpClient.SecurityCertificate

[C#]
public enum NntpClient.SecurityCertificate

Remarks
The NntpClient class uses the SecurityCertificate enumeration to identify the current status of the
certificate that was provided by the remote host when a secure connection was established.

Members

Member Name Description

certificateNone No certificate information is available. A secure
connection was not established with the server.

certificateValid The certificate is valid.

certificateNoMatch The certificate is valid, however the domain name
specified in the certificate does not match the
domain name of the remote host. The application
can examine the CertificateSubject property to
determine the site the certificate was issued to.

certificateExpired The certificate has expired and is no longer valid.
The application can examine the
CertificateExpires property to determine when
the certificate expired.

certificateRevoked The certificate has been revoked and is no longer
valid. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateUntrusted The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the
local host. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateInvalid The certificate is invalid. This typically indicates that
the internal structure of the certificate is damaged.
It is recommended that the application
immediately terminate the connection if this status
is returned.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

NntpClient.SecurityCertificate Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the security protocols that the NntpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum NntpClient.SecurityProtocols

[C#]
[Flags]
public enum NntpClient.SecurityProtocols

Remarks
The NntpClient class uses the SecurityProtocols enumeration to specify one or more security protocols
to be used when establishing a connection with a remote host. Multiple protocols may be specified if
necessary and the actual protocol used will be negotiated with the remote host. It is recommended that
most applications use protocolDefault when creating a secure connection.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

NntpClient.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolDefault The default selection of security
protocols will be used when establishing
a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

16

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the NntpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum NntpClient.TraceOptions

[C#]
[Flags]
public enum NntpClient.TraceOptions

Remarks
The NntpClient class uses the TraceOptions enumeration to specify what kind of debugging information
is written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
SocketTools Namespace

NntpClient.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnCommand event.

[Visual Basic]
Public Delegate Sub NntpClient.OnCommandEventHandler(_
 ByVal sender As Object, _
 ByVal e As CommandEventArgs _
)

[C#]
public delegate void NntpClient.OnCommandEventHandler(

 object sender,
 CommandEventArgs e
);

Parameters
sender

The source of the event.

e
A CommandEventArgs object that contains the event data.

Remarks
When you create an OnCommandEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnCommandEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OnCommandEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub NntpClient.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void NntpClient.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OnErrorEventHandler Delegate

Represents the method that will handle the OnProgress event.

[Visual Basic]
Public Delegate Sub NntpClient.OnProgressEventHandler(_
 ByVal sender As Object, _
 ByVal e As ProgressEventArgs _
)

[C#]
public delegate void NntpClient.OnProgressEventHandler(

 object sender,
 ProgressEventArgs e
);

Parameters
sender

The source of the event.

e
A ProgressEventArgs that contains the event data.

Remarks
When you create an OnProgressEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnProgressEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.OnProgressEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see NntpClient.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.NntpClient.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class NntpClient.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class NntpClient.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the NntpClient class.

Example

<Assembly: SocketTools.NntpClient.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.NntpClient.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
NntpClient.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.RuntimeLicenseAttribute Class

NntpClient.RuntimeLicenseAttribute overview

Public Instance Constructors

 NntpClient.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NntpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public NntpClient.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the NntpClient class.

See Also
NntpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.RuntimeLicenseAttribute Constructor

The properties of the NntpClient.RuntimeLicenseAttribute class are listed below. For a complete list of
NntpClient.RuntimeLicenseAttribute class members, see the NntpClient.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
NntpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
NntpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClient.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see NntpClientException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.NntpClientException

[Visual Basic]
Public Class NntpClientException
 Inherits ApplicationException

[C#]
public class NntpClientException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A NntpClientException is thrown by the NntpClient class when an error occurs.

The default constructor for the NntpClientException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NntpClient (in SocketTools.NntpClient.dll)

See Also
NntpClientException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClientException Class

NntpClientException overview

Public Instance Constructors

 NntpClientException Overloaded. Initializes a new instance of the
NntpClientException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

NntpClientException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NntpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the NntpClientException class with the last network error code.

Overload List
Initializes a new instance of the NntpClientException class with the last network error code.

public NntpClientException();

Initializes a new instance of the NntpClientException class with a specified error number.

public NntpClientException(int);

Initializes a new instance of the NntpClientException class with a specified error message.

public NntpClientException(string);

Initializes a new instance of the NntpClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

public NntpClientException(string,Exception);

See Also
NntpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClientException Constructor

Initializes a new instance of the NntpClientException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public NntpClientException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the NntpClient.ErrorCode enumeration.

See Also
NntpClientException Class | SocketTools Namespace | NntpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClientException Constructor ()

Initializes a new instance of the NntpClientException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public NntpClientException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
NntpClientException Class | SocketTools Namespace | NntpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClientException Constructor (String)

Initializes a new instance of the NntpClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public NntpClientException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
NntpClientException Class | SocketTools Namespace | NntpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClientException Constructor (String, Exception)

Initializes a new instance of the NntpClientException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public NntpClientException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the NntpClient.ErrorCode enumeration.

See Also
NntpClientException Class | SocketTools Namespace | NntpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClientException Constructor (Int32)

The properties of the NntpClientException class are listed below. For a complete list of
NntpClientException class members, see the NntpClientException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
NntpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClientException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public NntpClient.ErrorCode ErrorCode {get;}

Property Value
Returns a NntpClient.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the NntpClientException class sets the error code to the last network error that
occurred. For more information about the errors that may occur, refer to the NntpClient.ErrorCode
enumeration.

See Also
NntpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClientException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
NntpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClientException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
NntpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClientException.Number Property

The methods of the NntpClientException class are listed below. For a complete list of
NntpClientException class members, see the NntpClientException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NntpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClientException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
NntpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NntpClientException.ToString Method

Query a time server for the current time and synchronize the local system clock with that value.

For a list of all members of this type, see NetworkTime Members.

System.Object
 SocketTools.NetworkTime

[Visual Basic]
Public Class NetworkTime
 Implements IDisposable

[C#]
public class NetworkTime : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The NetworkTime class library provides an interface for synchronizing the local system's time and date
with that of a remote server. The time values returned are in in Coordinated Universal Time and be
adjusted for the local host's timezone. The class enables developers to query a server for the current time
and then update the system clock if desired.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NetworkTime (in SocketTools.NetworkTime.dll)

See Also
NetworkTime Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime Class

NetworkTime overview

Public Static (Shared) Fields

timePortDefault A constant value which specifies the default port
number.

timeTimeout A constant value which specifies the default
timeout period.

Public Instance Constructors

 NetworkTime Constructor Initializes a new instance of the NetworkTime class.

Public Instance Properties

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

Localize Gets and sets a value which specifies if the time
should be adjusted for the current timezone.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error

NetworkTime Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.timePortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.timeTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.Options.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.RemoteService.html

occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

Version Gets a value which returns the current version of
the NetworkTime class library.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

ConvertTime Overloaded. Convert a network time value to a
System.DateTime value.

Dispose Overloaded. Releases all resources used by
NetworkTime.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetTime Overloaded. Get the current system date and time
from the specified time server.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
NetworkTime class.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SetTime Overloaded. Set the local system clock to the
specified System.DateTime value.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnError Occurs when an client operation fails.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.AttachThread.html

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the NetworkTime class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the NetworkTime class.

[Visual Basic]
Public Sub New()

[C#]
public NetworkTime();

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime Constructor

The properties of the NetworkTime class are listed below. For a complete list of NetworkTime class
members, see the NetworkTime Members topic.

Public Instance Properties

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

Localize Gets and sets a value which specifies if the time
should be adjusted for the current timezone.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

NetworkTime Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.Options.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.RemoteService.html

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

Version Gets a value which returns the current version of
the NetworkTime class library.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.AutoResolve Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.HostAddress Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.HostName Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.IsInitialized Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public NetworkTime.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.LastErrorString Property

Gets the local Internet address that the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local Internet address that the client is bound to when a
connection is established with a remote host. This property may return either an IPv4 or IPv6 formatted
address, depending on the type of connection that was established.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.LocalAddress Property

Gets and sets a value which specifies if the time should be adjusted for the current timezone.

[Visual Basic]
Public Property Localize As Boolean

[C#]
public bool Localize {get; set;}

Property Value
A boolean value which specifies if the time should be adjusted for the local timezone.

Remarks
The Localize property controls how date and time values are localized when the GetTime method is
called. If the property is set to true the date and time will be adjusted to the current timezone. If the
property is set to false the file date and time are returned as UTC (Coordinated Universal Time) values.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Localize Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.LocalName Property

Gets the local port number the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalPort As Integer

[C#]
public int LocalPort {get;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to identify the local port number that the client is bound to to when a
connection is established with a remote host.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.LocalPort Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.RemotePort Property

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public NetworkTime.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
NetworkTime Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.AttachThread.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public NetworkTime.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.TraceFlags Property

Gets a value which returns the current version of the NetworkTime class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the NetworkTime
class library. This value can be used by an application for validation and debugging purposes.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Version Property

The methods of the NetworkTime class are listed below. For a complete list of NetworkTime class
members, see the NetworkTime Members topic.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

ConvertTime Overloaded. Convert a network time value to a
System.DateTime value.

Dispose Overloaded. Releases all resources used by
NetworkTime.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetTime Overloaded. Get the current system date and time
from the specified time server.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
NetworkTime class.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SetTime Overloaded. Set the local system clock to the
specified System.DateTime value.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the NetworkTime class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.AttachThread.html

Convert a System.DateTime value to a network time value.

Overload List
Convert a System.DateTime value to a network time value.

public bool ConvertTime(ref DateTime,ref long);

Convert a network time value to a System.DateTime value.

public bool ConvertTime(long,ref DateTime);

Convert a network time value to a System.DateTime value.

public bool ConvertTime(long,ref DateTime,bool);

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.ConvertTime Method

Convert a System.DateTime value to a network time value.

[Visual Basic]
Overloads Public Function ConvertTime(_
 ByRef dateTime As Date, _
 ByRef networkTime As Long _
) As Boolean

[C#]
public bool ConvertTime(
 ref DateTime dateTime,
 ref long networkTime
);

Parameters
dateTime

A System.DateTime structure passed by reference which will contain the date and time when the
method returns.

networkTime
A long integer value which specifies the network time.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
Network time is expressed as the number of seconds that has elapsed since midnight, January 1, 1900
UTC.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.ConvertTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.ConvertTime Method (DateTime, Int64)

Convert a network time value to a System.DateTime value.

[Visual Basic]
Overloads Public Function ConvertTime(_
 ByVal networkTime As Long, _
 ByRef dateTime As Date _
) As Boolean

[C#]
public bool ConvertTime(
 long networkTime,
 ref DateTime dateTime
);

Parameters
networkTime

A long integer value which specifies the network time.

dateTime
A System.DateTime structure passed by reference which will contain the date and time when the
method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
If the Localize property is set to true, the network time value will be localized to the current timezone. If
the property value is false the network time will be converted as-is.

Network time is expressed as the number of seconds that has elapsed since midnight, January 1, 1900
UTC.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.ConvertTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.ConvertTime Method (Int64, DateTime)

Convert a network time value to a System.DateTime value.

[Visual Basic]
Overloads Public Function ConvertTime(_
 ByVal networkTime As Long, _
 ByRef dateTime As Date, _
 ByVal bLocalize As Boolean _
) As Boolean

[C#]
public bool ConvertTime(
 long networkTime,
 ref DateTime dateTime,
 bool bLocalize
);

Parameters
networkTime

A long integer value which specifies the network time.

dateTime
A System.DateTime structure passed by reference which will contain the date and time when the
method returns.

bLocalize
A boolean value which specifies if the network time value should be localized for the current timezone.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
Network time is expressed as the number of seconds that has elapsed since midnight, January 1, 1900
UTC.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.ConvertTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.ConvertTime Method (Int64, DateTime, Boolean)

Releases all resources used by NetworkTime.

Overload List
Releases all resources used by NetworkTime.

public void Dispose();

Releases the unmanaged resources allocated by the NetworkTime class and optionally releases the
managed resources.

protected virtual void Dispose(bool);

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Dispose Method

Releases all resources used by NetworkTime.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Dispose Method ()

Releases the unmanaged resources allocated by the NetworkTime class and optionally releases the
managed resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the NetworkTime class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Finalize Method

Get the current system date and time from a default time server.

Overload List
Get the current system date and time from a default time server.

public bool GetTime(ref DateTime);

Get the current system date and time from the time server.

public bool GetTime(ref long);

Get the current system date and time from the specified time server.

public bool GetTime(string,ref DateTime);

Get the current system date and time from the specified time server.

public bool GetTime(string,int,ref DateTime);

Get the current system date and time from the specified time server.

public bool GetTime(string,int,int,ref DateTime);

Get the current system date and time from the specified time server.

public bool GetTime(string,int,int,ref long);

Get the current system date and time from the specified time server.

public bool GetTime(string,int,ref long);

Get the current system date and time from the specified time server.

public bool GetTime(string,ref long);

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.GetTime Method

Get the current system date and time from a default time server.

[Visual Basic]
Overloads Public Function GetTime(_
 ByRef dateTime As Date _
) As Boolean

[C#]
public bool GetTime(
 ref DateTime dateTime
);

Parameters
dateTime

A System.DateTime structure passed by reference which will contain the date and time returned by
the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The time and date retrieved from the server will be returned as a System.DateTime value according to
the user's current locale.

If the HostName or HostAddress property does not specify a server host name or address, a public
timeserver will be automatically selected by default.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.GetTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.GetTime Method (DateTime)

Get the current system date and time from the time server.

[Visual Basic]
Overloads Public Function GetTime(_
 ByRef networkTime As Long _
) As Boolean

[C#]
public bool GetTime(
 ref long networkTime
);

Parameters
networkTime

A System.DateTime structure passed by reference which will contain the date and time returned by
the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
Network time is expressed as the number of seconds that has elapsed since midnight, January 1, 1900
UTC.

If the HostName or HostAddress property does not specify a server host name or address, a public
timeserver will be automatically selected by default.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.GetTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.GetTime Method (Int64)

Get the current system date and time from the specified time server.

[Visual Basic]
Overloads Public Function GetTime(_
 ByVal hostName As String, _
 ByRef dateTime As Date _
) As Boolean

[C#]
public bool GetTime(
 string hostName,
 ref DateTime dateTime
);

Parameters
hostName

A string which specifies the host name or address of the time server.

dateTime
A System.DateTime structure passed by reference which will contain the date and time returned by
the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The time and date retrieved from the server will be returned as a System.DateTime value according to
the user's current locale.

In the United States, the National Institute of Standards and Technology (NIST) hosts a number of public
servers which can be used to obtain the current time:

Server Name Location

time-a.nist.gov Gaithersburg, Maryland

time-b.nist.gov Gaithersburg, Maryland

time-nw.nist.gov Redmond, Washington

time-a.timefreq.bldrdoc.gov Boulder, Colorado

time-b.timefreq.bldrdoc.gov Boulder, Colorado

time-c.timefreq.bldrdoc.gov Boulder, Colorado

Time servers are also commonly maintained by Internet service providers and universities. If you are
unable to obtain the time from a server, contact the system administrator to determine if they have the
standard time service available on port 37.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.GetTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.GetTime Method (String, DateTime)

Get the current system date and time from the specified time server.

[Visual Basic]
Overloads Public Function GetTime(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByRef dateTime As Date _
) As Boolean

[C#]
public bool GetTime(
 string hostName,
 int hostPort,
 ref DateTime dateTime
);

Parameters
hostName

A string which specifies the host name or address of the time server.

hostPort
An integer value which specifies the port to connect to on the server. The default port value for a time
server is port 37.

dateTime
A System.DateTime structure passed by reference which will contain the date and time returned by
the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The time and date retrieved from the server will be returned as a System.DateTime value according to
the user's current locale.

In the United States, the National Institute of Standards and Technology (NIST) hosts a number of public
servers which can be used to obtain the current time:

Server Name Location

time-a.nist.gov Gaithersburg, Maryland

time-b.nist.gov Gaithersburg, Maryland

time-nw.nist.gov Redmond, Washington

time-a.timefreq.bldrdoc.gov Boulder, Colorado

time-b.timefreq.bldrdoc.gov Boulder, Colorado

time-c.timefreq.bldrdoc.gov Boulder, Colorado

Time servers are also commonly maintained by Internet service providers and universities. If you are
unable to obtain the time from a server, contact the system administrator to determine if they have the
standard time service available on port 37.

NetworkTime.GetTime Method (String, Int32, DateTime)

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.GetTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Get the current system date and time from the specified time server.

[Visual Basic]
Overloads Public Function GetTime(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer, _
 ByRef dateTime As Date _
) As Boolean

[C#]
public bool GetTime(
 string hostName,
 int hostPort,
 int timeout,
 ref DateTime dateTime
);

Parameters
hostName

A string which specifies the host name or address of the time server.

hostPort
An integer value which specifies the port to connect to on the server. The default port value for a time
server is port 37.

timeout
An integer value which specifies the number of seconds until a blocking operation fails and returns an
error.

dateTime
A System.DateTime structure passed by reference which will contain the date and time returned by
the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The time and date retrieved from the server will be returned as a System.DateTime value according to
the user's current locale.

In the United States, the National Institute of Standards and Technology (NIST) hosts a number of public
servers which can be used to obtain the current time:

Server Name Location

time-a.nist.gov Gaithersburg, Maryland

time-b.nist.gov Gaithersburg, Maryland

time-nw.nist.gov Redmond, Washington

time-a.timefreq.bldrdoc.gov Boulder, Colorado

time-b.timefreq.bldrdoc.gov Boulder, Colorado

NetworkTime.GetTime Method (String, Int32, Int32, DateTime)

time-c.timefreq.bldrdoc.gov Boulder, Colorado

Time servers are also commonly maintained by Internet service providers and universities. If you are
unable to obtain the time from a server, contact the system administrator to determine if they have the
standard time service available on port 37.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.GetTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Get the current system date and time from the specified time server.

[Visual Basic]
Overloads Public Function GetTime(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer, _
 ByRef networkTime As Long _
) As Boolean

[C#]
public bool GetTime(
 string hostName,
 int hostPort,
 int timeout,
 ref long networkTime
);

Parameters
hostName

A string which specifies the host name or address of the time server.

hostPort
An integer value which specifies the port to connect to on the server. The default port value for a time
server is port 37.

timeout
An integer value which specifies the number of seconds until a blocking operation fails and returns an
error. ///

networkTime
A long integer passed by reference which will contain the network time value returned by the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
Network time is expressed as the number of seconds that has elapsed since midnight, January 1, 1900
UTC.

In the United States, the National Institute of Standards and Technology (NIST) hosts a number of public
servers which can be used to obtain the current time:

Server Name Location

time-a.nist.gov Gaithersburg, Maryland

time-b.nist.gov Gaithersburg, Maryland

time-nw.nist.gov Redmond, Washington

time-a.timefreq.bldrdoc.gov Boulder, Colorado

time-b.timefreq.bldrdoc.gov Boulder, Colorado

time-c.timefreq.bldrdoc.gov Boulder, Colorado

NetworkTime.GetTime Method (String, Int32, Int32, Int64)

Time servers are also commonly maintained by Internet service providers and universities. If you are
unable to obtain the time from a server, contact the system administrator to determine if they have the
standard time service available on port 37.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.GetTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Get the current system date and time from the specified time server.

[Visual Basic]
Overloads Public Function GetTime(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByRef networkTime As Long _
) As Boolean

[C#]
public bool GetTime(
 string hostName,
 int hostPort,
 ref long networkTime
);

Parameters
hostName

A string which specifies the host name or address of the time server.

hostPort
An integer value which specifies the port to connect to on the server. The default port value for a time
server is port 37.

networkTime
A long integer passed by reference which will contain the network time value returned by the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
Network time is expressed as the number of seconds that has elapsed since midnight, January 1, 1900
UTC.

In the United States, the National Institute of Standards and Technology (NIST) hosts a number of public
servers which can be used to obtain the current time:

Server Name Location

time-a.nist.gov Gaithersburg, Maryland

time-b.nist.gov Gaithersburg, Maryland

time-nw.nist.gov Redmond, Washington

time-a.timefreq.bldrdoc.gov Boulder, Colorado

time-b.timefreq.bldrdoc.gov Boulder, Colorado

time-c.timefreq.bldrdoc.gov Boulder, Colorado

Time servers are also commonly maintained by Internet service providers and universities. If you are
unable to obtain the time from a server, contact the system administrator to determine if they have the
standard time service available on port 37.

NetworkTime.GetTime Method (String, Int32, Int64)

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.GetTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Get the current system date and time from the specified time server.

[Visual Basic]
Overloads Public Function GetTime(_
 ByVal hostName As String, _
 ByRef networkTime As Long _
) As Boolean

[C#]
public bool GetTime(
 string hostName,
 ref long networkTime
);

Parameters
hostName

A string which specifies the host name or address of the time server.

networkTime
A long integer passed by reference which will contain the network time value returned by the server.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
Network time is expressed as the number of seconds that has elapsed since midnight, January 1, 1900
UTC.

In the United States, the National Institute of Standards and Technology (NIST) hosts a number of public
servers which can be used to obtain the current time:

Server Name Location

time-a.nist.gov Gaithersburg, Maryland

time-b.nist.gov Gaithersburg, Maryland

time-nw.nist.gov Redmond, Washington

time-a.timefreq.bldrdoc.gov Boulder, Colorado

time-b.timefreq.bldrdoc.gov Boulder, Colorado

time-c.timefreq.bldrdoc.gov Boulder, Colorado

Time servers are also commonly maintained by Internet service providers and universities. If you are
unable to obtain the time from a server, contact the system administrator to determine if they have the
standard time service available on port 37.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.GetTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.GetTime Method (String, Int64)

Initialize an instance of the NetworkTime class.

Overload List
Initialize an instance of the NetworkTime class.

public bool Initialize();

Initialize an instance of the NetworkTime class.

public bool Initialize(string);

See Also
NetworkTime Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Initialize Method

Initialize an instance of the NetworkTime class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the NetworkTime class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Initialize Method ()

Initialize an instance of the NetworkTime class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the NetworkTime class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the NetworkTime class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.NetworkTime timeClient = new SocketTools.NetworkTime();

if (timeClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(timeClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim timeClient As New SocketTools.NetworkTime

If timeClient.Initialize(strLicenseKey) = False Then
 MsgBox(timeClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.Initialize Overload List |
RuntimeLicenseAttribute Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Initialize Method (String)

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Reset Method

Set the local system clock to the current date and time as returned by the default timeserver.

Overload List
Set the local system clock to the current date and time as returned by the default timeserver.

public bool SetTime();

Set the local system clock to the specified System.DateTime value.

public bool SetTime(DateTime);

Set the local system clock to the specified network time value.

public bool SetTime(long);

Set the local system clock to the current date and time as returned by the specified timeserver.

public bool SetTime(string);

Set the local system clock to the current date and time as returned by the specified timeserver.

public bool SetTime(string,int);

Set the local system clock to the current date and time as returned by the specified timeserver.

public bool SetTime(string,int,int);

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.SetTime Method

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.SetTime_overload_6.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.SetTime_overload_5.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.SetTime_overload_4.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NetworkTime.SetTime_overload_3.html

Set the local system clock to the specified System.DateTime value.

[Visual Basic]
Overloads Public Function SetTime(_
 ByVal dateTime As Date _
) As Boolean

[C#]
public bool SetTime(
 DateTime dateTime
);

Parameters
dateTime

A System.DateTime structure which specifies the date and time the local system clock should be set
to.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SetTime method causes the class to update the local system's clock to the specified date and time. It
is required that the user have the appropriate privileges required to change the system clock, otherwise an
error will be returned.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.SetTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.SetTime Method (DateTime)

Set the local system clock to the specified network time value.

[Visual Basic]
Overloads Public Function SetTime(_
 ByVal networkTime As Long _
) As Boolean

[C#]
public bool SetTime(
 long networkTime
);

Parameters
networkTime

A long integer which specifies the date and time the local system clock should be set to.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SetTime method causes the class to update the local system's clock to the specified date and time. It
is required that the user have the appropriate privileges required to change the system clock, otherwise an
error will be returned.

Network time is expressed as the number of seconds that has elapsed since midnight, January 1, 1900
UTC.

See Also
NetworkTime Class | SocketTools Namespace | NetworkTime.SetTime Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.SetTime Method (Int64)

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
NetworkTime Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.Uninitialize Method

The events of the NetworkTime class are listed below. For a complete list of NetworkTime class
members, see the NetworkTime Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnError Occurs when an client operation fails.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.OnCancel Event

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type NetworkTime.ErrorEventArgs containing data related to
this event. The following NetworkTime.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see NetworkTime.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.NetworkTime.ErrorEventArgs

[Visual Basic]
Public Class NetworkTime.ErrorEventArgs
 Inherits EventArgs

[C#]
public class NetworkTime.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NetworkTime (in SocketTools.NetworkTime.dll)

See Also
NetworkTime.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.ErrorEventArgs Class

NetworkTime.ErrorEventArgs overview

Public Instance Constructors

 NetworkTime.ErrorEventArgs Constructor Initializes a new instance of the
NetworkTime.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NetworkTime.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.ErrorEventArgs Members

Initializes a new instance of the NetworkTime.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public NetworkTime.ErrorEventArgs();

See Also
NetworkTime.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.ErrorEventArgs Constructor

The properties of the NetworkTime.ErrorEventArgs class are listed below. For a complete list of
NetworkTime.ErrorEventArgs class members, see the NetworkTime.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
NetworkTime.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
NetworkTime.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public NetworkTime.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
NetworkTime.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.ErrorEventArgs.Error Property

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
NetworkTime Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.OnTimeout Event

Specifies the error codes returned by the NetworkTime class.

[Visual Basic]
Public Enum NetworkTime.ErrorCode

[C#]
public enum NetworkTime.ErrorCode

Remarks
The NetworkTime class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

NetworkTime.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NetworkTime (in SocketTools.NetworkTime.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the NetworkTime class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum NetworkTime.TraceOptions

[C#]
[Flags]
public enum NetworkTime.TraceOptions

Remarks
The NetworkTime class uses the TraceOptions enumeration to specify what kind of debugging
information is written to the trace logfile. These options are only meaningful when trace logging is
enabled by setting the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.NetworkTime (in SocketTools.NetworkTime.dll)

See Also
SocketTools Namespace

NetworkTime.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub NetworkTime.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void NetworkTime.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NetworkTime (in SocketTools.NetworkTime.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.OnErrorEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see NetworkTime.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.NetworkTime.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class NetworkTime.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class NetworkTime.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the NetworkTime class.

Example

<Assembly: SocketTools.NetworkTime.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.NetworkTime.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.NetworkTime (in SocketTools.NetworkTime.dll)

See Also
NetworkTime.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.RuntimeLicenseAttribute Class

NetworkTime.RuntimeLicenseAttribute overview

Public Instance Constructors

 NetworkTime.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NetworkTime.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public NetworkTime.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the NetworkTime class.

See Also
NetworkTime.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.RuntimeLicenseAttribute Constructor

The properties of the NetworkTime.RuntimeLicenseAttribute class are listed below. For a complete list
of NetworkTime.RuntimeLicenseAttribute class members, see the
NetworkTime.RuntimeLicenseAttribute Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
NetworkTime.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
NetworkTime.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTime.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see NetworkTimeException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.NetworkTimeException

[Visual Basic]
Public Class NetworkTimeException
 Inherits ApplicationException

[C#]
public class NetworkTimeException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A NetworkTimeException is thrown by the NetworkTime class when an error occurs.

The default constructor for the NetworkTimeException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NetworkTime (in SocketTools.NetworkTime.dll)

See Also
NetworkTimeException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTimeException Class

NetworkTimeException overview

Public Instance Constructors

 NetworkTimeException Overloaded. Initializes a new instance of the
NetworkTimeException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

NetworkTimeException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NetworkTimeException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the NetworkTimeException class with the last network error code.

Overload List
Initializes a new instance of the NetworkTimeException class with the last network error code.

public NetworkTimeException();

Initializes a new instance of the NetworkTimeException class with a specified error number.

public NetworkTimeException(int);

Initializes a new instance of the NetworkTimeException class with a specified error message.

public NetworkTimeException(string);

Initializes a new instance of the NetworkTimeException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

public NetworkTimeException(string,Exception);

See Also
NetworkTimeException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTimeException Constructor

Initializes a new instance of the NetworkTimeException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public NetworkTimeException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the NetworkTime.ErrorCode enumeration.

See Also
NetworkTimeException Class | SocketTools Namespace | NetworkTimeException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTimeException Constructor ()

Initializes a new instance of the NetworkTimeException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public NetworkTimeException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
NetworkTimeException Class | SocketTools Namespace | NetworkTimeException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTimeException Constructor (String)

Initializes a new instance of the NetworkTimeException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public NetworkTimeException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
NetworkTimeException Class | SocketTools Namespace | NetworkTimeException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTimeException Constructor (String, Exception)

Initializes a new instance of the NetworkTimeException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public NetworkTimeException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the NetworkTime.ErrorCode enumeration.

See Also
NetworkTimeException Class | SocketTools Namespace | NetworkTimeException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTimeException Constructor (Int32)

The properties of the NetworkTimeException class are listed below. For a complete list of
NetworkTimeException class members, see the NetworkTimeException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
NetworkTimeException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTimeException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public NetworkTime.ErrorCode ErrorCode {get;}

Property Value
Returns a NetworkTime.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the NetworkTimeException class sets the error code to the last network error
that occurred. For more information about the errors that may occur, refer to the NetworkTime.ErrorCode
enumeration.

See Also
NetworkTimeException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTimeException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
NetworkTimeException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTimeException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
NetworkTimeException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTimeException.Number Property

The methods of the NetworkTimeException class are listed below. For a complete list of
NetworkTimeException class members, see the NetworkTimeException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NetworkTimeException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTimeException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
NetworkTimeException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NetworkTimeException.ToString Method

Retrieve and process the contents of a syndicated news feed.

For a list of all members of this type, see NewsFeed Members.

System.Object
 SocketTools.NewsFeed

[Visual Basic]
Public Class NewsFeed
 Implements IDisposable

[C#]
public class NewsFeed : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
Really Simple Syndication (RSS) is a collection of standardized formats that are used to publish information
about content that is frequently changed. A news feed is published in XML format, which contains one or
more items that includes summary text, hyperlinks to source content and additional metadata that is used
to describe the item. News feeds can be used for a variety of purposes, including providing updates for
weblogs, news headlines, video and audio content. RSS can also be used for other purposes, such as a
software updates, where new updates are listed as items in the feed.

News feeds can be accessed remotely from a web server, or locally as an XML formatted text file. The
source of the feed is determined by the URI scheme that is specified. If the http or https scheme is
specified, then the feed is retrieved from a web server. If the file scheme is used, the feed is considered to
be local and is accessed from the disk or local network. The SocketTools.NewsFeed class provides an
interface that enables you to open a feed by URL and iterate through each of the items in the feed or
search for a specific feed item. The class can also be used to parse a string that contains XML data in RSS
format, where the feed may have been retrieved from other sources such as a database.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NewsFeed (in SocketTools.NewsFeed.dll)

See Also
NewsFeed Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed Class

NewsFeed overview

Public Static (Shared) Fields

feedPortDefault A constant value which specifies the default port
number.

feedPortSecure A constant value which specifies the default port
number for a secure connection.

feedTimeout A constant value which specifies the default
timeout period.

Public Instance Constructors

 NewsFeed Constructor Initializes a new instance of the NewsFeed class.

Public Instance Properties

Category Gets a value which specifies the category or
categories that the channel belongs to.

Copyright Gets a value which specifies a copyright notice for
the content.

Description Gets a value which describes the news feed
channel.

Editor Gets a value which identifies the person
responsible for managing the content of the news
feed.

FeedVersion Gets a value which identifies the version of the
news feed.

Generator Gets a value which identifies the application that
was used to create the news feed.

ImageLink Gets a value which specifies a URL to the website
corresponding to the news feed.

ImageTitle Gets a value which describes the image associated
with the news feed.

ImageUrl Gets a value which specifies a URL for the image
associated with the news feed.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

ItemAuthor Gets a value which identifies the author of the
current news feed item.

ItemComments Gets a value which specifies a URL that links to
further discussion about the current item.

ItemCount Gets value which specifies the number of news
items in the channel.

NewsFeed Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.feedPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.feedPortSecure.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.feedTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.IsInitialized.html

ItemEnclosure Gets a value which specifies a URL that links to a
file related to the item.

ItemGuid Gets a value which uniquely identifies the current
news item in the channel.

ItemId Gets an numeric value which identifies the current
news item in the channel.

ItemLink Gets a value which specifies a URL that links to
additional information related to the current item.

ItemPublished Gets a value which specifies the date and time the
current news item was published.

ItemSource Gets a value which identifies the source of the
current news item.

ItemText Gets a value which provides a summary or
description of the current news item.

ItemTitle Gets a value which specifies a title for the current
news item.

Language Gets a value which identifies the language the
news feed is written in.

LastBuild Gets a value which specifies the date and time that
the content of the news feed was last modified.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LinkUrl Gets a value which specifies a URL to the website
corresponding to the channel.

LocalFeed Gets a value which specifies if the news feed was
opened on the local system.

Options Gets and sets a value which specifies one or more
client options.

Published Gets a value which specifies the date and time that
the news feed was published.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeToLive Gets a value which specifies the frequency in
seconds at which the feed should be refreshed.

Title Gets a value which specifies the name of the news
feed channel.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

URL Gets and sets a value which specifies the current
news feed URL.

Version Gets a value which returns the current version of
the NewsFeed class library.

Webmaster Gets a value which identifies the person
responsible for technical issues related to the news
feed.

Public Instance Methods

Close Close the current news feed.

Dispose Overloaded. Releases all resources used by
NewsFeed.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

FindItem Search for an item in the news feed channel which
matches the unique identifier.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetItem Set the current news item to the specified item
number.

GetProperty Overloaded. Get the value of a property for the
specified item in the news feed.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the NewsFeed
class.

Open Overloaded. Open the specified news feed and
load the first news item.

Parse Overloaded. Parse the contents of a news feed
and load the first news item.

Refresh Refresh the current news feed, reloading the news
channel items.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Store Store the contents of the news feed in an XML
formatted text file.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.URL.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.Dispose_overload_1.html

resources allocated for the current thread.

Public Instance Events

OnError Occurs when an client operation fails.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the NewsFeed class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.Dispose_overload_2.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.Finalize.html

Initializes a new instance of the NewsFeed class.

[Visual Basic]
Public Sub New()

[C#]
public NewsFeed();

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed Constructor

The properties of the NewsFeed class are listed below. For a complete list of NewsFeed class members,
see the NewsFeed Members topic.

Public Instance Properties

Category Gets a value which specifies the category or
categories that the channel belongs to.

Copyright Gets a value which specifies a copyright notice for
the content.

Description Gets a value which describes the news feed
channel.

Editor Gets a value which identifies the person
responsible for managing the content of the news
feed.

FeedVersion Gets a value which identifies the version of the
news feed.

Generator Gets a value which identifies the application that
was used to create the news feed.

ImageLink Gets a value which specifies a URL to the website
corresponding to the news feed.

ImageTitle Gets a value which describes the image associated
with the news feed.

ImageUrl Gets a value which specifies a URL for the image
associated with the news feed.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

ItemAuthor Gets a value which identifies the author of the
current news feed item.

ItemComments Gets a value which specifies a URL that links to
further discussion about the current item.

ItemCount Gets value which specifies the number of news
items in the channel.

ItemEnclosure Gets a value which specifies a URL that links to a
file related to the item.

ItemGuid Gets a value which uniquely identifies the current
news item in the channel.

ItemId Gets an numeric value which identifies the current
news item in the channel.

ItemLink Gets a value which specifies a URL that links to
additional information related to the current item.

ItemPublished Gets a value which specifies the date and time the
current news item was published.

NewsFeed Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.IsInitialized.html

ItemSource Gets a value which identifies the source of the
current news item.

ItemText Gets a value which provides a summary or
description of the current news item.

ItemTitle Gets a value which specifies a title for the current
news item.

Language Gets a value which identifies the language the
news feed is written in.

LastBuild Gets a value which specifies the date and time that
the content of the news feed was last modified.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LinkUrl Gets a value which specifies a URL to the website
corresponding to the channel.

LocalFeed Gets a value which specifies if the news feed was
opened on the local system.

Options Gets and sets a value which specifies one or more
client options.

Published Gets a value which specifies the date and time that
the news feed was published.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeToLive Gets a value which specifies the frequency in
seconds at which the feed should be refreshed.

Title Gets a value which specifies the name of the news
feed channel.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

URL Gets and sets a value which specifies the current
news feed URL.

Version Gets a value which returns the current version of
the NewsFeed class library.

Webmaster Gets a value which identifies the person

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.URL.html

responsible for technical issues related to the news
feed.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets a value which specifies the category or categories that the channel belongs to.

[Visual Basic]
Public ReadOnly Property Category As String

[C#]
public string Category {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Category Property

Gets a value which specifies a copyright notice for the content.

[Visual Basic]
Public ReadOnly Property Copyright As String

[C#]
public string Copyright {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Copyright Property

Gets a value which describes the news feed channel.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Description Property

Gets a value which identifies the person responsible for managing the content of the news feed.

[Visual Basic]
Public ReadOnly Property Editor As String

[C#]
public string Editor {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Editor Property

Gets a value which identifies the version of the news feed.

[Visual Basic]
Public ReadOnly Property FeedVersion As String

[C#]
public string FeedVersion {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.FeedVersion Property

Gets a value which identifies the application that was used to create the news feed.

[Visual Basic]
Public ReadOnly Property Generator As String

[C#]
public string Generator {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Generator Property

Gets a value which specifies a URL to the website corresponding to the news feed.

[Visual Basic]
Public ReadOnly Property ImageLink As String

[C#]
public string ImageLink {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ImageLink Property

Gets a value which describes the image associated with the news feed.

[Visual Basic]
Public ReadOnly Property ImageTitle As String

[C#]
public string ImageTitle {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ImageTitle Property

Gets a value which specifies a URL for the image associated with the news feed.

[Visual Basic]
Public ReadOnly Property ImageUrl As String

[C#]
public string ImageUrl {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ImageUrl Property

Gets a value which identifies the author of the current news feed item.

[Visual Basic]
Public ReadOnly Property ItemAuthor As String

[C#]
public string ItemAuthor {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ItemAuthor Property

Gets a value which specifies a URL that links to further discussion about the current item.

[Visual Basic]
Public ReadOnly Property ItemComments As String

[C#]
public string ItemComments {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ItemComments Property

Gets value which specifies the number of news items in the channel.

[Visual Basic]
Public ReadOnly Property ItemCount As Integer

[C#]
public int ItemCount {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ItemCount Property

Gets a value which specifies a URL that links to a file related to the item.

[Visual Basic]
Public ReadOnly Property ItemEnclosure As String

[C#]
public string ItemEnclosure {get;}

Remarks
This is similar to an attachment in an email message, however instead of the item containing the contents
of the attached file, it only specifies a link to the file. Enclosures are most commonly used with podcasting
where an item is linked to an audio or video file, however the link may reference any type of file. If there is
no enclosure specified for the current item, this property will return an empty string.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ItemEnclosure Property

Gets a value which uniquely identifies the current news item in the channel.

[Visual Basic]
Public ReadOnly Property ItemGuid As String

[C#]
public string ItemGuid {get;}

Remarks
If this property is defined, it is guaranteed to be a unique, persistent value. It is important to note that this
string does not have to be a standard GUID reference number, it can be any unique string. In many cases
it is the same value as the hyperlink returned by the ItemLink property, although an application should
never depend on this behavior. If there is no unique identifier associated with the current item, this
property will return an empty string.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ItemGuid Property

Gets an numeric value which identifies the current news item in the channel.

[Visual Basic]
Public ReadOnly Property ItemId As Integer

[C#]
public int ItemId {get;}

Remarks
The value returned by this property is an index into the list of available news items. It is not persistent and
the ID for a specific news item may change when the news feed is refreshed or opened at a later point. To
uniquely identify a news item in the channel, use the ItemGuid property.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ItemId Property

Gets a value which specifies a URL that links to additional information related to the current item.

[Visual Basic]
Public ReadOnly Property ItemLink As String

[C#]
public string ItemLink {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ItemLink Property

Gets a value which specifies the date and time the current news item was published.

[Visual Basic]
Public ReadOnly Property ItemPublished As String

[C#]
public string ItemPublished {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ItemPublished Property

Gets a value which identifies the source of the current news item.

[Visual Basic]
Public ReadOnly Property ItemSource As String

[C#]
public string ItemSource {get;}

Remarks
If the news item specifies a source, it will be the URL for the original news feed that contained it. This is
typically used to propagate credit for news items that are aggregated by a third-party and re-published in
their own channel. If the source is not specified, this property will return an empty string.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ItemSource Property

Gets a value which provides a summary or description of the current news item.

[Visual Basic]
Public ReadOnly Property ItemText As String

[C#]
public string ItemText {get;}

Remarks
This may property may return either plain text or HTML formatted text. If no text has been specified for
the current item, this property will return an empty string.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ItemText Property

Gets a value which specifies a title for the current news item.

[Visual Basic]
Public ReadOnly Property ItemTitle As String

[C#]
public string ItemTitle {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ItemTitle Property

Gets a value which identifies the language the news feed is written in.

[Visual Basic]
Public ReadOnly Property Language As String

[C#]
public string Language {get;}

Remarks
This property typically returns standardized language codes, however the value actually returned depends
on the content of the feed. If the news feed does not define this property, then it is generally presumed to
be written in English.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Language Property

Gets a value which specifies the date and time that the content of the news feed was last modified.

[Visual Basic]
Public ReadOnly Property LastBuild As String

[C#]
public string LastBuild {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.LastBuild Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public NewsFeed.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.LastErrorString Property

Gets a value which specifies a URL to the website corresponding to the channel.

[Visual Basic]
Public ReadOnly Property LinkUrl As String

[C#]
public string LinkUrl {get;}

Remarks
This property does not return the URL of the news feed itself. Typically it is a link to the home page of the
site which owns the news feed. If a link has not been specified in the news feed, this property will return an
empty string. Note that strictly conforming news feeds require a valid link.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.LinkUrl Property

Gets a value which specifies if the news feed was opened on the local system.

[Visual Basic]
Public ReadOnly Property LocalFeed As Boolean

[C#]
public bool LocalFeed {get;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.LocalFeed Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As NewsFeedOptions

[C#]
public NewsFeed.NewsFeedOptions Options {get; set;}

Property Value
Returns one or more NewsFeedOptions enumeration flags which specify the options for the client. The
default value for this property is optionNone.

Remarks
The Options property specifies one or more default options options which are used when opening a
news feed using the Open method.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Options Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.NewsFeedOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.NewsFeedOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.NewsFeedOptions.html

Gets a value which specifies the date and time that the news feed was published.

[Visual Basic]
Public ReadOnly Property Published As String

[C#]
public string Published {get;}

Remarks
The value returned by this property is not necessarily the date that the news feed was last modified. For
example, a feed that is associated with a weekly print publication may update this value once per week. If
a publish date has not been specified for the feed, this property will return an empty string.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Published Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Timeout Property

Gets a value which specifies the frequency in seconds at which the feed should be refreshed.

[Visual Basic]
Public ReadOnly Property TimeToLive As Integer

[C#]
public int TimeToLive {get;}

Property Value
An integer value that specifies the frequency in seconds at which the feed should be refreshed to obtain
updated information. Not all feeds specify a time-to-live, in which case this member will have a value of
zero.

Remarks
The value of the TimeToLive property should be considered advisory, and not all news feeds will provide
this value. If the news feed does provide this value, it is recommended that you consider it to be the
minimum interval at which you will poll the site for updates to the feed.

To update the contents of the current feed, use the Refresh method.

See Also
NewsFeed Class | SocketTools Namespace | Refresh Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.TimeToLive Property

Gets a value which specifies the name of the news feed channel.

[Visual Basic]
Public ReadOnly Property Title As String

[C#]
public string Title {get;}

Remarks
If the content of the news feed corresponds to a website, this is value returned by this property is typically
the same as the title of the website. If a title has not been specified, this property will return an empty
string. Note that a strictly conforming news feed requires a title.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Title Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public NewsFeed.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.TraceFlags Property

Gets and sets a value which specifies the current news feed URL.

[Visual Basic]
Public Property URL As String

[C#]
public string URL {get; set;}

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.URL Property

Gets a value which returns the current version of the NewsFeed class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the NewsFeed class
library. This value can be used by an application for validation and debugging purposes.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Version Property

Gets a value which identifies the person responsible for technical issues related to the news feed.

[Visual Basic]
Public ReadOnly Property Webmaster As String

[C#]
public string Webmaster {get;}

Remarks
If this value is defined in the news feed, it is typically the email address of a system administrator
responsible for the server that hosts the news feed. If the webmaster is not specified, this property will
return an empty string.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Webmaster Property

The methods of the NewsFeed class are listed below. For a complete list of NewsFeed class members,
see the NewsFeed Members topic.

Public Instance Methods

Close Close the current news feed.

Dispose Overloaded. Releases all resources used by
NewsFeed.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

FindItem Search for an item in the news feed channel which
matches the unique identifier.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetItem Set the current news item to the specified item
number.

GetProperty Overloaded. Get the value of a property for the
specified item in the news feed.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the NewsFeed
class.

Open Overloaded. Open the specified news feed and
load the first news item.

Parse Overloaded. Parse the contents of a news feed
and load the first news item.

Refresh Refresh the current news feed, reloading the news
channel items.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Store Store the contents of the news feed in an XML
formatted text file.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the NewsFeed class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading

NewsFeed Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.Dispose_overload_1.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.Dispose_overload_2.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.Finalize.html

the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Close the current news feed.

[Visual Basic]
Public Function Close() As Boolean

[C#]
public bool Close();

Return Value
A boolean value which specifies if the news feed was closed successfully. A return value of true indicates
success, while a return value of false indicates failure. If the method fails, the value of the LastError
property can be used to determine cause of the failure.

Remarks
The Close method must be called whenever the application has completed processing the news feed. It is
important to note that information about the current news feed item will be cleared whenever this method
is called, resetting the channel and item related properties back to their default values.

See Also
NewsFeed Class | SocketTools Namespace | Open Method | Parse Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Close Method

Search for an item in the news feed channel which matches the unique identifier.

[Visual Basic]
Public Function FindItem(_
 ByVal itemGuid As String _
) As Boolean

[C#]
public bool FindItem(
 string itemGuid
);

Parameters
itemGuid

A string value which specifies the unique identifier for the news item that is being searched for.

Return Value
A boolean value that specifies if the news item was found. A return value of true indicates success, while a
return value of false indicates failure. If the method fails, the value of the LastError property can be used
to determine cause of the failure.

Remarks
If this method returns true, the current news item is changed to the item that was found and property
values such as ItemLink and ItemText will be updated. If this method returns false, the current news item
is not changed.

It is recommended that you use this method with news feeds that are using version 2.0 or later of the RSS
specification. If the feed uses an earlier version, items may not include a GUID property. It is also possible
that a feed may omit the GUID property even though it is considered a requirement for the current RSS
specification. For the broadest compatibility with all news feeds, an application should not depend on
being able to search for a specific news feed item by its GUID.

See Also
NewsFeed Class | SocketTools Namespace | ItemGuid Property | GetItem Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.FindItem Method

Set the current news item to the specified item number.

[Visual Basic]
Public Function GetItem(_
 ByVal itemId As Integer _
) As Boolean

[C#]
public bool GetItem(
 int itemId
);

Parameters
itemId

An integer value which specifies item in the news feed channel.

Return Value
A boolean value that specifies if the news item was found. A return value of true indicates success, while a
return value of false indicates failure. If the method fails, the value of the LastError property can be used
to determine cause of the failure.

Remarks
The item number is an index into the list of available news items in the current news feed. The first news
item is one, and it increments for each additional item in the feed. If itemId parameter is zero or specifies
a value larger than the number of items in the feed, this method will fail.

If this method returns true, the current news item is changed to the specified value and property values
such as ItemLink and ItemText will be updated. If this method returns false, the current news item is not
changed.

If this method fails, it typically indicates that the itemId parameter is invalid or that the feed does not
contain any valid news items. The ItemCount property can be used to determine the number of items
contained in the news feed channel.

See Also
NewsFeed Class | SocketTools Namespace | ItemCount Property | FindItem Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.GetItem Method

Get the value of a property for the specified item in the news feed.

Overload List
Get the value of a property for the specified item in the news feed.

public bool GetProperty(int,string,string,ref string);

Get the value of a property for the specified item in the news feed.

public bool GetProperty(int,string,ref string);

Get the value of a property for the specified item in the news feed.

public bool GetProperty(string,string,ref string);

Get the value of a property for the specified item in the news feed.

public bool GetProperty(string,ref string);

See Also
NewsFeed Class | SocketTools Namespace | GetItem

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.GetProperty Method

Get the value of a property for the specified item in the news feed.

[Visual Basic]
Overloads Public Function GetProperty(_
 ByVal itemId As Integer, _
 ByVal propName As String, _
 ByVal propAttribute As String, _
 ByRef propValue As String _
) As Boolean

[C#]
public bool GetProperty(
 int itemId,
 string propName,
 string propAttribute,
 ref string propValue
);

Parameters
itemId

An integer value which specifies the item in the news feed channel.

propName
A string value which specifies the property name.

propAttribute
A string value which specifies the property attribute.

propValue
A string value passed by reference that will contain the property value when the method returns.

Return Value
A boolean value that specifies if the property attribute was found. A return value of true indicates success,
while a return value of false indicates failure. If the method fails, the value of the LastError property can
be used to determine cause of the failure.

Remarks
The GetProperty method is primarily used with custom item properties that may be used with extensions
to the news feed. The standard properties for an news feed item such as the title, link and description can
be access using properties such as ItemTitle, ItemLink and ItemText. However, if items in the feed
contain custom properties that are not part of the standard RSS format, this method can be used to
obtain those values.

The item number is an index into the list of available news items in the current news feed. The first news
item is one, and it increments for each additional item in the feed. If itemId parameter is zero or specifies
a value larger than the number of items in the feed, this method will fail.

See Also
NewsFeed Class | SocketTools Namespace | NewsFeed.GetProperty Overload List | GetItem

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.GetProperty Method (Int32, String, String, String)

Get the value of a property for the specified item in the news feed.

[Visual Basic]
Overloads Public Function GetProperty(_
 ByVal itemId As Integer, _
 ByVal propName As String, _
 ByRef propValue As String _
) As Boolean

[C#]
public bool GetProperty(
 int itemId,
 string propName,
 ref string propValue
);

See Also
NewsFeed Class | SocketTools Namespace | NewsFeed.GetProperty Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.GetProperty Method (Int32, String, String)

Get the value of a property for the specified item in the news feed.

[Visual Basic]
Overloads Public Function GetProperty(_
 ByVal propName As String, _
 ByVal propAttribute As String, _
 ByRef propValue As String _
) As Boolean

[C#]
public bool GetProperty(
 string propName,
 string propAttribute,
 ref string propValue
);

See Also
NewsFeed Class | SocketTools Namespace | NewsFeed.GetProperty Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.GetProperty Method (String, String, String)

Get the value of a property for the specified item in the news feed.

[Visual Basic]
Overloads Public Function GetProperty(_
 ByVal propName As String, _
 ByRef propValue As String _
) As Boolean

[C#]
public bool GetProperty(
 string propName,
 ref string propValue
);

See Also
NewsFeed Class | SocketTools Namespace | NewsFeed.GetProperty Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.GetProperty Method (String, String)

Initialize an instance of the NewsFeed class.

Overload List
Initialize an instance of the NewsFeed class.

public bool Initialize();

Initialize an instance of the NewsFeed class.

public bool Initialize(string);

See Also
NewsFeed Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Initialize Method

Initialize an instance of the NewsFeed class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the NewsFeed class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
NewsFeed Class | SocketTools Namespace | NewsFeed.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Initialize Method ()

Initialize an instance of the NewsFeed class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the NewsFeed class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the NewsFeed class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.NewsFeed newsFeed = new SocketTools.NewsFeed();

if (newsFeed.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(newsFeed.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim newsFeed As New SocketTools.NewsFeed

If newsFeed.Initialize(strLicenseKey) = False Then
 MsgBox(newsFeed.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
NewsFeed Class | SocketTools Namespace | NewsFeed.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Initialize Method (String)

Open the specified news feed and load the first news item.

Overload List
Open the specified news feed and load the first news item.

public bool Open(string);

Open the specified news feed and load the first news item.

public bool Open(string,int);

Open the specified news feed and load the first news item.

public bool Open(string,int,NewsFeedOptions);

See Also
NewsFeed Class | SocketTools Namespace | Parse Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Open Method

Open the specified news feed and load the first news item.

[Visual Basic]
Overloads Public Function Open(_
 ByVal feedUrl As String, _
 ByVal timeout As Integer, _
 ByVal options As NewsFeedOptions _
) As Boolean

[C#]
public bool Open(
 string feedUrl,
 int timeout,
 NewsFeedOptions options
);

Parameters
feedUrl

A string value which specifies the URL for the news feed. To access a news feed on a web server, a
standard http or https URL may be used. To access a file on the local system or network share, a
file name or file URL may be specified.

timeout
The number of seconds that the client will wait for a response before failing the operation. This
parameter is ignored if the feedUrl parameter specifies a local file name or URL.

options
One or more NewsFeedOptions enumeration flags which specify the options for the client. The default
value for this property is optionNone.

Return Value
A boolean value that specifies if the news feed was opened. A return value of true indicates success, while
a return value of false indicates failure. If the method fails, the value of the LastError property can be used
to determine cause of the failure.

Remarks
A news feed may be local or remote, depending on the URL that is specified. If a local file name or file URL
is specified for the feed, then it is opened locally and no network access is required. If an http or https URL
is specified, then the Open method will attempt to download the feed from the remote host and store it
temporarily on the local system. Accessing a remote feed requires that the application has permission to
establish a connection with the remote host and will cause the application to block until the feed has been
downloaded, the operation times out or an error occurs.

Although the Open method will meet the needs of most applications, if you require more complex
functionality such as retrieving the feed asynchronously in the background or event notifications for large
transfers, you can use the SocketTools.HttpClient class to download the news feed and then use the
Parse method to parse the contents.

See Also
NewsFeed Class | SocketTools Namespace | NewsFeed.Open Overload List | Parse Method

NewsFeed.Open Method (String, Int32, NewsFeedOptions)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.NewsFeedOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.NewsFeedOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.NewsFeedOptions.html

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Open the specified news feed and load the first news item.

[Visual Basic]
Overloads Public Function Open(_
 ByVal feedUrl As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Open(
 string feedUrl,
 int timeout
);

Parameters
feedUrl

A string value which specifies the URL for the news feed. To access a news feed on a web server, a
standard http or https URL may be used. To access a file on the local system or network share, a
file name or file URL may be specified.

timeout
The number of seconds that the client will wait for a response before failing the operation. This
parameter is ignored if the feedUrl parameter specifies a local file name or URL.

Return Value
A boolean value that specifies if the news feed was opened. A return value of true indicates success, while
a return value of false indicates failure. If the method fails, the value of the LastError property can be used
to determine cause of the failure.

Remarks
A news feed may be local or remote, depending on the URL that is specified. If a local file name or file URL
is specified for the feed, then it is opened locally and no network access is required. If an http or https URL
is specified, then the Open method will attempt to download the feed from the remote host and store it
temporarily on the local system. Accessing a remote feed requires that the application has permission to
establish a connection with the remote host and will cause the application to block until the feed has been
downloaded, the operation times out or an error occurs.

Although the Open method will meet the needs of most applications, if you require more complex
functionality such as retrieving the feed asynchronously in the background or event notifications for large
transfers, you can use the SocketTools.HttpClient class to download the news feed and then use the
Parse method to parse the contents.

See Also
NewsFeed Class | SocketTools Namespace | NewsFeed.Open Overload List | Parse Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Open Method (String, Int32)

Open the specified news feed and load the first news item.

[Visual Basic]
Overloads Public Function Open(_
 ByVal feedUrl As String _
) As Boolean

[C#]
public bool Open(
 string feedUrl
);

Parameters
feedUrl

A string value which specifies the URL for the news feed. To access a news feed on a web server, a
standard http or https URL may be used. To access a file on the local system or network share, a
file name or file URL may be specified.

Return Value
A boolean value that specifies if the news feed was opened. A return value of true indicates success, while
a return value of false indicates failure. If the method fails, the value of the LastError property can be used
to determine cause of the failure.

Remarks
A news feed may be local or remote, depending on the URL that is specified. If a local file name or file URL
is specified for the feed, then it is opened locally and no network access is required. If an http or https URL
is specified, then the Open method will attempt to download the feed from the remote host and store it
temporarily on the local system. Accessing a remote feed requires that the application has permission to
establish a connection with the remote host and will cause the application to block until the feed has been
downloaded, the operation times out or an error occurs.

Although the Open method will meet the needs of most applications, if you require more complex
functionality such as retrieving the feed asynchronously in the background or event notifications for large
transfers, you can use the SocketTools.HttpClient class to download the news feed and then use the
Parse method to parse the contents.

See Also
NewsFeed Class | SocketTools Namespace | NewsFeed.Open Overload List | Parse Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Open Method (String)

Parse the contents of a news feed and load the first news item.

Overload List
Parse the contents of a news feed and load the first news item.

public bool Parse(string);

Parse the contents of a news feed and load the first news item.

public bool Parse(string,NewsFeedOptions);

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Parse Method

Parse the contents of a news feed and load the first news item.

[Visual Basic]
Overloads Public Function Parse(_
 ByVal feedXml As String, _
 ByVal options As NewsFeedOptions _
) As Boolean

[C#]
public bool Parse(
 string feedXml,
 NewsFeedOptions options
);

Parameters
feedXml

A string which contains the contents of the news feed. The string must contain XML formatted data
that conforms to the RSS standard specification and cannot specify an empty string.

options
One or more NewsFeedOptions enumeration flags which specify the options for the client. The default
value for this property is optionNone.

Return Value
A boolean value that specifies if the contents of the feedXml parameter could be parsed. A return value of
true indicates success, while a return value of false indicates failure. If the method fails, the value of the
LastError property can be used to determine cause of the failure.

Remarks
The Parse method is an alternative to the Open method, enabling the application to process a news feed
from alternative sources such as a database or compressed file. It is important to note that the string
which contains the news feed XML must be properly formatted and conform to the RSS standard
specification.

See Also
NewsFeed Class | SocketTools Namespace | NewsFeed.Parse Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Parse Method (String, NewsFeedOptions)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.NewsFeedOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.NewsFeedOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.NewsFeed.NewsFeedOptions.html

Parse the contents of a news feed and load the first news item.

[Visual Basic]
Overloads Public Function Parse(_
 ByVal feedXml As String _
) As Boolean

[C#]
public bool Parse(
 string feedXml
);

Parameters
feedXml

A string which contains the contents of the news feed. The string must contain XML formatted data
that conforms to the RSS standard specification and cannot specify an empty string.

Return Value
A boolean value that specifies if the contents of the feedXml parameter could be parsed. A return value of
true indicates success, while a return value of false indicates failure. If the method fails, the value of the
LastError property can be used to determine cause of the failure.

Remarks
The Parse method is an alternative to the Open method, enabling the application to process a news feed
from alternative sources such as a database or compressed file. It is important to note that the string
which contains the news feed XML must be properly formatted and conform to the RSS standard
specification.

See Also
NewsFeed Class | SocketTools Namespace | NewsFeed.Parse Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Parse Method (String)

Refresh the current news feed, reloading the news channel items.

[Visual Basic]
Public Function Refresh() As Boolean

[C#]
public bool Refresh();

Return Value
A boolean value that specifies if the news feed was refreshed. A return value of true indicates success,
while a return value of false indicates failure. If the method fails, the value of the LastError property can
be used to determine cause of the failure.

Remarks
When the Refresh method is called, the news feed is reloaded from the original source and the items in
the channel are updated. For news feeds that are frequently updated, the TimeToLive property can
provide a hint to the application as to how frequently the feed should be refreshed.

If the news feed was originally opened using an http or https URL, this function will download the updated
feed from the remote host and store it temporarily on the local system. Accessing a remote feed requires
that the application has permission to establish a connection with the remote host and will cause the
application to block until the feed has been downloaded, the operation times out or an error occurs. The
same timeout period and options will be used as when the feed was originally opened.

The Refresh method should only be used if the feed was opened using the Open method, otherwise the
method will fail with an error indicating that the operation is not supported.

It is important that the application does not make any assumptions about the number of news items in the
channel, or the content associated with those items after the Refresh method has been called. For
example, never assume that the number of items in the news feed remains the same, or that the item IDs
for each item remains the same. If you need to find a specific item in the news feed, use the FindItem
method.

See Also
NewsFeed Class | SocketTools Namespace | FindItem Method | Open Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Refresh Method

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Reset Method

Store the contents of the news feed in an XML formatted text file.

[Visual Basic]
Public Function Store(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool Store(
 string fileName
);

Parameters
fileName

A string value which specifies the name of the file on the local system. The contents of the news feed
will be stored in this file. If the file does not exist, it will be created; otherwise it will overwrite the
contents of the file.

Return Value
A boolean value that specifies if the news feed was stored on the local system or network. A return value
of true indicates success, while a return value of false indicates failure. If the method fails, the value of the
LastError property can be used to determine cause of the failure.

See Also
NewsFeed Class | SocketTools Namespace | Open Method | Parse Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Store Method

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
NewsFeed Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.Uninitialize Method

The events of the NewsFeed class are listed below. For a complete list of NewsFeed class members, see
the NewsFeed Members topic.

Public Instance Events

OnError Occurs when an client operation fails.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed Events

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type NewsFeed.ErrorEventArgs containing data related to this
event. The following NewsFeed.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
NewsFeed Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see NewsFeed.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.NewsFeed.ErrorEventArgs

[Visual Basic]
Public Class NewsFeed.ErrorEventArgs
 Inherits EventArgs

[C#]
public class NewsFeed.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NewsFeed (in SocketTools.NewsFeed.dll)

See Also
NewsFeed.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ErrorEventArgs Class

NewsFeed.ErrorEventArgs overview

Public Instance Constructors

 NewsFeed.ErrorEventArgs Constructor Initializes a new instance of the
NewsFeed.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NewsFeed.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ErrorEventArgs Members

Initializes a new instance of the NewsFeed.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public NewsFeed.ErrorEventArgs();

See Also
NewsFeed.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ErrorEventArgs Constructor

The properties of the NewsFeed.ErrorEventArgs class are listed below. For a complete list of
NewsFeed.ErrorEventArgs class members, see the NewsFeed.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
NewsFeed.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
NewsFeed.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public NewsFeed.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
NewsFeed.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.ErrorEventArgs.Error Property

Specifies the error codes returned by the NewsFeed class.

[Visual Basic]
Public Enum NewsFeed.ErrorCode

[C#]
public enum NewsFeed.ErrorCode

Remarks
The NewsFeed class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

NewsFeed.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NewsFeed (in SocketTools.NewsFeed.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the NewsFeed class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum NewsFeed.TraceOptions

[C#]
[Flags]
public enum NewsFeed.TraceOptions

Remarks
The NewsFeed class uses the TraceOptions enumeration to specify what kind of debugging information
is written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.NewsFeed (in SocketTools.NewsFeed.dll)

See Also
SocketTools Namespace

NewsFeed.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub NewsFeed.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void NewsFeed.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NewsFeed (in SocketTools.NewsFeed.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.OnErrorEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see NewsFeed.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.NewsFeed.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class NewsFeed.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class NewsFeed.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the NewsFeed class.

Example

<Assembly: SocketTools.NewsFeed.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.NewsFeed.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.NewsFeed (in SocketTools.NewsFeed.dll)

See Also
NewsFeed.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.RuntimeLicenseAttribute Class

NewsFeed.RuntimeLicenseAttribute overview

Public Instance Constructors

 NewsFeed.RuntimeLicenseAttribute Constructor Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NewsFeed.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public NewsFeed.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the NewsFeed class.

See Also
NewsFeed.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.RuntimeLicenseAttribute Constructor

The properties of the NewsFeed.RuntimeLicenseAttribute class are listed below. For a complete list of
NewsFeed.RuntimeLicenseAttribute class members, see the NewsFeed.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
NewsFeed.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
NewsFeed.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeed.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see NewsFeedException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.NewsFeedException

[Visual Basic]
Public Class NewsFeedException
 Inherits ApplicationException

[C#]
public class NewsFeedException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A NewsFeedException is thrown by the NewsFeed class when an error occurs.

The default constructor for the NewsFeedException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.NewsFeed (in SocketTools.NewsFeed.dll)

See Also
NewsFeedException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeedException Class

NewsFeedException overview

Public Instance Constructors

 NewsFeedException Overloaded. Initializes a new instance of the
NewsFeedException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

NewsFeedException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NewsFeedException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the NewsFeedException class with the last network error code.

Overload List
Initializes a new instance of the NewsFeedException class with the last network error code.

public NewsFeedException();

Initializes a new instance of the NewsFeedException class with a specified error number.

public NewsFeedException(int);

Initializes a new instance of the NewsFeedException class with a specified error message.

public NewsFeedException(string);

Initializes a new instance of the NewsFeedException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

public NewsFeedException(string,Exception);

See Also
NewsFeedException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeedException Constructor

Initializes a new instance of the NewsFeedException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public NewsFeedException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the NewsFeed.ErrorCode enumeration.

See Also
NewsFeedException Class | SocketTools Namespace | NewsFeedException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeedException Constructor ()

Initializes a new instance of the NewsFeedException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public NewsFeedException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
NewsFeedException Class | SocketTools Namespace | NewsFeedException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeedException Constructor (String)

Initializes a new instance of the NewsFeedException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public NewsFeedException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
NewsFeedException Class | SocketTools Namespace | NewsFeedException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeedException Constructor (String, Exception)

Initializes a new instance of the NewsFeedException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public NewsFeedException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the NewsFeed.ErrorCode enumeration.

See Also
NewsFeedException Class | SocketTools Namespace | NewsFeedException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeedException Constructor (Int32)

The properties of the NewsFeedException class are listed below. For a complete list of
NewsFeedException class members, see the NewsFeedException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
NewsFeedException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeedException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public NewsFeed.ErrorCode ErrorCode {get;}

Property Value
Returns a NewsFeed.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the NewsFeedException class sets the error code to the last network error that
occurred. For more information about the errors that may occur, refer to the NewsFeed.ErrorCode
enumeration.

See Also
NewsFeedException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeedException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
NewsFeedException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeedException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
NewsFeedException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeedException.Number Property

The methods of the NewsFeedException class are listed below. For a complete list of
NewsFeedException class members, see the NewsFeedException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
NewsFeedException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeedException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
NewsFeedException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

NewsFeedException.ToString Method

Implements the Post Office Protocol.

For a list of all members of this type, see PopClient Members.

System.Object
 SocketTools.PopClient

[Visual Basic]
Public Class PopClient
 Implements IDisposable

[C#]
public class PopClient : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The Post Office Protocol (POP3) provides access to a user's new email messages on a mail server.
Methods are provided for listing available messages and then retrieving those messages, storing them
either in files or in memory. Once a user's messages have been downloaded to the local system, they are
typically removed from the server. This is the most popular email protocol used by Internet Service
Providers (ISPs) and the PopClient class provides a complete interface for managing a user's mailbox. This
class is typically used in conjunction with the SocketTools.MailMessage class, which is used to process the
messages that are retrieved from the server.

This class supports secure connections using the standard SSL and TLS protocols. Both implicit and explicit
SSL connections can be established, enabling the class to work with a wide variety of servers.

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
PopClient Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient Class

PopClient overview

Public Static (Shared) Fields

popPortDefault A constant value which specifies the default port
number.

popPortSecure A constant value which specifies the default port
number for a secure connection.

popTimeout A constant value which specifies the default
timeout period.

Public Instance Constructors

 PopClient Constructor Initializes a new instance of the PopClient class.

Public Instance Properties

Authentication Gets and sets the method used to authenticate the
user.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

BearerToken Gets and sets the bearer token used with OAuth
2.0 authentication.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

PopClient Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.popPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.popPortSecure.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.popTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.CertificateUser.html

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HeaderField Gets and sets the current header field name.

HeaderValue Gets the value of the current header field.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LastMessage Gets the number of the last message available in
the current mailbox.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

MailboxSize Gets the size of the current mailbox.

Message Gets and sets the current message number.

MessageCount Gets the number of messages available in the
mailbox.

MessageFrom Gets the address of the user who sent the
message.

MessageSize Gets the size of the current message in bytes.

MessageUID Gets the UID for the current message.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ResultCode Gets a value which specifies the result of the last
command executed by the server.

ResultString Gets a string value which describes the result of
the previous command.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the client.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.RemoteService.html

the PopClient class library.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

ChangePassword Change the mailbox password for the current user.

CloseMessage Closes the current message.

Command Overloaded. Send a custom command to the
server.

Connect Overloaded. Establish a connection with a remote
host.

DeleteMessage Overloaded. Flags a message for deletion from the
current mailbox.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
PopClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeader Overloaded. Returns the value of a header field
from the specified message.

GetHeaders Overloaded. Retrieves the headers for the
specified message from the server.

GetMessage Overloaded. Retrieve a message from the server
and return the contents in a byte array.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the PopClient
class.

OpenMessage Overloaded. Open the specified message for
reading.

Read Overloaded. Read data from the server and store
it in a byte array.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SendMessage Overloaded. Submits a message to the mail server
for delivery.

StoreMessage Overloaded. Retrieve a message from the current
mailbox and store it in a file on the local system.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the server.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the PopClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the PopClient class.

[Visual Basic]
Public Sub New()

[C#]
public PopClient();

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient Constructor

The properties of the PopClient class are listed below. For a complete list of PopClient class members,
see the PopClient Members topic.

Public Instance Properties

Authentication Gets and sets the method used to authenticate the
user.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

BearerToken Gets and sets the bearer token used with OAuth
2.0 authentication.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HeaderField Gets and sets the current header field name.

HeaderValue Gets the value of the current header field.

PopClient Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.CertificateUser.html

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LastMessage Gets the number of the last message available in
the current mailbox.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

MailboxSize Gets the size of the current mailbox.

Message Gets and sets the current message number.

MessageCount Gets the number of messages available in the
mailbox.

MessageFrom Gets the address of the user who sent the
message.

MessageSize Gets the size of the current message in bytes.

MessageUID Gets the UID for the current message.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.RemoteService.html

ResultCode Gets a value which specifies the result of the last
command executed by the server.

ResultString Gets a string value which describes the result of
the previous command.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the client.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the PopClient class library.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets the method used to authenticate the user.

[Visual Basic]
Public Property Authentication As PopAuthentication

[C#]
public PopClient.PopAuthentication Authentication {get; set;}

Property Value
A PopAuthentication enumeration value which specifies the authentication method.

Remarks
The authLogin and authPlain authentication methods require the mail server support the Simple
Authentication and Security Layer (SASL) AUTH command as defined in RFC 5034. Most modern mail
servers do support one or both of these methods, and they are generally preferred over the
authPassword method when possible. However, for backwards compatibility with legacy servers, the class
will default to using authPassword for client authentication.

The authXOAuth2 and authBearer authentication methods are similar, but they are not interchangeable.
Both use an OAuth 2.0 bearer token to authenticate the client session, but they differ in how the token is
presented to the server. It is currently preferable to use the XOAUTH2 method because it is more widely
available and some service providers do not yet support the OAUTHBEARER method.

See Also
PopClient Class | SocketTools Namespace | BearerToken Poperty | Password Property | UserName
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Authentication Property

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.AutoResolve Property

Gets and sets the bearer token used with OAuth 2.0 authentication.

[Visual Basic]
Public Property BearerToken As String

[C#]
public string BearerToken {get; set;}

Property Value
Returns a string which contains the bearer token. Assigning a value to this property sets the curent
authentication type to use OAuth 2.0 authentication and updates the bearer token.

Remarks
Assigning a value to the BearerToken property will automatically change the current authentication
method to use OAuth 2.0 if necessary.

You should only use an OAuth 2.0 authentication method if you understand the process of how to request
the access token. Obtaining a bearer token requires registering your application with the mail service
provider (e.g.: Microsoft or Google), getting a unique client ID associated with your application and then
requesting the bearer token using the appropriate scope for the service. Obtaining the initial token will
typically involve interactive confirmation on the part of the user, requiring they grant permission to your
application to access their mail account.

Your application should not store the bearer token for later use. They usually have a relatively short
lifespan, typically about an hour, and are designed to be used with the current client session. You should
specify offline access as part of the OAuth 2.0 scope, and store the refresh token provided by the service.
The refresh token has a much onger validity period and can be used to obtain a new access token when
needed.

If the current authentication method does not use OAuth 2.0, this property will return an empty string and
you should use the Password property to obtain the current user password.

See Also
PopClient Class | SocketTools Namespace | Authentication Property | Password Property | UserName
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.BearerToken Property

Gets and sets a value which indicates if the client is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the client is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if client operations complete synchronously or asynchronously.
If set to true, then each client operation (such as sending or receiving data) will return when the operation
has completed or timed-out. If set to false, client operations will return immediately. If the operation
would result in the client blocking (such as attempting to read data when no data has been sent by the
remote host), an error is generated.

It is important to note that certain events, such as OnDisconnect, OnRead and OnWrite are only fired if
the client is in non-blocking mode.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Blocking Property

Get a value that specifies the date that the security certificate expires.

[Visual Basic]
Public ReadOnly Property CertificateExpires As String

[C#]
public string CertificateExpires {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateExpires property returns a string that specifies the date and time that the security
certificate expires. This property will return an empty string if a secure connection has not been
established with the remote host.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.CertificateExpires Property

Get a value that specifies the date that the security certificate was issued.

[Visual Basic]
Public ReadOnly Property CertificateIssued As String

[C#]
public string CertificateIssued {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateIssued property returns a string that specifies the date and time that the security certificate
was issued. This property will return an empty string if a secure connection has not been established with
the remote host.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.CertificateIssued Property

Get a value that provides information about the organization that issued the certificate.

[Visual Basic]
Public ReadOnly Property CertificateIssuer As String

[C#]
public string CertificateIssuer {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateIssuer property returns a string that contains information about the organization that
issued the server certificate. The string value is a comma separated list of tagged name and value pairs. In
the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.CertificateIssuer Property

Gets and sets a value that specifies the name of the client certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the certificate name.

Remarks
The CertificateName property is used to specify the name of a client certificate to use when establishing
a secure connection. It is only required that you set this property value if the server requires a client
certificate for authentication. If this property is not set, a client certificate will not be provided to the server.
If a certificate name is specified, the certificate must have a private key associated with it, otherwise the
connection attempt will fail because the control will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
PopClient Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.CertificateName Property

Gets a value which indicates the status of the security certificate returned by the remote host.

[Visual Basic]
Public ReadOnly Property CertificateStatus As SecurityCertificate

[C#]
public PopClient.SecurityCertificate CertificateStatus {get;}

Property Value
A SecurityCertificate enumeration value which specifies the status of the certificate.

Remarks
The CertificateStatus property is used to determine the status of the security certificate returned by the
remote host when a secure connection has been established. This property value should be checked after
the connection to the server has completed, but prior to beginning a transaction.

Note that if the certificate cannot be validated, the secure connection will not be automatically terminated.
It is the responsibility of your application to determine the best course of action to take if the certificate is
invalid. Even if the security certificate cannot be validated, the data exchanged with the remote host will
still be encrypted.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.CertificateStatus Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when establishing a secure connection. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and therefore it is
not necessary to set this property value because that is the default location that will be used to search for
the certificate. This property is only used if the CertificateName property is also set to a valid certificate
name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the property
should specify the full path to the file and must contain both the certificate and private key in PKCS #12

PopClient.CertificateStore Property

format. If the file is protected by a password, the CertificatePassword property must also be set to
specify the password.

See Also
PopClient Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.CertificatePassword.html

Gets a value that provides information about the organization that the server certificate was issued to.

[Visual Basic]
Public ReadOnly Property CertificateSubject As String

[C#]
public string CertificateSubject {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateSubject property returns a string that contains information about the organization that the
server certificate was issued to. The string value is a comma separated list of tagged name and value pairs.
In the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.CertificateSubject Property

Gets a value that indicates the length of the key used by the encryption algorithm for a secure connection.

[Visual Basic]
Public ReadOnly Property CipherStrength As Integer

[C#]
public int CipherStrength {get;}

Property Value
An integer value which specifies the encryption key length if a secure connection has been established;
otherwise a value of 0 is returned.

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure data
stream. Common values returned by this property are 128 and 256. A key length of 40 or 56 bits is
considered insecure and subject to brute force attacks. 128-bit and 256-bit keys are considered secure. If
this property returns a value of 0, this means that a secure connection has not been established with the
remote host.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.CipherStrength Property

Gets a value that specifies the client handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current client session.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Handle Property

Gets a value which specifies the length of the message digest that was selected for a secure connection.

[Visual Basic]
Public ReadOnly Property HashStrength As Integer

[C#]
public int HashStrength {get;}

Property Value
An integer value which specifies the length of the message digest if a secure connection has been
established; otherwise a value of 0 is returned.

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that was
selected. Common values returned by this property are 128 and 160. If this property returns a value of 0,
this means that a secure connection has not been established with the remote host.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.HashStrength Property

Gets and sets the current header field name.

[Visual Basic]
Public Property HeaderField As String

[C#]
public string HeaderField {get; set;}

Property Value
A string which specifies the current header field name.

Remarks
The HeaderField property returns the name of the current header field. Setting this property causes the
control to determine if that header field exists, and if it does, to update the HeaderValue property with its
value. This property can be used to obtain the value of any header in the current message.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.HeaderField Property

Gets the value of the current header field.

[Visual Basic]
Public ReadOnly Property HeaderValue As String

[C#]
public string HeaderValue {get;}

Property Value
A string which specifies the value of the current header field.

Remarks
The HeaderValue property returns the value of the header field specified by the HeaderField property.
This property can be used to obtain the value of any header in the current message.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.HeaderValue Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.HostAddress Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.HostName Property

Gets a value which indicates if the current thread is performing a blocking client operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next client operation will not fail. An application
should always check the return value from a client operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.IsBlocked Property

Gets a value which indicates if a connection to the remote host has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the remote
host. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.IsInitialized Property

Gets a value which indicates if there is data available to be read from the socket connection to the server.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to read the client. Note
that even if this property does return true indicating that there is data available to be read, applications
should always check the return value from the Read method.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.IsReadable Property

Gets a value which indicates if data can be written to the client without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the client; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to write data to the client.
Note that even if this property does return true indicating that data can be written to the client,
applications should always check the return value from the Write method.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.IsWritable Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public PopClient.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.LastErrorString Property

Gets the number of the last message available in the current mailbox.

[Visual Basic]
Public ReadOnly Property LastMessage As Integer

[C#]
public int LastMessage {get;}

Property Value
An integer value which specifies the number of messages.

Remarks
The LastMessage property returns the number of the last message available in the currently selected
mailbox. This value may be different than the value returned by the MessageCount property if one or
more messages have been deleted. This is because the MessageCount property returns the number of
available messages, and this value will decrement whenever a message is flagged for deletion. The
LastMessage property value is constant and will always return the last message number in the mailbox,
regardless if any messages have been deleted.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.LastMessage Property

Gets the local Internet address that the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local Internet address that the client is bound to when a
connection is established with a remote host. This property may return either an IPv4 or IPv6 formatted
address, depending on the type of connection that was established.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.LocalAddress Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.LocalName Property

Gets the local port number the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalPort As Integer

[C#]
public int LocalPort {get;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to identify the local port number that the client is bound to to when a
connection is established with a remote host.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.LocalPort Property

Gets the size of the current mailbox.

[Visual Basic]
Public ReadOnly Property MailboxSize As Integer

[C#]
public int MailboxSize {get;}

Property Value
An integer value which specifies the size of the mailbox in bytes.

Remarks
The MailboxSize property returns the combined size in bytes of all of the available messages in the
current mailbox. Note that as messages are deleted from the mailbox, this property value will decrease.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.MailboxSize Property

Gets and sets the current message number.

[Visual Basic]
Public Property Message As Integer

[C#]
public int Message {get; set;}

Property Value
An integer value which specifies the current message number.

Remarks
The Message property sets or returns the message number for the currently selected mailbox. Message
numbers range from 1 through the number of messages available on the server, as returned by the
MessageCount property. Setting the Message property to an invalid message number will generate an
exception.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Message Property

Gets the number of messages available in the mailbox.

[Visual Basic]
Public ReadOnly Property MessageCount As Integer

[C#]
public int MessageCount {get;}

Property Value
An integer value which specifies the number of messages.

Remarks
The MessageCount property returns the number of messages available to be retrieved from the current
mailbox.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.MessageCount Property

Gets the address of the user who sent the message.

[Visual Basic]
Public ReadOnly Property MessageFrom As String

[C#]
public string MessageFrom {get;}

Property Value
A string which specifies the email address of the user who sent the message.

Remarks
The MessageFrom property returns the address of the user who sent the current message. This property
requires that the mail server support either the XSENDER or the XTND XLST command in order to
determine who the sender is. The XSENDER command returns an authenticated address, as used with the
Netscape SMTP authentication method. If this command is not supported, or the sender's address was not
authenticated, then the XTND XLST command is used to return the value of the From header field in the
message. If this command is not supported, the property will return an empty string.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.MessageFrom Property

Gets the size of the current message in bytes.

[Visual Basic]
Public ReadOnly Property MessageSize As Integer

[C#]
public int MessageSize {get;}

Property Value
An integer value which specifies the size of the message.

Remarks
The MessageSize property returns the size of the current message in bytes. The size includes the header
and body portion of the message.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.MessageSize Property

Gets the UID for the current message.

[Visual Basic]
Public ReadOnly Property MessageUID As String

[C#]
public string MessageUID {get;}

Property Value
An string value which specifies the current message UID.

Remarks
The MessageID property returns a string which uniquely identifies the message on the server. The
identifier is assigned by the mail server, and retains the same value across multiple client sessions. This
value is typically used when the client wants to leave a message on the mail server, but does not wish to
retrieve the message contents multiple times. For example, the client can store the unique ID for each
message that it retrieves, but does not delete from the server. The next time that it connects to the mail
server, it compares the unique ID of a message against the stored values. If there is a match, the client
knows that the message has already been retrieved, and does not need to do so again.

This property requires that the server support the optional UIDL command. If the command is not
supported, this property will always return an empty string. Note that the unique ID for the message is not
the same as the Message-ID header field in the message itself.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.MessageUID Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As PopOptions

[C#]
public PopClient.PopOptions Options {get; set;}

Property Value
Returns one or more PopOptions enumeration flags which specify the options for the client. The default
value for this property is popOptionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Options Property

Gets and sets the password used to authenticate the client.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password.

Remarks
The Password property specifies the password used to authenticate the client session. This property is
used as the default value for the Connect method if no password is specified as an argument.

Refer to the Authentication property for more information on the available authentication methods. If
you are using the OAuth 2.0 authentication method, this property should not be set to the user's
password. Instead, you should set the BearerToken property to the OAuth 2.0 bearer token issued by the
mail service provider. Note that these access tokens can be much larger than your typical password and
are only valid for a limited period of time.

You can use the Password property to specify an OAuth 2.0 bearer token. However, it is recommended
that you use the BearerToken property instead of assigning it to this property. It will ensure compatibility
with future versions of the class and make it clear in your code you are using an OAuth 2.0 bearer token
and not a password. If the AuthType property specifies one of the OAuth 2.0 authentication methods, this
property will return the bearer token.

See Also
PopClient Class | SocketTools Namespace | Authentication Property | BearerToken Property | UserName
Property | Connect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Password Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.RemotePort Property

Gets a value which specifies the result of the last command executed by the server.

[Visual Basic]
Public ReadOnly Property ResultCode As Boolean

[C#]
public bool ResultCode {get;}

Property Value
A boolean value which specifies the result of the last command executed on the server. A return value of
true specifies that the previous command executed successfully. A return value of false specifies that the
command failed.

Remarks
Unlike other protocols which typically return a numeric result code, the POP3 protocol returns a value that
indicates only success or failure. If a failure occurs, the client should check the value of the ResultString
property for any additional information as to what may have caused the failure.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ResultCode Property

Gets a string value which describes the result of the previous command.

[Visual Basic]
Public ReadOnly Property ResultString As String

[C#]
public string ResultString {get;}

Property Value
A string which describes the result of the previous command executed on the server.

Remarks
The ResultString property returns the result string from the last action taken by the client. This string is
generated by the remote server, and typically is used to describe the result code. For example, if an error
is indicated by the result code, the result string may describe the condition that caused the error.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ResultString Property

Gets and sets a value which specifies if a secure connection is established.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connection is established; otherwise returns false. The default value is false.

Remarks
The Secure property determines if a secure connection is established with the remote host. The default
value for this property is false, which specifies that a standard connection to the server is used. To
establish a secure connection, the application should set this property value to true prior to calling the
Connect method. Once the connection has been established, the client may exchange data with the
server as with standard connections.

It is strongly recommended that any application that sets this property true use error handling to trap an
errors that may occur. If the control is unable to initialize the security libraries, or otherwise cannot create
a secure session for the client, an exception may be generated when this property value is set.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Secure Property

Gets a value that specifies the encryption algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureCipher As SecureCipherAlgorithm

[C#]
public PopClient.SecureCipherAlgorithm SecureCipher {get;}

Property Value
A SecureCipherAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureCipher property returns a value which identifies the algorithm used to encrypt the data
stream. If a secure connection has not been established, this property will return a value of cipherNone.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.SecureCipher Property

Gets a value that specifies the message digest algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureHash As SecureHashAlgorithm

[C#]
public PopClient.SecureHashAlgorithm SecureHash {get;}

Property Value
A SecureHashAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureHash property returns a value which identifies the message digest (hash) algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of hashNone.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.SecureHash Property

Gets a value that specifies the key exchange algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureKeyExchange As SecureKeyAlgorithm

[C#]
public PopClient.SecureKeyAlgorithm SecureKeyExchange {get;}

Property Value
A SecureKeyAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureKeyExchange property returns a value which identifies the key exchange algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of keyExchangeNone.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.SecureKeyExchange Property

Gets and sets a value which specifies the protocol used for a secure connection.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public PopClient.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when establishing a secure
connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when establishing a
secure connection with a server or accepting a secure connection from a client. By default, the class will
attempt to use either SSL v3 or TLS v1 to establish the connection, with the appropriate protocol
automatically selected based on the capabilities of the remote host. It is recommended that you only
change this property value if you fully understand the implications of doing so. Assigning a value to this
property will override the default protocol and force the class to attempt to use only the protocol
specified.

Multiple security protocols may be specified by combining them using a bitwise or operator. After a
connection has been established, this property will identify the protocol that was selected. Attempting to
set this property after a connection has been established will result in an exception being thrown. This
property should only be set after setting the Secure property to true and before calling the Accept or
Connect methods.

In some cases, a server may only accept a secure connection if the TLS v1 protocol is specified. If the
security protocol is not compatible with the server, then the connection will fail with an error indicating
that the control is unable to establish a security context for the session. In this case, try assigning the
property to protocolTLS1 and attempt the connection again.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.SecureProtocol Property

Gets a value which specifies the current status of the client.

[Visual Basic]
Public ReadOnly Property Status As PopStatus

[C#]
public PopClient.PopStatus Status {get;}

Property Value
A PopStatus enumeration value which specifies the current client status.

Remarks
The Status property returns the current status of the client. This property can be used to check on
blocking connections to determine if the client is interacting with the remote host before taking some
action.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Status Property

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public PopClient.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
PopClient Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.PopClient.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public PopClient.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.TraceFlags Property

Gets and sets the username used to authenticate the client session.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username.

Remarks
If a username is not specified when the Connect method is called, the value of this property will be used
as the default username when establishing a connection with the server.

See Also
PopClient Class | SocketTools Namespace | BearerToken Property | Password Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.UserName Property

Gets a value which returns the current version of the PopClient class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the PopClient class
library. This value can be used by an application for validation and debugging purposes.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Version Property

The methods of the PopClient class are listed below. For a complete list of PopClient class members, see
the PopClient Members topic.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

ChangePassword Change the mailbox password for the current user.

CloseMessage Closes the current message.

Command Overloaded. Send a custom command to the
server.

Connect Overloaded. Establish a connection with a remote
host.

DeleteMessage Overloaded. Flags a message for deletion from the
current mailbox.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
PopClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetHeader Overloaded. Returns the value of a header field
from the specified message.

GetHeaders Overloaded. Retrieves the headers for the
specified message from the server.

GetMessage Overloaded. Retrieve a message from the server
and return the contents in a byte array.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the PopClient
class.

OpenMessage Overloaded. Open the specified message for
reading.

Read Overloaded. Read data from the server and store
it in a byte array.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SendMessage Overloaded. Submits a message to the mail server
for delivery.

PopClient Methods

StoreMessage Overloaded. Retrieve a message from the current
mailbox and store it in a file on the local system.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the server.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the PopClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the client could be attached to the current thread. If this method returns
false, the client could not be attached to the thread and the application should check the value of the
LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.AttachThread Method

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Cancel Method

Change the mailbox password for the current user.

[Visual Basic]
Public Function ChangePassword(_
 ByVal userName As String, _
 ByVal oldPassword As String, _
 ByVal newPassword As String _
) As Boolean

[C#]
public bool ChangePassword(
 string userName,
 string oldPassword,
 string newPassword
);

Parameters
userName

A string which specifies the username for which the password will be changed.

oldPassword
A string which specifies the current password.

newPassword
A string which specifies the new password.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ChangePassword method changes the current password that will be used to authenticate the user.
Once the password has been changed, the Password property will be updated with the new password.

Note that in order to change the user's mailbox password, the server must be running the poppass service
on port 106, on the same server. Because passwords are transmitted as clear text (unencrypted), this
service is not considered secure and may not be available.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ChangePassword Method

Closes the current message.

[Visual Basic]
Public Function CloseMessage() As Boolean

[C#]
public bool CloseMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CloseMessage method closes the current message. If there is any remaining data left to be read
from the message, it will be read and discarded.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.CloseMessage Method

Send a custom command to the server.

Overload List
Send a custom command to the server.

public bool Command(string);

Send a custom command to the server.

public bool Command(string,bool);

Send a custom command to the server.

public bool Command(string,string);

Send a custom command to the server.

public bool Command(string,string,bool);

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Command Method

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String _
) As Boolean

[C#]
public bool Command(
 string command
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also
PopClient Class | SocketTools Namespace | PopClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Command Method (String)

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal isMultiLine As Boolean _
) As Boolean

[C#]
public bool Command(
 string command,
 bool isMultiLine
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

isMultiLine
A boolean value which specifies if the command will result in multiple lines of output from the server.
For more information about a specific command, consult the standards documentation for the
protocol.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

The isMultiLine parameter is used by the method to determine if multiple lines of data will be returned by
the server as the result of a command. Unlike a single line response, which consists of a result code and
result string, a multi-line response consists of one or more lines of text, terminated by a special end-of-
data marker.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also
PopClient Class | SocketTools Namespace | PopClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Command Method (String, Boolean)

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal parameters As String _
) As Boolean

[C#]
public bool Command(
 string command,
 string parameters
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

parameters
An string which specifies one or more parameters to be sent along with the command. If more than
one parameter is required, they must be separated by a single space character. Consult the protocol
standard and/or technical reference documentation for the server to determine what parameters
should be provided when issuing a specific command.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also
PopClient Class | SocketTools Namespace | PopClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Command Method (String, String)

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal parameters As String, _
 ByVal isMultiLine As Boolean _
) As Boolean

[C#]
public bool Command(
 string command,
 string parameters,
 bool isMultiLine
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

parameters
An string which specifies one or more parameters to be sent along with the command. If more than
one parameter is required, they must be separated by a single space character. Consult the protocol
standard and/or technical reference documentation for the server to determine what parameters
should be provided when issuing a specific command.

isMultiLine
A boolean value which specifies if the command will result in multiple lines of output from the server.
For more information about a specific command, consult the standards documentation for the
protocol.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

The isMultiLine parameter is used by the method to determine if multiple lines of data will be returned by
the server as the result of a command. Unlike a single line response, which consists of a result code and
result string, a multi-line response consists of one or more lines of text, terminated by a special end-of-
data marker.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also

PopClient.Command Method (String, String, Boolean)

PopClient Class | SocketTools Namespace | PopClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

Overload List
Establish a connection with a remote host.

public bool Connect();

Establish a connection with a remote host.

public bool Connect(string);

Establish a connection with a remote host.

public bool Connect(string,int);

Establish a connection with a remote host.

public bool Connect(string,int,int);

Establish a connection with a remote host.

public bool Connect(string,int,int,PopOptions);

Establish a connection with a remote host.

public bool Connect(string,int,string,string);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int,PopOptions);

Establish a connection with a remote host.

public bool Connect(string,string,string);

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Connect Method

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect() As Boolean

[C#]
public bool Connect();

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the HostName or HostAddress property will be used to determine the host name or
address to connect to.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
PopClient Class | SocketTools Namespace | PopClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Connect Method ()

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String _
) As Boolean

[C#]
public bool Connect(
 string hostName
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
PopClient Class | SocketTools Namespace | PopClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Connect Method (String)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
PopClient Class | SocketTools Namespace | PopClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Connect Method (String, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
PopClient Class | SocketTools Namespace | PopClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Connect Method (String, Int32, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer, _
 ByVal options As PopOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout,
 PopOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the PopOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
PopClient Class | SocketTools Namespace | PopClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Connect Method (String, Int32, Int32, PopOptions)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the username which will be used to authenticate the client session with the
remote host.

userPassword
A string which specifies the password which will be used to authenticate the client session with the
remote host. If an OAuth 2.0 authentication method has been specified, this parameter should specify
the bearer token.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
PopClient Class | SocketTools Namespace | PopClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Connect Method (String, Int32, String, String)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the username which will be used to authenticate the client session with the
remote host.

userPassword
A string which specifies the password which will be used to authenticate the client session with the
remote host. If an OAuth 2.0 authentication method has been specified, this parameter should specify
the bearer token.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also

PopClient.Connect Method (String, Int32, String, String, Int32)

PopClient Class | SocketTools Namespace | PopClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer, _
 ByVal options As PopOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout,
 PopOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the username which will be used to authenticate the client session with the
remote host.

userPassword
A string which specifies the password which will be used to authenticate the client session with the
remote host. If an OAuth 2.0 authentication method has been specified, this parameter should specify
the bearer token.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the PopOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

PopClient.Connect Method (String, Int32, String, String, Int32,
PopOptions)

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
PopClient Class | SocketTools Namespace | PopClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

userName
A string which specifies the username which will be used to authenticate the client session with the
remote host.

userPassword
A string which specifies the password which will be used to authenticate the client session with the
remote host. If an OAuth 2.0 authentication method has been specified, this parameter should specify
the bearer token.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
PopClient Class | SocketTools Namespace | PopClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Connect Method (String, String, String)

Flags the current message for deletion from the mailbox.

Overload List
Flags the current message for deletion from the mailbox.

public bool DeleteMessage();

Flags a message for deletion from the current mailbox.

public bool DeleteMessage(int);

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.DeleteMessage Method

Flags the current message for deletion from the mailbox.

[Visual Basic]
Overloads Public Function DeleteMessage() As Boolean

[C#]
public bool DeleteMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method only flags the message for deletion. The message is not actually deleted until the client
disconnects from the server, however the deleted message will no longer be accessible to the client. To
prevent deleted messages from actually being removed from the mailbox, call the Reset method.

See Also
PopClient Class | SocketTools Namespace | PopClient.DeleteMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.DeleteMessage Method ()

Flags a message for deletion from the current mailbox.

[Visual Basic]
Overloads Public Function DeleteMessage(_
 ByVal messageId As Integer _
) As Boolean

[C#]
public bool DeleteMessage(
 int messageId
);

Parameters
messageId

Number of message to delete from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method only flags the message for deletion. The message is not actually deleted until the client
disconnects from the server, however the deleted message will no longer be accessible to the client. To
prevent deleted messages from actually being removed from the mailbox, call the Reset method.

See Also
PopClient Class | SocketTools Namespace | PopClient.DeleteMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.DeleteMessage Method (Int32)

Terminate the connection with a remote host.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and releases the client handle
allocated by the class. Note that the socket is not immediately released when the connection is terminated
and will enter a wait state for two minutes. After the time wait period has elapsed, the client will be
released by the operating system. This is a normal safety mechanism to handle any packets that may
arrive after the connection has been closed.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Disconnect Method

Releases all resources used by PopClient.

Overload List
Releases all resources used by PopClient.

public void Dispose();

Releases the unmanaged resources allocated by the PopClient class and optionally releases the managed
resources.

protected virtual void Dispose(bool);

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Dispose Method

Releases all resources used by PopClient.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
PopClient Class | SocketTools Namespace | PopClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Dispose Method ()

Releases the unmanaged resources allocated by the PopClient class and optionally releases the managed
resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the PopClient class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
PopClient Class | SocketTools Namespace | PopClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Finalize Method

Returns the value of a header field from the specified message.

Overload List
Returns the value of a header field from the specified message.

public bool GetHeader(int,string,ref string);

Returns the value of a header field from the current message.

public bool GetHeader(string,ref string);

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetHeader Method

Returns the value of a header field from the specified message.

[Visual Basic]
Overloads Public Function GetHeader(_
 ByVal messageId As Integer, _
 ByVal headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetHeader(
 int messageId,
 string headerName,
 ref string headerValue
);

Parameters
messageId

An integer value that specifies the message to retrieve the header value from. This value must be
greater than zero. The first message in the mailbox is message number one.

headerName
A string which specifies the message header to retrieve.

headerValue
A string passed by reference which will contain the value of the specified message header if the
method is successful.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeader method returns the value of a header field from the specified message. This allows an
application to be able to easily determine the value of a header such as the sender, or the subject of the
message. Any header field, including non-standard extensions, may be returned by this method.

See Also
PopClient Class | SocketTools Namespace | PopClient.GetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetHeader Method (Int32, String, String)

Returns the value of a header field from the current message.

[Visual Basic]
Overloads Public Function GetHeader(_
 ByVal headerName As String, _
 ByRef headerValue As String _
) As Boolean

[C#]
public bool GetHeader(
 string headerName,
 ref string headerValue
);

Parameters
headerName

A string which specifies the message header to retrieve.

headerValue
A string passed by reference which will contain the value of the specified message header if the
method is successful.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeader method returns the value of a header field from the current message. This allows an
application to be able to easily determine the value of a header such as the sender, or the subject of the
message. Any header field, including non-standard extensions, may be returned by this method.

The current message number is specified by the value of the Message property.

See Also
PopClient Class | SocketTools Namespace | PopClient.GetHeader Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetHeader Method (String, String)

Retrieves the headers for the current message from the server.

Overload List
Retrieves the headers for the current message from the server.

public bool GetHeaders(byte[],ref int);

Retrieves the headers for the specified message from the server.

public bool GetHeaders(int,byte[],ref int);

Retrieves the headers for the specified message from the server.

public bool GetHeaders(int,ref string);

Retrieves the headers for the current message from the server.

public bool GetHeaders(ref string);

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetHeaders Method

Retrieves the headers for the current message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetHeaders(
 byte[] buffer,
 ref int length
);

Parameters
buffer

A byte array that will contain the message data when the method returns.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into a local
buffer. This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer. To retrieve the headers from a specific section of a multipart message, you can use the
GetMessage method and specify the ImapSections.sectionHeader option.

The current message number is specified by the value of the Message property.

See Also
PopClient Class | SocketTools Namespace | PopClient.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetHeaders Method (Byte[], Int32)

Retrieves the headers for the specified message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByVal messageId As Integer, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetHeaders(
 int messageId,
 byte[] buffer,
 ref int length
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A byte array that will contain the message data when the method returns.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into a local
buffer. This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer. To retrieve the headers from a specific section of a multipart message, you can use the
GetMessage method and specify the ImapSections.sectionHeader option.

See Also
PopClient Class | SocketTools Namespace | PopClient.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetHeaders Method (Int32, Byte[], Int32)

Retrieves the headers for the specified message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByVal messageId As Integer, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetHeaders(
 int messageId,
 ref string buffer
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into a local
buffer. This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer. To retrieve the headers from a specific section of a multipart message, you can use the
GetMessage method and specify the ImapSections.sectionHeader option.

See Also
PopClient Class | SocketTools Namespace | PopClient.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetHeaders Method (Int32, String)

Retrieves the headers for the current message from the server.

[Visual Basic]
Overloads Public Function GetHeaders(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetHeaders(
 ref string buffer
);

Parameters
buffer

A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into a local
buffer. This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Note that the header data will be from the first part of the message, not from any additional sections of a
multipart message. In other words, the headers such as From, To, Subject and Date will be returned in the
buffer. To retrieve the headers from a specific section of a multipart message, you can use the
GetMessage method and specify the ImapSections.sectionHeader option.

The current message number is specified by the value of the Message property.

See Also
PopClient Class | SocketTools Namespace | PopClient.GetHeaders Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetHeaders Method (String)

Retrieve the current message from the server and return the contents in a byte array.

Overload List
Retrieve the current message from the server and return the contents in a byte array.

public bool GetMessage(byte[],ref int);

Retrieve a message from the server and return the contents in a byte array.

public bool GetMessage(int,byte[],ref int);

Retrieve a message from the server and return the contents in a string.

public bool GetMessage(int,ref string);

Retrieve the current message from the server and return the contents in a string.

public bool GetMessage(ref string);

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetMessage Method

Retrieve the current message from the server and return the contents in a byte array.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetMessage(
 byte[] buffer,
 ref int length
);

Parameters
buffer

A byte array that the message data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this parameter will be updated with the actual number of bytes copied into the array.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve the current message from the server and copy it into a local
buffer. This method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

See Also
PopClient Class | SocketTools Namespace | PopClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetMessage Method (Byte[], Int32)

Retrieve a message from the server and return the contents in a byte array.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 byte[] buffer,
 ref int length
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A byte array that the message data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this parameter will be updated with the actual number of bytes copied into the array.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
PopClient Class | SocketTools Namespace | PopClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetMessage Method (Int32, Byte[], Int32)

Retrieve a message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByVal messageId As Integer, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetMessage(
 int messageId,
 ref string buffer
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

buffer
A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local buffer.
This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
PopClient Class | SocketTools Namespace | PopClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetMessage Method (Int32, String)

Retrieve the current message from the server and return the contents in a string.

[Visual Basic]
Overloads Public Function GetMessage(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool GetMessage(
 ref string buffer
);

Parameters
buffer

A string passed by reference that will contain the message data when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetMessage method is used to retrieve the current message from the server and copy it into a local
buffer. This method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

The current message number is specified by the value of the Message property.

See Also
PopClient Class | SocketTools Namespace | PopClient.GetMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.GetMessage Method (String)

Initialize an instance of the PopClient class.

Overload List
Initialize an instance of the PopClient class.

public bool Initialize();

Initialize an instance of the PopClient class.

public bool Initialize(string);

See Also
PopClient Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Initialize Method

Initialize an instance of the PopClient class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the PopClient class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
PopClient Class | SocketTools Namespace | PopClient.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Initialize Method ()

Initialize an instance of the PopClient class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the PopClient class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the PopClient class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.PopClient popClient = new SocketTools.PopClient();

if (popClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(popClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim popClient As New SocketTools.PopClient

If popClient.Initialize(strLicenseKey) = False Then
 MsgBox(popClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
PopClient Class | SocketTools Namespace | PopClient.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Initialize Method (String)

Open the current message for reading.

Overload List
Open the current message for reading.

public bool OpenMessage();

Open the specified message for reading.

public bool OpenMessage(int);

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OpenMessage Method

Open the current message for reading.

[Visual Basic]
Overloads Public Function OpenMessage() As Boolean

[C#]
public bool OpenMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenMessage method opens the current message in the mailbox. The client can then read the
contents of the message using the Read method, and once all of the data has been read, the message
should be closed by calling the CloseMessage method.

The current message number is specified by the value of the Message property.

See Also
PopClient Class | SocketTools Namespace | PopClient.OpenMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OpenMessage Method ()

Open the specified message for reading.

[Visual Basic]
Overloads Public Function OpenMessage(_
 ByVal messageId As Integer _
) As Boolean

[C#]
public bool OpenMessage(
 int messageId
);

Parameters
messageId

Number of article to retrieve from the server. This value must be greater than zero. The first message
in the mailbox is message number one.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The OpenMessage method opens a message in the current mailbox. The client can then read the
contents of the message using the Read method, and once all of the data has been read, the message
should be closed by calling the CloseMessage method.

See Also
PopClient Class | SocketTools Namespace | PopClient.OpenMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OpenMessage Method (Int32)

Read data from the server and store it in a byte array.

Overload List
Read data from the server and store it in a byte array.

public int Read(byte[]);

Read data from the server and store it in a byte array.

public int Read(byte[],int);

Read data from the server and store it in a string.

public int Read(ref string);

Read data from the server and store it in a string.

public int Read(ref string,int);

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Read Method

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the size of the byte array passed
to the method. If no data is available to be read, an error will be generated if the client is in non-blocking
mode. If the client is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

See Also
PopClient Class | SocketTools Namespace | PopClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Read Method (Byte[])

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

See Also
PopClient Class | SocketTools Namespace | PopClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Read Method (Byte[], Int32)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the client.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to a maximum of 4096 bytes. If no
data is available to be read, an error will be generated if the client is in non-blocking mode. If the client is
in blocking mode, the program will stop until data is received from the server or the connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
PopClient Class | SocketTools Namespace | PopClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Read Method (String)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
PopClient Class | SocketTools Namespace | PopClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Read Method (String, Int32)

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Reset Method

Submits a message to the mail server for delivery.

Overload List
Submits a message to the mail server for delivery.

public bool SendMessage(byte[],int);

Submits a message to the mail server for delivery.

public bool SendMessage(string);

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.SendMessage Method

Submits a message to the mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool SendMessage(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array which contains the message to be submitted for delivery.

length
An integer value which specifies the maximum number of bytes of data to send. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method submits a message to the mail server for delivery. The message format must
comply with the RFC 822 standard, with the header and body separated by a blank line, and each line
terminated with carriage-return/linefeed characters.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

Note that this method requires that the server support the XTND XMIT command. Although using this
method to send mail has the advantage that the sender is authenticated (because the user must first login
to the server), it is not widely supported. For general purpose mail delivery service, it is recommended that
an application use the Simple Mail Transfer Protocol (SMTP).

See Also
PopClient Class | SocketTools Namespace | PopClient.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.SendMessage Method (Byte[], Int32)

Submits a message to the mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool SendMessage(
 string buffer
);

Parameters
buffer

A string which contains the message to be submitted for delivery.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method submits a message to the mail server for delivery. The message format must
comply with the RFC 822 standard, with the header and body separated by a blank line, and each line
terminated with carriage-return/linefeed characters.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

Note that this method requires that the server support the XTND XMIT command. Although using this
method to send mail has the advantage that the sender is authenticated (because the user must first login
to the server), it is not widely supported. For general purpose mail delivery service, it is recommended that
an application use the Simple Mail Transfer Protocol (SMTP).

See Also
PopClient Class | SocketTools Namespace | PopClient.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.SendMessage Method (String)

Retrieve a message from the current mailbox and store it in a file on the local system.

Overload List
Retrieve a message from the current mailbox and store it in a file on the local system.

public bool StoreMessage(int,string);

Retrieve the current message and store it in a file on the local system.

public bool StoreMessage(string);

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.StoreMessage Method

Retrieve a message from the current mailbox and store it in a file on the local system.

[Visual Basic]
Overloads Public Function StoreMessage(_
 ByVal messageId As Integer, _
 ByVal fileName As String _
) As Boolean

[C#]
public bool StoreMessage(
 int messageId,
 string fileName
);

Parameters
messageId

Number of message to retrieve. This value must be greater than zero. The first message in the mailbox
is message number one.

fileName
A string which specifies the file that the message will be stored in. If the file does not exist, it will be
created. If the file does exist, it will be overwritten with the contents of the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The StoreMessage method retrieves a message from the server and stores it in a file on the local system.
The contents of the message is stored as a text file, using the specified file name. This method will cause
the current thread to block until the message transfer completes, a timeout occurs or the transfer is
canceled. During the transfer, the OnProgress event will fire periodically, enabling the application to
update any user interface objects such as a progress bar.

See Also
PopClient Class | SocketTools Namespace | PopClient.StoreMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.StoreMessage Method (Int32, String)

Retrieve the current message and store it in a file on the local system.

[Visual Basic]
Overloads Public Function StoreMessage(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool StoreMessage(
 string fileName
);

Parameters
fileName

A string which specifies the file that the message will be stored in. If the file does not exist, it will be
created. If the file does exist, it will be overwritten with the contents of the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The StoreMessage method retrieves the current message from the server and stores it in a file on the
local system. The contents of the message is stored as a text file, using the specified file name. This
method will cause the current thread to block until the message transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The current message number is specified by the value of the Message property.

See Also
PopClient Class | SocketTools Namespace | PopClient.StoreMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.StoreMessage Method (String)

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
PopClient Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Uninitialize Method

Write one or more bytes of data to the server.

Overload List
Write one or more bytes of data to the server.

public int Write(byte[]);

Write one or more bytes of data to the server.

public int Write(byte[],int);

Write a string of characters to the server.

public int Write(string);

Write a string of characters to the server.

public int Write(string,int);

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Write Method

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the server.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
PopClient Class | SocketTools Namespace | PopClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Write Method (Byte[])

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the server.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
PopClient Class | SocketTools Namespace | PopClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Write Method (Byte[], Int32)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
PopClient Class | SocketTools Namespace | PopClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Write Method (String)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the server.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
PopClient Class | SocketTools Namespace | PopClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.Write Method (String, Int32)

The events of the PopClient class are listed below. For a complete list of PopClient class members, see
the PopClient Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OnCancel Event

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a remote host as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a socket is
created but the connection is not actually established until after this event occurs. Between the time
connection process is started and this event fires, no operation may be performed on the client other than
calling the Disconnect method.

This event is only generated if the client is in non-blocking mode.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OnConnect Event

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the remote host closes its connection, terminating the client
session with the application. Because there may still be data in the client receive buffers, you should
continue to read data from the client until the Read method returns a value of 0. Once all of the data has
been read, you should call the Disconnect method to close the local socket and release the resources
allocated for the client.

This event is only generated if the client is in non-blocking mode.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OnDisconnect Event

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type PopClient.ErrorEventArgs containing data related to this
event. The following PopClient.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see PopClient.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.PopClient.ErrorEventArgs

[Visual Basic]
Public Class PopClient.ErrorEventArgs
 Inherits EventArgs

[C#]
public class PopClient.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
PopClient.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ErrorEventArgs Class

PopClient.ErrorEventArgs overview

Public Instance Constructors

 PopClient.ErrorEventArgs Constructor Initializes a new instance of the
PopClient.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
PopClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ErrorEventArgs Members

Initializes a new instance of the PopClient.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public PopClient.ErrorEventArgs();

See Also
PopClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ErrorEventArgs Constructor

The properties of the PopClient.ErrorEventArgs class are listed below. For a complete list of
PopClient.ErrorEventArgs class members, see the PopClient.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
PopClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
PopClient.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public PopClient.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
PopClient.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ErrorEventArgs.Error Property

Occurs as a data stream is being read or written to the client.

[Visual Basic]
Public Event OnProgress As OnProgressEventHandler

[C#]
public event OnProgressEventHandler OnProgress;

Event Data
The event handler receives an argument of type PopClient.ProgressEventArgs containing data related to
this event. The following PopClient.ProgressEventArgs properties provide information specific to this
event.

Property Description

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Message Gets the message number.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Remarks
The OnProgress event occurs as a data stream is being read or written to the client. If large amounts of
data are being read or written, this event can be used to update a progress bar or other user-interface
component to provide the user with some visual feedback on the progress of the operation.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OnProgress Event

Provides data for the OnProgress event.

For a list of all members of this type, see PopClient.ProgressEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.PopClient.ProgressEventArgs

[Visual Basic]
Public Class PopClient.ProgressEventArgs
 Inherits EventArgs

[C#]
public class PopClient.ProgressEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ProgressEventArgs specifies the number of bytes copied from the data stream, the total number of bytes
in the data stream and a completion percentage.

The OnProgress event occurs as a data stream is being read or written to the client.

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
PopClient.ProgressEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ProgressEventArgs Class

PopClient.ProgressEventArgs overview

Public Instance Constructors

 PopClient.ProgressEventArgs Constructor Initializes a new instance of the
PopClient.ProgressEventArgs class.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Message Gets the message number.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
PopClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ProgressEventArgs Members

Initializes a new instance of the PopClient.ProgressEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public PopClient.ProgressEventArgs();

See Also
PopClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ProgressEventArgs Constructor

The properties of the PopClient.ProgressEventArgs class are listed below. For a complete list of
PopClient.ProgressEventArgs class members, see the PopClient.ProgressEventArgs Members topic.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Message Gets the message number.

Percent Gets a value which specifies the percentage of
data that has been read or written.

See Also
PopClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ProgressEventArgs Properties

Gets a value which specifies the number of bytes of data that has been read or written.

[Visual Basic]
Public ReadOnly Property BytesCopied As Integer

[C#]
public int BytesCopied {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesCopied property specifies the number of bytes that have been read from the client and stored
in the local stream buffer, or written from the stream buffer to the client.

See Also
PopClient.ProgressEventArgs Class | SocketTools Namespace | BytesTotal Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ProgressEventArgs.BytesCopied Property

Gets a value which specifies the total number of bytes in the data stream.

[Visual Basic]
Public ReadOnly Property BytesTotal As Integer

[C#]
public int BytesTotal {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesTotal property specifies the total amount of data being read from the client and stored in the
data stream, or written from the data stream to the client. If the amount of data was unknown or
unspecified at the time the method call was made, then this value will always be the same as the
BytesCopied property.

See Also
PopClient.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ProgressEventArgs.BytesTotal Property

Gets the message number.

[Visual Basic]
Public ReadOnly Property Message As Integer

[C#]
public int Message {get;}

Property Value
An integer value which specifies the message number.

Remarks
The Message property specifies the message number for the current message that is being downloaded
from the mail server to the local host. If the OnProgress event occurs while message data is being
uploaded to the server, this property will return a value of zero.

See Also
PopClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ProgressEventArgs.Message Property

Gets a value which specifies the percentage of data that has been read or written.

[Visual Basic]
Public ReadOnly Property Percent As Integer

[C#]
public int Percent {get;}

Property Value
An integer value which specifies a percentage.

Remarks
The Percent property specifies the percentage of data that has been transmitted, expressed as an integer
value between 0 and 100, inclusive. If the maximum size of the data stream was not specified by the caller,
this value will always be 100.

See Also
PopClient.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | BytesTotal Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.ProgressEventArgs.Percent Property

Occurs when data is available to be read from the client.

[Visual Basic]
Public Event OnRead As EventHandler

[C#]
public event EventHandler OnRead;

Remarks
The OnRead event occurs when data is available to be read from the client. This event is level-triggered,
which means that once this event fires, it will not occur again until some data has been read from the
client. This design prevents an application from being flooded with event notifications. It is recommended
that your application read all of the available data from the server and store it in a local buffer for
processing. See the example below.

This event is only generated if the client is in non-blocking mode.

Example

Private Sub Socket_OnRead(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Socket.OnRead
 Dim strBuffer As String
 Dim nRead As Integer

 Do
 ' Read up to m_nBufferSize bytes of data from the server
 nRead = Socket.Read(strBuffer, m_nBufferSize)

 If nRead > 0 Then
 ' Append the data to an internal buffer for processing
 m_dataBuffer = m_dataBuffer + strBuffer
 End If
 Loop Until nRead < 1

 ProcessData()
End Sub

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OnRead Event

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OnTimeout Event

Occurs when data can be written to the client.

[Visual Basic]
Public Event OnWrite As EventHandler

[C#]
public event EventHandler OnWrite;

Remarks
The OnWrite event occurs when the application can write data to the client. This event will typically occur
when a connection is first established with the remote host, and after the Write method has failed
because there was insufficient memory available in the client send buffers. In the second case, when some
of the buffered data has been successfully sent to the remote host and there is space available in the send
buffers, this event is used to signal the application that it may attempt to send more data.

This event is only generated if the client is in non-blocking mode.

See Also
PopClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OnWrite Event

Specifies the error codes returned by the PopClient class.

[Visual Basic]
Public Enum PopClient.ErrorCode

[C#]
public enum PopClient.ErrorCode

Remarks
The PopClient class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

PopClient.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the authentication methods supported by the PopClient class.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum PopClient.PopAuthentication

[C#]
[Flags]
public enum PopClient.PopAuthentication

Members

Member Name Description Value

authDefault The default authentication scheme
which sends the username and
password as cleartext to the server.
Because the user credentials are not
encrypted, this method should only be
used over a secure connection. This is
the same as specifying authPassword
as the authentication method.

0

authPassword The username and password is sent to
the server using the USER and PASS
commands. This authentication method
is supported by most servers and is the
default authentication type. The
credentials are not encrypted and this
method should only be used over
secure connections.

0

authApop The APOP authentication method which
uses an MD5 digest of the password.
This method has been deprecated is not
supported by all servers. It should only
be used if required by legacy mail
servers which do not support the SASL
authentication methods.

1

authLogin This authentication type will use the
LOGIN method to authenticate the
client session. This encodes the
username and password in a specific
format, but the credentials are not
encrypted. It should be used over a
secure connection. The server must
support the Simple Authentication and
Security Layer (SASL) mechanism as
defined in RFC 4422.

3

authPlain This authentication type will use the 4

PopClient.PopAuthentication Enumeration

PLAIN method to authenticate the client
session. This encodes the username and
password in a specific format, but the
credentials are not encrypted. It should
be used over a secure connection. The
server must support the PLAIN Simple
Authentication and Security Layer
(SASL) mechanism as defined in RFC
4616.

authXOAuth2 This authentication type will use the
XOAUTH2 method to authenticate the
client session. This authentication
method does not require the user
password, instead the BearerToken
property must specify the OAuth 2.0
bearer token issued by the service
provider.

6

authBearer This authentication type will use the
OAUTHBEARER method to authenticate
the client session as defined in RFC
7628. This authentication method does
not require the user password, instead
the BearerToken property must specify
the OAuth 2.0 bearer token issued by
the service provider.

7

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the options that the PopClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum PopClient.PopOptions

[C#]
[Flags]
public enum PopClient.PopOptions

Remarks
The PopClient class uses the PopOptions enumeration to specify one or more options to be used when
establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionDefault The default connection option. This is
the same as specifying optionNone.

0

optionLineBreak Message data that is received from the
server is read as individual lines of text
terminated by a carriage return and
linefeed control sequence. This option
can be useful for applications that need
to use the lower level network I/O
functions and must process the
message text on a line-by-line basis.
This option is not recommended for
most applications because it can have a
negative impact on performance when
retrieving large messages from the
server.

1

optionTunnel This option specifies that a tunneled
TCP connection and/or port-forwarding
is being used to establish the
connection to the server. This changes
the behavior of the client with regards
to internal checks of the destination IP
address and remote port number,
default capability selection and how the
connection is established. This option
also forces all connections to be
outbound and enables the firewall
compatibility features in the client.

1024

optionTrustedSite This option specifies the server is 2048

PopClient.PopOptions Enumeration

trusted. The server certificate will not be
validated and the connection will always
be permitted. This option only affects
connections using either the SSL or TLS
protocols.

optionSecure This option specifies the client should
attempt to establish a secure
connection with the server. The server
must support secure connections using
either the SSL or TLS protocol.

4096

optionExplicitSSL This option specifies the client should
attempt to establish a secure explicit SSL
session. The initial connection to the
server is not encrypted, and the client
will attempt to negotiate a secure
connection by sending the STLS
command to the server. Some servers
may require this option when
connecting to the server on ports other
than the default secure port of 995.

4096

optionImplicitSSL This option specifies the client should
attempt to establish a secure implicit
SSL session. The SSL handshake is
initiated immediately after the
connection to the server has been
established.

8192

optionSecureFallback This option specifies the client should
permit the use of less secure cipher
suites for compatibility with legacy
servers. If this option is specified, the
client will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

32768

optionPreferIPv6 This option specifies the client should
prefer the use of IPv6 if the server
hostname can be resolved to both an
IPv6 and IPv4 address. This option is
ignored if the local system does not
have IPv6 enabled, or when the
hostname can only be resolved to an
IPv4 address. If the server hostname can
only be resolved to an IPv6 address, the
client will attempt to establish a
connection using IPv6 regardless if this
option has been specified.

262144

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables

524288

certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the status values that may be returned by the PopClient class.

[Visual Basic]
Public Enum PopClient.PopStatus

[C#]
public enum PopClient.PopStatus

Remarks
The PopClient class uses the PopStatus enumeration to identify the current status of the client.

Members

Member Name Description

statusUnused A client session has not been created. Attempts to
perform any network operations, such as sending
or receiving data, will generate an error.

statusIdle A client session has been created, but is not
currently in use. A blocking socket operation can
be executed at this point.

statusConnect The client is in the process of establishing a
connection with a remote host.

statusRead The client is in the process of receiving data from a
remote host.

statusWrite The client is in the process of sending data to a
remote host.

statusDisconnect The client session is being closed and subsequent
attempts to access the client will result in an error.

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.PopStatus Enumeration

Specifies the encryption algorithms that the PopClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum PopClient.SecureCipherAlgorithm

[C#]
[Flags]
public enum PopClient.SecureCipherAlgorithm

Remarks
The PopClient class uses the SecureCipherAlgorithm enumeration to identify which encryption algorithm
was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

cipherNone No cipher has been selected. A secure
connection has not been established
with the remote host.

0

cipherRC2 The RC2 block cipher was selected. This
is a variable key length cipher which
supports keys between 40- and 128-bits
in length, in 8-bit increments.

1

cipherRC4 The RC4 stream cipher was selected.
This is a variable key length cipher
which supports keys between 40- and
128-bits in length, in 8-bit increments.

2

cipherRC5 The RC5 block cipher was selected. This
is a variable key length cipher which
supports keys up to 2040 bits, in 8-bit
increments.

4

cipherDES The DES (Data Encryption Standard)
block cipher was selected. This is a fixed
key length cipher using 56-bit keys.

8

cipherDES3 The Triple DES block cipher was
selected. This cipher encrypts the data
three times using different keys,
effectively using a 168-bit key length.

16

cipherDESX A variant of the DES block cipher which
XORs an extra 64-bits of the key before
and after the plaintext has been
encrypted, increasing the key size to
184 bits.

32

cipherAES The Advanced Encryption Standard 64

PopClient.SecureCipherAlgorithm Enumeration

cipher (also known as the Rijndael
cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits.
This cipher is supported on Windows XP
SP3 SP3 and later versions of the
operating system.

cipherSkipjack The Skipjack block cipher was selected.
This is a fixed key length cipher, using
80-bit keys.

128

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the hash algorithms that the PopClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum PopClient.SecureHashAlgorithm

[C#]
[Flags]
public enum PopClient.SecureHashAlgorithm

Remarks
The PopClient class uses the SecureHashAlgorithm enumeration to identify the message digest (hash)
algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

hashNone No hash algorithm has been selected.
This is not a secure connection with the
server.

0

hashMD5 The MD5 algorithm was selected. This
algorithm produces a 128-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

1

hashSHA The SHA-1 algorithm was selected. This
algorithm produces a 160-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

2

hashSHA256 The SHA-256 algorithm was selected.
This algorithm produces a 256-bit
message digest.

4

hashSHA384 The SHA-384 algorithm was selected.
This algorithm produces a 384-bit
message digest.

8

hashSHA512 The SHA-512 algorithm was selected.
This algorithm produces a 512-bit
message digest.

16

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also

PopClient.SecureHashAlgorithm Enumeration

SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the key exchange algorithms that the PopClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum PopClient.SecureKeyAlgorithm

[C#]
[Flags]
public enum PopClient.SecureKeyAlgorithm

Remarks
The PopClient class uses the SecureKeyAlgorithm enumeration to identify the key exchange algorithm
that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

keyExchangeNone No key exchange algorithm has been
selected. This is not a secure connection
with the server.

0

keyExchangeRSA The RSA public key exchange algorithm
has been selected.

1

keyExchangeKEA The KEA public key exchange algorithm
has been selected. This is an improved
version of the Diffie-Hellman public key
algorithm.

2

keyExchangeDH The Diffie-Hellman public key exchange
algorithm has been selected.

4

keyExchangeECDH The Elliptic Curve Diffie-Hellman key
exchange algorithm was selected. This is
a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography.
This key exchange algorithm is only
supported on Windows XP SP3 SP3 and
later versions of the operating system.

8

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.SecureKeyAlgorithm Enumeration

Specifies the security certificate status values that may be returned by the PopClient class.

[Visual Basic]
Public Enum PopClient.SecurityCertificate

[C#]
public enum PopClient.SecurityCertificate

Remarks
The PopClient class uses the SecurityCertificate enumeration to identify the current status of the
certificate that was provided by the remote host when a secure connection was established.

Members

Member Name Description

certificateNone No certificate information is available. A secure
connection was not established with the server.

certificateValid The certificate is valid.

certificateNoMatch The certificate is valid, however the domain name
specified in the certificate does not match the
domain name of the remote host. The application
can examine the CertificateSubject property to
determine the site the certificate was issued to.

certificateExpired The certificate has expired and is no longer valid.
The application can examine the
CertificateExpires property to determine when
the certificate expired.

certificateRevoked The certificate has been revoked and is no longer
valid. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateUntrusted The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the
local host. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateInvalid The certificate is invalid. This typically indicates that
the internal structure of the certificate is damaged.
It is recommended that the application
immediately terminate the connection if this status
is returned.

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

PopClient.SecurityCertificate Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the security protocols that the PopClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum PopClient.SecurityProtocols

[C#]
[Flags]
public enum PopClient.SecurityProtocols

Remarks
The PopClient class uses the SecurityProtocols enumeration to specify one or more security protocols to
be used when establishing a connection with a remote host. Multiple protocols may be specified if
necessary and the actual protocol used will be negotiated with the remote host. It is recommended that
most applications use protocolDefault when creating a secure connection.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

PopClient.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolDefault The default selection of security
protocols will be used when establishing
a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

16

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the PopClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum PopClient.TraceOptions

[C#]
[Flags]
public enum PopClient.TraceOptions

Remarks
The PopClient class uses the TraceOptions enumeration to specify what kind of debugging information is
written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
SocketTools Namespace

PopClient.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub PopClient.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void PopClient.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OnErrorEventHandler Delegate

Represents the method that will handle the OnProgress event.

[Visual Basic]
Public Delegate Sub PopClient.OnProgressEventHandler(_
 ByVal sender As Object, _
 ByVal e As ProgressEventArgs _
)

[C#]
public delegate void PopClient.OnProgressEventHandler(

 object sender,
 ProgressEventArgs e
);

Parameters
sender

The source of the event.

e
A ProgressEventArgs that contains the event data.

Remarks
When you create an OnProgressEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnProgressEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.OnProgressEventHandler Delegate

The exception that is thrown when a client error occurs.

For a list of all members of this type, see PopClientException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.PopClientException

[Visual Basic]
Public Class PopClientException
 Inherits ApplicationException

[C#]
public class PopClientException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A PopClientException is thrown by the PopClient class when an error occurs.

The default constructor for the PopClientException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
PopClientException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClientException Class

PopClientException overview

Public Instance Constructors

 PopClientException Overloaded. Initializes a new instance of the
PopClientException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

PopClientException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
PopClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the PopClientException class with the last network error code.

Overload List
Initializes a new instance of the PopClientException class with the last network error code.

public PopClientException();

Initializes a new instance of the PopClientException class with a specified error number.

public PopClientException(int);

Initializes a new instance of the PopClientException class with a specified error message.

public PopClientException(string);

Initializes a new instance of the PopClientException class with a specified error message and a reference to
the inner exception that is the cause of this exception.

public PopClientException(string,Exception);

See Also
PopClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClientException Constructor

Initializes a new instance of the PopClientException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public PopClientException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the PopClient.ErrorCode enumeration.

See Also
PopClientException Class | SocketTools Namespace | PopClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClientException Constructor ()

Initializes a new instance of the PopClientException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public PopClientException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
PopClientException Class | SocketTools Namespace | PopClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClientException Constructor (String)

Initializes a new instance of the PopClientException class with a specified error message and a reference to
the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public PopClientException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
PopClientException Class | SocketTools Namespace | PopClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClientException Constructor (String, Exception)

Initializes a new instance of the PopClientException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public PopClientException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the PopClient.ErrorCode enumeration.

See Also
PopClientException Class | SocketTools Namespace | PopClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClientException Constructor (Int32)

The properties of the PopClientException class are listed below. For a complete list of
PopClientException class members, see the PopClientException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
PopClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClientException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public PopClient.ErrorCode ErrorCode {get;}

Property Value
Returns a PopClient.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the PopClientException class sets the error code to the last network error that
occurred. For more information about the errors that may occur, refer to the PopClient.ErrorCode
enumeration.

See Also
PopClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClientException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
PopClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClientException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
PopClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClientException.Number Property

The methods of the PopClientException class are listed below. For a complete list of
PopClientException class members, see the PopClientException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
PopClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClientException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
PopClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClientException.ToString Method

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see PopClient.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.PopClient.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class PopClient.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class PopClient.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the PopClient class.

Example

<Assembly: SocketTools.PopClient.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.PopClient.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.PopClient (in SocketTools.PopClient.dll)

See Also
PopClient.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.RuntimeLicenseAttribute Class

PopClient.RuntimeLicenseAttribute overview

Public Instance Constructors

 PopClient.RuntimeLicenseAttribute Constructor Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
PopClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public PopClient.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the PopClient class.

See Also
PopClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.RuntimeLicenseAttribute Constructor

The properties of the PopClient.RuntimeLicenseAttribute class are listed below. For a complete list of
PopClient.RuntimeLicenseAttribute class members, see the PopClient.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
PopClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
PopClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

PopClient.RuntimeLicenseAttribute.LicenseKey Property

Implements the Remote Shell and Remote Login protocols.

For a list of all members of this type, see RshClient Members.

System.Object
 SocketTools.RshClient

[Visual Basic]
Public Class RshClient
 Implements IDisposable

[C#]
public class RshClient : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RshClient class is used to execute a command on a server and return the output of that command to
the client. This is most commonly used with UNIX based servers, although there are implementations of
remote command servers for the Windows operating system. The class supports both the rsh and rshell
remote execution protocols and provides functions which can be used to search the data stream for
specific sequences of characters. This makes it extremely easy to write Windows applications which serve
as light-weight client interfaces to commands being executed on a UNIX server or another Windows
system. The class can also be used to establish a remote terminal session using the rlogin protocol, which
is similar to how the Telnet protocol functions.

Requirements
Namespace: SocketTools

Assembly: SocketTools.RshClient (in SocketTools.RshClient.dll)

See Also
RshClient Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient Class

RshClient overview

Public Static (Shared) Fields

rshPortExecute A constant value which specifies the default port
number for the rexec service.

rshPortLogin A constant value which specifies the default port
number for the rlogin service.

rshPortShell A constant value which specifies the default port
number for the rshell service.

rshTimeout A constant value which specifies the default
timeout period.

Public Instance Constructors

 RshClient Constructor Initializes a new instance of the RshClient class.

Public Instance Properties

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CodePage Gets and sets the code page used when reading
and writing text.

Command Gets and sets a value which specifies the
command to be executed on the remote host.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

LastError Gets and sets a value which specifies the last error
that has occurred.

RshClient Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.rshPortExecute.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.rshPortLogin.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.rshPortShell.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.rshTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.Command.html

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client session.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

Status Gets a value which specifies the current status of
the client.

Terminal Gets and sets the terminal type used for a remote
login session.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the RshClient class library.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

Disconnect Terminate the connection with a remote host.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.RemoteService.html

Dispose Overloaded. Releases all resources used by
RshClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

Execute Overloaded. Execute the specified command on
the remote host.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the RshClient
class.

Login Overloaded. Establish an interactive terminal
session for the specified user.

Read Overloaded. Read data from the server and store
it in a byte array.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Search Overloaded. Search for a specific character
sequence in the data stream.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the server.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the RshClient class and optionally

releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the RshClient class.

[Visual Basic]
Public Sub New()

[C#]
public RshClient();

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient Constructor

The properties of the RshClient class are listed below. For a complete list of RshClient class members,
see the RshClient Members topic.

Public Instance Properties

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CodePage Gets and sets the code page used when reading
and writing text.

Command Gets and sets a value which specifies the
command to be executed on the remote host.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client session.

RshClient Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.Command.html

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

Status Gets a value which specifies the current status of
the client.

Terminal Gets and sets the terminal type used for a remote
login session.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the RshClient class library.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.RemoteService.html

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.AutoResolve Property

Gets and sets a value which indicates if the client is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the client is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if client operations complete synchronously or asynchronously.
If set to true, then each client operation (such as sending or receiving data) will return when the operation
has completed or timed-out. If set to false, client operations will return immediately. If the operation
would result in the client blocking (such as attempting to read data when no data has been sent by the
remote host), an error is generated.

It is important to note that certain events, such as OnDisconnect, OnRead and OnWrite are only fired if
the client is in non-blocking mode.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Blocking Property

Gets and sets the code page used when reading and writing text.

[Visual Basic]
Public Property CodePage As Integer

[C#]
public int CodePage {get; set;}

Property Value
An integer value which specifies the current code page. A value of zero specifies the default code page for
the current locale should be used. To preserve the original Unicode text, you can use code page 65001
which specifies UTF-8 character encoding.

Remarks
All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to as
"octets" in networking terminology. However, strings in .NET are Unicode where each character is
represented by 16 bits. To send and receive data using strings, these Unicode strings are converted to a
stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale, mapping
the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into a string buffer,
the stream of bytes received from the remote host are converted to Unicode before they are returned to
your application.

If you are exchanging text with another system and it appears to corrupted or characters are being
replaced with question marks or other symbols, it is likely the system is sending text which is using a
different character encoding. Most services use UTF-8 encoding to represent non-ASCII characters and
selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a string data type is not
recommended when reading or writing binary data to a socket. If possible, you should always use a byte
array as the buffer parameter for the Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, this class defaults to using the code page for the current locale. This property
value directly corresponds to Windows code page identifiers, and will accept any valid code page
supported by the .NET Framework. Setting this property to an invalid code page will generate an
exception.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.CodePage Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.HostAddress Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.HostName Property

Gets a value which indicates if the current thread is performing a blocking client operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next client operation will not fail. An application
should always check the return value from a client operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.IsBlocked Property

Gets a value which indicates if a connection to the remote host has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the remote
host. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.IsInitialized Property

Gets a value which indicates if there is data available to be read from the socket connection to the server.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to read the client. Note
that even if this property does return true indicating that there is data available to be read, applications
should always check the return value from the Read method.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.IsReadable Property

Gets a value which indicates if data can be written to the client without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the client; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to write data to the client.
Note that even if this property does return true indicating that data can be written to the client,
applications should always check the return value from the Write method.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.IsWritable Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public RshClient.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.LastErrorString Property

Gets the local Internet address that the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local Internet address that the client is bound to when a
connection is established with a remote host. This property may return either an IPv4 or IPv6 formatted
address, depending on the type of connection that was established.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.LocalAddress Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.LocalName Property

Gets the local port number the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalPort As Integer

[C#]
public int LocalPort {get;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to identify the local port number that the client is bound to to when a
connection is established with a remote host.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.LocalPort Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As RemoteOptions

[C#]
public RshClient.RemoteOptions Options {get; set;}

Property Value
Returns one or more RemoteOptions enumeration flags which specify the options for the client. The
default value for this property is rshOptionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Options Property

Gets and sets the password used to authenticate the client session.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password.

Remarks
If a password is not specified when the Execute method is called, the value of this property will be used as
the default password when establishing a connection with the server.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Password Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.RemotePort Property

Gets a value which specifies the current status of the client.

[Visual Basic]
Public ReadOnly Property Status As RemoteStatus

[C#]
public RshClient.RemoteStatus Status {get;}

Property Value
A RemoteStatus enumeration value which specifies the current client status.

Remarks
The Status property returns the current status of the client. This property can be used to check on
blocking connections to determine if the client is interacting with the remote host before taking some
action.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Status Property

Gets and sets the terminal type used for a remote login session.

[Visual Basic]
Public Property Terminal As String

[C#]
public string Terminal {get; set;}

Property Value
A string which specifies the terminal type.

Remarks
The Terminal property specifies the terminal type of the remote host for display purposes. On UNIX
based systems, the terminal name corresponds to a termcap or terminfo entry as set in the TERM
environment variable. On Windows based systems which implement the rlogin service, this property may
be ignored and the server will assume that the client is capable of displaying ANSI escape sequences. On
VMS systems, the terminal name should correspond to the terminal type used with the SET
TERMINAL/DEVICE command.

If this property is set to an empty string and no terminal type is specified when the Login method is called,
a default terminal type named "unknown" will be used. On most UNIX and VMS systems this defines a
terminal which is not capable of cursor positioning using control or escape sequences. This terminal type
may not be recognized and an error may be displayed when the user logs in indicating that the terminal
type is invalid.

Refer to the documentation for the server system to determine what terminal type names are available to
you. Remember that on UNIX systems, the terminal type is case-sensitive. Some of the more common
terminal types are:

Terminal Description

ansi This terminal type is usually available on UNIX
based servers. This specifies that the client is
capable of displaying standard ANSI escape
sequences for cursor control.

dumb This terminal type typically specifies a terminal
display which does not support control or escape
sequences for cursor positioning. If you do not
want escape sequences embedded in the data
stream and the server returns an error if the
terminal type is not specified, try using this
terminal type.

pcansi This terminal type is usually available on UNIX
based servers. This specifies that the client is a
using a PC terminal emulator that supports basic
ANSI escape sequences for cursor control. This
may also enable escape sequences which can set
the display colors.

vt100 This terminal type is usually available on UNIX and
VMS based servers. On some VMS systems this

RshClient.Terminal Property

string may need to be specified as DEC-VT100.
This specifies that the client is capable of
emulating a DEC VT100 terminal. The VT100
supports many of the same cursor control
sequences as an ANSI terminal.

vt220 This terminal type is usually available on UNIX and
VMS based servers. On some VMS systems this
string may need to be specified as DEC-VT220.
This specifies that the client is capable of
emulating a DEC VT220 terminal, which is a later
version of the VT100.

vt320 This terminal type is usually available on UNIX and
VMS based servers. On some VMS systems this
string may need to be specified as DEC-VT320.
This specifies that the client is capable of
emulating a DEC VT320 terminal, which is similar
to the VT100 and VT220 and provides advanced
features such as the ability to set display colors.

xterm This terminal type is may be available on UNIX
based servers which have X Windows installed.
This specifies that the client is a using the X
Windows xterm emulator which supports standard
ANSI escape sequences for cursor control.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public RshClient.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
RshClient Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public RshClient.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.TraceFlags Property

Gets and sets the username used to authenticate the client session.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username.

Remarks
If a username is not specified when the Execute or Login method is called, the value of this property will
be used as the default username when establishing a connection with the server.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.UserName Property

Gets a value which returns the current version of the RshClient class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the RshClient class
library. This value can be used by an application for validation and debugging purposes.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Version Property

The methods of the RshClient class are listed below. For a complete list of RshClient class members, see
the RshClient Members topic.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
RshClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

Execute Overloaded. Execute the specified command on
the remote host.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the RshClient
class.

Login Overloaded. Establish an interactive terminal
session for the specified user.

Read Overloaded. Read data from the server and store
it in a byte array.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Search Overloaded. Search for a specific character
sequence in the data stream.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the server.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the RshClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

RshClient Methods

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the client could be attached to the current thread. If this method returns
false, the client could not be attached to the thread and the application should check the value of the
LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.AttachThread Method

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Cancel Method

Terminate the connection with a remote host.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and releases the client handle
allocated by the class. Note that the socket is not immediately released when the connection is terminated
and will enter a wait state for two minutes. After the time wait period has elapsed, the client will be
released by the operating system. This is a normal safety mechanism to handle any packets that may
arrive after the connection has been closed.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Disconnect Method

Releases all resources used by RshClient.

Overload List
Releases all resources used by RshClient.

public void Dispose();

Releases the unmanaged resources allocated by the RshClient class and optionally releases the managed
resources.

protected virtual void Dispose(bool);

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Dispose Method

Releases all resources used by RshClient.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
RshClient Class | SocketTools Namespace | RshClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Dispose Method ()

Releases the unmanaged resources allocated by the RshClient class and optionally releases the managed
resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the RshClient class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
RshClient Class | SocketTools Namespace | RshClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Dispose Method (Boolean)

Execute the specified command on the remote host.

Overload List
Execute the specified command on the remote host.

public bool Execute();

Execute the specified command on the remote host.

public bool Execute(string);

Execute the specified command on the remote host.

public bool Execute(string,int,string);

Execute the specified command on the remote host.

public bool Execute(string,int,string,string,string);

Execute the specified command on the remote host.

public bool Execute(string,int,string,string,string,int);

Execute the specified command on the remote host.

public bool Execute(string,int,string,string,string,int,RemoteOptions);

Execute the specified command on the remote host.

public bool Execute(string,string);

Execute the specified command on the remote host.

public bool Execute(string,string,string);

Execute the specified command on the remote host.

public bool Execute(string,string,string,string);

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Execute Method

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.Execute_overload_9.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.RshClient.Execute_overload_8.html

Execute the specified command on the remote host.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal command As String _
) As Boolean

[C#]
public bool Execute(
 string hostName,
 int hostPort,
 string command
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

hostPort

An integer value which specifies the port number to connect to. This method may be used to either
connect to the rexec service or the rshell service, and which service is selected depends on the port
number provided. One of the following values should be used:

Port Description

rshPortExec A connection is established with the server using
port 512, the rexec service. This service requires
that the client provide a username and password
to execute the specified command.

rshPortShell A connection is established with the server using
port 514, the rshell service. This service uses host
equivalence to authenticate the user. With host
equivalence, the remote server considers the
client to be equivalent to itself, and as long as
the specified user exists on the remote host, the
client is permitted to execute commands on
behalf of the user without requiring a password.
Host equivalence is configured by the server
administrator.

command
An string which specifies the command to be executed on the server.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

RshClient.Execute Method (String, Int32, String)

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Execute method executes the specified command on a remote host. Output from the command may
be read using the Read method. Input can be supplied to the program using the Write method. To
search for a specific sequence of bytes in the output returned by the server, use the Search method.

The value of the UserName and Password properties specify the username and password that will be
used to authenticate the client session. The value of the Timeout property specifies the timeout period.
The value of the Options property specifies the options that will be used when establishing the
connection.

See Also
RshClient Class | SocketTools Namespace | RshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Execute the specified command on the remote host.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal command As String _
) As Boolean

[C#]
public bool Execute(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 string command
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

hostPort

An integer value which specifies the port number to connect to. This method may be used to either
connect to the rexec service or the rshell service, and which service is selected depends on the port
number provided. One of the following values should be used:

Port Description

rshPortExec A connection is established with the server using
port 512, the rexec service. This service requires
that the client provide a username and password
to execute the specified command.

rshPortShell A connection is established with the server using
port 514, the rshell service. This service uses host
equivalence to authenticate the user. With host
equivalence, the remote server considers the
client to be equivalent to itself, and as long as
the specified user exists on the remote host, the
client is permitted to execute commands on
behalf of the user without requiring a password.
Host equivalence is configured by the server
administrator.

userName
A string which specifies the username which used to authenticate the client session.

userPassword
A string which specifies the password to be used to authenticate the user. A password is only used if
the client is connecting to the rexec service. The rshell service uses host equivalence to authenticate

RshClient.Execute Method (String, Int32, String, String, String)

the user and this argument will be ignored.

command
An string which specifies the command to be executed on the server.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Execute method executes the specified command on a remote host. Output from the command may
be read using the Read method. Input can be supplied to the program using the Write method. To
search for a specific sequence of bytes in the output returned by the server, use the Search method.

The value of the Timeout property specifies the timeout period. The value of the Options property
specifies the options that will be used when establishing the connection.

See Also
RshClient Class | SocketTools Namespace | RshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Execute the specified command on the remote host.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal command As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Execute(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 string command,
 int timeout
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

hostPort

An integer value which specifies the port number to connect to. This method may be used to either
connect to the rexec service or the rshell service, and which service is selected depends on the port
number provided. One of the following values should be used:

Port Description

rshPortExec A connection is established with the server using
port 512, the rexec service. This service requires
that the client provide a username and password
to execute the specified command.

rshPortShell A connection is established with the server using
port 514, the rshell service. This service uses host
equivalence to authenticate the user. With host
equivalence, the remote server considers the
client to be equivalent to itself, and as long as
the specified user exists on the remote host, the
client is permitted to execute commands on
behalf of the user without requiring a password.
Host equivalence is configured by the server
administrator.

userName
A string which specifies the username which used to authenticate the client session.

userPassword

RshClient.Execute Method (String, Int32, String, String, String, Int32)

A string which specifies the password to be used to authenticate the user. A password is only used if
the client is connecting to the rexec service. The rshell service uses host equivalence to authenticate
the user and this argument will be ignored.

command
An string which specifies the command to be executed on the server.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Execute method executes the specified command on a remote host. Output from the command may
be read using the Read method. Input can be supplied to the program using the Write method. To
search for a specific sequence of bytes in the output returned by the server, use the Search method.

The value of the Options property specifies the options that will be used when establishing the
connection.

See Also
RshClient Class | SocketTools Namespace | RshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Execute the specified command on the remote host.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal command As String, _
 ByVal timeout As Integer, _
 ByVal options As RemoteOptions _
) As Boolean

[C#]
public bool Execute(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 string command,
 int timeout,
 RemoteOptions options
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

hostPort

An integer value which specifies the port number to connect to. This method may be used to either
connect to the rexec service or the rshell service, and which service is selected depends on the port
number provided. One of the following values should be used:

Port Description

rshPortExec A connection is established with the server using
port 512, the rexec service. This service requires
that the client provide a username and password
to execute the specified command.

rshPortShell A connection is established with the server using
port 514, the rshell service. This service uses host
equivalence to authenticate the user. With host
equivalence, the remote server considers the
client to be equivalent to itself, and as long as
the specified user exists on the remote host, the
client is permitted to execute commands on
behalf of the user without requiring a password.
Host equivalence is configured by the server
administrator.

userName

RshClient.Execute Method (String, Int32, String, String, String, Int32,
RemoteOptions)

A string which specifies the username which used to authenticate the client session.

userPassword
A string which specifies the password to be used to authenticate the user. A password is only used if
the client is connecting to the rexec service. The rshell service uses host equivalence to authenticate
the user and this argument will be ignored.

command
An string which specifies the command to be executed on the server.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the RemoteOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Execute method executes the specified command on a remote host. Output from the command may
be read using the Read method. Input can be supplied to the program using the Write method. To
search for a specific sequence of bytes in the output returned by the server, use the Search method.

See Also
RshClient Class | SocketTools Namespace | RshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Execute the specified command on the remote host.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal command As String _
) As Boolean

[C#]
public bool Execute(
 string hostName,
 string command
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

command
An string which specifies the command to be executed on the server.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Execute method executes the specified command on a remote host. Output from the command may
be read using the Read method. Input can be supplied to the program using the Write method. To
search for a specific sequence of bytes in the output returned by the server, use the Search method.

The value of the RemotePort property specifies the port number. The value of the UserName and
Password properties specify the username and password that will be used to authenticate the client
session. The value of the Command property specifies the command that will be executed. The value of
the Timeout property specifies the timeout period. The value of the Options property specifies the
options that will be used when establishing the connection.

See Also
RshClient Class | SocketTools Namespace | RshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Execute Method (String, String)

Execute the specified command on the remote host.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal userName As String, _
 ByVal command As String _
) As Boolean

[C#]
public bool Execute(
 string hostName,
 string userName,
 string command
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

userName
A string which specifies the username which used to authenticate the client session.

command
An string which specifies the command to be executed on the server.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Execute method executes the specified command on a remote host. Output from the command may
be read using the Read method. Input can be supplied to the program using the Write method. To
search for a specific sequence of bytes in the output returned by the server, use the Search method.

The value of the RemotePort property specifies the remote port number. The value of the Timeout
property specifies the timeout period. The value of the Options property specifies the options that will be
used when establishing the connection.

See Also
RshClient Class | SocketTools Namespace | RshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Execute Method (String, String, String)

Execute the specified command on the remote host.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal command As String _
) As Boolean

[C#]
public bool Execute(
 string hostName,
 string userName,
 string userPassword,
 string command
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

userName
A string which specifies the username which used to authenticate the client session.

userPassword
A string which specifies the password to be used to authenticate the user. A password is only used if
the client is connecting to the rexec service. The rshell service uses host equivalence to authenticate
the user and this argument will be ignored.

command
An string which specifies the command to be executed on the server.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Execute method executes the specified command on a remote host. Output from the command may
be read using the Read method. Input can be supplied to the program using the Write method. To
search for a specific sequence of bytes in the output returned by the server, use the Search method.

The value of the RemotePort property specifies the remote port number. The value of the Timeout
property specifies the timeout period. The value of the Options property specifies the options that will be
used when establishing the connection.

RshClient.Execute Method (String, String, String, String)

See Also
RshClient Class | SocketTools Namespace | RshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Finalize Method

Initialize an instance of the RshClient class.

Overload List
Initialize an instance of the RshClient class.

public bool Initialize();

Initialize an instance of the RshClient class.

public bool Initialize(string);

See Also
RshClient Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Initialize Method

Initialize an instance of the RshClient class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the RshClient class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
RshClient Class | SocketTools Namespace | RshClient.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Initialize Method ()

Initialize an instance of the RshClient class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the RshClient class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the RshClient class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.RshClient rshClient = new SocketTools.RshClient();

if (rshClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(rshClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim rshClient As New SocketTools.RshClient

If rshClient.Initialize(strLicenseKey) = False Then
 MsgBox(rshClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
RshClient Class | SocketTools Namespace | RshClient.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Initialize Method (String)

Establish an interactive terminal session for the specified user.

Overload List
Establish an interactive terminal session for the specified user.

public bool Login(string);

Establish an interactive terminal session for the specified user.

public bool Login(string,int);

Establish an interactive terminal session for the specified user.

public bool Login(string,int,string);

Establish an interactive terminal session for the specified user.

public bool Login(string,int,string,int);

Establish an interactive terminal session for the specified user.

public bool Login(string,int,string,string,int);

Establish an interactive terminal session for the specified user.

public bool Login(string,int,string,string,int,RemoteOptions);

Establish an interactive terminal session for the specified user.

public bool Login(string,string);

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Login Method

Establish an interactive terminal session for the specified user.

[Visual Basic]
Overloads Public Function Login(_
 ByVal hostName As String _
) As Boolean

[C#]
public bool Login(
 string hostName
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Login method logs the specified user in on the remote host. Note that no password is provided to
the remote host. This is because the remote login service uses user equivalence. If the client system is
recognized by the remote host as being equivalent, the login will proceed directly. If the client system is
not recognized, the server will prompt the user for a password. For more information about user
equivalence and the remote login service, refer to your server's operating system documentation.

Output from the command may be read using the Read method. Input can be supplied to the program
using the Write method. To search for a specific sequence of bytes in the output returned by the server,
use the Search method.

See Also
RshClient Class | SocketTools Namespace | RshClient.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Login Method (String)

Establish an interactive terminal session for the specified user.

[Visual Basic]
Overloads Public Function Login(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Login(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

hostPort
An integer value which specifies the port number to connect to. The default port for this service is
rshPortLogin.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Login method logs the specified user in on the remote host. Note that no password is provided to
the remote host. This is because the remote login service uses user equivalence. If the client system is
recognized by the remote host as being equivalent, the login will proceed directly. If the client system is
not recognized, the server will prompt the user for a password. For more information about user
equivalence and the remote login service, refer to your server's operating system documentation.

Output from the command may be read using the Read method. Input can be supplied to the program
using the Write method. To search for a specific sequence of bytes in the output returned by the server,
use the Search method.

See Also
RshClient Class | SocketTools Namespace | RshClient.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Login Method (String, Int32)

Establish an interactive terminal session for the specified user.

[Visual Basic]
Overloads Public Function Login(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String _
) As Boolean

[C#]
public bool Login(
 string hostName,
 int hostPort,
 string userName
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

hostPort
An integer value which specifies the port number to connect to. The default port for this service is
rshPortLogin.

userName
A string which specifies the username which used to authenticate the client session.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Login method logs the specified user in on the remote host. Note that no password is provided to
the remote host. This is because the remote login service uses user equivalence. If the client system is
recognized by the remote host as being equivalent, the login will proceed directly. If the client system is
not recognized, the server will prompt the user for a password. For more information about user
equivalence and the remote login service, refer to your server's operating system documentation.

Output from the command may be read using the Read method. Input can be supplied to the program
using the Write method. To search for a specific sequence of bytes in the output returned by the server,
use the Search method.

See Also
RshClient Class | SocketTools Namespace | RshClient.Login Overload List

RshClient.Login Method (String, Int32, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish an interactive terminal session for the specified user.

[Visual Basic]
Overloads Public Function Login(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Login(
 string hostName,
 int hostPort,
 string userName,
 int timeout
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

hostPort
An integer value which specifies the port number to connect to. The default port for this service is
rshPortLogin.

userName
A string which specifies the username which used to authenticate the client session.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Login method logs the specified user in on the remote host. Note that no password is provided to
the remote host. This is because the remote login service uses user equivalence. If the client system is
recognized by the remote host as being equivalent, the login will proceed directly. If the client system is
not recognized, the server will prompt the user for a password. For more information about user
equivalence and the remote login service, refer to your server's operating system documentation.

Output from the command may be read using the Read method. Input can be supplied to the program

RshClient.Login Method (String, Int32, String, Int32)

using the Write method. To search for a specific sequence of bytes in the output returned by the server,
use the Search method.

See Also
RshClient Class | SocketTools Namespace | RshClient.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish an interactive terminal session for the specified user.

[Visual Basic]
Overloads Public Function Login(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userTerminal As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Login(
 string hostName,
 int hostPort,
 string userName,
 string userTerminal,
 int timeout
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

hostPort
An integer value which specifies the port number to connect to. The default port for this service is
rshPortLogin.

userName
A string which specifies the username which used to authenticate the client session.

userTerminal
A string which specifies the client terminal type display purposes.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Login method logs the specified user in on the remote host. Note that no password is provided to
the remote host. This is because the remote login service uses user equivalence. If the client system is
recognized by the remote host as being equivalent, the login will proceed directly. If the client system is

RshClient.Login Method (String, Int32, String, String, Int32)

not recognized, the server will prompt the user for a password. For more information about user
equivalence and the remote login service, refer to your server's operating system documentation.

Output from the command may be read using the Read method. Input can be supplied to the program
using the Write method. To search for a specific sequence of bytes in the output returned by the server,
use the Search method.

See Also
RshClient Class | SocketTools Namespace | RshClient.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish an interactive terminal session for the specified user.

[Visual Basic]
Overloads Public Function Login(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userTerminal As String, _
 ByVal timeout As Integer, _
 ByVal options As RemoteOptions _
) As Boolean

[C#]
public bool Login(
 string hostName,
 int hostPort,
 string userName,
 string userTerminal,
 int timeout,
 RemoteOptions options
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

hostPort
An integer value which specifies the port number to connect to. The default port for this service is
rshPortLogin.

userName
A string which specifies the username which used to authenticate the client session.

userTerminal
A string which specifies the client terminal type display purposes.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the RemoteOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

RshClient.Login Method (String, Int32, String, String, Int32,
RemoteOptions)

Remarks
The Login method logs the specified user in on the remote host. Note that no password is provided to
the remote host. This is because the remote login service uses user equivalence. If the client system is
recognized by the remote host as being equivalent, the login will proceed directly. If the client system is
not recognized, the server will prompt the user for a password. For more information about user
equivalence and the remote login service, refer to your server's operating system documentation.

Output from the command may be read using the Read method. Input can be supplied to the program
using the Write method. To search for a specific sequence of bytes in the output returned by the server,
use the Search method.

See Also
RshClient Class | SocketTools Namespace | RshClient.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish an interactive terminal session for the specified user.

[Visual Basic]
Overloads Public Function Login(_
 ByVal hostName As String, _
 ByVal userName As String _
) As Boolean

[C#]
public bool Login(
 string hostName,
 string userName
);

Parameters
hostName

A string which specifies the name of the server to connect to. The string may either be an IP address
or a fully qualified domain name.

userName
A string which specifies the username which used to authenticate the client session.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Login method logs the specified user in on the remote host. Note that no password is provided to
the remote host. This is because the remote login service uses user equivalence. If the client system is
recognized by the remote host as being equivalent, the login will proceed directly. If the client system is
not recognized, the server will prompt the user for a password. For more information about user
equivalence and the remote login service, refer to your server's operating system documentation.

Output from the command may be read using the Read method. Input can be supplied to the program
using the Write method. To search for a specific sequence of bytes in the output returned by the server,
use the Search method.

See Also
RshClient Class | SocketTools Namespace | RshClient.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Login Method (String, String)

Read data from the server and store it in a byte array.

Overload List
Read data from the server and store it in a byte array.

public int Read(byte[]);

Read data from the server and store it in a byte array.

public int Read(byte[],int);

Read data from the server and store it in a string.

public int Read(ref string);

Read data from the server and store it in a string.

public int Read(ref string,int);

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Read Method

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the size of the byte array passed
to the method. If no data is available to be read, an error will be generated if the client is in non-blocking
mode. If the client is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

See Also
RshClient Class | SocketTools Namespace | RshClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Read Method (Byte[])

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

See Also
RshClient Class | SocketTools Namespace | RshClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Read Method (Byte[], Int32)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the client.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to a maximum of 4096 bytes. If no
data is available to be read, an error will be generated if the client is in non-blocking mode. If the client is
in blocking mode, the program will stop until data is received from the server or the connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
RshClient Class | SocketTools Namespace | RshClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Read Method (String)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
RshClient Class | SocketTools Namespace | RshClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Read Method (String, Int32)

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Reset Method

Search for a specific character sequence in the data stream.

Overload List
Search for a specific character sequence in the data stream.

public bool Search(string);

Search for a specific character sequence in the data stream.

public bool Search(string,byte[],ref int);

Search for a specific character sequence in the data stream.

public bool Search(string,ref string);

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Search Method

Search for a specific character sequence in the data stream.

[Visual Basic]
Overloads Public Function Search(_
 ByVal value As String _
) As Boolean

[C#]
public bool Search(
 string value
);

Parameters
value

A string argument which specifies the sequence of characters to search for in the data stream. When
this sequence of characters is found, the method will return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when it is
found. This is useful when the client wants to automate responses to the server, such as executing a
command and processing the output. The method will discard any data received up to and including the
specified character sequence.

See Also
RshClient Class | SocketTools Namespace | RshClient.Search Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Search Method (String)

Search for a specific character sequence in the data stream.

[Visual Basic]
Overloads Public Function Search(_
 ByVal value As String, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool Search(
 string value,
 byte[] buffer,
 ref int length
);

Parameters
value

A string argument which specifies the sequence of characters to search for in the data stream. When
this sequence of characters is found, the method will return.

buffer
An byte array that will contain the output sent by the server, up to and including the search string
character sequence.

length
An integer value passed by reference which should be initialized to the maximum number of bytes of
data to store in the buffer. When the method returns, this value will be updated with the actual
number of bytes stored in the buffer.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when it is
found. This is useful when the client wants to automate responses to the server, such as executing a
command and processing the output. The method collects the output from the server and stores it in a
buffer provided by the caller. When the method returns, the buffer will contain everything sent by the
server up to and including the search string.

See Also
RshClient Class | SocketTools Namespace | RshClient.Search Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Search Method (String, Byte[], Int32)

Search for a specific character sequence in the data stream.

[Visual Basic]
Overloads Public Function Search(_
 ByVal value As String, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool Search(
 string value,
 ref string buffer
);

Parameters
value

A string argument which specifies the sequence of characters to search for in the data stream. When
this sequence of characters is found, the method will return.

buffer
An string that will contain the output sent by the server, up to and including the search string
character sequence.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when it is
found. This is useful when the client wants to automate responses to the server, such as executing a
command and processing the output. The method collects the output from the server and stores it in a
buffer provided by the caller. When the method returns, the buffer will contain everything sent by the
server up to and including the search string.

See Also
RshClient Class | SocketTools Namespace | RshClient.Search Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Search Method (String, String)

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
RshClient Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Uninitialize Method

Write one or more bytes of data to the server.

Overload List
Write one or more bytes of data to the server.

public int Write(byte[]);

Write one or more bytes of data to the server.

public int Write(byte[],int);

Write a character to the server.

public int Write(char);

Write one or more characters to the server.

public int Write(char,int);

Write a string of characters to the server.

public int Write(string);

Write a string of characters to the server.

public int Write(string,int);

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Write Method

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the server.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
RshClient Class | SocketTools Namespace | RshClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Write Method (Byte[])

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the server.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
RshClient Class | SocketTools Namespace | RshClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Write Method (Byte[], Int32)

Write a character to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal key As Char _
) As Integer

[C#]
public int Write(
 char key
);

Parameters
key

A character which will be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends one character to the server. If the client is in non-blocking mode and the send
buffer is full, an error will occur.

See Also
RshClient Class | SocketTools Namespace | RshClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Write Method (Char)

Write one or more characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal key As Char, _
 ByVal repeat As Integer _
) As Integer

[C#]
public int Write(
 char key,
 int repeat
);

Parameters
key

A character which will be written to the server.

repeat
The number of characters that will be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends one or more characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
RshClient Class | SocketTools Namespace | RshClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Write Method (Char, Int32)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

See Also
RshClient Class | SocketTools Namespace | RshClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Write Method (String)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the server.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

///

See Also
RshClient Class | SocketTools Namespace | RshClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.Write Method (String, Int32)

The events of the RshClient class are listed below. For a complete list of RshClient class members, see
the RshClient Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.OnCancel Event

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a remote host as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a socket is
created but the connection is not actually established until after this event occurs. Between the time
connection process is started and this event fires, no operation may be performed on the client other than
calling the Disconnect method.

This event is only generated if the client is in non-blocking mode.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.OnConnect Event

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the remote host closes its connection, terminating the client
session with the application. Because there may still be data in the client receive buffers, you should
continue to read data from the client until the Read method returns a value of 0. Once all of the data has
been read, you should call the Disconnect method to close the local socket and release the resources
allocated for the client.

This event is only generated if the client is in non-blocking mode.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.OnDisconnect Event

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type RshClient.ErrorEventArgs containing data related to this
event. The following RshClient.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see RshClient.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.RshClient.ErrorEventArgs

[Visual Basic]
Public Class RshClient.ErrorEventArgs
 Inherits EventArgs

[C#]
public class RshClient.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.RshClient (in SocketTools.RshClient.dll)

See Also
RshClient.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.ErrorEventArgs Class

RshClient.ErrorEventArgs overview

Public Instance Constructors

 RshClient.ErrorEventArgs Constructor Initializes a new instance of the
RshClient.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
RshClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.ErrorEventArgs Members

Initializes a new instance of the RshClient.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public RshClient.ErrorEventArgs();

See Also
RshClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.ErrorEventArgs Constructor

The properties of the RshClient.ErrorEventArgs class are listed below. For a complete list of
RshClient.ErrorEventArgs class members, see the RshClient.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
RshClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
RshClient.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public RshClient.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
RshClient.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.ErrorEventArgs.Error Property

Occurs when data is available to be read from the client.

[Visual Basic]
Public Event OnRead As EventHandler

[C#]
public event EventHandler OnRead;

Remarks
The OnRead event occurs when data is available to be read from the client. This event is level-triggered,
which means that once this event fires, it will not occur again until some data has been read from the
client. This design prevents an application from being flooded with event notifications. It is recommended
that your application read all of the available data from the server and store it in a local buffer for
processing. See the example below.

This event is only generated if the client is in non-blocking mode.

Example

Private Sub Socket_OnRead(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Socket.OnRead
 Dim strBuffer As String
 Dim nRead As Integer

 Do
 ' Read up to m_nBufferSize bytes of data from the server
 nRead = Socket.Read(strBuffer, m_nBufferSize)

 If nRead > 0 Then
 ' Append the data to an internal buffer for processing
 m_dataBuffer = m_dataBuffer + strBuffer
 End If
 Loop Until nRead < 1

 ProcessData()
End Sub

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.OnRead Event

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.OnTimeout Event

Occurs when data can be written to the client.

[Visual Basic]
Public Event OnWrite As EventHandler

[C#]
public event EventHandler OnWrite;

Remarks
The OnWrite event occurs when the application can write data to the client. This event will typically occur
when a connection is first established with the remote host, and after the Write method has failed
because there was insufficient memory available in the client send buffers. In the second case, when some
of the buffered data has been successfully sent to the remote host and there is space available in the send
buffers, this event is used to signal the application that it may attempt to send more data.

This event is only generated if the client is in non-blocking mode.

See Also
RshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.OnWrite Event

Specifies the error codes returned by the RshClient class.

[Visual Basic]
Public Enum RshClient.ErrorCode

[C#]
public enum RshClient.ErrorCode

Remarks
The RshClient class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

RshClient.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.RshClient (in SocketTools.RshClient.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the RshClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum RshClient.TraceOptions

[C#]
[Flags]
public enum RshClient.TraceOptions

Remarks
The RshClient class uses the TraceOptions enumeration to specify what kind of debugging information is
written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.RshClient (in SocketTools.RshClient.dll)

See Also
SocketTools Namespace

RshClient.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the status values that may be returned by the RshClient class.

[Visual Basic]
Public Enum RshClient.RemoteStatus

[C#]
public enum RshClient.RemoteStatus

Remarks
The RshClient class uses the RemoteStatus enumeration to identify the current status of the client.

Members

Member Name Description

statusUnused A client session has not been created. Attempts to
perform any network operations, such as sending
or receiving data, will generate an error.

statusIdle A client session has been created, but is not
currently in use. A blocking socket operation can
be executed at this point.

statusConnect The client is in the process of establishing a
connection with a remote host.

statusRead The client is in the process of receiving data from a
remote host.

statusWrite The client is in the process of sending data to a
remote host.

statusDisconnect The client session is being closed and subsequent
attempts to access the client will result in an error.

Requirements
Namespace: SocketTools

Assembly: SocketTools.RshClient (in SocketTools.RshClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.RemoteStatus Enumeration

Specifies the options that the RshClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum RshClient.RemoteOptions

[C#]
[Flags]
public enum RshClient.RemoteOptions

Remarks
The RshClient class uses the RemoteOptions enumeration to specify one or more options to be used
when establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionDefault The default connection option. This is
the same as specifying optionNone.

0

optionReservedPort This option specifies that a reserved
port should be used to establish the
connection. Reserved ports are those
port numbers which are less than 1024.
This option should be specified when
connecting on the rshPortShell port.

1

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

Requirements
Namespace: SocketTools

Assembly: SocketTools.RshClient (in SocketTools.RshClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.RemoteOptions Enumeration

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub RshClient.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void RshClient.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.RshClient (in SocketTools.RshClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.OnErrorEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see RshClient.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.RshClient.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class RshClient.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class RshClient.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the RshClient class.

Example

<Assembly: SocketTools.RshClient.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.RshClient.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.RshClient (in SocketTools.RshClient.dll)

See Also
RshClient.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.RuntimeLicenseAttribute Class

RshClient.RuntimeLicenseAttribute overview

Public Instance Constructors

 RshClient.RuntimeLicenseAttribute Constructor Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
RshClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public RshClient.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the RshClient class.

See Also
RshClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.RuntimeLicenseAttribute Constructor

The properties of the RshClient.RuntimeLicenseAttribute class are listed below. For a complete list of
RshClient.RuntimeLicenseAttribute class members, see the RshClient.RuntimeLicenseAttribute Members
topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
RshClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
RshClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClient.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see RshClientException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.RshClientException

[Visual Basic]
Public Class RshClientException
 Inherits ApplicationException

[C#]
public class RshClientException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A RshClientException is thrown by the RshClient class when an error occurs.

The default constructor for the RshClientException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.RshClient (in SocketTools.RshClient.dll)

See Also
RshClientException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClientException Class

RshClientException overview

Public Instance Constructors

 RshClientException Overloaded. Initializes a new instance of the
RshClientException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

RshClientException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
RshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the RshClientException class with the last network error code.

Overload List
Initializes a new instance of the RshClientException class with the last network error code.

public RshClientException();

Initializes a new instance of the RshClientException class with a specified error number.

public RshClientException(int);

Initializes a new instance of the RshClientException class with a specified error message.

public RshClientException(string);

Initializes a new instance of the RshClientException class with a specified error message and a reference to
the inner exception that is the cause of this exception.

public RshClientException(string,Exception);

See Also
RshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClientException Constructor

Initializes a new instance of the RshClientException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public RshClientException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the RshClient.ErrorCode enumeration.

See Also
RshClientException Class | SocketTools Namespace | RshClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClientException Constructor ()

Initializes a new instance of the RshClientException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public RshClientException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
RshClientException Class | SocketTools Namespace | RshClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClientException Constructor (String)

Initializes a new instance of the RshClientException class with a specified error message and a reference to
the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public RshClientException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
RshClientException Class | SocketTools Namespace | RshClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClientException Constructor (String, Exception)

Initializes a new instance of the RshClientException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public RshClientException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the RshClient.ErrorCode enumeration.

See Also
RshClientException Class | SocketTools Namespace | RshClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClientException Constructor (Int32)

The properties of the RshClientException class are listed below. For a complete list of
RshClientException class members, see the RshClientException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
RshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClientException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public RshClient.ErrorCode ErrorCode {get;}

Property Value
Returns a RshClient.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the RshClientException class sets the error code to the last network error that
occurred. For more information about the errors that may occur, refer to the RshClient.ErrorCode
enumeration.

See Also
RshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClientException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
RshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClientException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
RshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClientException.Number Property

The methods of the RshClientException class are listed below. For a complete list of
RshClientException class members, see the RshClientException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
RshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClientException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
RshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

RshClientException.ToString Method

Implements the Simple Mail Transfer Protocol.

For a list of all members of this type, see SmtpClient Members.

System.Object
 SocketTools.SmtpClient

[Visual Basic]
Public Class SmtpClient
 Implements IDisposable

[C#]
public class SmtpClient : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The Simple Mail Transfer Protocol (SMTP) enables applications to deliver email messages to one or more
recipients. The class provides an interface for addressing and delivering messages, and extended features
such as user authentication and delivery status notification. There is no requirement to have a specific
email application installed or certain types of servers installed on the local system. The class can be used
to deliver mail through a wide variety of systems, from standard UNIX based mail servers to Windows
systems running Exchange or Lotus Notes and Domino.

Using this class, messages can be delivered directly to the recipient, or they can be routed through a relay
server, such as an Internet Service Provider's mail system. The SocketTools.MailMessage class can be
integrated with this class in order to provide an extremely simple, yet flexible interface for composing and
delivering messages.

This class supports secure connections using the standard TLS protocols. Both implicit and explicit TLS
connections can be established, enabling the class to work with a wide variety of servers.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SmtpClient Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient Class

SmtpClient overview

Public Static (Shared) Fields

smtpPortDefault A constant value which specifies the default port
number.

smtpPortSecure A constant value which specifies the default port
number for a secure connection.

smtpTimeout A constant value which specifies the default
timeout period.

Public Instance Constructors

 SmtpClient Constructor Initializes a new instance of the SmtpClient class.

Public Instance Fields

Recipient Gets and sets the recipients specified for the
current message.

Public Instance Properties

Authentication Gets and sets the method used to authenticate the
user.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

BearerToken Gets and sets the bearer token used with OAuth
2.0 authentication.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the

SmtpClient Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.smtpPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.smtpPortSecure.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.smtpTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.CertificatePassword.html

organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

Extended Gets and sets a value that specifies if extended
SMTP options should be enabled.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalDomain Gets and sets the local domain name.

Localize Gets a value that specifies if the date and time are
localized.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.CertificateUser.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.Extended.html

Password Gets and sets the password used to authenticate
the client.

Recipients Gets the number of current message recipients.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

ReturnReceipt Enables and disables delivery status notification.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Sender Gets and sets the sender email address.

Status Gets a value which specifies the current status of
the client.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.RemoteService.html

Version Gets a value which returns the current version of
the SmtpClient class library.

Public Instance Methods

AddRecipient Add an address to the recipient list for the current
message.

AppendMessage Overloaded. Append text to the current message
being composed.

AttachThread Attach an instance of the class to the current
thread

Authenticate Overloaded. Authenticate the client session with a
username and password.

Cancel Cancel the current blocking client operation.

CloseMessage Closes the current message.

Command Overloaded. Send a custom command to the
server.

Connect Overloaded. Establish a connection with a remote
host.

CreateMessage Overloaded. Begin the composition of a new
message to be delivered.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
SmtpClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

ExpandAddress Expand the specified email address.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
SmtpClient class.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SendMessage Overloaded. Submit the specified message to the
mail server for delivery.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

VerifyAddress Verify the specified email address.

Write Overloaded. Write one or more bytes of data to
the server.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnCommand Occurs when the client sends a command to the
remote host and receives a reply indicating the
result of that command.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the SmtpClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the SmtpClient class.

[Visual Basic]
Public Sub New()

[C#]
public SmtpClient();

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient Constructor

The fields of the SmtpClient class are listed below. For a complete list of SmtpClient class members, see
the SmtpClient Members topic.

Public Static (Shared) Fields

smtpPortDefault A constant value which specifies the default port
number.

smtpPortSecure A constant value which specifies the default port
number for a secure connection.

smtpTimeout A constant value which specifies the default
timeout period.

Public Instance Fields

Recipient Gets and sets the recipients specified for the
current message.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient Fields

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.smtpPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.smtpPortSecure.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.smtpTimeout.html

Gets and sets the recipients specified for the current message.

[Visual Basic]
Public ReadOnly Recipient As RecipientArray

[C#]
public readonly RecipientArray Recipient;

Remarks
The Recipient array is used to enumerate the recipient addresses that have been specified for the current
message. The list of message recipients managed using this property is used by the SendMessage
method when delivering the message. This array is zero based, meaning that the first index value is zero.
The total number of recipients specified in the message can be determined by checking the value of the
Recipients property.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Recipient Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.RecipientArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.RecipientArray.html

The properties of the SmtpClient class are listed below. For a complete list of SmtpClient class members,
see the SmtpClient Members topic.

Public Instance Properties

Authentication Gets and sets the method used to authenticate the
user.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

BearerToken Gets and sets the bearer token used with OAuth
2.0 authentication.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

Extended Gets and sets a value that specifies if extended
SMTP options should be enabled.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

SmtpClient Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.CertificateUser.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.Extended.html

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalDomain Gets and sets the local domain name.

Localize Gets a value that specifies if the date and time are
localized.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client.

Recipients Gets the number of current message recipients.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

ReturnReceipt Enables and disables delivery status notification.

Secure Gets and sets a value which specifies if a secure

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.RemoteService.html

connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Sender Gets and sets the sender email address.

Status Gets a value which specifies the current status of
the client.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

TimeZone Gets and sets the current timezone offset in
seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the SmtpClient class library.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets the method used to authenticate the user.

[Visual Basic]
Public Property Authentication As SmtpAuthentication

[C#]
public SmtpClient.SmtpAuthentication Authentication {get; set;}

Property Value
A SmtpAuthentication enumeration value which specifies the authentication method.

Remarks
The authXOAuth2 and authBearer authentication methods are similar, but they are not interchangeable.
Both use an OAuth 2.0 bearer token to authenticate the client session, but they differ in how the token is
presented to the server. It is currently preferable to use the XOAUTH2 method because it is more widely
available and some service providers do not yet support the OAUTHBEARER method.

See Also
SmtpClient Class | SocketTools Namespace | BearerToken Poperty | Password Property | UserName
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Authentication Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.SmtpAuthentication.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.SmtpAuthentication.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.SmtpAuthentication.html

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.AutoResolve Property

Gets and sets the bearer token used with OAuth 2.0 authentication.

[Visual Basic]
Public Property BearerToken As String

[C#]
public string BearerToken {get; set;}

Property Value
Returns a string which contains the bearer token. Assigning a value to this property sets the curent
authentication type to use OAuth 2.0 authentication and updates the bearer token.

Remarks
Assigning a value to the BearerToken property will automatically change the current authentication
method to use OAuth 2.0 if necessary.

You should only use an OAuth 2.0 authentication method if you understand the process of how to request
the access token. Obtaining a bearer token requires registering your application with the mail service
provider (e.g.: Microsoft or Google), getting a unique client ID associated with your application and then
requesting the bearer token using the appropriate scope for the service. Obtaining the initial token will
typically involve interactive confirmation on the part of the user, requiring they grant permission to your
application to access their mail account.

Your application should not store the bearer token for later use. They usually have a relatively short
lifespan, typically about an hour, and are designed to be used with the current client session. You should
specify offline access as part of the OAuth 2.0 scope, and store the refresh token provided by the service.
The refresh token has a much onger validity period and can be used to obtain a new access token when
needed.

If the current authentication method does not use OAuth 2.0, this property will return an empty string and
you should use the Password property to obtain the current user password.

See Also
SmtpClient Class | SocketTools Namespace | Authentication Property | Password Property | UserName
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.BearerToken Property

Gets and sets a value which indicates if the client is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the client is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if client operations complete synchronously or asynchronously.
If set to true, then each client operation (such as sending or receiving data) will return when the operation
has completed or timed-out. If set to false, client operations will return immediately. If the operation
would result in the client blocking (such as attempting to read data when no data has been sent by the
remote host), an error is generated.

It is important to note that certain events, such as OnConnect OnDisconnect are only fired if the client is
in non-blocking mode.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Blocking Property

Get a value that specifies the date that the security certificate expires.

[Visual Basic]
Public ReadOnly Property CertificateExpires As String

[C#]
public string CertificateExpires {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateExpires property returns a string that specifies the date and time that the security
certificate expires. This property will return an empty string if a secure connection has not been
established with the remote host.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CertificateExpires Property

Get a value that specifies the date that the security certificate was issued.

[Visual Basic]
Public ReadOnly Property CertificateIssued As String

[C#]
public string CertificateIssued {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateIssued property returns a string that specifies the date and time that the security certificate
was issued. This property will return an empty string if a secure connection has not been established with
the remote host.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CertificateIssued Property

Get a value that provides information about the organization that issued the certificate.

[Visual Basic]
Public ReadOnly Property CertificateIssuer As String

[C#]
public string CertificateIssuer {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateIssuer property returns a string that contains information about the organization that
issued the server certificate. The string value is a comma separated list of tagged name and value pairs. In
the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CertificateIssuer Property

Gets and sets a value that specifies the name of the client certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the certificate name.

Remarks
The CertificateName property is used to specify the name of a client certificate to use when establishing
a secure connection. It is only required that you set this property value if the server requires a client
certificate for authentication. If this property is not set, a client certificate will not be provided to the server.
If a certificate name is specified, the certificate must have a private key associated with it, otherwise the
connection attempt will fail because the control will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
SmtpClient Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CertificateName Property

Gets a value which indicates the status of the security certificate returned by the remote host.

[Visual Basic]
Public ReadOnly Property CertificateStatus As SecurityCertificate

[C#]
public SmtpClient.SecurityCertificate CertificateStatus {get;}

Property Value
A SecurityCertificate enumeration value which specifies the status of the certificate.

Remarks
The CertificateStatus property is used to determine the status of the security certificate returned by the
remote host when a secure connection has been established. This property value should be checked after
the connection to the server has completed, but prior to beginning a transaction.

Note that if the certificate cannot be validated, the secure connection will not be automatically terminated.
It is the responsibility of your application to determine the best course of action to take if the certificate is
invalid. Even if the security certificate cannot be validated, the data exchanged with the remote host will
still be encrypted.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CertificateStatus Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when establishing a secure connection. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and therefore it is
not necessary to set this property value because that is the default location that will be used to search for
the certificate. This property is only used if the CertificateName property is also set to a valid certificate
name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the property
should specify the full path to the file and must contain both the certificate and private key in PKCS #12

SmtpClient.CertificateStore Property

format. If the file is protected by a password, the CertificatePassword property must also be set to
specify the password.

See Also
SmtpClient Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.CertificatePassword.html

Gets a value that provides information about the organization that the server certificate was issued to.

[Visual Basic]
Public ReadOnly Property CertificateSubject As String

[C#]
public string CertificateSubject {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateSubject property returns a string that contains information about the organization that the
server certificate was issued to. The string value is a comma separated list of tagged name and value pairs.
In the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CertificateSubject Property

Gets a value that indicates the length of the key used by the encryption algorithm for a secure connection.

[Visual Basic]
Public ReadOnly Property CipherStrength As Integer

[C#]
public int CipherStrength {get;}

Property Value
An integer value which specifies the encryption key length if a secure connection has been established;
otherwise a value of 0 is returned.

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure data
stream. Common values returned by this property are 128 and 256. A key length of 40 or 56 bits is
considered insecure and subject to brute force attacks. 128-bit and 256-bit keys are considered secure. If
this property returns a value of 0, this means that a secure connection has not been established with the
remote host.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CipherStrength Property

Gets a value that specifies the client handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current client session.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Handle Property

Gets a value which specifies the length of the message digest that was selected for a secure connection.

[Visual Basic]
Public ReadOnly Property HashStrength As Integer

[C#]
public int HashStrength {get;}

Property Value
An integer value which specifies the length of the message digest if a secure connection has been
established; otherwise a value of 0 is returned.

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that was
selected. Common values returned by this property are 128 and 160. If this property returns a value of 0,
this means that a secure connection has not been established with the remote host.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.HashStrength Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.HostAddress Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.HostName Property

Gets a value which indicates if the current thread is performing a blocking client operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next client operation will not fail. An application
should always check the return value from a client operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.IsBlocked Property

Gets a value which indicates if a connection to the remote host has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the remote
host. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.IsInitialized Property

Gets a value which indicates if there is data available to be read from the socket connection to the server.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to read the client. Note
that even if this property does return true indicating that there is data available to be read, applications
should always check the return value from the Read method.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.IsReadable Property

Gets a value which indicates if data can be written to the client without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the client; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to write data to the client.
Note that even if this property does return true indicating that data can be written to the client,
applications should always check the return value from the Write method.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.IsWritable Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public SmtpClient.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.LastErrorString Property

Gets the local Internet address that the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local Internet address that the client is bound to when a
connection is established with a remote host. This property may return either an IPv4 or IPv6 formatted
address, depending on the type of connection that was established.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.LocalAddress Property

Gets and sets the local domain name.

[Visual Basic]
Public Property LocalDomain As String

[C#]
public string LocalDomain {get; set;}

Property Value
A string which specifies the local domain name.

Remarks
The LocalDomain returns the local domain name used when the client identifies itself to the mail server. If
this property is an empty string, then the control will attempt to automatically determine the appropriate
domain name to use based on the system configuration. Setting this property will cause the control to use
that value when identifying itself to the server.

This property should only be set if it is absolutely necessary. In most cases, it is preferable to leave this
property undefined and allow the control to automatically determine the correct domain name to use.
Setting an invalid domain name may cause the mail server to reject the connection.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.LocalDomain Property

Gets a value that specifies if the date and time are localized.

[Visual Basic]
Public Property Localize As Boolean

[C#]
public bool Localize {get; set;}

Property Value
A boolean value which specifies if the date and time is localized.

Remarks
Setting the Localize property controls how date and time values are localized. If the property is set to
true, then the date and time will be adjusted to the current timezone. If the property is set to false, the
date and time are specified as UTC (Coordinated Universal Time) values.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Localize Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.LocalName Property

Gets the local port number the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalPort As Integer

[C#]
public int LocalPort {get;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to identify the local port number that the client is bound to to when a
connection is established with a remote host.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.LocalPort Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As SmtpOptions

[C#]
public SmtpClient.SmtpOptions Options {get; set;}

Property Value
Returns one or more SmtpOptions enumeration flags which specify the options for the client. The default
value for this property is smtpOptionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Options Property

Gets and sets the password used to authenticate the client.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password.

Remarks
The Password property specifies the password used to authenticate the client session. This property is
used as the default value for the Authenticate method if no password is specified as an argument.

Refer to the Authentication property for more information on the available authentication methods. If
you are using the OAuth 2.0 authentication method, this property should not be set to the user's
password. Instead, you should set the BearerToken property to the OAuth 2.0 bearer token issued by the
mail service provider. Note that these access tokens can be much larger than your typical password and
are only valid for a limited period of time.

You can use the Password property to specify an OAuth 2.0 bearer token. However, it is recommended
that you use the BearerToken property instead of assigning it to this property. It will ensure compatibility
with future versions of the class and make it clear in your code you are using an OAuth 2.0 bearer token
and not a password. If the Authentication property specifies one of the OAuth 2.0 authentication
methods, this property will return the bearer token.

See Also
SmtpClient Class | SocketTools Namespace | Authentication Property | BearerToken Property | UserName
Property | Authenticate Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Password Property

Gets the number of current message recipients.

[Visual Basic]
Public ReadOnly Property Recipients As Integer

[C#]
public int Recipients {get;}

Property Value
An integer which specifies the number of recipients.

Remarks
The Recipients property specifies the number of recipient addresses which have been specified using the
Recipient property array. The maximum number of recipients for a message varies by server, but is
typically limited to approximately 100 addresses.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Recipients Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.RemotePort Property

Gets a value which specifies the last result code returned by the server.

[Visual Basic]
Public ReadOnly Property ResultCode As Integer

[C#]
public int ResultCode {get;}

Property Value
An integer value which specifies the last result code returned by the server.

Remarks
Result codes are three-digit numeric values returned by the remote server and may be broken down into
the following ranges:

ResultCode Description

100-199 Positive preliminary result. This indicates that the
requested action is being initiated, and the client
should expect another reply from the server
before proceeding.

200-299 Positive completion result. This indicates that the
server has successfully completed the requested
action.

300-399 Positive intermediate result. This indicates that the
requested action cannot complete until additional
information is provided to the server.

400-499 Transient negative completion result. This indicates
that the requested action did not take place, but
the error condition is temporary and may be
attempted again.

500-599 Permanent negative completion result. This
indicates that the requested action did not take
place.

It is important to note that while some result codes have become standardized, not all servers respond to
commands using the same result codes. For example, one server may respond with a result code of 221
to indicate success, while another may respond with a value of 235. It is recommended that applications
check for ranges of values to determine if a command was successful, not a specific value.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ResultCode Property

Gets a string value which describes the result of the previous command.

[Visual Basic]
Public ReadOnly Property ResultString As String

[C#]
public string ResultString {get;}

Property Value
A string which describes the result of the previous command executed on the server.

Remarks
The ResultString property returns the result string from the last action taken by the client. This string is
generated by the remote server, and typically is used to describe the result code. For example, if an error
is indicated by the result code, the result string may describe the condition that caused the error.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ResultString Property

Enables and disables delivery status notification.

[Visual Basic]
Public Property ReturnReceipt As Boolean

[C#]
public bool ReturnReceipt {get; set;}

Property Value
A boolean value which specifies if delivery status notification has been enabled.

Remarks
The ReturnReceipt property enables or disables delivery status notification (DSN) by the mail server. If
the property is set to True, a mail message will be automatically returned to the sender indicating if the
message was delivered successfully, unsuccessfully or delayed by the mail server. If the property is set to
False, no delivery status information is sent back to the sender.

Note that delivery status notification is not available on all servers. It is also important to note that a
message indicating that delivery was successful does not mean that the message was actually read by the
recipient, only that it was delivered to their mailbox.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ReturnReceipt Property

Gets and sets a value which specifies if a secure connection is established.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connection is established; otherwise returns false. The default value is false.

Remarks
The Secure property determines if a secure connection is established with the remote host. The default
value for this property is false, which specifies that a standard connection to the server is used. To
establish a secure connection, the application should set this property value to true prior to calling the
Connect method. Once the connection has been established, the client may exchange data with the
server as with standard connections.

It is strongly recommended that any application that sets this property true use error handling to trap an
errors that may occur. If the control is unable to initialize the security libraries, or otherwise cannot create
a secure session for the client, an exception may be generated when this property value is set.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Secure Property

Gets a value that specifies the encryption algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureCipher As SecureCipherAlgorithm

[C#]
public SmtpClient.SecureCipherAlgorithm SecureCipher {get;}

Property Value
A SecureCipherAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureCipher property returns a value which identifies the algorithm used to encrypt the data
stream. If a secure connection has not been established, this property will return a value of cipherNone.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.SecureCipher Property

Gets a value that specifies the message digest algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureHash As SecureHashAlgorithm

[C#]
public SmtpClient.SecureHashAlgorithm SecureHash {get;}

Property Value
A SecureHashAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureHash property returns a value which identifies the message digest (hash) algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of hashNone.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.SecureHash Property

Gets a value that specifies the key exchange algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureKeyExchange As SecureKeyAlgorithm

[C#]
public SmtpClient.SecureKeyAlgorithm SecureKeyExchange {get;}

Property Value
A SecureKeyAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureKeyExchange property returns a value which identifies the key exchange algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of keyExchangeNone.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.SecureKeyExchange Property

Gets and sets a value which specifies the protocol used for a secure connection.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public SmtpClient.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when establishing a secure
connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when establishing a
secure connection with a server or accepting a secure connection from a client. By default, the class will
attempt to use either SSL v3 or TLS v1 to establish the connection, with the appropriate protocol
automatically selected based on the capabilities of the remote host. It is recommended that you only
change this property value if you fully understand the implications of doing so. Assigning a value to this
property will override the default protocol and force the class to attempt to use only the protocol
specified.

Multiple security protocols may be specified by combining them using a bitwise or operator. After a
connection has been established, this property will identify the protocol that was selected. Attempting to
set this property after a connection has been established will result in an exception being thrown. This
property should only be set after setting the Secure property to true and before calling the Accept or
Connect methods.

In some cases, a server may only accept a secure connection if the TLS v1 protocol is specified. If the
security protocol is not compatible with the server, then the connection will fail with an error indicating
that the control is unable to establish a security context for the session. In this case, try assigning the
property to protocolTLS1 and attempt the connection again.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.SecureProtocol Property

Gets and sets the sender email address.

[Visual Basic]
Public Property Sender As String

[C#]
public string Sender {get; set;}

Property Value
A string which specifies the sender email address.

Remarks
The Sender property is used to specify the default address for the user who is sending the email message.
This property should specify a valid email address in the standard Internet format. Typically this is the
same address as specified in the From header field for the message, but it is not required that they be the
same value.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Sender Property

Gets a value which specifies the current status of the client.

[Visual Basic]
Public ReadOnly Property Status As SmtpStatus

[C#]
public SmtpClient.SmtpStatus Status {get;}

Property Value
A SmtpStatus enumeration value which specifies the current client status.

Remarks
The Status property returns the current status of the client. This property can be used to check on
blocking connections to determine if the client is interacting with the remote host before taking some
action.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Status Property

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public SmtpClient.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
SmtpClient Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Timeout Property

Gets and sets the current timezone offset in seconds.

[Visual Basic]
Public Property TimeZone As Integer

[C#]
public int TimeZone {get; set;}

Property Value
An integer value which specifies the current timezone offset in seconds.

Remarks
The TimeZone property returns the current offset from UTC in seconds. Setting the property changes the
current timezone offset to the specified value. The value of this property is initially determined by the date
and time settings on the local system.

This property value is used in conjunction with the Localize property to control how date and time
localization is handled.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.TimeZone Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public SmtpClient.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.TraceFlags Property

Gets and sets the username used to authenticate the client session.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username.

Remarks
If a username is not specified when the Connect method is called, the value of this property will be used
as the default username when establishing a connection with the server.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.UserName Property

Gets a value which returns the current version of the SmtpClient class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the SmtpClient class
library. This value can be used by an application for validation and debugging purposes.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Version Property

The methods of the SmtpClient class are listed below. For a complete list of SmtpClient class members,
see the SmtpClient Members topic.

Public Instance Methods

AddRecipient Add an address to the recipient list for the current
message.

AppendMessage Overloaded. Append text to the current message
being composed.

AttachThread Attach an instance of the class to the current
thread

Authenticate Overloaded. Authenticate the client session with a
username and password.

Cancel Cancel the current blocking client operation.

CloseMessage Closes the current message.

Command Overloaded. Send a custom command to the
server.

Connect Overloaded. Establish a connection with a remote
host.

CreateMessage Overloaded. Begin the composition of a new
message to be delivered.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
SmtpClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

ExpandAddress Expand the specified email address.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
SmtpClient class.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SendMessage Overloaded. Submit the specified message to the
mail server for delivery.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

SmtpClient Methods

VerifyAddress Verify the specified email address.

Write Overloaded. Write one or more bytes of data to
the server.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the SmtpClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Authenticate the client session.

Overload List
Authenticate the client session.

public bool Authenticate();

Authenticate the client session with a username and password.

public bool Authenticate(string,string);

See Also
SmtpClient Class | SocketTools Namespace | Authentication Property | BearerToken Property | Extended
Property | Password Property | UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Authenticate Method

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.Extended.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.Extended.html

Authenticate the client session.

[Visual Basic]
Overloads Public Function Authenticate() As Boolean

[C#]
public bool Authenticate();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Authenticate method is used to authenticate the current client session to the mail server, ensuring
that only valid users may deliver messages through the server. This method uses the LOGIN authentication
mechanism by default and you can specify an alternate authentication method by setting the the
Authentication property.

Authentication requires the server to support the AUTH extended SMTP command and the Extended
property must be set to True prior to establishing the connection. If the server does not support the
specified type of authentication, an error will be returned.

The value of the UserName property is used to specify the username and the value of the Password
property is used to specify the password. If OAuth 2.0 is being used for authentication, the value of the
BearerToken property will be provided to the server.

If you with to use OAuth 2.0 for authentication, set the Authentication property to the desired
authentication type and the BearerToken property to the value of the bearer token prior to calling this
method. The connection must be secure, and the server must advertise its support for OAuth 2.0 or the
authentication attempt will fail. This method will not attempt to automatically refresh an expired token.

If you provide a user name and password to the Connect method, or you set the UserName property
and either the Password or BearerToken property prior to calling the Connect method, authentication
will be automatically attempted at the time the connection is made. This method is only required if you do
not provde user credentials when the connection is established and wish to authenticate the client session
at a later time.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Authenticate Overload List | Authentication
Property | BearerToken Property | Extended Property | Password Property | UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Authenticate Method ()

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.Extended.html

Authenticate the client session with a username and password.

[Visual Basic]
Overloads Public Function Authenticate(_
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Authenticate(
 string userName,
 string userPassword
);

Parameters
userName

A string which specifies the username used to authenticate the client session.

userPassword
A string which specifies the password which will be used to authenticate the client session with the
remote host. Not all mail servers require the client to authenticate the session. If you are using OAuth
2.0 authentication, this parameter specifies the bearer token provided by the mail service.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Authenticate method is used to authenticate the current client session to the mail server, ensuring
that only valid users may deliver messages through the server. This method uses the LOGIN authentication
mechanism by default and you can specify an alternate authentication method by setting the the
Authentication property.

Authentication requires the server to support the AUTH extended SMTP command and the Extended
property must be set to True prior to establishing the connection. If the server does not support the
specified type of authentication, an error will be returned.

If you with to use OAuth 2.0 for authentication, set the Authentication property to the desired
authentication type prior to calling this method. The connection must be secure, and the server must
advertise its support for OAuth 2.0 or the authentication attempt will fail. This method will not attempt to
automatically refresh an expired token.

If you provide a user name and password to the Connect method, or you set the UserName property
and either the Password or BearerToken property prior to calling the Connect method, authentication
will be automatically attempted at the time the connection is made. This method is only required if you do
not provde user credentials when the connection is established and wish to authenticate the client session
at a later time.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Authenticate Overload List | Authentication
Property | BearerToken Property | Extended Property | Password Property | UserName Property

SmtpClient.Authenticate Method (String, String)

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SmtpClient.Extended.html

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Add an address to the recipient list for the current message.

[Visual Basic]
Public Function AddRecipient(_
 ByVal address As String _
) As Boolean

[C#]
public bool AddRecipient(
 string address
);

Parameters
address

A string which specifies the recipient address.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AddRecipient method adds the specified address to the recipient list for the current message. This
method should be called after the message transaction has begun with a call to the CreateMessage
method. Most servers impose a limit of approximately 100 recipient addresses that will be accepted for a
single message.

Note that this method does not update the Recipient property, which maintains an internal list of
recipient addresses used by the SendMessage method. This method should only be used in conjunction
with the CreateMessage method.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.AddRecipient Method

Append text to the current message being composed.

Overload List
Append text to the current message being composed.

public bool AppendMessage(byte[],int);

Append text to the current message being composed.

public bool AppendMessage(string);

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.AppendMessage Method

Append text to the current message being composed.

[Visual Basic]
Overloads Public Function AppendMessage(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool AppendMessage(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array which specifies the data to be appended to the message.

length
An integer value which specifies the maximum number of bytes of data to append to the message.
This value cannot be larger than the size of the buffer specified by the caller

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AppendMessage method appends the specified text to the current message. This method will cause
the current thread to block until the article transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

This method is useful for composing a message where the application needs to dynamically create the
header, followed by a large amount of text. The message contents should be text, with each line
terminated with a carriage return and linefeed character. Not all mail servers support sending 8-bit
characters, so the message contents may need to be encoded if it uses anything other than standard US
ASCII. To append binary data, it should be encoded using either the uucode or base64 (MIME) algorithms.
It is recommended that you use the SocketTools.MailMessage class to manage file attachments and
other complex message types.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.AppendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.AppendMessage Method (Byte[], Int32)

Append text to the current message being composed.

[Visual Basic]
Overloads Public Function AppendMessage(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool AppendMessage(
 string buffer
);

Parameters
buffer

A byte array which specifies the data to be appended to the message.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The AppendMessage method appends the specified text to the current message. This method will cause
the current thread to block until the article transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

This method is useful for composing a message where the application needs to dynamically create the
header, followed by a large amount of text. The message contents should be text, with each line
terminated with a carriage return and linefeed character. Not all mail servers support sending 8-bit
characters, so the message contents may need to be encoded if it uses anything other than standard US
ASCII. To append binary data, it should be encoded using either the uucode or base64 (MIME) algorithms.
It is recommended that you use the SocketTools.MailMessage class to manage file attachments and
other complex message types.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.AppendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.AppendMessage Method (String)

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the client could be attached to the current thread. If this method returns
false, the client could not be attached to the thread and the application should check the value of the
LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.AttachThread Method

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Cancel Method

Closes the current message.

[Visual Basic]
Public Function CloseMessage() As Boolean

[C#]
public bool CloseMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CloseArticle method closes the current message that has been created and submits it to the mail
server for delivery.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CloseMessage Method

Send a custom command to the server.

Overload List
Send a custom command to the server.

public bool Command(string);

Send a custom command to the server.

public bool Command(string,string);

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Command Method

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String _
) As Boolean

[C#]
public bool Command(
 string command
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Command Method (String)

Send a custom command to the server.

[Visual Basic]
Overloads Public Function Command(_
 ByVal command As String, _
 ByVal parameters As String _
) As Boolean

[C#]
public bool Command(
 string command,
 string parameters
);

Parameters
command

A string which specifies the command to send. Valid commands vary based on the Internet protocol
and the type of server that the client is connected to. Consult the protocol standard and/or the
technical reference documentation for the server to determine what commands may be issued by a
client application.

parameters
An string which specifies one or more parameters to be sent along with the command. If more than
one parameter is required, they must be separated by a single space character. Consult the protocol
standard and/or technical reference documentation for the server to determine what parameters
should be provided when issuing a specific command.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Command method sends a command to the remote host and processes the result code sent back in
response to that command. This method can be used to send custom commands to a server to take
advantage of features or capabilities that may not be supported internally by the class library.

To determine the specific status code returned by the server, check the value of the ResultCode property
after the method returns.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Command Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Command Method (String, String)

Establish a connection with a remote host.

Overload List
Establish a connection with a remote host.

public bool Connect();

Establish a connection with a remote host.

public bool Connect(string);

Establish a connection with a remote host.

public bool Connect(string,int);

Establish a connection with a remote host.

public bool Connect(string,int,int);

Establish a connection with a remote host.

public bool Connect(string,int,int,SmtpOptions);

Establish a connection with a remote host.

public bool Connect(string,int,string,string);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int,SmtpOptions);

Establish a connection with a remote host.

public bool Connect(string,string,string);

See Also
SmtpClient Class | SocketTools Namespace | Authentication Property | BearerToken Property | HostName
Property | Options Property | Password Property | UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Connect Method

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect() As Boolean

[C#]
public bool Connect();

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the HostName or HostAddress property will be used to determine the host name or
address to connect to.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the UserName property specifies the username that will be used to authenticate the session.

The value of the Password property specifies the password that will be used to authenticate the session.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Connect Overload List | Authentication Property |
BearerToken Property | HostName Property | Options Property | Password Property | UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Connect Method ()

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String _
) As Boolean

[C#]
public bool Connect(
 string hostName
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the UserName property specifies the username that will be used to authenticate the session.

The value of the Password property specifies the password that will be used to authenticate the session.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Connect Overload List | Authentication Property |
BearerToken Property | HostName Property | Options Property | Password Property | UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Connect Method (String)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the UserName property specifies the username that will be used to authenticate the session.

The value of the Password property specifies the password that will be used to authenticate the session.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Connect Overload List | Authentication Property |
BearerToken Property | HostName Property | Options Property | Password Property | UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Connect Method (String, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the UserName property specifies the username that will be used to authenticate the session.

The value of the Password property specifies the password that will be used to authenticate the session.

The value of the Options property will be used to specify the default options for the connection.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Connect Overload List | Authentication Property |
BearerToken Property | HostName Property | Options Property | Password Property | UserName Property

SmtpClient.Connect Method (String, Int32, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer, _
 ByVal options As SmtpOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout,
 SmtpOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the SmtpOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Connect Overload List | Authentication Property |
BearerToken Property | HostName Property | Options Property | Password Property | UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Connect Method (String, Int32, Int32, SmtpOptions)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the username which will be used to authenticate the client session with the
remote host. Not all mail servers require the client to authenticate the session.

userPassword
A string which specifies the password which will be used to authenticate the client session with the
remote host. Not all mail servers require the client to authenticate the session. If you are using OAuth
2.0 authentication, this parameter specifies the bearer token provided by the mail service.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also

SmtpClient.Connect Method (String, Int32, String, String)

SmtpClient Class | SocketTools Namespace | SmtpClient.Connect Overload List | Authentication Property |
BearerToken Property | HostName Property | Options Property | Password Property | UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the username which will be used to authenticate the client session with the
remote host. Not all mail servers require the client to authenticate the session.

userPassword
A string which specifies the password which will be used to authenticate the client session with the
remote host. Not all mail servers require the client to authenticate the session. If you are using OAuth
2.0 authentication, this parameter specifies the bearer token provided by the mail service.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also

SmtpClient.Connect Method (String, Int32, String, String, Int32)

SmtpClient Class | SocketTools Namespace | SmtpClient.Connect Overload List | Authentication Property |
BearerToken Property | HostName Property | Options Property | Password Property | UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal timeout As Integer, _
 ByVal options As SmtpOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string userPassword,
 int timeout,
 SmtpOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the username which will be used to authenticate the client session with the
remote host. Not all mail servers require the client to authenticate the session.

userPassword
A string which specifies the password which will be used to authenticate the client session with the
remote host. Not all mail servers require the client to authenticate the session. If you are using OAuth
2.0 authentication, this parameter specifies the bearer token provided by the mail service.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the SmtpOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

SmtpClient.Connect Method (String, Int32, String, String, Int32,
SmtpOptions)

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Connect Overload List | Authentication Property |
BearerToken Property | HostName Property | Options Property | Password Property | UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 string userName,
 string userPassword
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

userName
A string which specifies the username which will be used to authenticate the client session with the
remote host. Not all mail servers require the client to authenticate the session.

userPassword
A string which specifies the password which will be used to authenticate the client session with the
remote host. Not all mail servers require the client to authenticate the session. If you are using OAuth
2.0 authentication, this parameter specifies the bearer token provided by the mail service.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Connect Overload List | Authentication Property |
BearerToken Property | HostName Property | Options Property | Password Property | UserName Property

SmtpClient.Connect Method (String, String, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Begin the composition of a new message to be delivered.

Overload List
Begin the composition of a new message to be delivered.

public bool CreateMessage(string);

Begin the composition of a new message to be delivered.

public bool CreateMessage(string,int);

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CreateMessage Method

Begin the composition of a new message to be delivered.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal messageSender As String _
) As Boolean

[C#]
public bool CreateMessage(
 string messageSender
);

Parameters
messageSender

A string which specifies the email address of the user sending the message. This typically corresponds
to the address in the From header of the message, but it is not required that they be the same.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method begins the composition of a new message to be submitted to the mail
server for delivery. There are several steps that must be followed when dynamically composing a message
using the CreateMessage method:

1. Call the CreateMessage method to begin the message composition. The
sender email address should generally be the same address as the one used
in the "From" header field in the message.

2. Call the AddRecipient method for each recipient of the message. These
addresses are typically specified in the "To" and "Cc" header fields in the
message. Additional addresses may also be be provided which are not
specified in the email message itself. This is how one or more blind carbon
copies of a message is delivered. Most servers have a limit on the total
number of recipients that may be specified for a single message. This limit is
usually around 100 addresses.

3. Call the Write method to write the contents of the message to the data
stream. The application may also choose to use the AppendMessage
method to write out a large amount of message data.

4. Call the CloseMessage method to close the message and submit it to the
mail server for delivery.

For applications that do not need to dynamically compose the message and already have the message
contents stored in a file or memory buffer, the SendMessage method is the preferred method of
submitting a message for delivery

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.CreateMessage Overload List

SmtpClient.CreateMessage Method (String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Begin the composition of a new message to be delivered.

[Visual Basic]
Overloads Public Function CreateMessage(_
 ByVal messageSender As String, _
 ByVal messageSize As Integer _
) As Boolean

[C#]
public bool CreateMessage(
 string messageSender,
 int messageSize
);

Parameters
messageSender

A string which specifies the email address of the user sending the message. This typically corresponds
to the address in the From header of the message, but it is not required that they be the same.

messageSize
An integer which specifies the size of the message in bytes. If the size of the message is unknown, this
argument should be omitted or passed as value of zero. This argument is ignored if the server does
not support extended features. If the message size is larger than what the server will accept, this
method will fail. Most Internet Service Providers impose a limit on the size of an email message,
typically between 5 and 10 megabytes.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateMessage method begins the composition of a new message to be submitted to the mail
server for delivery. There are several steps that must be followed when dynamically composing a message
using the CreateMessage method:

1. Call the CreateMessage method to begin the message composition. The
sender email address should generally be the same address as the one used
in the "From" header field in the message.

2. Call the AddRecipient method for each recipient of the message. These
addresses are typically specified in the "To" and "Cc" header fields in the
message. Additional addresses may also be be provided which are not
specified in the email message itself. This is how one or more blind carbon
copies of a message is delivered. Most servers have a limit on the total
number of recipients that may be specified for a single message. This limit is
usually around 100 addresses.

3. Call the Write method to write the contents of the message to the data
stream. The application may also choose to use the AppendMessage
method to write out a large amount of message data.

4. Call the CloseMessage method to close the message and submit it to the

SmtpClient.CreateMessage Method (String, Int32)

mail server for delivery.

For applications that do not need to dynamically compose the message and already have the message
contents stored in a file or memory buffer, the SendMessage method is the preferred method of
submitting a message for delivery

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.CreateMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminate the connection with a remote host.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and releases the client handle
allocated by the class. Note that the socket is not immediately released when the connection is terminated
and will enter a wait state for two minutes. After the time wait period has elapsed, the client will be
released by the operating system. This is a normal safety mechanism to handle any packets that may
arrive after the connection has been closed.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Disconnect Method

Releases all resources used by SmtpClient.

Overload List
Releases all resources used by SmtpClient.

public void Dispose();

Releases the unmanaged resources allocated by the SmtpClient class and optionally releases the managed
resources.

protected virtual void Dispose(bool);

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Dispose Method

Releases all resources used by SmtpClient.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Dispose Method ()

Releases the unmanaged resources allocated by the SmtpClient class and optionally releases the managed
resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the SmtpClient class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Dispose Method (Boolean)

Expand the specified email address.

[Visual Basic]
Public Function ExpandAddress(_
 ByVal address As String, _
 ByRef expandedAddress As String _
) As Boolean

[C#]
public bool ExpandAddress(
 string address,
 ref string expandedAddress
);

Parameters
address

A string which specifies the address to expand.

expandedAddress
A string passed by reference which will contain the list of expanded addresses when the method
returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The ExpandAddress method requests that the server expand the specified email address. Typically this is
used to expand aliases which refer to a mailing list, returning all of the members of that list. A server may
not support this command, or may restrict its usage. An application should not depend on the ability to
expand addresses.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ExpandAddress Method

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Finalize Method

Initialize an instance of the SmtpClient class.

Overload List
Initialize an instance of the SmtpClient class.

public bool Initialize();

Initialize an instance of the SmtpClient class.

public bool Initialize(string);

See Also
SmtpClient Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Initialize Method

Initialize an instance of the SmtpClient class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the SmtpClient class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Initialize Method ()

Initialize an instance of the SmtpClient class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the SmtpClient class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the SmtpClient class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.SmtpClient smtpClient = new SocketTools.SmtpClient();

if (smtpClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(smtpClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim smtpClient As New SocketTools.SmtpClient

If smtpClient.Initialize(strLicenseKey) = False Then
 MsgBox(smtpClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Initialize Method (String)

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Reset Method

Submit the specified message to the mail server for delivery.

Overload List
Submit the specified message to the mail server for delivery.

public bool SendMessage(byte[],int);

Submit the specified message to the mail server for delivery.

public bool SendMessage(string);

Submit the specified message to the mail server for delivery.

public bool SendMessage(string,string,byte[],int);

Submit the specified message to the mail server for delivery.

public bool SendMessage(string,string,string);

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.SendMessage Method

Submit the specified message to the mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool SendMessage(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the message to be delivered to the specified recipients. The message must
be text and conform to the basic structure defined in RFC 822. There must be one or more headers
separated by a blank line, followed by the body of the message. Each line of text must be terminated
by a carriage return and linefeed character sequence. Note that more complex multipart MIME
messages may also be used, but it is recommended that you use the SocketTools.MailMessage class
to compose them.

length
An integer value which specifies the number of bytes of data in the specified buffer. This value cannot
be larger than the size of the buffer provided by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send a formatted email message using the current
mail server. This provides a convenient one-step method of addressing and sending a message, and is
designed to easily integrate with the SocketTools.MailMessage class.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The value of the Sender property will be used to specify the address of the user sending the message.
The addresses assigned to the Recipient array will be used to specify the message recipients.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.SendMessage Method (Byte[], Int32)

Submit the specified message to the mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool SendMessage(
 string buffer
);

Parameters
buffer

A byte array that contains the message to be delivered to the specified recipients. The message must
be text and conform to the basic structure defined in RFC 822. There must be one or more headers
separated by a blank line, followed by the body of the message. Each line of text must be terminated
by a carriage return and linefeed character sequence. Note that more complex multipart MIME
messages may also be used, but it is recommended that you use the SocketTools.MailMessage class
to compose them.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send a formatted email message using the current
mail server. This provides a convenient one-step method of addressing and sending a message, and is
designed to easily integrate with the SocketTools.MailMessage class.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

The value of the Sender property will be used to specify the address of the user sending the message.
The addresses assigned to the Recipient array will be used to specify the message recipients.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.SendMessage Method (String)

Submit the specified message to the mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal senderAddress As String, _
 ByVal recipientAddress As String, _
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool SendMessage(
 string senderAddress,
 string recipientAddress,
 byte[] buffer,
 int length
);

Parameters
senderAddress

A string argument which specifies the email address of the person sending the message. This typically
corresponds to the address in the From header of the message, but it is not required that they be the
same.

recipientAddress
A string argument which specifies the email address of the person or persons to receive the message.
Multiple addresses may be specified by separating each address with a comma. It should be noted
that this protocol is only concerned with the delivery of a message and not its contents. Header fields
in the message are not parsed to automatically determine the recipients. This argument should be a
concatenation of all recipients, including carbon copies and blind carbon copies, with each address
separated with a comma.

buffer
A byte array that contains the message to be delivered to the specified recipients. The message must
be text and conform to the basic structure defined in RFC 822. There must be one or more headers
separated by a blank line, followed by the body of the message. Each line of text must be terminated
by a carriage return and linefeed character sequence. Note that more complex multipart MIME
messages may also be used, but it is recommended that you use the SocketTools.MailMessage class
to compose them.

length
An integer value which specifies the number of bytes of data in the specified buffer. This value cannot
be larger than the size of the buffer provided by the caller.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send a formatted email message using the current
mail server. This provides a convenient one-step method of addressing and sending a message, and is
designed to easily integrate with the SocketTools.MailMessage class.

SmtpClient.SendMessage Method (String, String, Byte[], Int32)

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Submit the specified message to the mail server for delivery.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal senderAddress As String, _
 ByVal recipientAddress As String, _
 ByVal buffer As String _
) As Boolean

[C#]
public bool SendMessage(
 string senderAddress,
 string recipientAddress,
 string buffer
);

Parameters
senderAddress

A string argument which specifies the email address of the person sending the message. This typically
corresponds to the address in the From header of the message, but it is not required that they be the
same.

recipientAddress
A string argument which specifies the email address of the person or persons to receive the message.
Multiple addresses may be specified by separating each address with a comma. It should be noted
that this protocol is only concerned with the delivery of a message and not its contents. Header fields
in the message are not parsed to automatically determine the recipients. This argument should be a
concatenation of all recipients, including carbon copies and blind carbon copies, with each address
separated with a comma.

buffer
A string that contains the message to be delivered to the specified recipients. The message must be
text and conform to the basic structure defined in RFC 822. There must be one or more headers
separated by a blank line, followed by the body of the message. Each line of text must be terminated
by a carriage return and linefeed character sequence. Note that more complex multipart MIME
messages may also be used, but it is recommended that you use the SocketTools.MailMessage class
to compose them.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method enables an application to send a formatted email message using the current
mail server. This provides a convenient one-step method of addressing and sending a message, and is
designed to easily integrate with the SocketTools.MailMessage class.

This method will cause the current thread to block until the message transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also

SmtpClient.SendMessage Method (String, String, String)

SmtpClient Class | SocketTools Namespace | SmtpClient.SendMessage Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
SmtpClient Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Uninitialize Method

Verify the specified email address.

[Visual Basic]
Public Function VerifyAddress(_
 ByVal address As String, _
 ByRef verifiedAddress As String _
) As Boolean

[C#]
public bool VerifyAddress(
 string address,
 ref string verifiedAddress
);

Parameters
address

A string which specifies the address to verify.

verifiedAddress
A string passed by reference which will contain the verified address when the method returns.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The VerifyAddress method requests that the server verify the specified email address. Typically this is
used to verify that a recipient address is valid, and return a fully qualified email address for that recipient.
A server may not support this command, or may restrict its usage. An application should not depend on
the ability to verify addresses.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.VerifyAddress Method

Write one or more bytes of data to the server.

Overload List
Write one or more bytes of data to the server.

public int Write(byte[]);

Write one or more bytes of data to the server.

public int Write(byte[],int);

Write a string of characters to the server.

public int Write(string);

Write a string of characters to the server.

public int Write(string,int);

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Write Method

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the server.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

If the Write method is used to send the message contents to the server, the application must first call the
CreateMessage method to specify the sender and the length of the message, followed by one or more
calls to the AddRecipient method to specify each recipient of the message. When all of the message text
has been submitted to the server, the application must call the CloseMessage method.

The message text is filtered by the Write method, and it will automatically normalize end-of-line character
sequences to ensure the message meets the protocol requirements. The message itself must be in a
standard RFC 822 or multi-part MIME message format, or the server may reject the message. Binary data,
such as file attachments, should always be encoded. The SocketTools.MailMessage class can be used to
compose and export a message in the correct format, which can then be submitted to the server.

It is recommended that most applications use the SendMessage method, which submits the message in a
single method call.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Write Method (Byte[])

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the server.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

If the Write method is used to send the message contents to the server, the application must first call the
CreateMessage method to specify the sender and the length of the message, followed by one or more
calls to the AddRecipient method to specify each recipient of the message. When all of the message text
has been submitted to the server, the application must call the CloseMessage method.

The message text is filtered by the Write method, and it will automatically normalize end-of-line character
sequences to ensure the message meets the protocol requirements. The message itself must be in a
standard RFC 822 or multi-part MIME message format, or the server may reject the message. Binary data,
such as file attachments, should always be encoded. The SocketTools.MailMessage class can be used to
compose and export a message in the correct format, which can then be submitted to the server.

It is recommended that most applications use the SendMessage method, which submits the message in a
single method call.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Write Method (Byte[], Int32)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

If the Write method is used to send the message contents to the server, the application must first call the
CreateMessage method to specify the sender and the length of the message, followed by one or more
calls to the AddRecipient method to specify each recipient of the message. When all of the message text
has been submitted to the server, the application must call the CloseMessage method.

The message text is filtered by the Write method, and it will automatically normalize end-of-line character
sequences to ensure the message meets the protocol requirements. The message itself must be in a
standard RFC 822 or multi-part MIME message format, or the server may reject the message. Binary data,
such as file attachments, should always be encoded. The SocketTools.MailMessage class can be used to
compose and export a message in the correct format, which can then be submitted to the server.

It is recommended that most applications use the SendMessage method, which submits the message in a
single method call.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Write Method (String)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the server.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

If the Write method is used to send the message contents to the server, the application must first call the
CreateMessage method to specify the sender and the length of the message, followed by one or more
calls to the AddRecipient method to specify each recipient of the message. When all of the message text
has been submitted to the server, the application must call the CloseMessage method.

The message text is filtered by the Write method, and it will automatically normalize end-of-line character
sequences to ensure the message meets the protocol requirements. The message itself must be in a
standard RFC 822 or multi-part MIME message format, or the server may reject the message. Binary data,
such as file attachments, should always be encoded. The SocketTools.MailMessage class can be used to
compose and export a message in the correct format, which can then be submitted to the server.

It is recommended that most applications use the SendMessage method, which submits the message in a
single method call.

See Also
SmtpClient Class | SocketTools Namespace | SmtpClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.Write Method (String, Int32)

The events of the SmtpClient class are listed below. For a complete list of SmtpClient class members, see
the SmtpClient Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnCommand Occurs when the client sends a command to the
remote host and receives a reply indicating the
result of that command.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.OnCancel Event

Occurs when the client sends a command to the remote host and receives a reply indicating the result of
that command.

[Visual Basic]
Public Event OnCommand As OnCommandEventHandler

[C#]
public event OnCommandEventHandler OnCommand;

Event Data
The event handler receives an argument of type SmtpClient.CommandEventArgs containing data related
to this event. The following SmtpClient.CommandEventArgs properties provide information specific to
this event.

Property Description

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Remarks
The OnCommand event is generated when the client receives a reply from the server after some action
has been taken.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.OnCommand Event

Provides data for the OnCommand event.

For a list of all members of this type, see SmtpClient.CommandEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.SmtpClient.CommandEventArgs

[Visual Basic]
Public Class SmtpClient.CommandEventArgs
 Inherits EventArgs

[C#]
public class SmtpClient.CommandEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
CommandEventArgs specifies the result code and result string for the last command executed by the
server.

The OnCommand event occurs whenever a command is executed on the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SmtpClient.CommandEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CommandEventArgs Class

SmtpClient.CommandEventArgs overview

Public Instance Constructors

 SmtpClient.CommandEventArgs Constructor Initializes a new instance of the
SmtpClient.CommandEventArgs class.

Public Instance Properties

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SmtpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CommandEventArgs Members

Initializes a new instance of the SmtpClient.CommandEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public SmtpClient.CommandEventArgs();

See Also
SmtpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CommandEventArgs Constructor

The properties of the SmtpClient.CommandEventArgs class are listed below. For a complete list of
SmtpClient.CommandEventArgs class members, see the SmtpClient.CommandEventArgs Members
topic.

Public Instance Properties

ResultCode Gets a value which specifies the last result code
returned by the server.

ResultString Gets a string value which describes the result of
the previous command.

See Also
SmtpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CommandEventArgs Properties

Gets a value which specifies the last result code returned by the server.

[Visual Basic]
Public ReadOnly Property ResultCode As Integer

[C#]
public int ResultCode {get;}

Property Value
An integer value which specifies the last result code returned by the server.

Remarks
This property should be checked after the Command method is used to execute a command on the
server to determine if the operation was successful. Result codes are three-digit numeric values returned
by the remote server and may be broken down into the following ranges:

ResultCode Description

100-199 Positive preliminary result. This indicates that the
requested action is being initiated, and the client
should expect another reply from the server
before proceeding.

200-299 Positive completion result. This indicates that the
server has successfully completed the requested
action.

300-399 Positive intermediate result. This indicates that the
requested action cannot complete until additional
information is provided to the server.

400-499 Transient negative completion result. This indicates
that the requested action did not take place, but
the error condition is temporary and may be
attempted again.

500-599 Permanent negative completion result. This
indicates that the requested action did not take
place.

It is important to note that while some result codes have become standardized, not all servers respond to
commands using the same result codes. For example, one server may respond with a result code of 221
to indicate success, while another may respond with a value of 235. It is recommended that applications
check for ranges of values to determine if a command was successful, not a specific value.

See Also
SmtpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CommandEventArgs.ResultCode Property

Gets a string value which describes the result of the previous command.

[Visual Basic]
Public ReadOnly Property ResultString As String

[C#]
public string ResultString {get;}

Property Value
A string which describes the result of the previous command executed on the server.

Remarks
This string is generated by the remote server, and typically is used to describe the result code. For
example, if an error is indicated by the result code, the result string may describe the condition that
caused the error.

See Also
SmtpClient.CommandEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.CommandEventArgs.ResultString Property

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a remote host as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a socket is
created but the connection is not actually established until after this event occurs. Between the time
connection process is started and this event fires, no operation may be performed on the client other than
calling the Disconnect method.

This event is only generated if the client is in non-blocking mode.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.OnConnect Event

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the remote host closes its connection, terminating the client
session with the application. Because there may still be data in the client receive buffers, you should
continue to read data from the client until the Read method returns a value of 0. Once all of the data has
been read, you should call the Disconnect method to close the local socket and release the resources
allocated for the client.

This event is only generated if the client is in non-blocking mode.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.OnDisconnect Event

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type SmtpClient.ErrorEventArgs containing data related to this
event. The following SmtpClient.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see SmtpClient.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.SmtpClient.ErrorEventArgs

[Visual Basic]
Public Class SmtpClient.ErrorEventArgs
 Inherits EventArgs

[C#]
public class SmtpClient.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SmtpClient.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ErrorEventArgs Class

SmtpClient.ErrorEventArgs overview

Public Instance Constructors

 SmtpClient.ErrorEventArgs Constructor Initializes a new instance of the
SmtpClient.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SmtpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ErrorEventArgs Members

Initializes a new instance of the SmtpClient.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public SmtpClient.ErrorEventArgs();

See Also
SmtpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ErrorEventArgs Constructor

The properties of the SmtpClient.ErrorEventArgs class are listed below. For a complete list of
SmtpClient.ErrorEventArgs class members, see the SmtpClient.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
SmtpClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
SmtpClient.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public SmtpClient.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
SmtpClient.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ErrorEventArgs.Error Property

Occurs as a data stream is being read or written to the client.

[Visual Basic]
Public Event OnProgress As OnProgressEventHandler

[C#]
public event OnProgressEventHandler OnProgress;

Event Data
The event handler receives an argument of type SmtpClient.ProgressEventArgs containing data related to
this event. The following SmtpClient.ProgressEventArgs properties provide information specific to this
event.

Property Description

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Remarks
The OnProgress event occurs as a data stream is being read or written to the client. If large amounts of
data are being read or written, this event can be used to update a progress bar or other user-interface
component to provide the user with some visual feedback on the progress of the operation.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.OnProgress Event

Provides data for the OnProgress event.

For a list of all members of this type, see SmtpClient.ProgressEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.SmtpClient.ProgressEventArgs

[Visual Basic]
Public Class SmtpClient.ProgressEventArgs
 Inherits EventArgs

[C#]
public class SmtpClient.ProgressEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ProgressEventArgs specifies the number of bytes copied from the data stream, the total number of bytes
in the data stream and a completion percentage.

The OnProgress event occurs as a data stream is being read or written to the client.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SmtpClient.ProgressEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ProgressEventArgs Class

SmtpClient.ProgressEventArgs overview

Public Instance Constructors

 SmtpClient.ProgressEventArgs Constructor Initializes a new instance of the
SmtpClient.ProgressEventArgs class.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SmtpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ProgressEventArgs Members

Initializes a new instance of the SmtpClient.ProgressEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public SmtpClient.ProgressEventArgs();

See Also
SmtpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ProgressEventArgs Constructor

The properties of the SmtpClient.ProgressEventArgs class are listed below. For a complete list of
SmtpClient.ProgressEventArgs class members, see the SmtpClient.ProgressEventArgs Members topic.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

See Also
SmtpClient.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ProgressEventArgs Properties

Gets a value which specifies the number of bytes of data that has been read or written.

[Visual Basic]
Public ReadOnly Property BytesCopied As Integer

[C#]
public int BytesCopied {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesCopied property specifies the number of bytes that have been read from the client and stored
in the local stream buffer, or written from the stream buffer to the client.

See Also
SmtpClient.ProgressEventArgs Class | SocketTools Namespace | BytesTotal Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ProgressEventArgs.BytesCopied Property

Gets a value which specifies the total number of bytes in the data stream.

[Visual Basic]
Public ReadOnly Property BytesTotal As Integer

[C#]
public int BytesTotal {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesTotal property specifies the total amount of data being read from the client and stored in the
data stream, or written from the data stream to the client. If the amount of data was unknown or
unspecified at the time the method call was made, then this value will always be the same as the
BytesCopied property.

See Also
SmtpClient.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ProgressEventArgs.BytesTotal Property

Gets a value which specifies the percentage of data that has been read or written.

[Visual Basic]
Public ReadOnly Property Percent As Integer

[C#]
public int Percent {get;}

Property Value
An integer value which specifies a percentage.

Remarks
The Percent property specifies the percentage of data that has been transmitted, expressed as an integer
value between 0 and 100, inclusive. If the maximum size of the data stream was not specified by the caller,
this value will always be 100.

See Also
SmtpClient.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | BytesTotal
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.ProgressEventArgs.Percent Property

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
SmtpClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.OnTimeout Event

Specifies the error codes returned by the SmtpClient class.

[Visual Basic]
Public Enum SmtpClient.ErrorCode

[C#]
public enum SmtpClient.ErrorCode

Remarks
The SmtpClient class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

SmtpClient.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the encryption algorithms that the SmtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SmtpClient.SecureCipherAlgorithm

[C#]
[Flags]
public enum SmtpClient.SecureCipherAlgorithm

Remarks
The SmtpClient class uses the SecureCipherAlgorithm enumeration to identify which encryption
algorithm was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

cipherNone No cipher has been selected. A secure
connection has not been established
with the remote host.

0

cipherRC2 The RC2 block cipher was selected. This
is a variable key length cipher which
supports keys between 40- and 128-bits
in length, in 8-bit increments.

1

cipherRC4 The RC4 stream cipher was selected.
This is a variable key length cipher
which supports keys between 40- and
128-bits in length, in 8-bit increments.

2

cipherRC5 The RC5 block cipher was selected. This
is a variable key length cipher which
supports keys up to 2040 bits, in 8-bit
increments.

4

cipherDES The DES (Data Encryption Standard)
block cipher was selected. This is a fixed
key length cipher using 56-bit keys.

8

cipherDES3 The Triple DES block cipher was
selected. This cipher encrypts the data
three times using different keys,
effectively using a 168-bit key length.

16

cipherDESX A variant of the DES block cipher which
XORs an extra 64-bits of the key before
and after the plaintext has been
encrypted, increasing the key size to
184 bits.

32

cipherAES The Advanced Encryption Standard 64

SmtpClient.SecureCipherAlgorithm Enumeration

cipher (also known as the Rijndael
cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits.
This cipher is supported on Windows XP
SP3 SP3 and later versions of the
operating system.

cipherSkipjack The Skipjack block cipher was selected.
This is a fixed key length cipher, using
80-bit keys.

128

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the hash algorithms that the SmtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SmtpClient.SecureHashAlgorithm

[C#]
[Flags]
public enum SmtpClient.SecureHashAlgorithm

Remarks
The SmtpClient class uses the SecureHashAlgorithm enumeration to identify the message digest (hash)
algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

hashNone No hash algorithm has been selected.
This is not a secure connection with the
server.

0

hashMD5 The MD5 algorithm was selected. This
algorithm produces a 128-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

1

hashSHA The SHA-1 algorithm was selected. This
algorithm produces a 160-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

2

hashSHA256 The SHA-256 algorithm was selected.
This algorithm produces a 256-bit
message digest.

4

hashSHA384 The SHA-384 algorithm was selected.
This algorithm produces a 384-bit
message digest.

8

hashSHA512 The SHA-512 algorithm was selected.
This algorithm produces a 512-bit
message digest.

16

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also

SmtpClient.SecureHashAlgorithm Enumeration

SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the key exchange algorithms that the SmtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SmtpClient.SecureKeyAlgorithm

[C#]
[Flags]
public enum SmtpClient.SecureKeyAlgorithm

Remarks
The SmtpClient class uses the SecureKeyAlgorithm enumeration to identify the key exchange algorithm
that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

keyExchangeNone No key exchange algorithm has been
selected. This is not a secure connection
with the server.

0

keyExchangeRSA The RSA public key exchange algorithm
has been selected.

1

keyExchangeKEA The KEA public key exchange algorithm
has been selected. This is an improved
version of the Diffie-Hellman public key
algorithm.

2

keyExchangeDH The Diffie-Hellman public key exchange
algorithm has been selected.

4

keyExchangeECDH The Elliptic Curve Diffie-Hellman key
exchange algorithm was selected. This is
a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography.
This key exchange algorithm is only
supported on Windows XP SP3 SP3 and
later versions of the operating system.

8

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.SecureKeyAlgorithm Enumeration

Specifies the security certificate status values that may be returned by the SmtpClient class.

[Visual Basic]
Public Enum SmtpClient.SecurityCertificate

[C#]
public enum SmtpClient.SecurityCertificate

Remarks
The SmtpClient class uses the SecurityCertificate enumeration to identify the current status of the
certificate that was provided by the remote host when a secure connection was established.

Members

Member Name Description

certificateNone No certificate information is available. A secure
connection was not established with the server.

certificateValid The certificate is valid.

certificateNoMatch The certificate is valid, however the domain name
specified in the certificate does not match the
domain name of the remote host. The application
can examine the CertificateSubject property to
determine the site the certificate was issued to.

certificateExpired The certificate has expired and is no longer valid.
The application can examine the
CertificateExpires property to determine when
the certificate expired.

certificateRevoked The certificate has been revoked and is no longer
valid. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateUntrusted The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the
local host. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateInvalid The certificate is invalid. This typically indicates that
the internal structure of the certificate is damaged.
It is recommended that the application
immediately terminate the connection if this status
is returned.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

SmtpClient.SecurityCertificate Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the security protocols that the SmtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SmtpClient.SecurityProtocols

[C#]
[Flags]
public enum SmtpClient.SecurityProtocols

Remarks
The SmtpClient class uses the SecurityProtocols enumeration to specify one or more security protocols
to be used when establishing a connection with a remote host. Multiple protocols may be specified if
necessary and the actual protocol used will be negotiated with the remote host. It is recommended that
most applications use protocolDefault when creating a secure connection.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

SmtpClient.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolDefault The default selection of security
protocols will be used when establishing
a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

16

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the options that the SmtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SmtpClient.SmtpOptions

[C#]
[Flags]
public enum SmtpClient.SmtpOptions

Remarks
The SmtpClient class uses the SmtpOptions enumeration to specify one or more options to be used
when establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionDefault The default connection option. This is
the same as specifying
optionExtended.

1

optionExtended Extended SMTP commands should be
used if possible. This option enables
features such as authentication and
delivery status notification. If this option
is not specified, the class will not
attempt to use any extended features.

1

optionTunnel This option specifies that a tunneled
TCP connection and/or port-forwarding
is being used to establish the
connection to the server. This changes
the behavior of the client with regards
to internal checks of the destination IP
address and remote port number,
default capability selection and how the
connection is established. This option
also forces all connections to be
outbound and enables the firewall
compatibility features in the client.

1024

optionTrustedSite This option specifies the server is
trusted. The server certificate will not be
validated and the connection will always
be permitted. This option only affects
connections using either the SSL or TLS
protocols.

2048

optionSecure This option specifies the client should 4096

SmtpClient.SmtpOptions Enumeration

attempt to establish a secure
connection with the server. The server
must support secure connections using
either the SSL or TLS protocol.

optionExplicitSSL This option specifies the client should
attempt to establish a secure explicit SSL
session. The initial connection to the
server is not encrypted, and the client
will attempt to negotiate a secure
connection by sending the STARTTLS
command to the server. Some servers
may require this option when
connecting to the server on ports other
than the default secure port of 465.

4096

optionImplicitSSL This option specifies the client should
attempt to establish a secure implicit
SSL session. The SSL handshake is
initiated immediately after the
connection to the server has been
established.

8192

optionSecureFallback This option specifies the client should
permit the use of less secure cipher
suites for compatibility with legacy
servers. If this option is specified, the
client will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

32768

optionPreferIPv6 This option specifies the client should
prefer the use of IPv6 if the server
hostname can be resolved to both an
IPv6 and IPv4 address. This option is
ignored if the local system does not
have IPv6 enabled, or when the
hostname can only be resolved to an
IPv4 address. If the server hostname can
only be resolved to an IPv6 address, the
client will attempt to establish a
connection using IPv6 regardless if this
option has been specified.

262144

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the status values that may be returned by the SmtpClient class.

[Visual Basic]
Public Enum SmtpClient.SmtpStatus

[C#]
public enum SmtpClient.SmtpStatus

Remarks
The SmtpClient class uses the SmtpStatus enumeration to identify the current status of the client.

Members

Member Name Description

statusUnused A client session has not been created. Attempts to
perform any network operations, such as sending
or receiving data, will generate an error.

statusIdle A client session has been created, but is not
currently in use. A blocking socket operation can
be executed at this point.

statusConnect The client is in the process of establishing a
connection with a remote host.

statusRead The client is in the process of receiving data from a
remote host.

statusWrite The client is in the process of sending data to a
remote host.

statusDisconnect The client session is being closed and subsequent
attempts to access the client will result in an error.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.SmtpStatus Enumeration

Specifies the logging options that the SmtpClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SmtpClient.TraceOptions

[C#]
[Flags]
public enum SmtpClient.TraceOptions

Remarks
The SmtpClient class uses the TraceOptions enumeration to specify what kind of debugging information
is written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SocketTools Namespace

SmtpClient.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnCommand event.

[Visual Basic]
Public Delegate Sub SmtpClient.OnCommandEventHandler(_
 ByVal sender As Object, _
 ByVal e As CommandEventArgs _
)

[C#]
public delegate void SmtpClient.OnCommandEventHandler(

 object sender,
 CommandEventArgs e
);

Parameters
sender

The source of the event.

e
A CommandEventArgs object that contains the event data.

Remarks
When you create an OnCommandEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnCommandEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.OnCommandEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub SmtpClient.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void SmtpClient.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.OnErrorEventHandler Delegate

Represents the method that will handle the OnProgress event.

[Visual Basic]
Public Delegate Sub SmtpClient.OnProgressEventHandler(_
 ByVal sender As Object, _
 ByVal e As ProgressEventArgs _
)

[C#]
public delegate void SmtpClient.OnProgressEventHandler(

 object sender,
 ProgressEventArgs e
);

Parameters
sender

The source of the event.

e
A ProgressEventArgs that contains the event data.

Remarks
When you create an OnProgressEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnProgressEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.OnProgressEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see SmtpClient.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.SmtpClient.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class SmtpClient.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class SmtpClient.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the SmtpClient class.

Example

<Assembly: SocketTools.SmtpClient.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.SmtpClient.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SmtpClient.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.RuntimeLicenseAttribute Class

SmtpClient.RuntimeLicenseAttribute overview

Public Instance Constructors

 SmtpClient.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SmtpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public SmtpClient.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the SmtpClient class.

See Also
SmtpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.RuntimeLicenseAttribute Constructor

The properties of the SmtpClient.RuntimeLicenseAttribute class are listed below. For a complete list of
SmtpClient.RuntimeLicenseAttribute class members, see the SmtpClient.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
SmtpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
SmtpClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClient.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see SmtpClientException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.SmtpClientException

[Visual Basic]
Public Class SmtpClientException
 Inherits ApplicationException

[C#]
public class SmtpClientException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A SmtpClientException is thrown by the SmtpClient class when an error occurs.

The default constructor for the SmtpClientException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SmtpClient (in SocketTools.SmtpClient.dll)

See Also
SmtpClientException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClientException Class

SmtpClientException overview

Public Instance Constructors

 SmtpClientException Overloaded. Initializes a new instance of the
SmtpClientException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

SmtpClientException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SmtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the SmtpClientException class with the last network error code.

Overload List
Initializes a new instance of the SmtpClientException class with the last network error code.

public SmtpClientException();

Initializes a new instance of the SmtpClientException class with a specified error number.

public SmtpClientException(int);

Initializes a new instance of the SmtpClientException class with a specified error message.

public SmtpClientException(string);

Initializes a new instance of the SmtpClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

public SmtpClientException(string,Exception);

See Also
SmtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClientException Constructor

Initializes a new instance of the SmtpClientException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public SmtpClientException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the SmtpClient.ErrorCode enumeration.

See Also
SmtpClientException Class | SocketTools Namespace | SmtpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClientException Constructor ()

Initializes a new instance of the SmtpClientException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public SmtpClientException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
SmtpClientException Class | SocketTools Namespace | SmtpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClientException Constructor (String)

Initializes a new instance of the SmtpClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public SmtpClientException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
SmtpClientException Class | SocketTools Namespace | SmtpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClientException Constructor (String, Exception)

Initializes a new instance of the SmtpClientException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public SmtpClientException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the SmtpClient.ErrorCode enumeration.

See Also
SmtpClientException Class | SocketTools Namespace | SmtpClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClientException Constructor (Int32)

The properties of the SmtpClientException class are listed below. For a complete list of
SmtpClientException class members, see the SmtpClientException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
SmtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClientException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public SmtpClient.ErrorCode ErrorCode {get;}

Property Value
Returns a SmtpClient.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the SmtpClientException class sets the error code to the last network error that
occurred. For more information about the errors that may occur, refer to the SmtpClient.ErrorCode
enumeration.

See Also
SmtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClientException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
SmtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClientException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
SmtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClientException.Number Property

The methods of the SmtpClientException class are listed below. For a complete list of
SmtpClientException class members, see the SmtpClientException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SmtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClientException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
SmtpClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SmtpClientException.ToString Method

A general purpose TCP/IP networking class for developing client and server applications.

For a list of all members of this type, see SocketWrench Members.

System.Object
 SocketTools.SocketWrench

[Visual Basic]
Public Class SocketWrench
 Implements IDisposable

[C#]
public class SocketWrench : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
At the core of each of the SocketTools networking classes is the Windows Sockets API. This provides a low
level interface for sending and receiving data over the Internet or a local intranet using the Transmission
Control Protocol (TCP) and/or User Datagram Protocol (UDP). The SocketWrench class provides a simpler
interface to the Windows Sockets API, without sacrificing features or functionality. Using SocketWrench,
you can easily create client and server applications while avoiding many of the mundane tasks and
common problems that programmers face when developing Internet applications.

This class supports secure connections using the standard SSL and TLS protocols and can also be used to
create secure, custom server programs. Both implicit and explicit SSL connections are supported, enabling
the class to work with a wide variety of client and server applications without requiring that you use third-
party classes or understand Microsoft's cryptography classes.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketWrench Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench Class

SocketWrench overview

Public Instance Constructors

 SocketWrench Constructor Initializes a new instance of the SocketWrench
class.

Public Instance Fields

AdapterAddress Returns the IP address associated with the
specified network adapter.

HostAlias Returns the aliases for a given host name.

Public Instance Properties

AdapterCount Get the number of available local and remote
network adapters.

AddressFamily Gets and sets a value that determines which
version of the Internet Protocol will be used.

AtMark Get a value that indicates if the next receive will
return urgent data.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Backlog Gets and sets a value that indicates the number of
connections that may be queued for a listening
socket.

Blocking Gets and sets a value which indicates if the socket
is in blocking mode.

Broadcast Gets and sets a value which indicates if datagrams
will be broadcast over the local network.

ByteOrder Gets and sets a value which indicates how integer
data is read and written to the socket.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the security certificate.

CertificatePassword Gets and sets the password associated with the
security certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

SocketWrench Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.AddressFamily.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.CertificatePassword.html

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the security
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

CodePage Gets and sets the code page used when reading
and writing text.

ExternalAddress Gets a value that specifies the external Internet
address for the local system.

Handle Gets a value that specifies the socket handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostFile Gets and sets a value that specifies the name of a
host file used to resolve host names and
addresses.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

InLine Gets and sets a value that indicates if urgent data
is received in-line with non-urgent data.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking socket operation.

IsClosed Gets a value which indicates if the connection to
the remote host has been closed.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsListening Gets a value which indicates if the socket is
listening for client connections.

IsReadable Gets a value which indicates if there is data
available to be read from the socket.

IsWritable Gets a value which indicates if data can be written
to the socket without blocking.

KeepAlive Gets and sets a value which indicates if keep-alive

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.CertificateUser.html

packets are sent on a connected socket.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

Linger Gets and sets a value which specifies the number
of seconds to wait for the socket to disconnect
from the remote host.

LocalAddress Gets and sets the local Internet address that the
socket will be bound to.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets and sets a value which specifies the local port
number the socket will be bound to.

LocalService Gets and sets a value which specifies the local
service the socket will be bound to.

NoDelay Gets and sets a value which specifies if the Nagle
algorithm should be enabled or disabled.

Options Gets and sets a value which specifies one or more
socket options.

PeerAddress Gets a value that specifies the Internet address of
the remote host.

PeerName Gets a value that specifies the name of the remote
host.

PeerPort Gets a value that specifies the port number used
by the remote host.

PhysicalAddress Gets a value which specifies the MAC address for
the local system's network adapter.

Protocol Gets and sets a value which specifies the socket
protocol.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ReservedPort Gets and sets a value which indicates if a reserved
port number was used.

ReuseAddress Gets and sets a value which indicates if a socket
address can be reused.

Route Gets and sets a value which indicates if packets
should be routed.

Secure Gets and sets a value which specifies if a secure
connection is established.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.LocalService.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.RemoteService.html

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the socket.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the network function tracing logfile.

TraceFlags Gets and sets a value which specifies the network
function tracing flags.

Urgent Gets and sets a value which specifies if urgent data
will be read or written.

Version Gets a value which returns the current version of
the SocketWrench class library.

Public Instance Methods

Abort Abort the connection with a remote host.

Accept Overloaded. Accepts a client connection on a
listening socket, specifying a timeout period and
one or more socket options.

AttachThread Attach an instance of the class to the current
thread

Bind Overloaded. Bind the socket to the specified local
address and port number.

Cancel Cancel the current blocking socket operation.

Connect Overloaded. Establish a connection with a remote
host.

ConnectUrl Overloaded. Establish a connection with a remote
host using a URL.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
SocketWrench.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
SocketWrench class.

Listen Overloaded. Listen for incoming client
connections, specifying the local network address,
port number and connection backlog.

Peek Overloaded. Read data from the socket and store
it in a byte array, but do not remove the data from
the socket buffers.

Read Overloaded. Read data from the socket and store
it in a byte array.

ReadFrom Overloaded. Read data from the socket and store
it in a byte array.

ReadLine Overloaded. Read up to a line of data from the
socket and return it in a string buffer.

ReadStream Overloaded. Read a data stream from the socket
and store it in the specified byte array.

Reject Rejects a connection request from a remote host.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Resolve Resolves a host name to a host IP address.

Shutdown Overloaded. Disable sending or receiving data on
the socket.

StoreStream Overloaded. Reads a data stream from the socket
and stores it in the specified file.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the socket.

WriteLine Overloaded. Send a line of text to the remote host,
terminated by a carriage-return and linefeed.

WriteStream Overloaded. Write a stream of bytes to the socket.

WriteTo Overloaded. Write one or more bytes of data to
the socket.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.Peek_overloads.html

Public Instance Events

OnAccept Occurs when a remote host attempts to establish a
connection with the local system.

OnCancel Occurs when a blocking socket operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an socket operation fails.

OnProgress Occurs as a data stream is being read or written to
the socket.

OnRead Occurs when data is available to be read from the
socket.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the socket.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the SocketWrench class and
optionally releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the SocketWrench class.

[Visual Basic]
Public Sub New()

[C#]
public SocketWrench();

Example
The following example demonstrates creating an instance of the SocketWrench class object and
resolving a hostname into an Internet address using the Resolve method.

Dim Socket As SocketTools.SocketWrench
Dim strHostName As String
Dim strHostAddress As String

Socket = New SocketTools.SocketWrench
strHostName = TextBox1.Text.Trim()

If Socket.Resolve(strHostName, strHostAddress) Then
 StatusBar1.Text = "The Internet address for " + strHostName + " is " +
strHostAddress
Else
 StatusBar1.Text = "The Internet address for " + strHostName + " could not be
resolved"
End If

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench Constructor

The fields of the SocketWrench class are listed below. For a complete list of SocketWrench class
members, see the SocketWrench Members topic.

Public Instance Fields

AdapterAddress Returns the IP address associated with the
specified network adapter.

HostAlias Returns the aliases for a given host name.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench Fields

Returns the IP address associated with the specified network adapter.

[Visual Basic]
Public ReadOnly AdapterAddress As AdapterAddressArray

[C#]
public readonly AdapterAddressArray AdapterAddress;

Remarks
The AdapterAddress array returns the IP addresses that are associated with the local network or remote
dial-up network adapters configured on the system. The AdapterCount property can be used to
determine the number of adapters that are available.

Multihomed systems with more than one local network adapter, or a combination of local and dial-up
adapters will not be listed in a specific order. An application should not make the assumption that the first
address returned by AdapterAddress always refers to a local network adapter.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress will return an
empty string. This indicates that the system does not have a physical network adapter with an assigned IP
address, and there are no dial-up networking connections currently active. If a dial-up networking
connection is established at some later point, the AdapterCount property will change to 1, and the
AdapterAddress property will return the IP address allocated for that connection.

See Also
SocketWrench Class | SocketTools Namespace | AdapterAddressArray Class | AdapterCount Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AdapterAddress Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.AdapterAddressArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.AdapterAddressArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.AdapterAddressArray.html

Returns the aliases for a given host name.

[Visual Basic]
Public ReadOnly HostAlias As HostAliasArray

[C#]
public readonly HostAliasArray HostAlias;

Remarks
The HostAlias array returns the aliases assigned to the host specified by the HostAddress or HostName
properties. If the host address or name can be resolved, the first element in the HostAlias array always
refers to the host's fully qualified domain name.

The end of the alias list is indicated when the property returns an empty string. The array is zero based,
meaning that the first index value is zero.

Example

Dim nIndex As Integer

ListBox1.Items.Clear()
Socket.HostName = strHostName

For nIndex = 0 To Socket.HostAliases - 1
 ListBox1.Items.Add(Socket.HostAlias(nIndex))
Next

See Also
SocketWrench Class | SocketTools Namespace | HostAliasArray Class

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.HostAlias Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.HostAliasArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.HostAliasArray.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.HostAliasArray.html

The properties of the SocketWrench class are listed below. For a complete list of SocketWrench class
members, see the SocketWrench Members topic.

Public Instance Properties

AdapterCount Get the number of available local and remote
network adapters.

AddressFamily Gets and sets a value that determines which
version of the Internet Protocol will be used.

AtMark Get a value that indicates if the next receive will
return urgent data.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Backlog Gets and sets a value that indicates the number of
connections that may be queued for a listening
socket.

Blocking Gets and sets a value which indicates if the socket
is in blocking mode.

Broadcast Gets and sets a value which indicates if datagrams
will be broadcast over the local network.

ByteOrder Gets and sets a value which indicates how integer
data is read and written to the socket.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the security certificate.

CertificatePassword Gets and sets the password associated with the
security certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the security
certificate.

CipherStrength Gets a value that indicates the length of the key

SocketWrench Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.AddressFamily.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.CertificateUser.html

used by the encryption algorithm for a secure
connection.

CodePage Gets and sets the code page used when reading
and writing text.

ExternalAddress Gets a value that specifies the external Internet
address for the local system.

Handle Gets a value that specifies the socket handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostFile Gets and sets a value that specifies the name of a
host file used to resolve host names and
addresses.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

InLine Gets and sets a value that indicates if urgent data
is received in-line with non-urgent data.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking socket operation.

IsClosed Gets a value which indicates if the connection to
the remote host has been closed.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsListening Gets a value which indicates if the socket is
listening for client connections.

IsReadable Gets a value which indicates if there is data
available to be read from the socket.

IsWritable Gets a value which indicates if data can be written
to the socket without blocking.

KeepAlive Gets and sets a value which indicates if keep-alive
packets are sent on a connected socket.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

Linger Gets and sets a value which specifies the number
of seconds to wait for the socket to disconnect
from the remote host.

LocalAddress Gets and sets the local Internet address that the
socket will be bound to.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets and sets a value which specifies the local port
number the socket will be bound to.

LocalService Gets and sets a value which specifies the local
service the socket will be bound to.

NoDelay Gets and sets a value which specifies if the Nagle
algorithm should be enabled or disabled.

Options Gets and sets a value which specifies one or more
socket options.

PeerAddress Gets a value that specifies the Internet address of
the remote host.

PeerName Gets a value that specifies the name of the remote
host.

PeerPort Gets a value that specifies the port number used
by the remote host.

PhysicalAddress Gets a value which specifies the MAC address for
the local system's network adapter.

Protocol Gets and sets a value which specifies the socket
protocol.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ReservedPort Gets and sets a value which indicates if a reserved
port number was used.

ReuseAddress Gets and sets a value which indicates if a socket
address can be reused.

Route Gets and sets a value which indicates if packets
should be routed.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.LocalService.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.RemoteService.html

Status Gets a value which specifies the current status of
the socket.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the network function tracing logfile.

TraceFlags Gets and sets a value which specifies the network
function tracing flags.

Urgent Gets and sets a value which specifies if urgent data
will be read or written.

Version Gets a value which returns the current version of
the SocketWrench class library.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Get the number of available local and remote network adapters.

[Visual Basic]
Public ReadOnly Property AdapterCount As Integer

[C#]
public int AdapterCount {get;}

Property Value
Returns the number of available local and remote network adapters.

Remarks
The AdapterCount property returns the number of local and remote dial-up networking adapters
available on the local system. This value can be used in conjunction with the AdapterAddress array to
enumerate the IP addresses assigned to the various network adapters.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress will return an
empty string. This indicates that the system does not have a physical network adapter with an assigned IP
address, and there are no dial-up networking connections currently active. If a dial-up networking
connection is established at some later point, the AdapterCount property will change to 1, and the
AdapterAddress property will return the IP address allocated for that connection.

See Also
SocketWrench Class | SocketTools Namespace | AdapterAddress Field

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AdapterCount Property

Get a value that indicates if the next receive will return urgent data.

[Visual Basic]
Public ReadOnly Property AtMark As Boolean

[C#]
public bool AtMark {get;}

Property Value
Returns true if the next read on the socket will return urgent data.

Remarks
This property can only be used if the Protocol property is set to SocketProtocol.socketStream and the
InLine property has been set to true.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AtMark Property

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AutoResolve Property

Gets and sets a value that indicates the number of connections that may be queued for a listening socket.

[Visual Basic]
Public Property Backlog As Integer

[C#]
public int Backlog {get; set;}

Property Value
Returns an integer value that specifies the size of the backlog queue. The default value is 5.

Remarks
The Backlog property specifies the maximum size of the queue used to manage pending connections to
the service. If the property is set to value which exceeds the maximum size for the underlying service
provider, it will be silently adjusted to the nearest legal value. There is no standard way to determine what
the maximum backlog value is.

This property must be set to the desired value before the Listen method is called, if the Listen method is
used with default parameters.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Backlog Property

Gets and sets a value which indicates if the socket is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the socket is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if socket operations complete synchronously or asynchronously.
If set to true, then each socket operation (such as sending or receiving data) will return when the
operation has completed or timed-out. If set to false, socket operations will return immediately. If the
operation would result in the socket blocking (such as attempting to read data when no data has been
sent by the remote host), an error is generated.

It is important to note that certain events, such as OnDisconnect, OnRead and OnWrite are only fired if
the socket is in non-blocking mode.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Blocking Property

Gets and sets a value which indicates if datagrams will be broadcast over the local network.

[Visual Basic]
Public Property Broadcast As Boolean

[C#]
public bool Broadcast {get; set;}

Property Value
Returns true if datagrams will be broadcast; otherwise returns false. The default value is false.

Remarks
If the Broadcast property is set to a value of true, the datagram written to the socket will be broadcast to
all systems on the network. Use of this property is restricted to the UDP protocol and the value is ignored
for TCP connections.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Broadcast Property

Gets and sets a value which indicates how integer data is read and written to the socket.

[Visual Basic]
Public Property ByteOrder As SocketByteOrder

[C#]
public SocketWrench.SocketByteOrder ByteOrder {get; set;}

Property Value
A SocketByteOrder enumeration value which specifies the byte order. The default is byteOrderNative.

Remarks
The ByteOrder property is used to specify how integer data is written to and read from the socket. The
default value for this property is byteOrderNative, which specifies that integers should be written in the
native byte order for the local machine. A value of byteOrderNetwork indicates that integers should be
written in network byte order.

When applications write integer values on a socket (instead of string representations of those values), they
should typically be converted to network byte order before they are sent. Likewise, when an integer value
is read, it should then be converted from the network byte order back to the byte order used by the local
machine. The native byte order, also called the host byte order, should only be used if it can be assured
that both the sender and the receiver are running on an identical or compatible machine architectures (for
example, if both systems are Intel-based).

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ByteOrder Property

Get a value that specifies the date that the security certificate expires.

[Visual Basic]
Public ReadOnly Property CertificateExpires As String

[C#]
public string CertificateExpires {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateExpires property returns a string that specifies the date and time that the security
certificate expires. This property will return an empty string if a secure connection has not been
established with the remote host.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CertificateExpires Property

Get a value that specifies the date that the security certificate was issued.

[Visual Basic]
Public ReadOnly Property CertificateIssued As String

[C#]
public string CertificateIssued {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateIssued property returns a string that specifies the date and time that the security certificate
was issued. This property will return an empty string if a secure connection has not been established with
the remote host.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CertificateIssued Property

Get a value that provides information about the organization that issued the certificate.

[Visual Basic]
Public ReadOnly Property CertificateIssuer As String

[C#]
public string CertificateIssuer {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateIssuer property returns a string that contains information about the organization that
issued the server certificate. The string value is a comma separated list of tagged name and value pairs. In
the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CertificateIssuer Property

Gets and sets a value that specifies the name of the security certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the certificate name.

Remarks
The CertificateName property sets the common name or friendly name of the certificate that should be
used when establishing a secure client connection or accepting a secure connection from a remote host.
This property is used in conjunction with the CertificateStore property to identify the client or server
certificate.

For client applications, it is only required that you set this property value if the server requires a client
certificate for authentication. If this property is not set, a client certificate will not be provided to the server.
The certificate must be designated as a client certificate and have a private key associated with it,
otherwise the connection attempt will fail.

For server applications, it is required that you specify a certificate name if security has been enabled by
setting the Secure property to true. The certificate must be designated as a server certificate and have a
private key associated with it, otherwise incoming client connections cannot be accepted.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
SocketWrench Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CertificateName Property

Gets a value which indicates the status of the security certificate returned by the remote host.

[Visual Basic]
Public ReadOnly Property CertificateStatus As SecurityCertificate

[C#]
public SocketWrench.SecurityCertificate CertificateStatus {get;}

Property Value
A SecurityCertificate enumeration value which specifies the status of the certificate.

Remarks
The CertificateStatus property is used to determine the status of the security certificate returned by the
remote host when a secure connection has been established. This property value should be checked after
the connection to the server has completed, but prior to beginning a transaction.

Note that if the certificate cannot be validated, the secure connection will not be automatically terminated.
It is the responsibility of your application to determine the best course of action to take if the certificate is
invalid. Even if the security certificate cannot be validated, the data exchanged with the remote host will
still be encrypted.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CertificateStatus Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when establishing a secure connection. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and therefore it is
not necessary to set this property value because that is the default location that will be used to search for
the certificate. This property is only used if the CertificateName property is also set to a valid certificate
name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the property
should specify the full path to the file and must contain both the certificate and private key in PKCS #12

SocketWrench.CertificateStore Property

format. If the file is protected by a password, the CertificatePassword property must also be set to
specify the password.

See Also
SocketWrench Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.CertificatePassword.html

Gets a value that provides information about the organization that the server certificate was issued to.

[Visual Basic]
Public ReadOnly Property CertificateSubject As String

[C#]
public string CertificateSubject {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateSubject property returns a string that contains information about the organization that the
server certificate was issued to. The string value is a comma separated list of tagged name and value pairs.
In the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CertificateSubject Property

Gets a value that indicates the length of the key used by the encryption algorithm for a secure connection.

[Visual Basic]
Public ReadOnly Property CipherStrength As Integer

[C#]
public int CipherStrength {get;}

Property Value
An integer value which specifies the encryption key length if a secure connection has been established;
otherwise a value of 0 is returned.

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure data
stream. Common values returned by this property are 128 and 256. A key length of 40 or 56 bits is
considered insecure and subject to brute force attacks. 128-bit and 256-bit keys are considered secure. If
this property returns a value of 0, this means that a secure connection has not been established with the
remote host.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CipherStrength Property

Gets and sets the code page used when reading and writing text.

[Visual Basic]
Public Property CodePage As Integer

[C#]
public int CodePage {get; set;}

Property Value
An integer value which specifies the current code page. A value of zero specifies the default code page for
the current locale should be used. To preserve the original Unicode text, you can use code page 65001
which specifies UTF-8 character encoding.

Remarks
All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to as
"octets" in networking terminology. However, strings in .NET are Unicode where each character is
represented by 16 bits. To send and receive data using strings, these Unicode strings are converted to a
stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale, mapping
the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into a string buffer,
the stream of bytes received from the remote host are converted to Unicode before they are returned to
your application.

If you are exchanging text with another system and it appears to corrupted or characters are being
replaced with question marks or other symbols, it is likely the system is sending text which is using a
different character encoding. Most services use UTF-8 encoding to represent non-ASCII characters and
selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a string data type is not
recommended when reading or writing binary data to a socket. If possible, you should always use a byte
array as the buffer parameter for the Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, this class defaults to using the code page for the current locale. This property
value directly corresponds to Windows code page identifiers, and will accept any valid code page
supported by the .NET Framework. Setting this property to an invalid code page will generate an
exception.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CodePage Property

Gets a value that specifies the external Internet address for the local system.

[Visual Basic]
Public ReadOnly Property ExternalAddress As String

[C#]
public string ExternalAddress {get;}

Property Value
A string which specifies an Internet address using dotted notation.

Remarks
The ExternalAddress property returns the IP address assigned to the router that connects the local host
to the Internet. This is typically used by an application executing on a system in a local network that uses a
router which performs Network Address Translation (NAT). In that network configuration, the
LocalAddress property will only return the IP address for the local system on the LAN side of the network
unless a connection has already been established to a remote host. The ExternalAddress property can be
used to determine the IP address assigned to the router on the Internet side of the connection and can be
particularly useful for servers running on a system behind a NAT router.

Using this property requires that you have an active connection to the Internet; checking the value of this
property on a system that uses dial-up networking may cause the operating system to automatically
connect to the Internet service provider. The class may be unable to determine the external IP address for
the local host for a number of reasons, particularly if the system is behind a firewall or uses a proxy server
that restricts access to external sites on the Internet. If the external address for the local host cannot be
determined, the property will return an empty string.

If the class is able to obtain a valid external address for the local host, that address will be cached for sixty
minutes. Because dial-up connections typically have different IP addresses assigned to them each time the
system is connected to the Internet, it is recommended that this property only be used in conjunction with
broadband connections using a NAT router.

It is important to note that checking this property value may cause the current thread to block until the
external IP address can be resolved and should never be used in conjunction with non-blocking
(asynchronous) socket connections. If you need to check this property value in an application which uses
asynchronous sockets, it is recommended that you create a new thread and access the property from
within that thread.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ExternalAddress Property

Gets a value that specifies the socket handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a socket handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the socket descriptor of the listening socket. To accept the connection, a
new instance of the SocketWrench class should be created, passing this value to the Accept method in
the new class instance.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Handle Property

Gets a value which specifies the length of the message digest that was selected for a secure connection.

[Visual Basic]
Public ReadOnly Property HashStrength As Integer

[C#]
public int HashStrength {get;}

Property Value
An integer value which specifies the length of the message digest if a secure connection has been
established; otherwise a value of 0 is returned.

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that was
selected. Common values returned by this property are 128 and 160. If this property returns a value of 0,
this means that a secure connection has not been established with the remote host.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.HashStrength Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address using dotted notation.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.HostAddress Property

Gets and sets a value that specifies the name of a host file used to resolve host names and addresses.

[Visual Basic]
Public Property HostFile As String

[C#]
public string HostFile {get; set;}

Property Value
A string which specifies a file name.

Remarks
The HostFile property is used to specify the name of an alternate file for resolving hostnames and IP
addresses. The host file is used as a database that maps an IP address to one or more hostnames, and is
used when setting the HostName or HostAddress properties and establishing a connection with a
remote host. The file is a plain text file, with each line in the file specifying a record, and each field
separated by spaces or tabs. The format of the file must be as follows:

 ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This would be
entered as:

 127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are ignored
up to the end of the line. Blank lines are ignored, as are any lines which do not follow the required format.

Setting this property loads the file into memory allocated for the current thread. If the contents of the file
have changed after the function has been called, those changes will not be reflected when resolving
hostnames or addresses. To reload the host file from disk, set the property again with the same file name.
To remove the alternate host file from memory, specify an empty string as the file name.

If a host file has been specified, it is processed before the default host file when resolving a hostname into
an IP address, or an IP address into a hostname. If the host name or address is not found, or no host file
has been specified, a nameserver lookup is performed.

Because the alternate host file is cached for the current thread, setting this property will affect all instances
of the class in the same thread. For example, if a project has created three instances of the class, setting
the HostFile property will affect all three instances, not just the instance that set the property. To
determine if an alternate host file has been cached, check the property value. If the property returns an
empty string, no alternate host file has been cached.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.HostFile Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.HostName Property

Gets and sets a value that indicates if urgent data is received in-line with non-urgent data.

[Visual Basic]
Public Property InLine As Boolean

[C#]
public bool InLine {get; set;}

Property Value
Returns true if urgent data will be received in-line; otherwise returns false. The default value is false.

Remarks
The InLine property controls how urgent (out-of-band) data is handled when reading data from the
socket. If set to a value of true, urgent data is placed in the data stream along with non-urgent data. To
determine if the data that is being read is urgent, the AtMark property can be read.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.InLine Property

Gets a value which indicates if the current thread is performing a blocking socket operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next socket operation will not fail. An application
should always check the return value from a socket operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsBlocked Property

Gets a value which indicates if the connection to the remote host has been closed.

[Visual Basic]
Public ReadOnly Property IsClosed As Boolean

[C#]
public bool IsClosed {get;}

Property Value
Returns true if the connection has been closed; otherwise returns false.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsClosed Property

Gets a value which indicates if a connection to the remote host has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the remote
host. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsInitialized Property

Gets a value which indicates if the socket is listening for client connections.

[Visual Basic]
Public ReadOnly Property IsListening As Boolean

[C#]
public bool IsListening {get;}

Property Value
Returns true if the socket is listening for client connections; otherwise returns false.

Remarks
The IsListening property will return true if the socket was created using the Listen method and it is
currently accepting incoming client connections. In all other situations, this property will return false.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsListening Property

Gets a value which indicates if there is data available to be read from the socket.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the socket without blocking. For non-
blocking sockets, this property can be checked before the application attempts to read the socket. Note
that even if this property does return true indicating that there is data available to be read, applications
should always check the return value from the Read method.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsReadable Property

Gets a value which indicates if data can be written to the socket without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the socket; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the socket without blocking. For non-
blocking sockets, this property can be checked before the application attempts to write data to the socket.
Note that even if this property does return true indicating that data can be written to the socket,
applications should always check the return value from the Write method.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsWritable Property

Gets and sets a value which indicates if keep-alive packets are sent on a connected socket.

[Visual Basic]
Public Property KeepAlive As Boolean

[C#]
public bool KeepAlive {get; set;}

Property Value
Returns true if keep-alive packets are sent when the connection is idle, otherwise returns false. The
default value is false.

Remarks
Setting the KeepAlive property to a value of true specifies that special packets are to be sent to the
remote system when no data is being exchanged to ensure the connection remains active. This property
can only be set for sockets that were created with the Protocol property set to a value of
SocketProtocol.protocolStream.

If this property is set to true, keep-alive packets will start being generated five seconds after the socket
has become idle with no data being sent or received. Enabling this option can be used by applications to
detect when a physical network connection has been lost. However, it is recommended that most
applications query the remote host directly to determine if the connection is still active. This is typically
accomplished by sending specific commands to the server to query its status, or checking the elapsed
time since the last response from the server.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.KeepAlive Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public SocketWrench.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.LastErrorString Property

Gets and sets a value which specifies the number of seconds to wait for the socket to disconnect from the
remote host.

[Visual Basic]
Public Property Linger As Integer

[C#]
public int Linger {get; set;}

Property Value
An integer value which specifies a number of seconds. The default value is 0.

Remarks
Setting the Linger property to a value greater than zero indicates that the Disconnect method should
wait up to the specified number of seconds for any data on the socket to be written before it is closed. A
value of zero indicates that the socket should be closed immediately (but gracefully, without data loss).

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Linger Property

Gets and sets the local Internet address that the socket will be bound to.

[Visual Basic]
Public Property LocalAddress As String

[C#]
public string LocalAddress {get; set;}

Property Value
A string which specifies an Internet address in dotted notation.

Remarks
The LocalAddress property is used to specify the local Internet address that the socket will be bound to
when a connection is established with a remote host. By default this property is not assigned a value,
which specifies that the socket should be bound to any appropriate network interface on the local system.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.LocalAddress Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.LocalName Property

Gets and sets a value which specifies the local port number the socket will be bound to.

[Visual Basic]
Public Property LocalPort As Integer

[C#]
public int LocalPort {get; set;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to specify the local port number that the socket will be bound to when a
connection is established with a remote host. By default this property value is 0, which specifies that the
socket should be bound to any appropriate port number that is available on the local system. After a
connection has been established, this property will return the actual port number that was allocated for
the socket.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.LocalPort Property

Gets and sets a value which specifies if the Nagle algorithm should be enabled or disabled.

[Visual Basic]
Public Property NoDelay As Boolean

[C#]
public bool NoDelay {get; set;}

Property Value
Returns true if the Nagle algorithm has been disabled; otherwise it returns false. The default value is
false.

Remarks
The NoDelay property is used to enable or disable the Nagle algorithm, which buffers unacknowledged
data and insures that a full-size packet can be sent to the remote host. By default this property value is set
to false, which enables the Nagle algorithm (in other words, the data being written may not actually be
sent until it is optimal to do so). Setting this property to true disables the Nagle algorithm, maintaining the
time delays between the data packets being sent.

This property should be set to true only if it is absolutely required and the implications of doing so are
understood. Disabling the Nagle algorithm can have a significant negative impact on the performance of
your application.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.NoDelay Property

Gets and sets a value which specifies one or more socket options.

[Visual Basic]
Public Property Options As SocketOptions

[C#]
public SocketWrench.SocketOptions Options {get; set;}

Property Value
Returns one or more SocketOptions enumeration flags which specify the options for the socket. The
default value for this property is socketOptionNone.

Remarks
The Options property specifies one or more default socket options which are used when creating a socket
using either the Accept or Connect methods.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Options Property

Gets a value that specifies the Internet address of the remote host.

[Visual Basic]
Public ReadOnly Property PeerAddress As String

[C#]
public string PeerAddress {get;}

Property Value
A string which specifies an Internet address in dotted notation.

Remarks
The PeerAddress property returns the Internet address of the remote system that the local host is
connected to. If a datagram socket is being used, this property will return the address of the system which
sent the last datagram that was read. If no connection has been established, this property will return an
empty string.

If this property is accessed inside an OnAccept event handler, it will return the address of the client that is
requesting the connection. The application may use this information to determine if it wishes to accept or
reject the client connection. If the address is not available to the client at that time, this property will return
the address 0.0.0.0.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.PeerAddress Property

Gets a value that specifies the name of the remote host.

[Visual Basic]
Public ReadOnly Property PeerName As String

[C#]
public string PeerName {get;}

Property Value
A string which specifies the peer host name.

Remarks
The PeerName property returns the name of the remote system that the local host is connected to. If a
datagram socket is being used, this property will return the name of the system which sent the last
datagram that was read.

Accessing this property may cause the thread to block until the peer address can be resolved to a host
name.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.PeerName Property

Gets a value that specifies the port number used by the remote host.

[Visual Basic]
Public ReadOnly Property PeerPort As Integer

[C#]
public int PeerPort {get;}

Property Value
An integer value which specifies the peer port number.

Remarks
The PeerName property returns the port number of the remote system that the local host is connected
to. If a datagram socket is being used, this property will return the port number of the remote host which
sent the last datagram that was read.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.PeerPort Property

Gets a value which specifies the MAC address for the local system's network adapter.

[Visual Basic]
Public ReadOnly Property PhysicalAddress As String

[C#]
public string PhysicalAddress {get;}

Property Value
A string which specifies the network adapter MAC address.

Remarks
The PhysicalAddress property returns the Media Access Control (MAC) address for an Ethernet or Token
Ring network adapter installed and configured on the local system. Since it is guaranteed that every
adapter is assigned a unique address throughout the world, this value can be safely used for identification
purposes. It is possible that this property will return an empty string, which indicates that it could not find a
network adapter.

If more than one physical network adapter is installed on the system, this property will return the MAC
address of the first adapter that it finds.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.PhysicalAddress Property

Gets and sets a value which specifies the socket protocol.

[Visual Basic]
Public Property Protocol As SocketProtocol

[C#]
public SocketWrench.SocketProtocol Protocol {get; set;}

Property Value
Returns a SocketProtocol enumeration value which specifies the socket protocol. The default value is
socketStream.

Remarks
The Protocol property specifies the type of socket that will be created. This property may only be set
before the Connect method is called; attempting to change this property value after a connection has
been established will generate an error.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Protocol Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.RemotePort Property

Gets and sets a value which indicates if a reserved port number was used.

[Visual Basic]
Public Property ReservedPort As Boolean

[C#]
public bool ReservedPort {get; set;}

Property Value
Returns true if a reserved port number was used; otherwise returns false. The default value is false.

Remarks
The ReservedPort property determines if a reserved local port number is use when the socket is created
(reserved port numbers are in the range of 513 through 1023, inclusive). Some application protocols
require that the client bind to a local port number in this range. By setting the LocalPort property to 0
and the ReservedPort property to true, a reserved port number will be used when the socket is created.
The default value for this property is false, which specifies that a standard port number with a value of
1024 or higher will be bound to the socket unless the LocalPort property is explicitly set to a non-zero
value. Reserved ports should only be used by those applications that need them to implement a specific
protocol.

It is possible that the error errorAddressInUse will be returned when attempting to connect using a
reserved port number. The value of the LocalPort property will specify the reserved port number that
could not be used.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReservedPort Property

Gets and sets a value which indicates if a socket address can be reused.

[Visual Basic]
Public Property ReuseAddress As Boolean

[C#]
public bool ReuseAddress {get; set;}

Property Value
Returns true if an address can be reused; otherwise returns false. The default value is true.

Remarks
The ReuseAddress property determines if a socket can be bound to an address and port number that
were recently used. If this property is true, then addresses can be reused as needed. If the property is
false, then addresses cannot be reused and an error will be generated if the address was was recently
used by another socket.

This property is typically used by server applications. By setting the property to true, a server can be
stopped and immediately restarted using the same port number; otherwise, the server must wait
approximately two minutes before the port can be reused.

If you wish to determine if a local port number is already in use by another application, set this property to
false and attempt to create a socket using that port number. If another application is already using that
port number, an error will be generated indicating that the address is in use and the socket could not be
created.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReuseAddress Property

Gets and sets a value which indicates if packets should be routed.

[Visual Basic]
Public Property Route As Boolean

[C#]
public bool Route {get; set;}

Property Value
Returns true if packets should be routed; otherwise returns false. The default value is true.

Remarks
The Route property determines if routing tables should be used when sending data. If the property is set
to false, then packets will be sent directly to the network interface; if there is a router between the local
and remote hosts, the data will be lost. It is not recommended that you change this property value unless
it is required by your application and you fully understand the implications of doing so.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Route Property

Gets and sets a value which specifies if a secure connection is established.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connection is established; otherwise returns false. The default value is false.

Remarks
The Secure property determines if a secure connection is established with the remote host. The default
value for this property is false, which specifies that a standard connection to the server is used. To
establish a secure connection, the application should set this property value to true prior to calling the
Accept or Connect methods. Once the connection has been established, the client may exchange data
with the server as with standard connections.

It is possible for an application to establish a non-secure connection, and then switch to a secure
connection at some later point during the session. Initially set the Secure property to false, then connect
to the server normally. Once the connection has been established, setting the Secure property to true will
cause the application to negotiate a secure connection with the remote host. If the socket was created
using the Accept method, the class will block and wait for the client to begin the negotiation. If the socket
was created using the Connect method, it will immediately begin the negotiation with the server. Note
that if a non-blocking (asynchronous) socket is being used, the application must wait to set the Secure
property to true after the OnConnect event has fired.

Setting the Secure property to false during a connection will cause the class to send a shutdown message
to the remote host. This may cause the remote host to terminate the connection, however it will not close
the socket. It is recommended that applications do not set the Secure property to false after a secure
connection has been established, and instead use the Disconnect method to close the connection.

It is strongly recommended that any application that sets this property true use error handling to trap an
errors that may occur. If the class is unable to initialize the security libraries, or otherwise cannot create a
secure session for the client, an error will be generated when this property value is set.

Example

Socket.ThrowError = True

Try
 Socket.Secure = True
 Socket.Connect(strHostName, nHostPort, defTimeout)

 Socket.WriteLine("GET " + strFileName + " HTTP/1.0")
 Socket.WriteLine("Host: " + strHostName)
 Socket.WriteLine("Accept: text/*")
 Socket.WriteLine()

 Do
 Socket.ReadLine(strBuffer)
 Loop Until strBuffer.Length = 0

 Socket.ReadStream(strBuffer, True)

SocketWrench.Secure Property

Catch ex As SocketTools.SocketWrenchException
 MsgBox(ex.Message)
End Try

Socket.Disconnect()

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets a value that specifies the encryption algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureCipher As SecureCipherAlgorithm

[C#]
public SocketWrench.SecureCipherAlgorithm SecureCipher {get;}

Property Value
A SecureCipherAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureCipher property returns a value which identifies the algorithm used to encrypt the data
stream. If a secure connection has not been established, this property will return a value of cipherNone.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SecureCipher Property

Gets a value that specifies the message digest algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureHash As SecureHashAlgorithm

[C#]
public SocketWrench.SecureHashAlgorithm SecureHash {get;}

Property Value
A SecureHashAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureHash property returns a value which identifies the message digest (hash) algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of hashNone.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SecureHash Property

Gets a value that specifies the key exchange algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureKeyExchange As SecureKeyAlgorithm

[C#]
public SocketWrench.SecureKeyAlgorithm SecureKeyExchange {get;}

Property Value
A SecureKeyAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureKeyExchange property returns a value which identifies the key exchange algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of keyExchangeNone.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SecureKeyExchange Property

Gets and sets a value which specifies the protocol used for a secure connection.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public SocketWrench.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when establishing a secure
connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when establishing a
secure connection with a server or accepting a secure connection from a client. By default, the class will
attempt to use either SSL v3 or TLS v1 to establish the connection, with the appropriate protocol
automatically selected based on the capabilities of the remote host. It is recommended that you only
change this property value if you fully understand the implications of doing so. Assigning a value to this
property will override the default protocol and force the class to attempt to use only the protocol
specified.

Multiple security protocols may be specified by combining them using a bitwise or operator. After a
connection has been established, this property will identify the protocol that was selected. Attempting to
set this property after a connection has been established will result in an exception being thrown. This
property should only be set after setting the Secure property to true and before calling the Accept or
Connect methods.

In some cases, a server may only accept a secure connection if the TLS v1 protocol is specified. If the
security protocol is not compatible with the server, then the connection will fail with an error indicating
that the class is unable to establish a security context for the session. In this case, try assigning the
property to protocolTLS1 and attempt the connection again.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SecureProtocol Property

Gets a value which specifies the current status of the socket.

[Visual Basic]
Public ReadOnly Property Status As SocketStatus

[C#]
public SocketWrench.SocketStatus Status {get;}

Property Value
A SocketStatus enumeration value which specifies the current socket status.

Remarks
The Status property returns the current status of the socket. This property should be checked on blocking
sockets to determine if the socket is in use before taking some action.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Status Property

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public SocketWrench.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
SocketWrench Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking socket operation fails and
returns an error.

The timeout period is only used when the socket is in blocking mode. Although this property can be
changed when the socket is in non-blocking mode, the value will be ignored until the socket is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Trace Property

Gets and sets a value which specifies the name of the network function tracing logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
class is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.TraceFile Property

Gets and sets a value which specifies the network function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public SocketWrench.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.TraceFlags Property

Gets and sets a value which specifies if urgent data will be read or written.

[Visual Basic]
Public Property Urgent As Boolean

[C#]
public bool Urgent {get; set;}

Property Value
Returns true if urgent data will be read or written; otherwise returns false. The default value is false.

Remarks
The Urgent property affects how the Read and Write methods receive and transmit data to the remote
host. If set to a value of true, urgent (out-of-band) data will be read or written. The property value will
automatically be reset to a value of false after the data has been read or written.

It is important to note that all systems may support more than one byte of urgent data if the data is not
being received in-line. Refer to the InLine property for additional information. This property should only
be set to true if required by the application and the implications of doing so are understood.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Urgent Property

Gets a value which returns the current version of the SocketWrench class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the SocketWrench
class library. This value can be used by an application for validation and debugging purposes.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Version Property

The methods of the SocketWrench class are listed below. For a complete list of SocketWrench class
members, see the SocketWrench Members topic.

Public Instance Methods

Abort Abort the connection with a remote host.

Accept Overloaded. Accepts a client connection on a
listening socket, specifying a timeout period and
one or more socket options.

AttachThread Attach an instance of the class to the current
thread

Bind Overloaded. Bind the socket to the specified local
address and port number.

Cancel Cancel the current blocking socket operation.

Connect Overloaded. Establish a connection with a remote
host.

ConnectUrl Overloaded. Establish a connection with a remote
host using a URL.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
SocketWrench.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
SocketWrench class.

Listen Overloaded. Listen for incoming client
connections, specifying the local network address,
port number and connection backlog.

Peek Overloaded. Read data from the socket and store
it in a byte array, but do not remove the data from
the socket buffers.

Read Overloaded. Read data from the socket and store
it in a byte array.

ReadFrom Overloaded. Read data from the socket and store
it in a byte array.

ReadLine Overloaded. Read up to a line of data from the
socket and return it in a string buffer.

SocketWrench Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.Peek_overloads.html

ReadStream Overloaded. Read a data stream from the socket
and store it in the specified byte array.

Reject Rejects a connection request from a remote host.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Resolve Resolves a host name to a host IP address.

Shutdown Overloaded. Disable sending or receiving data on
the socket.

StoreStream Overloaded. Reads a data stream from the socket
and stores it in the specified file.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the socket.

WriteLine Overloaded. Send a line of text to the remote host,
terminated by a carriage-return and linefeed.

WriteStream Overloaded. Write a stream of bytes to the socket.

WriteTo Overloaded. Write one or more bytes of data to
the socket.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the SocketWrench class and
optionally releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Abort the connection with a remote host.

[Visual Basic]
Public Sub Abort()

[C#]
public void Abort();

Remarks
The Abort method immediately closes the socket, without waiting for any remaining data to be written
out. This method should only be used when the connection must be closed immediately. If this method is
used, the remote host will see the connection as being terminated abnormally.

It is recommended that applications using the Disconnect method unless it is absolutely necessary to
terminate the connection and immediately release the socket handle.

See Also
SocketWrench Class | SocketTools Namespace | Disconnect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Abort Method

Accepts a client connection on a listening socket.

Overload List
Accepts a client connection on a listening socket.

public bool Accept(int);

Accepts a client connection on a listening socket, specifying one or more socket options.

public bool Accept(int,SocketOptions);

Accepts a client connection on a listening socket, specifying a timeout period and one or more socket
options.

public bool Accept(int,int,SocketOptions);

See Also
SocketWrench Class | SocketTools Namespace | Listen Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Accept Method

Accepts a client connection on a listening socket.

[Visual Basic]
Overloads Public Function Accept(_
 ByVal handle As Integer _
) As Boolean

[C#]
public bool Accept(
 int handle
);

Parameters
handle

The socket identifier of a listening socket. If the object that invokes this method is not the listening
socket, then the listening socket may continue to listen for incoming connections. If the object of a
listening socket invokes this method with its own handle, then it ceases to listen, and no other host can
establish a connection with the application.

Return Value
A boolean value which specifies if the client connection has been accepted. If the method returns true, the
connection has been accepted and the application may send and receive data with the remote host. If this
method returns false, the connection could not be accepted and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Accept Overload List | Listen Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Accept Method (Int32)

Accepts a client connection on a listening socket, specifying one or more socket options.

[Visual Basic]
Overloads Public Function Accept(_
 ByVal handle As Integer, _
 ByVal options As SocketOptions _
) As Boolean

[C#]
public bool Accept(
 int handle,
 SocketOptions options
);

Parameters
handle

The socket identifier of a listening socket. If the object that invokes this method is not the listening
socket, then the listening socket may continue to listen for incoming connections. If the object of a
listening socket invokes this method with its own handle, then it ceases to listen, and no other host can
establish a connection with the application.

options
One or more of the SocketOptions enumeration flags.

Return Value
A boolean value which specifies if the client connection has been accepted. If the method returns true, the
connection has been accepted and the application may send and receive data with the remote host. If this
method returns false, the connection could not be accepted and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Accept Overload List | Listen Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Accept Method (Int32, SocketOptions)

Accepts a client connection on a listening socket, specifying a timeout period and one or more socket
options.

[Visual Basic]
Overloads Public Function Accept(_
 ByVal handle As Integer, _
 ByVal timeout As Integer, _
 ByVal options As SocketOptions _
) As Boolean

[C#]
public bool Accept(
 int handle,
 int timeout,
 SocketOptions options
);

Parameters
handle

The socket identifier of a listening socket. If the object that invokes this method is not the listening
socket, then the listening socket may continue to listen for incoming connections. If the object of a
listening socket invokes this method with its own handle, then it ceases to listen, and no other host can
establish a connection with the application.

timeout
Specifies the number of seconds that the method will wait for a client connection to be established on
the listening socket. This value only has meaning for a blocking socket.

options
One or more of the SocketOptions enumeration flags.

Return Value
A boolean value which specifies if the client connection has been accepted. If the method returns true, the
connection has been accepted and the application may send and receive data with the remote host. If this
method returns false, the connection could not be accepted and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Accept Overload List | Listen Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Accept Method (Int32, Int32, SocketOptions)

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the socket could be attached to the current thread. If this method
returns false, the socket could not be attached to the thread and the application should check the value
of the LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AttachThread Method

Bind the socket to the specified local address and port number.

Overload List
Bind the socket to the specified local address and port number.

public bool Bind(string,int);

Bind the socket to the specified local address and port number.

public bool Bind(string,int,SocketOptions);

Bind the socket to the specified local address and port number.

public bool Bind(string,int,SocketProtocol);

Bind the socket to the specified local address and port number.

public bool Bind(string,int,SocketProtocol,SocketOptions);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Bind Method

Bind the socket to the specified local address and port number.

[Visual Basic]
Overloads Public Function Bind(_
 ByVal localAddress As String, _
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Bind(
 string localAddress,
 int localPort
);

Parameters
localAddress

A string which specifies the local Internet address that the socket should be bound to. To bind to any
valid network interface on the local system, specify the address 0.0.0.0. Applications should only
specify a particular address if it is absolutely necessary. In most cases a local address is not required
when establishing a client connection.

localPort
An integer value which specifies a local port number that the socket should be bound to. To bind to
any available port number, specify a port number of 0. Applications should only specify a particular
port number if it is absolutely necessary. The maximum valid port number is 65535.

Return Value
A boolean value which specifies if the socket could be bound to the specified address. If this method
returns false, the socket could not be bound to the address and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
The Bind method is used to specify the local address and port number that a socket will be bound to
when it is created. When this method is called with socketDatagram as the specified protocol, it will
immediately create the datagram socket and bind it to the given address.

When this method is called with socketStream as the specified protocol, creation of the socket is deferred
until the Connect method is called. For stream sockets, this method will set the local address, port number
and default options used when the socket is actually created.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Bind Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Bind Method (String, Int32)

Bind the socket to the specified local address and port number.

[Visual Basic]
Overloads Public Function Bind(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal options As SocketOptions _
) As Boolean

[C#]
public bool Bind(
 string localAddress,
 int localPort,
 SocketOptions options
);

Parameters
localAddress

A string which specifies the local Internet address that the socket should be bound to. To bind to any
valid network interface on the local system, specify the address 0.0.0.0. Applications should only
specify a particular address if it is absolutely necessary. In most cases a local address is not required
when establishing a client connection.

localPort
An integer value which specifies a local port number that the socket should be bound to. To bind to
any available port number, specify a port number of 0. Applications should only specify a particular
port number if it is absolutely necessary. The maximum valid port number is 65535.

options
One or more of the SocketOptions enumeration flags.

Return Value
A boolean value which specifies if the socket could be bound to the specified address. If this method
returns false, the socket could not be bound to the address and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
The Bind method is used to specify the local address and port number that a socket will be bound to
when it is created. When this method is called with socketDatagram as the specified protocol, it will
immediately create the datagram socket and bind it to the given address.

When this method is called with socketStream as the specified protocol, creation of the socket is deferred
until the Connect method is called. For stream sockets, this method will set the local address, port number
and default options used when the socket is actually created.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Bind Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Bind Method (String, Int32, SocketOptions)

Bind the socket to the specified local address and port number.

[Visual Basic]
Overloads Public Function Bind(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal protocol As SocketProtocol _
) As Boolean

[C#]
public bool Bind(
 string localAddress,
 int localPort,
 SocketProtocol protocol
);

Parameters
localAddress

A string which specifies the local Internet address that the socket should be bound to. To bind to any
valid network interface on the local system, specify the address 0.0.0.0. Applications should only
specify a particular address if it is absolutely necessary. In most cases a local address is not required
when establishing a client connection.

localPort
An integer value which specifies a local port number that the socket should be bound to. To bind to
any available port number, specify a port number of 0. Applications should only specify a particular
port number if it is absolutely necessary. The maximum valid port number is 65535.

protocol
One of the SocketProtocol enumeration values which specify the type of socket to be created.

Return Value
A boolean value which specifies if the socket could be bound to the specified address. If this method
returns false, the socket could not be bound to the address and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
The Bind method is used to specify the local address and port number that a socket will be bound to
when it is created. When this method is called with socketDatagram as the specified protocol, it will
immediately create the datagram socket and bind it to the given address.

When this method is called with socketStream as the specified protocol, creation of the socket is deferred
until the Connect method is called. For stream sockets, this method will set the local address, port number
and default options used when the socket is actually created.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Bind Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Bind Method (String, Int32, SocketProtocol)

Bind the socket to the specified local address and port number.

[Visual Basic]
Overloads Public Function Bind(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal protocol As SocketProtocol, _
 ByVal options As SocketOptions _
) As Boolean

[C#]
public bool Bind(
 string localAddress,
 int localPort,
 SocketProtocol protocol,
 SocketOptions options
);

Parameters
localAddress

A string which specifies the local Internet address that the socket should be bound to. To bind to any
valid network interface on the local system, specify the address 0.0.0.0. Applications should only
specify a particular address if it is absolutely necessary. In most cases a local address is not required
when establishing a client connection.

localPort
An integer value which specifies a local port number that the socket should be bound to. To bind to
any available port number, specify a port number of 0. Applications should only specify a particular
port number if it is absolutely necessary. The maximum valid port number is 65535.

protocol
One of the SocketProtocol enumeration values which specify the type of socket to be created.

options
One or more of the SocketOptions enumeration flags.

Return Value
A boolean value which specifies if the socket could be bound to the specified address. If this method
returns false, the socket could not be bound to the address and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
The Bind method is used to specify the local address and port number that a socket will be bound to
when it is created. When this method is called with socketDatagram as the specified protocol, it will
immediately create the datagram socket and bind it to the given address.

When this method is called with socketStream as the specified protocol, creation of the socket is deferred
until the Connect method is called. For stream sockets, this method will set the local address, port number
and default options used when the socket is actually created.

See Also

SocketWrench.Bind Method (String, Int32, SocketProtocol,
SocketOptions)

SocketWrench Class | SocketTools Namespace | SocketWrench.Bind Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Cancel the current blocking socket operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking socket operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Cancel Method

Establish a connection with a remote host.

Overload List
Establish a connection with a remote host.

public bool Connect();

Establish a connection with a remote host.

public bool Connect(string,int);

Establish a connection with a remote host.

public bool Connect(string,int,SocketOptions,int);

Establish a connection with a remote host.

public bool Connect(string,int,SocketProtocol,int);

Establish a connection with a remote host.

public bool Connect(string,int,SocketProtocol,int,SocketOptions);

Establish a connection with a remote host.

public bool Connect(string,int,SocketProtocol,int,SocketOptions,string,int);

Establish a connection with a remote host.

public bool Connect(string,int,int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Connect Method

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.Connect_overload_7.html

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress. When the connection has
completed, the OnConnect event will be fired. If this method returns false, the connection could not be
established and the application should check the value of the LastError property to determine the cause of
the failure.

Remarks
This method will use the value of the Protocol property to determine which protocol is used to establish
the connection. By default, the socketStream protocol will be used.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Connect Method (String, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking sockets.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method will use the value of the Protocol property to determine which protocol is used to establish
the connection. By default, the socketStream protocol will be used.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Connect Method (String, Int32, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal protocol As SocketProtocol, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 SocketProtocol protocol,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

protocol
One of the SocketProtocol enumeration values which specify the type of socket to be created.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking sockets.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
When this method is called with socketDatagram as the specified protocol, it does not actually establish
a connection. Instead, it simply establishes a default destination address and port that is used with
subsequent calls to the Read and Write methods.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Connect Overload List

SocketWrench.Connect Method (String, Int32, SocketProtocol, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal protocol As SocketProtocol, _
 ByVal timeout As Integer, _
 ByVal options As SocketOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 SocketProtocol protocol,
 int timeout,
 SocketOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

protocol
One of the SocketProtocol enumeration values which specify the type of socket to be created.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking sockets.

options
One or more of the SocketOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
When this method is called with socketDatagram as the specified protocol, it does not actually establish
a connection. Instead, it simply establishes a default destination address and port that is used with

SocketWrench.Connect Method (String, Int32, SocketProtocol, Int32,
SocketOptions)

subsequent calls to the Read and Write methods.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal protocol As SocketProtocol, _
 ByVal timeout As Integer, _
 ByVal options As SocketOptions, _
 ByVal localAddress As String, _
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 SocketProtocol protocol,
 int timeout,
 SocketOptions options,
 string localAddress,
 int localPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

protocol
One of the SocketProtocol enumeration values which specify the type of socket to be created.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking sockets.

options
One or more of the SocketOptions enumeration flags.

localAddress
A string which specifies the local Internet address that the socket should be bound to. To bind to any
valid network interface on the local system, specify the address 0.0.0.0. Applications should only
specify a particular address if it is absolutely necessary. In most cases a local address is not required
when establishing a client connection.

localPort
An integer value which specifies a local port number that the socket should be bound to. To bind to
any available port number, specify a port number of 0. Applications should only specify a particular
port number if it is absolutely necessary. The maximum valid port number is 65535.

SocketWrench.Connect Method (String, Int32, SocketProtocol, Int32,
SocketOptions, String, Int32)

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
When this method is called with socketDatagram as the specified protocol, it does not actually establish
a connection. Instead, it simply establishes a default destination address and port that is used with
subsequent calls to the Read and Write methods.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal options As SocketOptions, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 SocketOptions options,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

options
One or more of the SocketOptions enumeration flags.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking sockets.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method will use the value of the Protocol property to determine which protocol is used to establish
the connection. By default, the socketStream protocol will be used.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Connect Overload List

SocketWrench.Connect Method (String, Int32, SocketOptions, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host using a URL.

Overload List
Establish a connection with a remote host using a URL.

public bool ConnectUrl(string);

Establish a connection with a remote host using a URL.

public bool ConnectUrl(string,int,SocketOptions);

See Also
SocketWrench Class | SocketTools Namespace | Connect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ConnectUrl Method

Establish a connection with a remote host using a URL.

[Visual Basic]
Overloads Public Function ConnectUrl(_
 ByVal hostUrl As String _
) As Boolean

[C#]
public bool ConnectUrl(
 string hostUrl
);

Parameters
hostUrl

A string which specifies the URL used to establish a connection. This parameter cannot be null or an
empty string.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The ConnectUrl method provides a simplified interface which can be used to establish a connection using
a URL. This method can only be used to establish connections using TCP and does not currently support
the use of URLs to connect with a service which uses UDP. The general format of the URL should look like
this:

[scheme]:// [[username : password] @] hostname [:port] /
[path;paramters ...]

This method recognizes most standard URI schemes which use this format. The host name and port
number specified in the URL will be used to establish a connection and the remaining information will be
discarded. If the URL does not explicitly specify a port number, the default port number associated with
the scheme will be used as the default value. For example, consider the following:

https://www.example.com

In this example, there is no port number specified; instead, the default port for the https:// scheme would
be used, which is port 443. The host name www.example.com would be resolved into an IP address and
the connection established on port 443. This method will also recognize a simpler format which only
includes the host name and port number without a URI scheme, such as:

www.example.com:443

When used in this way, the port number must always be provided. Without a URI scheme or an explicit
port number, the method cannot determine what port number should be used when establishing the

SocketWrench.ConnectUrl Method (String)

connection. The same also applies if a custom, non-standard URI scheme is provided which is not
recognized.

If the URI scheme specifies a secure protocol which requires implicit TLS, this function will automatically
enable the Secure option. For example, providing a URL which uses the https:// scheme will automatically
enable a secure connection. If a URI scheme is used in conjunction with a port number associated with a
secure service, security will also be enabled for that connection. For example:

http://www.example.com:443

The standard http:// scheme is used which does not indicate a secure connection. However, since port
443 is the standard port designated for a secure HTTP connection, a secure connection will be enabled by
default, even if not been specified by the caller. Alternatively, if a custom port number is specified in the
URL or the scheme is not recognized as one which requires implicit TLS, security options will not be
automatically enabled by default for the connection.

The host name portion of the URL can be specified as either a domain name or an IP address. Because an
IPv6 address can contain colon characters, you must enclose the entire address in bracket [] characters. If
this is not done, this method will return an error indicating the port number is invalid. For example, the
URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host address and this would be considered valid.
Without the brackets, this URL would not be accepted.

Important: The URL provided to this method will only be used to establish a connection with a server.
This is a general purpose method which does not enable support for any particular application protocol
and all implementation details are the responsibility of your application. If you require higher-level support
for a specific Internet protocol, the SocketTools .NET Edition provides comprehensive collection of higher-
level classes which can be used to access those services.

To prevent this method from blocking the main user interface thread, the application should create a
background worker thread and establish a connection by calling ConnectUrl in that thread. If the
application requires multiple simultaneous connections, it is recommended you create a worker thread for
each client session.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ConnectUrl Overload List | Connect
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host using a URL.

[Visual Basic]
Overloads Public Function ConnectUrl(_
 ByVal hostUrl As String, _
 ByVal timeout As Integer, _
 ByVal options As SocketOptions _
) As Boolean

[C#]
public bool ConnectUrl(
 string hostUrl,
 int timeout,
 SocketOptions options
);

Parameters
hostUrl

A string which specifies the URL used to establish a connection. This parameter cannot be null or an
empty string.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking sockets.

options
One or more of the SocketOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The ConnectUrl method provides a simplified interface which can be used to establish a connection using
a URL. This method can only be used to establish connections using TCP and does not currently support
the use of URLs to connect with a service which uses UDP. The general format of the URL should look like
this:

[scheme]:// [[username : password] @] hostname [:port] /
[path;paramters ...]

This method recognizes most standard URI schemes which use this format. The host name and port
number specified in the URL will be used to establish a connection and the remaining information will be
discarded. If the URL does not explicitly specify a port number, the default port number associated with
the scheme will be used as the default value. For example, consider the following:

SocketWrench.ConnectUrl Method (String, Int32, SocketOptions)

https://www.example.com

In this example, there is no port number specified; instead, the default port for the https:// scheme would
be used, which is port 443. The host name www.example.com would be resolved into an IP address and
the connection established on port 443. This method will also recognize a simpler format which only
includes the host name and port number without a URI scheme, such as:

www.example.com:443

When used in this way, the port number must always be provided. Without a URI scheme or an explicit
port number, the method cannot determine what port number should be used when establishing the
connection. The same also applies if a custom, non-standard URI scheme is provided which is not
recognized.

If the URI scheme specifies a secure protocol which requires implicit TLS, this function will automatically
enable the Secure option. For example, providing a URL which uses the https:// scheme will automatically
enable a secure connection. If a URI scheme is used in conjunction with a port number associated with a
secure service, security will also be enabled for that connection. For example:

http://www.example.com:443

The standard http:// scheme is used which does not indicate a secure connection. However, since port
443 is the standard port designated for a secure HTTP connection, a secure connection will be enabled by
default, even if not been specified by the caller. Alternatively, if a custom port number is specified in the
URL or the scheme is not recognized as one which requires implicit TLS, security options will not be
automatically enabled by default for the connection.

The host name portion of the URL can be specified as either a domain name or an IP address. Because an
IPv6 address can contain colon characters, you must enclose the entire address in bracket [] characters. If
this is not done, this method will return an error indicating the port number is invalid. For example, the
URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host address and this would be considered valid.
Without the brackets, this URL would not be accepted.

Important: The URL provided to this method will only be used to establish a connection with a server.
This is a general purpose method which does not enable support for any particular application protocol
and all implementation details are the responsibility of your application. If you require higher-level support
for a specific Internet protocol, the SocketTools .NET Edition provides comprehensive collection of higher-
level classes which can be used to access those services.

To prevent this method from blocking the main user interface thread, the application should create a
background worker thread and establish a connection by calling ConnectUrl in that thread. If the
application requires multiple simultaneous connections, it is recommended you create a worker thread for
each client session.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ConnectUrl Overload List | Connect
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminate the connection with a remote host.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and closes the socket handle
allocated by the class. Note that the socket is not immediately released when the connection is terminated
and will enter a wait state for two minutes. After the time wait period has elapsed, the socket will be
released by the operating system. This is a normal safety mechanism to handle any packets that may
arrive after the connection has been closed.

To immediately terminate the connection and release the socket, use the Abort method.

See Also
SocketWrench Class | SocketTools Namespace | Abort Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Disconnect Method

Releases all resources used by SocketWrench.

Overload List
Releases all resources used by SocketWrench.

public void Dispose();

Releases the unmanaged resources allocated by the SocketWrench class and optionally releases the
managed resources.

protected virtual void Dispose(bool);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Dispose Method

Releases all resources used by SocketWrench.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Dispose Method ()

Releases the unmanaged resources allocated by the SocketWrench class and optionally releases the
managed resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the SocketWrench class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Finalize Method

Initialize an instance of the SocketWrench class.

Overload List
Initialize an instance of the SocketWrench class.

public bool Initialize();

Initialize an instance of the SocketWrench class.

public bool Initialize(string);

See Also
SocketWrench Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Initialize Method

Initialize an instance of the SocketWrench class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the SocketWrench class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Initialize Method ()

Initialize an instance of the SocketWrench class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the SocketWrench class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketWrench can be generated using the License Manager
utility that is included with the product. Note that if you have installed an evaluation license, you will not
have a runtime license key and cannot redistribute any applications which use the SocketWrench class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.SocketWrench socket = new SocketTools.SocketWrench();

if (socket.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(socket.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim Socket As New SocketTools.SocketWrench

If Socket.Initialize(strLicenseKey) = False Then
 MsgBox(Socket.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Initialize Overload List |
RuntimeLicenseAttribute Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Initialize Method (String)

Listen for incoming client connections.

Overload List
Listen for incoming client connections.

public bool Listen();

Listen for incoming client connections, specifying the local port number.

public bool Listen(int);

Listen for incoming client connections, specifying the local network address and port number.

public bool Listen(string,int);

Listen for incoming client connections, specifying the local network address, port number and connection
backlog.

public bool Listen(string,int,int);

See Also
SocketWrench Class | SocketTools Namespace | Blocking Property | LocalAddress Property | LocalPort
Property | Accept Method | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Listen Method

Listen for incoming client connections.

[Visual Basic]
Overloads Public Function Listen() As Boolean

[C#]
public bool Listen();

Return Value
A boolean value which specifies if the listening socket could be created successfully. A value of true
indicates that a listening socket has been created. A value of false indicates that a listening socket could
not be created using the specified address or port number and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
The value of the LocalAddress property is used to specify the network address that will be used to listen
for client connections. If the property has not been set, or is set to the address 0.0.0.0 then connections
will be listened for on any valid network adapter configured on the system.

The value of the LocalPort property is used to specify the port number to listen for connections on.

After the listening socket has been created, the application should then call the Accept method to wait for
a client to establish a connection. If the Blocking property is set to false, then the OnAccept event will
fire when a client attempts to establish a connection.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Listen Overload List | Blocking Property |
LocalAddress Property | LocalPort Property | Accept Method | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Listen Method ()

Listen for incoming client connections, specifying the local port number.

[Visual Basic]
Overloads Public Function Listen(_
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Listen(
 int localPort
);

Parameters
localPort

An integer argument which specifies the port number to listen for connections on. The minimum port
value is 1, the maximum port value is 65535.

Return Value
A boolean value which specifies if the listening socket could be created successfully. A value of true
indicates that a listening socket has been created. A value of false indicates that a listening socket could
not be created using the specified address or port number and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
The value of the LocalAddress property is used to specify the network address that will be used to listen
for client connections. If the property has not been set, or is set to the address 0.0.0.0 then connections
will be listened for on any valid network adapter configured on the system.

After the listening socket has been created, the application should then call the Accept method to wait for
a client to establish a connection. If the Blocking property is set to false, then the OnAccept event will
fire when a client attempts to establish a connection.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Listen Overload List | Blocking Property |
LocalAddress Property | Accept Method | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Listen Method (Int32)

Listen for incoming client connections, specifying the local network address and port number.

[Visual Basic]
Overloads Public Function Listen(_
 ByVal localAddress As String, _
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Listen(
 string localAddress,
 int localPort
);

Parameters
localAddress

A string argument which specifies the IP address of the network adapter that the class should use
when listening for connection requests. If this argument is not specified, the class will bind to any
suitable adapter on the local system. An address of 0.0.0.0 specifies that it should listen for
connections on any network adapter configured on the system.

localPort
An integer argument which specifies the port number to listen for connections on. The minimum port
value is 1, the maximum port value is 65535.

Return Value
A boolean value which specifies if the listening socket could be created successfully. A value of true
indicates that a listening socket has been created. A value of false indicates that a listening socket could
not be created using the specified address or port number and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
After the listening socket has been created, the application should then call the Accept method to wait for
a client to establish a connection. If the Blocking property is set to false, then the OnAccept event will
fire when a client attempts to establish a connection.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Listen Overload List | Blocking Property |
Accept Method | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Listen Method (String, Int32)

Listen for incoming client connections, specifying the local network address, port number and connection
backlog.

[Visual Basic]
Overloads Public Function Listen(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal backlog As Integer _
) As Boolean

[C#]
public bool Listen(
 string localAddress,
 int localPort,
 int backlog
);

Parameters
localAddress

A string argument which specifies the IP address of the network adapter that the class should use
when listening for connection requests. If this argument is not specified, the class will bind to any
suitable adapter on the local system. An address of 0.0.0.0 specifies that it should listen for
connections on any network adapter configured on the system.

localPort
An integer argument which specifies the port number to listen for connections on. The minimum port
value is 1, the maximum port value is 65535.

backlog

An integer argument which specifies the maximum size of the queue used to manage pending
connections to the service. If the argument is set to value which exceeds the maximum size for the
underlying service provider, it will be silently adjusted to the nearest legal value.

Return Value
A boolean value which specifies if the listening socket could be created successfully. A value of true
indicates that a listening socket has been created. A value of false indicates that a listening socket could
not be created using the specified address or port number and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
After the listening socket has been created, the application should then call the Accept method to wait for
a client to establish a connection. If the Blocking property is set to false, then the OnAccept event will
fire when a client attempts to establish a connection.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Listen Overload List | Blocking Property |
Accept Method | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Listen Method (String, Int32, Int32)

Read data from the socket and store it in a byte array.

Overload List
Read data from the socket and store it in a byte array.

public int Read(byte[]);

Read data from the socket and store it in a byte array.

public int Read(byte[],int);

Read data from the socket and store it in a string.

public int Read(ref string);

Read data from the socket and store it in a string.

public int Read(ref string,int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Read Method

Read data from the socket and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the size of the byte array
passed to the method. If no data is available to be read, an error will be generated if the socket is in non-
blocking mode. If the socket is in blocking mode, the program will stop until data is received from the
server or the connection is closed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Read Method (Byte[])

Read data from the socket and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the socket is in non-blocking mode. If the
socket is in blocking mode, the program will stop until data is received from the server or the connection
is closed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Read Method (Byte[], Int32)

Read data from the socket and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the socket.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to a maximum of 8192 bytes. If no
data is available to be read, an error will be generated if the socket is in non-blocking mode. If the socket
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Read Method (String)

Read data from the socket and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the socket.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the socket is in non-blocking mode. If the
socket is in blocking mode, the program will stop until data is received from the server or the connection
is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Read Method (String, Int32)

Read data from the socket and store it in a byte array.

Overload List
Read data from the socket and store it in a byte array.

public int ReadFrom(byte[],int,ref string,ref int);

Read data from the socket and store it in a byte array.

public int ReadFrom(byte[],ref string,ref int);

Read data from the socket and store it in a string.

public int ReadFrom(ref string,int,ref string,ref int);

Read data from the socket and store it in a string.

public int ReadFrom(ref string,ref string,ref int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadFrom Method

Read data from the socket and store it in a byte array.

[Visual Basic]
Overloads Public Function ReadFrom(_
 ByVal buffer As Byte(), _
 ByVal length As Integer, _
 ByRef hostAddress As String, _
 ByRef hostPort As Integer _
) As Integer

[C#]
public int ReadFrom(
 byte[] buffer,
 int length,
 ref string hostAddress,
 ref int hostPort
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

hostAddress
A string passed by reference that will contain the remote host Internet address when the method
returns. For stream sockets, this will be the same as the address used to establish the connection. For
datagram sockets, this will specify the address of host that sent the datagram.

hostPort
An integer passed by reference that will contain the remote host port number when the method
returns. For stream sockets, this will be the same as the port number used to establish the connection.
For datagram sockets, this will specify the port number used by the host that sent the datagram.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The ReadFrom method returns data that has been read from the socket, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the socket is in non-blocking
mode. If the socket is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

This method is typically used when reading binary data from a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadFrom Overload List

SocketWrench.ReadFrom Method (Byte[], Int32, String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read data from the socket and store it in a byte array.

[Visual Basic]
Overloads Public Function ReadFrom(_
 ByVal buffer As Byte(), _
 ByRef hostAddress As String, _
 ByRef hostPort As Integer _
) As Integer

[C#]
public int ReadFrom(
 byte[] buffer,
 ref string hostAddress,
 ref int hostPort
);

Parameters
buffer

A byte array that the data will be stored in.

hostAddress
A string passed by reference that will contain the remote host Internet address when the method
returns. For stream sockets, this will be the same as the address used to establish the connection. For
datagram sockets, this will specify the address of host that sent the datagram.

hostPort
An integer passed by reference that will contain the remote host port number when the method
returns. For stream sockets, this will be the same as the port number used to establish the connection.
For datagram sockets, this will specify the port number used by the host that sent the datagram.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The ReadFrom method returns data that has been read from the socket, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the socket is in non-blocking
mode. If the socket is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

This method is typically used when reading binary data from a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadFrom Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadFrom Method (Byte[], String, Int32)

Read data from the socket and store it in a string.

[Visual Basic]
Overloads Public Function ReadFrom(_
 ByRef buffer As String, _
 ByVal length As Integer, _
 ByRef hostAddress As String, _
 ByRef hostPort As Integer _
) As Integer

[C#]
public int ReadFrom(
 ref string buffer,
 int length,
 ref string hostAddress,
 ref int hostPort
);

Parameters
buffer

A string that will contain the data read from the socket.

length
An integer value which specifies the maximum number of bytes of data to read.

hostAddress
A string passed by reference that will contain the remote host Internet address when the method
returns. For stream sockets, this will be the same as the address used to establish the connection. For
datagram sockets, this will specify the address of host that sent the datagram.

hostPort
An integer passed by reference that will contain the remote host port number when the method
returns. For stream sockets, this will be the same as the port number used to establish the connection.
For datagram sockets, this will specify the port number used by the host that sent the datagram.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The ReadFrom method returns data that has been read from the socket, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the socket is in non-blocking
mode. If the socket is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

This method is typically used when reading text data from a datagram socket.

See Also

SocketWrench.ReadFrom Method (String, Int32, String, Int32)

SocketWrench Class | SocketTools Namespace | SocketWrench.ReadFrom Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read data from the socket and store it in a string.

[Visual Basic]
Overloads Public Function ReadFrom(_
 ByRef buffer As String, _
 ByRef hostAddress As String, _
 ByRef hostPort As Integer _
) As Integer

[C#]
public int ReadFrom(
 ref string buffer,
 ref string hostAddress,
 ref int hostPort
);

Parameters
buffer

A string that will contain the data read from the socket.

hostAddress
A string passed by reference that will contain the remote host Internet address when the method
returns. For stream sockets, this will be the same as the address used to establish the connection. For
datagram sockets, this will specify the address of host that sent the datagram.

hostPort
An integer passed by reference that will contain the remote host port number when the method
returns. For stream sockets, this will be the same as the port number used to establish the connection.
For datagram sockets, this will specify the port number used by the host that sent the datagram.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The ReadFrom method returns data that has been read from the socket, up to the maximum size of a
datagram. If no data is available to be read, an error will be generated if the socket is in non-blocking
mode. If the socket is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

This method is typically used when reading text data from a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadFrom Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadFrom Method (String, String, Int32)

Read up to a line of data from the socket and return it in a string buffer.

Overload List
Read up to a line of data from the socket and return it in a string buffer.

public bool ReadLine(ref string);

Read up to a line of data from the socket and return it in a string buffer.

public bool ReadLine(ref string,int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadLine Method

Read up to a line of data from the socket and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool ReadLine(
 ref string buffer
);

Parameters
buffer

A string which will contain the data read from the socket.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the socket up to 8192 bytes in length or until an end-of-line
character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
method is specifically designed to return a single line of text data in a string variable. When an end-of-line
character sequence is encountered, the method will stop and return the data up to that point; the string
will not contain the carriage-return or linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the current thread to block until an end-of-line character sequence is processed,
the read operation times out or the remote host closes its end of the socket connection. If the Blocking
property is set to false, calling this method will automatically switch the socket into a blocking mode, read
the data and then restore the socket to non-blocking mode. If another socket operation is attempted
while ReadLine is blocked waiting for data from the remote host, an error will occur. It is recommended
that this method only be used with blocking socket connections.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadLine Method (String)

Read up to a line of data from the socket and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool ReadLine(
 ref string buffer,
 int length
);

Parameters
buffer

A string which will contain the data read from the socket.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the socket up to the specified number of bytes or until an end-of-
line character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
method is specifically designed to return a single line of text data in a string variable. When an end-of-line
character sequence is encountered, the method will stop and return the data up to that point; the string
will not contain the carriage-return or linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the current thread to block until an end-of-line character sequence is processed,
the read operation times out or the remote host closes its end of the socket connection. If the Blocking
property is set to false, calling this method will automatically switch the socket into a blocking mode, read
the data and then restore the socket to non-blocking mode. If another socket operation is attempted
while ReadLine is blocked waiting for data from the remote host, an error will occur. It is recommended
that this method only be used with blocking socket connections.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

SocketWrench.ReadLine Method (String, Int32)

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read a data stream from the socket and store it in the specified byte array.

Overload List
Read a data stream from the socket and store it in the specified byte array.

public bool ReadStream(byte[],ref int);

Read a data stream from the socket and store it in the specified byte array.

public bool ReadStream(byte[],ref int,byte[]);

Read a data stream from the socket and store it in the specified byte array.

public bool ReadStream(byte[],ref int,byte[],SocketStream);

Read a data stream from the socket and store it in the specified string.

public bool ReadStream(ref string);

Read a data stream from the socket and store it in the specified string.

public bool ReadStream(ref string,bool);

Read a data stream from the socket and store it in the specified string.

public bool ReadStream(ref string,ref int);

Read a data stream from the socket and store it in the specified string.

public bool ReadStream(ref string,ref int,bool);

Read a data stream from the socket and store it in the specified string.

public bool ReadStream(ref string,ref int,string,bool);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadStream Method

Read a data stream from the socket and store it in the specified byte array.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool ReadStream(
 byte[] buffer,
 ref int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the actual number of bytes read from the socket.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the value of the length parameter to determine if any data was copied into the buffer. For
example, if a timeout occurs while the method is waiting for more data to arrive on the socket, it will
return zero; however, data may have already been copied into the buffer prior to the error condition. It is
the responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadStream Method (Byte[], Int32)

Read a data stream from the socket and store it in the specified byte array.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByVal buffer As Byte(), _
 ByRef length As Integer, _
 ByVal marker As Byte() _
) As Boolean

[C#]
public bool ReadStream(
 byte[] buffer,
 ref int length,
 byte[] marker
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the actual number of bytes read from the socket.

marker
An array of bytes which is used to designate the logical end of the data stream. When this byte
sequence is encountered by the method, it will stop reading and return to the caller. The buffer will
contain all of the data read from the socket up to and including the end-of-stream marker.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the value of the length parameter to determine if any data was copied into the buffer. For
example, if a timeout occurs while the method is waiting for more data to arrive on the socket, it will
return zero; however, data may have already been copied into the buffer prior to the error condition. It is
the responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never

SocketWrench.ReadStream Method (Byte[], Int32, Byte[])

perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read a data stream from the socket and store it in the specified byte array.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByVal buffer As Byte(), _
 ByRef length As Integer, _
 ByVal marker As Byte(), _
 ByVal options As SocketStream _
) As Boolean

[C#]
public bool ReadStream(
 byte[] buffer,
 ref int length,
 byte[] marker,
 SocketStream options
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the actual number of bytes read from the socket.

marker
An array of bytes which is used to designate the logical end of the data stream. When this byte
sequence is encountered by the method, it will stop reading and return to the caller. The buffer will
contain all of the data read from the socket up to and including the end-of-stream marker.

options
One of the SocketStream enumeration values which specifies how the data is processed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the value of the length parameter to determine if any data was copied into the buffer. For
example, if a timeout occurs while the method is waiting for more data to arrive on the socket, it will

SocketWrench.ReadStream Method (Byte[], Int32, Byte[],
SocketStream)

return zero; however, data may have already been copied into the buffer prior to the error condition. It is
the responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read a data stream from the socket and store it in the specified string.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool ReadStream(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the socket.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the length of the string to determine if any data was copied into the buffer. For example, if a
timeout occurs while the method is waiting for more data to arrive on the socket, it will return zero;
however, data may have already been copied into the buffer prior to the error condition. It is the
responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadStream Method (String)

Read a data stream from the socket and store it in the specified string.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByRef buffer As String, _
 ByVal convertText As Boolean _
) As Boolean

[C#]
public bool ReadStream(
 ref string buffer,
 bool convertText
);

Parameters
buffer

A string that will contain the data read from the socket.

convertText
A boolean flag which specifies if the data data stream is considered to be textual and should be
modified so that end-of-line character sequences are converted to follow standard Windows
conventions. This will ensure that all lines of text are terminated with a carriage-return and linefeed
sequence. Because this option modifies the data stream, it should never be used with binary data.
Using this option may result in the amount of data returned in the buffer to be larger than the source
data. For example, if the source data only terminates a line of text with a single linefeed, this option will
have the effect of inserting a carriage-return character before each linefeed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the length of the string to determine if any data was copied into the buffer. For example, if a
timeout occurs while the method is waiting for more data to arrive on the socket, it will return zero;
however, data may have already been copied into the buffer prior to the error condition. It is the
responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also

SocketWrench.ReadStream Method (String, Boolean)

SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read a data stream from the socket and store it in the specified string.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByRef buffer As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool ReadStream(
 ref string buffer,
 ref int length
);

Parameters
buffer

A string that will contain the data read from the socket.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the actual number of bytes read from the socket.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the value of the length parameter to determine if any data was copied into the buffer. For
example, if a timeout occurs while the method is waiting for more data to arrive on the socket, it will
return zero; however, data may have already been copied into the buffer prior to the error condition. It is
the responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadStream Method (String, Int32)

Read a data stream from the socket and store it in the specified string.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByRef buffer As String, _
 ByRef length As Integer, _
 ByVal convertText As Boolean _
) As Boolean

[C#]
public bool ReadStream(
 ref string buffer,
 ref int length,
 bool convertText
);

Parameters
buffer

A string that will contain the data read from the socket.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the actual number of bytes read from the socket.

convertText
A boolean flag which specifies if the data data stream is considered to be textual and should be
modified so that end-of-line character sequences are converted to follow standard Windows
conventions. This will ensure that all lines of text are terminated with a carriage-return and linefeed
sequence. Because this option modifies the data stream, it should never be used with binary data.
Using this option may result in the amount of data returned in the buffer to be larger than the source
data. For example, if the source data only terminates a line of text with a single linefeed, this option will
have the effect of inserting a carriage-return character before each linefeed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the value of the length parameter to determine if any data was copied into the buffer. For
example, if a timeout occurs while the method is waiting for more data to arrive on the socket, it will
return zero; however, data may have already been copied into the buffer prior to the error condition. It is
the responsibility of the application to process that data, regardless of the method return value.

SocketWrench.ReadStream Method (String, Int32, Boolean)

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read a data stream from the socket and store it in the specified string.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByRef buffer As String, _
 ByRef length As Integer, _
 ByVal marker As String, _
 ByVal convertText As Boolean _
) As Boolean

[C#]
public bool ReadStream(
 ref string buffer,
 ref int length,
 string marker,
 bool convertText
);

Parameters
buffer

A string that will contain the data read from the socket.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the actual number of bytes read from the socket.

marker
A string which is used to designate the logical end of the data stream. When this character sequence is
encountered by the method, it will stop reading and return to the caller. The string buffer will contain
all of the data read from the socket up to and including the end-of-stream marker.

convertText
A boolean flag which specifies if the data data stream is considered to be textual and should be
modified so that end-of-line character sequences are converted to follow standard Windows
conventions. This will ensure that all lines of text are terminated with a carriage-return and linefeed
sequence. Because this option modifies the data stream, it should never be used with binary data.
Using this option may result in the amount of data returned in the buffer to be larger than the source
data. For example, if the source data only terminates a line of text with a single linefeed, this option will
have the effect of inserting a carriage-return character before each linefeed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to

SocketWrench.ReadStream Method (String, Int32, String, Boolean)

manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the value of the length parameter to determine if any data was copied into the buffer. For
example, if a timeout occurs while the method is waiting for more data to arrive on the socket, it will
return zero; however, data may have already been copied into the buffer prior to the error condition. It is
the responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Rejects a connection request from a remote host.

[Visual Basic]
Public Function Reject() As Boolean

[C#]
public bool Reject();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the connection
being aborted. If there are no pending client connections at the time, this method will immediately return
with an error indicating that the operation would cause the thread to block.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Reject Method

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Reset Method

Resolves a host name to a host IP address.

[Visual Basic]
Public Function Resolve(_
 ByVal hostName As String, _
 ByRef hostAddress As String _
) As Boolean

[C#]
public bool Resolve(
 string hostName,
 ref string hostAddress
);

Parameters
hostName

A string which specifies the host name to be resolved.

hostAddress
A string which will contain the Internet address for the specified host.

Return Value
This method returns a Boolean value. If the host name can be resolved, the return value is true. If the host
name cannot be resolved, the return value is false. To get extended error information, check the value of
the LastError property.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Resolve Method

Disable sending data on the socket.

Overload List
Disable sending data on the socket.

public bool Shutdown();

Disable sending or receiving data on the socket.

public bool Shutdown(ShutdownOptions);

See Also
SocketWrench Class | SocketTools Namespace | Disconnect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Shutdown Method

Disable sending data on the socket.

[Visual Basic]
Overloads Public Function Shutdown() As Boolean

[C#]
public bool Shutdown();

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
In some asynchronous applications, it may be desirable for a client to inform the server that no further
communication is wanted, while allowing the client to read any residual data that may reside in internal
buffers on the client side. Shutdown accomplishes this because the socket handle is still valid after it has
been called, although some or all communication with the remote host has ceased. Note that most
applications do not typically need to use this method. To close a socket connection gracefully, you should
use the Disconnect method.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Shutdown Overload List | Disconnect
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Shutdown Method ()

Disable sending or receiving data on the socket.

[Visual Basic]
Overloads Public Function Shutdown(_
 ByVal options As ShutdownOptions _
) As Boolean

[C#]
public bool Shutdown(
 ShutdownOptions options
);

Parameters
options

One of the ShutdownOptions enumeration values which specifies the operation that will no longer be
allowed.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
In some asynchronous applications, it may be desirable for a client to inform the server that no further
communication is wanted, while allowing the client to read any residual data that may reside in internal
buffers on the client side. Shutdown accomplishes this because the socket handle is still valid after it has
been called, although some or all communication with the remote host has ceased.

Note that most applications do not typically need to use this method. To close a socket connection
gracefully, you should use the Disconnect method.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Shutdown Overload List | Disconnect
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Shutdown Method (ShutdownOptions)

Reads a data stream from the socket and stores it in the specified file.

Overload List
Reads a data stream from the socket and stores it in the specified file.

public bool StoreStream(string);

Reads a data stream from the socket and stores it in the specified file.

public bool StoreStream(string,ref int);

Reads a data stream from the socket and stores it in the specified file.

public bool StoreStream(string,ref int,bool);

Reads a data stream from the socket and stores it in the specified file.

public bool StoreStream(string,ref int,int,SocketStream);

Reads a data stream from the socket and stores it in the specified file.

public bool StoreStream(string,ref int,int,bool);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.StoreStream Method

Reads a data stream from the socket and stores it in the specified file.

[Visual Basic]
Overloads Public Function StoreStream(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool StoreStream(
 string fileName
);

Parameters
fileName

A string variable that specifies the name of the file that will contain the data read from the socket. If
the file does not exist, it will be created. If the file does exist, the contents will be overwritten.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while StoreStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

Because StoreStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class instance will periodically generate OnProgress events. An application
can use this event to update the user interface as the data is being read. Note that an application should
never perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.StoreStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.StoreStream Method (String)

Reads a data stream from the socket and stores it in the specified file.

[Visual Basic]
Overloads Public Function StoreStream(_
 ByVal fileName As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool StoreStream(
 string fileName,
 ref int length
);

Parameters
fileName

A string variable that specifies the name of the file that will contain the data read from the socket. If
the file does not exist, it will be created. If the file does exist, the contents will be overwritten.

length
An integer value which specifies the maximum amount of data to be read from the socket. When the
method returns, this variable will be updated with the actual number of bytes read. Note that because
this argument is passed by reference and modified by the method, you must provide a variable, not a
numeric constant. If the value is initialized to zero, this method will read data from the socket until the
remote host disconnects or an error occurs.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while StoreStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

Because StoreStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class instance will periodically generate OnProgress events. An application
can use this event to update the user interface as the data is being read. Note that an application should
never perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.StoreStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.StoreStream Method (String, Int32)

Reads a data stream from the socket and stores it in the specified file.

[Visual Basic]
Overloads Public Function StoreStream(_
 ByVal fileName As String, _
 ByRef length As Integer, _
 ByVal convertText As Boolean _
) As Boolean

[C#]
public bool StoreStream(
 string fileName,
 ref int length,
 bool convertText
);

Parameters
fileName

A string variable that specifies the name of the file that will contain the data read from the socket. If
the file does not exist, it will be created. If the file does exist, the contents will be overwritten.

length
An integer value which specifies the maximum amount of data to be read from the socket. When the
method returns, this variable will be updated with the actual number of bytes read. Note that because
this argument is passed by reference and modified by the method, you must provide a variable, not a
numeric constant. If the value is initialized to zero, this method will read data from the socket until the
remote host disconnects or an error occurs.

convertText
A boolean flag which specifies if the data data stream is considered to be textual and should be
modified so that end-of-line character sequences are converted to follow standard Windows
conventions. This will ensure that all lines of text are terminated with a carriage-return and linefeed
sequence. Because this option modifies the data stream, it should never be used with binary data.
Using this option may result in the amount of data stored in the file to be larger than the source data.
For example, if the source data only terminates a line of text with a single linefeed, this option will have
the effect of inserting a carriage-return character before each linefeed.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while StoreStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

Because StoreStream can potentially cause the current thread to block for long periods of time as the

SocketWrench.StoreStream Method (String, Int32, Boolean)

data stream is being read, the class instance will periodically generate OnProgress events. An application
can use this event to update the user interface as the data is being read. Note that an application should
never perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.StoreStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Reads a data stream from the socket and stores it in the specified file.

[Visual Basic]
Overloads Public Function StoreStream(_
 ByVal fileName As String, _
 ByRef length As Integer, _
 ByVal offset As Integer, _
 ByVal options As SocketStream _
) As Boolean

[C#]
public bool StoreStream(
 string fileName,
 ref int length,
 int offset,
 SocketStream options
);

Parameters
fileName

A string variable that specifies the name of the file that will contain the data read from the socket. If
the file does not exist, it will be created. If the file does exist, the contents will be overwritten.

length
An integer value which specifies the maximum amount of data to be read from the socket. When the
method returns, this variable will be updated with the actual number of bytes read. Note that because
this argument is passed by reference and modified by the method, you must provide a variable, not a
numeric constant. If the value is initialized to zero, this method will read data from the socket until the
remote host disconnects or an error occurs.

offset
A numeric value which specifies the byte offset into the file where the method will start storing data
read from the socket. Note that all data after this offset will be truncated. If a value of zero is specified,
the file will be completely overwritten if it already exists.

options
One of the SocketStream enumeration values which specifies how the data is processed.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while StoreStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

SocketWrench.StoreStream Method (String, Int32, Int32,
SocketStream)

Because StoreStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.StoreStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Reads a data stream from the socket and stores it in the specified file.

[Visual Basic]
Overloads Public Function StoreStream(_
 ByVal fileName As String, _
 ByRef length As Integer, _
 ByVal offset As Integer, _
 ByVal convertText As Boolean _
) As Boolean

[C#]
public bool StoreStream(
 string fileName,
 ref int length,
 int offset,
 bool convertText
);

Parameters
fileName

A string variable that specifies the name of the file that will contain the data read from the socket. If
the file does not exist, it will be created. If the file does exist, the contents will be overwritten.

length
An integer value which specifies the maximum amount of data to be read from the socket. When the
method returns, this variable will be updated with the actual number of bytes read. Note that because
this argument is passed by reference and modified by the method, you must provide a variable, not a
numeric constant. If the value is initialized to zero, this method will read data from the socket until the
remote host disconnects or an error occurs.

offset
A numeric value which specifies the byte offset into the file where the method will start storing data
read from the socket. Note that all data after this offset will be truncated. If a value of zero is specified,
the file will be completely overwritten if it already exists.

convertText
A boolean flag which specifies if the data data stream is considered to be textual and should be
modified so that end-of-line character sequences are converted to follow standard Windows
conventions. This will ensure that all lines of text are terminated with a carriage-return and linefeed
sequence. Because this option modifies the data stream, it should never be used with binary data.
Using this option may result in the amount of data stored in the file to be larger than the source data.
For example, if the source data only terminates a line of text with a single linefeed, this option will have
the effect of inserting a carriage-return character before each linefeed.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket

SocketWrench.StoreStream Method (String, Int32, Int32, Boolean)

operation is attempted while StoreStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

Because StoreStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class instance will periodically generate OnProgress events. An application
can use this event to update the user interface as the data is being read. Note that an application should
never perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.StoreStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further socket operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
SocketWrench Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Uninitialize Method

Write one or more bytes of data to the socket.

Overload List
Write one or more bytes of data to the socket.

public int Write(byte[]);

Write one or more bytes of data to the socket.

public int Write(byte[],int);

Write a string of characters to the socket.

public int Write(string);

Write a string of characters to the socket.

public int Write(string,int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Write Method

Write one or more bytes of data to the socket.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the socket.

Return Value
An integer value which specifies the number of bytes actually written to the socket. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the remote host. If there is enough room in the
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Write Method (Byte[])

Write one or more bytes of data to the socket.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the socket.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the socket. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the remote host. If there is enough room in the
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Write Method (Byte[], Int32)

Write a string of characters to the socket.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the socket.

Return Value
An integer value which specifies the number of characters actually written to the socket. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the remote host. If there is enough room in the socket's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

You should never use strings to read and write binary data. Always use byte arrays to ensure that no
character conversion is performed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Write Method (String)

Write a string of characters to the socket.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the socket.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the socket. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the remote host. If there is enough room in the socket's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

You should never use strings to read and write binary data. Always use byte arrays to ensure that no
character conversion is performed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Write Method (String, Int32)

Send an empty line of text to the remote host, terminated by a carriage-return and linefeed.

Overload List
Send an empty line of text to the remote host, terminated by a carriage-return and linefeed.

public bool WriteLine();

Send a line of text to the remote host, terminated by a carriage-return and linefeed.

public bool WriteLine(string);

Send a line of text to the remote host, terminated by a carriage-return and linefeed.

public bool WriteLine(string,ref int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteLine Method

Send an empty line of text to the remote host, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine() As Boolean

[C#]
public bool WriteLine();

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method will send an empty line of text, terminated by a carriage-return and linefeed.
Calling this method will force the application to block until the complete line of text has been written, the
write operation times out or the remote host aborts the connection. If this method is called with the
Blocking property set to false, it will automatically switch the socket into a blocking mode, send the data
and then restore the socket to non-blocking mode. If another socket operation is attempted while the
WriteLine method is blocked sending data to the remote host, an error will occur. It is recommended that
this method only be used with blocking socket connections.

The Write and WriteLine methods can be safely intermixed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteLine Method ()

Send a line of text to the remote host, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool WriteLine(
 string buffer
);

Parameters
buffer

A string which contains the data that will be sent to the remote host. The data will always be
terminated with a carriage-return and linefeed control character sequence. If the string is empty, then
a only a carriage-return and linefeed are written to the socket. Note that if the string contains a null
character, any data that follows the null character will be discarded.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection. If this
method is called with the Blocking property set to false, it will automatically switch the socket into a
blocking mode, send the data and then restore the socket to non-blocking mode. If another socket
operation is attempted while the WriteLine method is blocked sending data to the remote host, an error
will occur. It is recommended that this method only be used with blocking socket connections.

The Write and WriteLine methods can be safely intermixed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteLine Method (String)

Send a line of text to the remote host, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal buffer As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool WriteLine(
 string buffer,
 ref int length
);

Parameters
buffer

A string which contains the data that will be sent to the remote host. The data will always be
terminated with a carriage-return and linefeed control character sequence. If the string is empty, then
a only a carriage-return and linefeed are written to the socket. Note that if the string contains a null
character, any data that follows the null character will be discarded.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection. If this
method is called with the Blocking property set to false, it will automatically switch the socket into a
blocking mode, send the data and then restore the socket to non-blocking mode. If another socket
operation is attempted while the WriteLine method is blocked sending data to the remote host, an error
will occur. It is recommended that this method only be used with blocking socket connections.

The Write and WriteLine methods can be safely intermixed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteLine Method (String, Int32)

Write a stream of bytes to the socket.

Overload List
Write a stream of bytes to the socket.

public bool WriteStream(byte[],ref int);

Write a string of characters to the socket.

public bool WriteStream(string,ref int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteStream Method

Write a stream of bytes to the socket.

[Visual Basic]
Overloads Public Function WriteStream(_
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool WriteStream(
 byte[] buffer,
 ref int length
);

Parameters
buffer

A byte array that contains the data to be written to the socket.

length
An integer value passed by reference which specifies the maximum number of bytes to write. This
value cannot be larger than the size of the buffer specified by the caller. When the method returns,
this value will be updated with the actual number of bytes written to the socket.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteStream method enables an application to write an arbitrarily large stream of data from a byte
array to the socket. Unlike the Write method, which may not write all of the data in a single call, the
WriteStream method will only return when all of the data has been written or an error occurs.

This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, write
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while WriteStream is blocked sending data to the remote host, an error will occur.
It is recommended that this method only be used with blocking (synchronous) socket connections; if the
application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible that some data will have been written to the socket even if the method returns false.
Applications should also check the value of the length argument to determine if any data was sent. For
example, if a timeout occurs while the function is waiting to write more data, it will return zero; however,
some data may have already been written to the socket prior to the error condition.

Because WriteStream can potentially cause the current thread to block for long periods of time as the
data stream is being written, the class instance will periodically generate OnProgress events. An
application can use this event to update the user interface as the data is being written. Note that an
application should never perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteStream Overload List

SocketWrench.WriteStream Method (Byte[], Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Write a string of characters to the socket.

[Visual Basic]
Overloads Public Function WriteStream(_
 ByVal buffer As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool WriteStream(
 string buffer,
 ref int length
);

Parameters
buffer

A string that contains the data to be written to the socket.

length
An integer value passed by reference which specifies the maximum number of characters to write. This
value cannot be larger than the length of the string specified by the caller. When the method returns,
this value will be updated with the actual number of bytes written to the socket.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteStream method enables an application to write an arbitrarily large stream of data from a string
to the socket. Unlike the Write method, which may not write all of the data in a single call, the
WriteStream method will only return when all of the data has been written or an error occurs.

This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, write
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while WriteStream is blocked sending data to the remote host, an error will occur.
It is recommended that this method only be used with blocking (synchronous) socket connections; if the
application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible that some data will have been written to the socket even if the method returns false.
Applications should also check the value of the length argument to determine if any data was sent. For
example, if a timeout occurs while the function is waiting to write more data, it will return zero; however,
some data may have already been written to the socket prior to the error condition.

Because WriteStream can potentially cause the current thread to block for long periods of time as the
data stream is being written, the class instance will periodically generate OnProgress events. An
application can use this event to update the user interface as the data is being written. Note that an
application should never perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteStream Overload List

SocketWrench.WriteStream Method (String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Write one or more bytes of data to the socket.

Overload List
Write one or more bytes of data to the socket.

public int WriteTo(byte[],int,string,int);

Write one or more bytes of data to the socket.

public int WriteTo(byte[],string,int);

Write a string of characters to the socket.

public int WriteTo(string,int,string,int);

Write a string of characters to the socket.

public int WriteTo(string,string,int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteTo Method

Write one or more bytes of data to the socket.

[Visual Basic]
Overloads Public Function WriteTo(_
 ByVal buffer As Byte(), _
 ByVal length As Integer, _
 ByVal hostAddress As String, _
 ByVal hostPort As Integer _
) As Integer

[C#]
public int WriteTo(
 byte[] buffer,
 int length,
 string hostAddress,
 int hostPort
);

Parameters
buffer

A byte array that contains the data to be written to the socket.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

hostAddress
A string value which specifies the address of the remote host that the data will be sent to. For
datagram sockets, this may be any valid Internet address. For stream sockets, this must be the same
address that was used to establish the connection.

hostPort
An integer value which specifies the port number of the remote host that the data will be sent to. For
datagram sockets, this may be any valid port number. For stream sockets, this must be the same port
number that was used to establish the connection.

Return Value
An integer value which specifies the number of bytes actually written to the socket. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The WriteTo method sends one or more bytes of data to the remote host. If there is enough room in the
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

This method is typically used when writing binary data to a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteTo Overload List

SocketWrench.WriteTo Method (Byte[], Int32, String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Write one or more bytes of data to the socket.

[Visual Basic]
Overloads Public Function WriteTo(_
 ByVal buffer As Byte(), _
 ByVal hostAddress As String, _
 ByVal hostPort As Integer _
) As Integer

[C#]
public int WriteTo(
 byte[] buffer,
 string hostAddress,
 int hostPort
);

Parameters
buffer

A byte array that contains the data to be written to the socket.

hostAddress
A string value which specifies the address of the remote host that the data will be sent to. For
datagram sockets, this may be any valid Internet address. For stream sockets, this must be the same
address that was used to establish the connection.

hostPort
An integer value which specifies the port number of the remote host that the data will be sent to. For
datagram sockets, this may be any valid port number. For stream sockets, this must be the same port
number that was used to establish the connection.

Return Value
An integer value which specifies the number of bytes actually written to the socket. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The WriteTo method sends one or more bytes of data to the remote host. If there is enough room in the
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

This method is typically used when writing binary data to a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteTo Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteTo Method (Byte[], String, Int32)

Write a string of characters to the socket.

[Visual Basic]
Overloads Public Function WriteTo(_
 ByVal buffer As String, _
 ByVal length As Integer, _
 ByVal hostAddress As String, _
 ByVal hostPort As Integer _
) As Integer

[C#]
public int WriteTo(
 string buffer,
 int length,
 string hostAddress,
 int hostPort
);

Parameters
buffer

A string that contains the data to be written to the socket.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

hostAddress
A string value which specifies the address of the remote host that the data will be sent to. For
datagram sockets, this may be any valid Internet address. For stream sockets, this must be the same
address that was used to establish the connection.

hostPort
An integer value which specifies the port number of the remote host that the data will be sent to. For
datagram sockets, this may be any valid port number. For stream sockets, this must be the same port
number that was used to establish the connection.

Return Value
An integer value which specifies the number of bytes actually written to the socket. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The WriteTo method sends a string of characters to the remote host. If there is enough room in the
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

This method is typically used when writing text data to a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteTo Overload List

SocketWrench.WriteTo Method (String, Int32, String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Write a string of characters to the socket.

[Visual Basic]
Overloads Public Function WriteTo(_
 ByVal buffer As String, _
 ByVal hostAddress As String, _
 ByVal hostPort As Integer _
) As Integer

[C#]
public int WriteTo(
 string buffer,
 string hostAddress,
 int hostPort
);

Parameters
buffer

A string that contains the data to be written to the socket.

hostAddress
A string value which specifies the address of the remote host that the data will be sent to. For
datagram sockets, this may be any valid Internet address. For stream sockets, this must be the same
address that was used to establish the connection.

hostPort
An integer value which specifies the port number of the remote host that the data will be sent to. For
datagram sockets, this may be any valid port number. For stream sockets, this must be the same port
number that was used to establish the connection.

Return Value
An integer value which specifies the number of bytes actually written to the socket. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The WriteTo method sends a string of characters to the remote host. If there is enough room in the
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

This method is typically used when writing text data to a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteTo Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteTo Method (String, String, Int32)

The events of the SocketWrench class are listed below. For a complete list of SocketWrench class
members, see the SocketWrench Members topic.

Public Instance Events

OnAccept Occurs when a remote host attempts to establish a
connection with the local system.

OnCancel Occurs when a blocking socket operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an socket operation fails.

OnProgress Occurs as a data stream is being read or written to
the socket.

OnRead Occurs when data is available to be read from the
socket.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the socket.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench Events

Occurs when a remote host attempts to establish a connection with the local system.

[Visual Basic]
Public Event OnAccept As OnAcceptEventHandler

[C#]
public event OnAcceptEventHandler OnAccept;

Event Data
The event handler receives an argument of type SocketWrench.AcceptEventArgs containing data related
to this event. The following SocketWrench.AcceptEventArgs property provides information specific to
this event.

Property Description

Handle Gets a value that specifies the socket handle for
the listening server.

Remarks
The OnAccept event occurs when a remote host attempts to connect to the local system. A connection is
not actually established until it has been accepted by the listening server. To accept the connection, the
application must call the Accept method.

The PeerAddress or PeerName properties may be used to determine the Internet address and host
name of the remote host that is establishing the connection. Note that this information may not be
available until after the Accept method is called to accept the connection.

This event is only generated if the socket is in non-blocking mode.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnAccept Event

Provides data for the OnAccept event.

For a list of all members of this type, see SocketWrench.AcceptEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.SocketWrench.AcceptEventArgs

[Visual Basic]
Public Class SocketWrench.AcceptEventArgs
 Inherits EventArgs

[C#]
public class SocketWrench.AcceptEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
AcceptEventArgs specifies the socket handle for the server that should accept the incoming client
connection.

The OnAccept event occurs when a remote host attempts to establish a connection with the local system.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketWrench.AcceptEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AcceptEventArgs Class

SocketWrench.AcceptEventArgs overview

Public Instance Constructors

 SocketWrench.AcceptEventArgs Constructor Initializes a new instance of the
SocketWrench.AcceptEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the listening server.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrench.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AcceptEventArgs Members

Initializes a new instance of the SocketWrench.AcceptEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public SocketWrench.AcceptEventArgs();

See Also
SocketWrench.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AcceptEventArgs Constructor

The properties of the SocketWrench.AcceptEventArgs class are listed below. For a complete list of
SocketWrench.AcceptEventArgs class members, see the SocketWrench.AcceptEventArgs Members
topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the listening server.

See Also
SocketWrench.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AcceptEventArgs Properties

Gets a value that specifies the socket handle for the listening server.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the server socket handle.

See Also
SocketWrench.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AcceptEventArgs.Handle Property

Occurs when a blocking socket operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking socket operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnCancel Event

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a remote host as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a socket is
created but the connection is not actually established until after this event occurs. Between the time
connection process is started and this event fires, no operation may be performed on the socket other
than calling the Disconnect method.

This event is only generated if the socket is in non-blocking mode.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnConnect Event

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the remote host closes its socket, terminating its connection with
the application. Because there may still be data in the socket receive buffers, you should continue to read
data from the socket until the Read method returns a value of 0. Once all of the data has been read, you
should call the Disconnect method to close the local socket and terminate the session.

This event is only generated if the socket is in non-blocking mode.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnDisconnect Event

Occurs when an socket operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type SocketWrench.ErrorEventArgs containing data related to
this event. The following SocketWrench.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a socket operation fails.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see SocketWrench.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.SocketWrench.ErrorEventArgs

[Visual Basic]
Public Class SocketWrench.ErrorEventArgs
 Inherits EventArgs

[C#]
public class SocketWrench.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketWrench.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ErrorEventArgs Class

SocketWrench.ErrorEventArgs overview

Public Instance Constructors

 SocketWrench.ErrorEventArgs Constructor Initializes a new instance of the
SocketWrench.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrench.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ErrorEventArgs Members

Initializes a new instance of the SocketWrench.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public SocketWrench.ErrorEventArgs();

See Also
SocketWrench.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ErrorEventArgs Constructor

The properties of the SocketWrench.ErrorEventArgs class are listed below. For a complete list of
SocketWrench.ErrorEventArgs class members, see the SocketWrench.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
SocketWrench.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
SocketWrench.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public SocketWrench.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
SocketWrench.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ErrorEventArgs.Error Property

Occurs as a data stream is being read or written to the socket.

[Visual Basic]
Public Event OnProgress As OnProgressEventHandler

[C#]
public event OnProgressEventHandler OnProgress;

Event Data
The event handler receives an argument of type SocketWrench.ProgressEventArgs containing data related
to this event. The following SocketWrench.ProgressEventArgs properties provide information specific to
this event.

Property Description

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Remarks
The OnProgress event occurs as a data stream is being read or written to the socket. If large amounts of
data are being read or written, this event can be used to update a progress bar or other user-interface
component to provide the user with some visual feedback on the progress of the operation.

This event is only generated when the ReadStream, WriteStream or StoreStream methods are called.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnProgress Event

Provides data for the OnProgress event.

For a list of all members of this type, see SocketWrench.ProgressEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.SocketWrench.ProgressEventArgs

[Visual Basic]
Public Class SocketWrench.ProgressEventArgs
 Inherits EventArgs

[C#]
public class SocketWrench.ProgressEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ProgressEventArgs specifies the number of bytes copied from the data stream, the total number of bytes
in the data stream and a completion percentage.

The OnProgress event occurs as a data stream is being read or written to the socket. This event only
occurs when the ReadStream, WriteStream or StoreStream methods are called.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketWrench.ProgressEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs Class

SocketWrench.ProgressEventArgs overview

Public Instance Constructors

 SocketWrench.ProgressEventArgs Constructor Initializes a new instance of the
SocketWrench.ProgressEventArgs class.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrench.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs Members

Initializes a new instance of the SocketWrench.ProgressEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public SocketWrench.ProgressEventArgs();

See Also
SocketWrench.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs Constructor

The properties of the SocketWrench.ProgressEventArgs class are listed below. For a complete list of
SocketWrench.ProgressEventArgs class members, see the SocketWrench.ProgressEventArgs Members
topic.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

See Also
SocketWrench.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs Properties

Gets a value which specifies the number of bytes of data that has been read or written.

[Visual Basic]
Public ReadOnly Property BytesCopied As Integer

[C#]
public int BytesCopied {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesCopied property specifies the number of bytes that have been read from the socket and stored
in the local stream buffer, or written from the stream buffer to the socket.

See Also
SocketWrench.ProgressEventArgs Class | SocketTools Namespace | BytesTotal Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs.BytesCopied Property

Gets a value which specifies the total number of bytes in the data stream.

[Visual Basic]
Public ReadOnly Property BytesTotal As Integer

[C#]
public int BytesTotal {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesTotal property specifies the total amount of data being read from the socket and stored in the
data stream, or written from the data stream to the socket. If the amount of data was unknown or
unspecified at the time the method call was made, then this value will always be the same as the
BytesCopied property.

See Also
SocketWrench.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | Percent
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs.BytesTotal Property

Gets a value which specifies the percentage of data that has been read or written.

[Visual Basic]
Public ReadOnly Property Percent As Integer

[C#]
public int Percent {get;}

Property Value
An integer value which specifies a percentage.

Remarks
The Percent property specifies the percentage of data that has been transmitted, expressed as an integer
value between 0 and 100, inclusive. If the maximum size of the data stream was not specified by the caller,
this value will always be 100.

See Also
SocketWrench.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | BytesTotal
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs.Percent Property

Occurs when data is available to be read from the socket.

[Visual Basic]
Public Event OnRead As EventHandler

[C#]
public event EventHandler OnRead;

Remarks
The OnRead event occurs when data is available to be read from the socket. This event is level-triggered,
which means that once this event fires, it will not occur again until some data has been read from the
socket. This design prevents an application from being flooded with event notifications. It is recommended
that your application read all of the available data from the socket and store it in a local buffer for
processing. See the example below.

This event is only generated if the socket is in non-blocking mode.

Example

Private Sub Socket_OnRead(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Socket.OnRead
 Dim strBuffer As String
 Dim nRead As Integer

 Do
 ' Read up to m_nBufferSize bytes of data from the socket
 nRead = Socket.Read(strBuffer, m_nBufferSize)

 If nRead > 0 Then
 ' Append the data to an internal buffer for processing
 m_dataBuffer = m_dataBuffer + strBuffer
 End If
 Loop Until nRead < 1

 ProcessData()
End Sub

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnRead Event

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the
socket, fails to complete before the specified timeout period elapses. The timeout period for a blocking
operation can be adjusted by setting the Timeout property.

This event is only generated if the socket is in blocking mode.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnTimeout Event

Occurs when data can be written to the socket.

[Visual Basic]
Public Event OnWrite As EventHandler

[C#]
public event EventHandler OnWrite;

Remarks
The OnWrite event occurs when the application can write data to the socket. This event will typically
occur when a connection is first established with the remote host, and after the Write method has failed
because there was insufficient memory available in the socket send buffers. In the second case, when
some of the buffered data has been successfully sent to the remote host and there is space available in
the send buffers, this event is used to signal the application that it may attempt to send more data.

This event is only generated if the socket is in non-blocking mode.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnWrite Event

Specifies the error codes returned by the SocketWrench class.

[Visual Basic]
Public Enum SocketWrench.ErrorCode

[C#]
public enum SocketWrench.ErrorCode

Remarks
The SocketWrench class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

SocketWrench.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidBuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the key exchange algorithms that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.SecureKeyAlgorithm

[C#]
[Flags]
public enum SocketWrench.SecureKeyAlgorithm

Remarks
The SocketWrench class uses the SecureKeyAlgorithm enumeration to identify the key exchange
algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

keyExchangeNone No key exchange algorithm has been
selected. This is not a secure connection
with the server.

0

keyExchangeRSA The RSA public key exchange algorithm
has been selected.

1

keyExchangeKEA The KEA public key exchange algorithm
has been selected. This is an improved
version of the Diffie-Hellman public key
algorithm.

2

keyExchangeDH The Diffie-Hellman public key exchange
algorithm has been selected.

4

keyExchangeECDH The Elliptic Curve Diffie-Hellman key
exchange algorithm was selected. This is
a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography.
This key exchange algorithm is only
supported on Windows XP SP3 SP3 and
later versions of the operating system.

8

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SecureKeyAlgorithm Enumeration

Specifies the encryption algorithms that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.SecureCipherAlgorithm

[C#]
[Flags]
public enum SocketWrench.SecureCipherAlgorithm

Remarks
The SocketWrench class uses the SecureCipherAlgorithm enumeration to identify which encryption
algorithm was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

cipherNone No cipher has been selected. A secure
connection has not been established
with the remote host.

0

cipherRC2 The RC2 block cipher was selected. This
is a variable key length cipher which
supports keys between 40- and 128-bits
in length, in 8-bit increments.

1

cipherRC4 The RC4 stream cipher was selected.
This is a variable key length cipher
which supports keys between 40- and
128-bits in length, in 8-bit increments.

2

cipherRC5 The RC5 block cipher was selected. This
is a variable key length cipher which
supports keys up to 2040 bits, in 8-bit
increments.

4

cipherDES The DES (Data Encryption Standard)
block cipher was selected. This is a fixed
key length cipher using 56-bit keys.

8

cipherDES3 The Triple DES block cipher was
selected. This cipher encrypts the data
three times using different keys,
effectively using a 168-bit key length.

16

cipherDESX A variant of the DES block cipher which
XORs an extra 64-bits of the key before
and after the plaintext has been
encrypted, increasing the key size to
184 bits.

32

cipherAES The Advanced Encryption Standard 64

SocketWrench.SecureCipherAlgorithm Enumeration

cipher (also known as the Rijndael
cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits.
This cipher is supported on Windows XP
SP3 SP3 and later versions of the
operating system.

cipherSkipjack The Skipjack block cipher was selected.
This is a fixed key length cipher, using
80-bit keys.

128

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the hash algorithms that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.SecureHashAlgorithm

[C#]
[Flags]
public enum SocketWrench.SecureHashAlgorithm

Remarks
The SocketWrench class uses the SecureHashAlgorithm enumeration to identify the message digest
(hash) algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

hashNone No hash algorithm has been selected.
This is not a secure connection with the
server.

0

hashMD5 The MD5 algorithm was selected. This
algorithm produces a 128-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

1

hashSHA The SHA-1 algorithm was selected. This
algorithm produces a 160-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

2

hashSHA256 The SHA-256 algorithm was selected.
This algorithm produces a 256-bit
message digest.

4

hashSHA384 The SHA-384 algorithm was selected.
This algorithm produces a 384-bit
message digest.

8

hashSHA512 The SHA-512 algorithm was selected.
This algorithm produces a 512-bit
message digest.

16

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also

SocketWrench.SecureHashAlgorithm Enumeration

SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the security certificate status values that may be returned by the SocketWrench class.

[Visual Basic]
Public Enum SocketWrench.SecurityCertificate

[C#]
public enum SocketWrench.SecurityCertificate

Remarks
The SocketWrench class uses the SecurityCertificate enumeration to identify the current status of the
certificate that was provided by the remote host when a secure connection was established.

Members

Member Name Description

certificateNone No certificate information is available. A secure
connection was not established with the server.

certificateValid The certificate is valid.

certificateNoMatch The certificate is valid, however the domain name
specified in the certificate does not match the
domain name of the remote host. The application
can examine the CertificateSubject property to
determine the site the certificate was issued to.

certificateExpired The certificate has expired and is no longer valid.
The application can examine the
CertificateExpires property to determine when
the certificate expired.

certificateRevoked The certificate has been revoked and is no longer
valid. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateUntrusted The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the
local host. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateInvalid The certificate is invalid. This typically indicates that
the internal structure of the certificate is damaged.
It is recommended that the application
immediately terminate the connection if this status
is returned.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

SocketWrench.SecurityCertificate Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the security protocols that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.SecurityProtocols

[C#]
[Flags]
public enum SocketWrench.SecurityProtocols

Remarks
The SocketWrench class uses the SecurityProtocols enumeration to specify one or more security
protocols to be used when establishing a connection with a remote host. Multiple protocols may be
specified if necessary and the actual protocol used will be negotiated with the remote host. It is
recommended that most applications use protocolDefault when creating a secure connection.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

SocketWrench.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolDefault The default selection of security
protocols will be used when establishing
a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

16

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the shutdown options that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.ShutdownOptions

[C#]
[Flags]
public enum SocketWrench.ShutdownOptions

Remarks
The SocketWrench class uses the ShutdownOptions enumeration to specify how reading and writing on
the socket should be handled when the Shutdown method is called.

Members

Member Name Description Value

shutdownRead Disable any further reading of data. The
application will be able to continue to
send data. The remote host will see this
as the connection being closed.

0

shutdownWrite Disable any further sending of data. The
application will be able to continue to
read data until the remote host closes
the connection.

1

shutdownReadWrite Disable any further reading or writing to
the socket. The remote host will see this
as the connection being closed.

2

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ShutdownOptions Enumeration

Specifies the byte-order in which integer data may exchanged with a remote host.

[Visual Basic]
Public Enum SocketWrench.SocketByteOrder

[C#]
public enum SocketWrench.SocketByteOrder

Remarks
The byte-order is used to specify how 16-bit (short) integer and 32-bit (long) integer data is written to and
read from the socket.

Members

Member Name Description

byteOrderNative Integer data will be sent and received using the
native byte order.

byteOrderNetwork Integer data will be sent and received using
network byte order.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SocketByteOrder Enumeration

Specifies the options that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.SocketOptions

[C#]
[Flags]
public enum SocketWrench.SocketOptions

Remarks
The SocketWrench class uses the SocketOptions enumeration to specify one or more options to be used
when establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionBroadcast This option specifies that broadcasting
should be enabled for datagrams. This
option is invalid for stream sockets.

1

optionDontRoute This option specifies default routing
should not be used. This option should
not be specified unless absolutely
necessary.

2

optionKeepAlive This option specifies that packets are to
be sent to the remote system when no
data is being exchanged to keep the
connection active. This option is only
valid for stream sockets.

4

optionReuseAddress This option specifies the local address
can be reused. This option is commonly
used by server applications.

8

optionNoDelay This option disables the Nagle
algorithm, which buffers
unacknowledged data and insures that
a full-size packet can be sent to the
remote host.

16

optionInLine This option specifies that out-of-band
data should be received inline with the
standard data stream. This option is
only valid for stream sockets.

32

optionTrustedSite This option specifies the sever should be
trusted. The server certificate will not be
validated and the connection will always

2048

SocketWrench.SocketOptions Enumeration

be permitted. This option only affects
secure client connections.

optionSecure This option specifies that a secure,
encrypted connection will be
established with the remote host.

4096

optionSecureFallback This option specifies the class should
permit the use of less secure cipher
suites for compatibility with legacy
clients and servers. If this option is
specified, it will enable connections
using TLS 1.0 and cipher suites that use
RC4, MD5 and SHA1.

32768

optionPreferIPv6 This option specifies the client should
prefer the use of IPv6 if the remote
hostname can be resolved to both an
IPv6 and IPv4 address. This option is
ignored if the local system does not
have IPv6 enabled, or when the
hostname can only be resolved to an
IPv4 address. If the server hostname can
only be resolved to an IPv6 address, the
client will attempt to establish a
connection using IPv6 regardless if this
option has been specified.

262144

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the protocols that the SocketWrench class supports.

[Visual Basic]
Public Enum SocketWrench.SocketProtocol

[C#]
public enum SocketWrench.SocketProtocol

Remarks
The SocketWrench class uses the SocketProtocol enumeration to specify which network protocol will be
used when a socket is created. The default protocol used by the class is socketStream.

Members

Member Name Description

socketStream Transmission Control Protocol (TCP). This protocol
should be used with stream sockets, where data is
sent and received as an arbitrary stream of bytes.

socketDatagram User Datagram Protocol (UDP). This protocol
should be used with datagram sockets, where data
is sent and received in discrete packets.

socketRaw Raw sockets. This socket type is for special purpose
applications which need access to the IP
datagram.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SocketProtocol Enumeration

Specifies the status values that may be returned by the SocketWrench class.

[Visual Basic]
Public Enum SocketWrench.SocketStatus

[C#]
public enum SocketWrench.SocketStatus

Remarks
The SocketWrench class uses the SocketStatus enumeration to identify the current status of the socket.

Members

Member Name Description

statusUnused A socket has not been created. Attempts to
perform any network operations, such as sending
or receiving data, will generate an error.

statusIdle A socket has been created, but is not currently in
use. A blocking socket operation can be executed
at this point.

statusListen The socket is listening for connections from
remote hosts.

statusConnect The socket is in the process of establishing a
connection with a remote host.

statusAccept The socket is in the process of accepting a
connection from a remote client.

statusRead The socket is in the process of receiving data from
a remote host.

statusWrite The socket is in the process of sending data to a
remote host.

statusFlush The control buffers are in the process of being
flushed. Any data in the socket receive buffers will
be discarded.

statusDisconnect The socket is being closed and subsequent
attempts to access the socket will result in an error.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SocketStatus Enumeration

Specifies the data stream options that the SocketWrench class supports.

[Visual Basic]
Public Enum SocketWrench.SocketStream

[C#]
public enum SocketWrench.SocketStream

Remarks
The SocketWrench class uses the SocketStream enumeration to specify how data should be processed
when read from a socket using either the ReadStream or StoreStream methods.

Members

Member Name Description

streamDefault The data stream will be returned to the caller
unmodified. This option should always be used
with binary data or data being stored in a byte
array. If no options are specified, this is the default
option used by this method.

streamConvert The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the
amount of data returned in the buffer to be larger
than the source data. For example, if the source
data only terminates a line of text with a single
linefeed, this option will have the effect of inserting
a carriage-return character before each linefeed.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace | ReadStream Method | StoreStream Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SocketStream Enumeration

Specifies the logging options that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.TraceOptions

[C#]
[Flags]
public enum SocketWrench.TraceOptions

Remarks
The SocketWrench class uses the TraceOptions enumeration to specify what kind of debugging
information is written to the trace logfile. These options are only meaningful when trace logging is
enabled by setting the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

SocketWrench.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnAccept event.

[Visual Basic]
Public Delegate Sub SocketWrench.OnAcceptEventHandler(_
 ByVal sender As Object, _
 ByVal e As AcceptEventArgs _
)

[C#]
public delegate void SocketWrench.OnAcceptEventHandler(

 object sender,
 AcceptEventArgs e
);

Parameters
sender

The source of the event.

e
An AcceptEventArgs that contains the event data.

Remarks
When you create an OnAcceptEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnAcceptEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace | Accept Method | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnAcceptEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub SocketWrench.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void SocketWrench.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnErrorEventHandler Delegate

Represents the method that will handle the OnProgress event.

[Visual Basic]
Public Delegate Sub SocketWrench.OnProgressEventHandler(_
 ByVal sender As Object, _
 ByVal e As ProgressEventArgs _
)

[C#]
public delegate void SocketWrench.OnProgressEventHandler(

 object sender,
 ProgressEventArgs e
);

Parameters
sender

The source of the event.

e
A ProgressEventArgs that contains the event data.

Remarks
When you create an OnProgressEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnProgressEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnProgressEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see SocketWrench.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.SocketWrench.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class SocketWrench.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class SocketWrench.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketWrench can be generated using the License Manager
utility that is included with the product. Note that if you have installed an evaluation license, you will not
have a runtime license key and cannot redistribute any applications which use the SocketWrench class.

Example

<Assembly: SocketTools.SocketWrench.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.SocketWrench.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketWrench.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.RuntimeLicenseAttribute Class

SocketWrench.RuntimeLicenseAttribute overview

Public Instance Constructors

 SocketWrench.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrench.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public SocketWrench.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketWrench can be generated using the License Manager
utility that is included with the product. Note that if you have installed an evaluation license, you will not
have a runtime license key and cannot redistribute any applications which use the SocketWrench class.

See Also
SocketWrench.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.RuntimeLicenseAttribute Constructor

The properties of the SocketWrench.RuntimeLicenseAttribute class are listed below. For a complete list
of SocketWrench.RuntimeLicenseAttribute class members, see the
SocketWrench.RuntimeLicenseAttribute Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
SocketWrench.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
SocketWrench.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a socket error occurs.

For a list of all members of this type, see SocketWrenchException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.SocketWrenchException

[Visual Basic]
Public Class SocketWrenchException
 Inherits ApplicationException

[C#]
public class SocketWrenchException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A SocketWrenchException is thrown by the SocketWrench class when an error occurs.

The default constructor for the SocketWrenchException class sets the ErrorCode property to the last
socket error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketWrenchException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrenchException Class

SocketWrenchException overview

Public Instance Constructors

 SocketWrenchException Overloaded. Initializes a new instance of the
SocketWrenchException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

SocketWrenchException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrenchException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the SocketWrenchException class with the last network error code.

Overload List
Initializes a new instance of the SocketWrenchException class with the last network error code.

public SocketWrenchException();

Initializes a new instance of the SocketWrenchException class with a specified error number.

public SocketWrenchException(int);

Initializes a new instance of the SocketWrenchException class with a specified error message.

public SocketWrenchException(string);

Initializes a new instance of the SocketWrenchException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

public SocketWrenchException(string,Exception);

See Also
SocketWrenchException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrenchException Constructor

Initializes a new instance of the SocketWrenchException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public SocketWrenchException();

Remarks
The ctor constructor sets the ErrorCode property to the last socket error that occurred. For more
information about the errors that may occur, refer to the SocketWrench.ErrorCode enumeration.

See Also
SocketWrenchException Class | SocketTools Namespace | SocketWrenchException Constructor Overload
List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrenchException Constructor ()

Initializes a new instance of the SocketWrenchException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public SocketWrenchException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
SocketWrenchException Class | SocketTools Namespace | SocketWrenchException Constructor Overload
List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrenchException Constructor (String)

Initializes a new instance of the SocketWrenchException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public SocketWrenchException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
SocketWrenchException Class | SocketTools Namespace | SocketWrenchException Constructor Overload
List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrenchException Constructor (String, Exception)

Initializes a new instance of the SocketWrenchException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public SocketWrenchException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the SocketWrench.ErrorCode enumeration.

See Also
SocketWrenchException Class | SocketTools Namespace | SocketWrenchException Constructor Overload
List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrenchException Constructor (Int32)

The properties of the SocketWrenchException class are listed below. For a complete list of
SocketWrenchException class members, see the SocketWrenchException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
SocketWrenchException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrenchException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public SocketWrench.ErrorCode ErrorCode {get;}

Property Value
Returns a SocketWrench.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the SocketWrenchException class sets the error code to the last network error
that occurred. For more information about the errors that may occur, refer to the
SocketWrench.ErrorCode enumeration.

See Also
SocketWrenchException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrenchException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
SocketWrenchException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrenchException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
SocketWrenchException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrenchException.Number Property

The methods of the SocketWrenchException class are listed below. For a complete list of
SocketWrenchException class members, see the SocketWrenchException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrenchException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrenchException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
SocketWrenchException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrenchException.ToString Method

Implements the Secure Shell protocol.

For a list of all members of this type, see SshClient Members.

System.Object
 SocketTools.SshClient

[Visual Basic]
Public Class SshClient
 Implements IDisposable

[C#]
public class SshClient : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The Secure Shell (SSH) protocol is used to establish a secure connection with a server which provides a
virtual terminal session for a user. Its functionality is similar to how character based consoles and serial
terminals work, enabling a user to login to the server, execute commands and interact with applications
running on the remote host. The class provides an interface for establishing the connection and handling
the standard I/O functions needed by the program.

This class also includes methods which enable a program to easily execute a command on the server and
scan the output for specific sequences of characters, making it very simple to write light-weight client
interfaces to remote applications. This class can be combined with the SocketTools.Terminal component
to provide complete terminal emulation services for a standard ANSI or DEC-VT220 terminal.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SshClient Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient Class

SshClient overview

Public Static (Shared) Fields

sshPortDefault A constant value which specifies the default port
number.

sshTimeout A constant value which specifies the default
timeout period.

Public Instance Constructors

 SshClient Constructor Initializes a new instance of the SshClient class.

Public Instance Properties

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

CodePage Gets and sets the code page used when reading
and writing text.

Columns Gets and sets the number of columns for the
virtual terminal session.

Command Gets and sets the command that will be executed
on the server.

ExitCode Returns the exit code from the command executed
on the server.

Fingerprint Returns a string that uniquely identifies the server.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

SshClient Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.sshPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.sshTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.ExitCode.html

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

KeepAlive Gets and sets a value which determines if the client
session should kept active.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

NewLine Gets and sets the end-of-line character sequences
sent to the server.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client session.

PrivateKey Gets and sets the name of the private key file used
to authenticate the client session.

ProxyHost Gets and sets the hostname or IP address of a
proxy server.

ProxyPassword Gets and sets the password used to authenticate
the connection to a proxy server.

ProxyPort Gets and sets a value that specifies the proxy
server port number.

ProxyType Gets and sets the type of proxy server the client
will use to establish a connection.

ProxyUser Gets and sets the username used to authenticate
the connection to a proxy server.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

Rows Gets and sets the number of rows for the virtual
terminal session.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.RemoteService.html

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the client.

Terminal Gets and sets the terminal type used for a remote
login session.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the SshClient class library.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Break Sends a break signal to the remote host.

Cancel Cancel the current blocking client operation.

Connect Overloaded. Establish a connection with a remote
host.

Control Send a control message to the server.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by

SshClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

Execute Overloaded. Execute a command on the server
and return the output.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the SshClient
class.

Peek Overloaded. Read data returned by the server, but
do not remove it from the receive buffer.

Read Overloaded. Read data from the server and store
it in a byte array.

ReadLine Overloaded. Read up to a line of data from the
server and return it in a string buffer.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Search Overloaded. Search for a specific character
sequence in the data stream.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the server.

WriteLine Overloaded. Send a line of text to the server,
terminated by a carriage-return and linefeed.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.Peek_overloads.html

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the SshClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the SshClient class.

[Visual Basic]
Public Sub New()

[C#]
public SshClient();

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient Constructor

The properties of the SshClient class are listed below. For a complete list of SshClient class members, see
the SshClient Members topic.

Public Instance Properties

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

CodePage Gets and sets the code page used when reading
and writing text.

Columns Gets and sets the number of columns for the
virtual terminal session.

Command Gets and sets the command that will be executed
on the server.

ExitCode Returns the exit code from the command executed
on the server.

Fingerprint Returns a string that uniquely identifies the server.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

KeepAlive Gets and sets a value which determines if the client

SshClient Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.ExitCode.html

session should kept active.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

NewLine Gets and sets the end-of-line character sequences
sent to the server.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client session.

PrivateKey Gets and sets the name of the private key file used
to authenticate the client session.

ProxyHost Gets and sets the hostname or IP address of a
proxy server.

ProxyPassword Gets and sets the password used to authenticate
the connection to a proxy server.

ProxyPort Gets and sets a value that specifies the proxy
server port number.

ProxyType Gets and sets the type of proxy server the client
will use to establish a connection.

ProxyUser Gets and sets the username used to authenticate
the connection to a proxy server.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

Rows Gets and sets the number of rows for the virtual
terminal session.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.RemoteService.html

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the client.

Terminal Gets and sets the terminal type used for a remote
login session.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the SshClient class library.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.AutoResolve Property

Gets and sets a value which indicates if the client is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the client is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if client operations complete synchronously or asynchronously.
If set to true, then each client operation (such as sending or receiving data) will return when the operation
has completed or timed-out. If set to false, client operations will return immediately. If the operation
would result in the client blocking (such as attempting to read data when no data has been sent by the
remote host), an error is generated.

It is important to note that certain events, such as OnDisconnect, OnRead and OnWrite are only fired if
the client is in non-blocking mode.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Blocking Property

Gets a value that indicates the length of the key used by the encryption algorithm for a secure connection.

[Visual Basic]
Public ReadOnly Property CipherStrength As Integer

[C#]
public int CipherStrength {get;}

Property Value
An integer value which specifies the encryption key length if a secure connection has been established;
otherwise a value of 0 is returned.

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure data
stream. Common values returned by this property are 128 and 256. A key length of 40 or 56 bits is
considered insecure and subject to brute force attacks. 128-bit and 256-bit keys are considered secure. If
this property returns a value of 0, this means that a secure connection has not been established with the
remote host.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.CipherStrength Property

Gets and sets the code page used when reading and writing text.

[Visual Basic]
Public Property CodePage As Integer

[C#]
public int CodePage {get; set;}

Property Value
An integer value which specifies the current code page. A value of zero specifies the default code page for
the current locale should be used. To preserve the original Unicode text, you can use code page 65001
which specifies UTF-8 character encoding.

Remarks
All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to as
"octets" in networking terminology. However, strings in .NET are Unicode where each character is
represented by 16 bits. To send and receive data using strings, these Unicode strings are converted to a
stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale, mapping
the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into a string buffer,
the stream of bytes received from the remote host are converted to Unicode before they are returned to
your application.

If you are exchanging text with another system and it appears to corrupted or characters are being
replaced with question marks or other symbols, it is likely the system is sending text which is using a
different character encoding. Most services use UTF-8 encoding to represent non-ASCII characters and
selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a string data type is not
recommended when reading or writing binary data to a socket. If possible, you should always use a byte
array as the buffer parameter for the Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, this class defaults to using the code page for the current locale. This property
value directly corresponds to Windows code page identifiers, and will accept any valid code page
supported by the .NET Framework. Setting this property to an invalid code page will generate an
exception.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.CodePage Property

Gets and sets the number of columns for the virtual terminal session.

[Visual Basic]
Public Property Columns As Integer

[C#]
public int Columns {get; set;}

Property Value
An integer value that specifies the number of character columns for the virtual display.

Remarks
The Columns property returns the number of character columns for the virtual display. Setting this
property prior to calling the Connect method requests that the server create a pseudoterminal with the
specified number of columns. This property value is only meaningful for interactive terminal sessions, and
is not used when executing a command on the remote host.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Columns Property

Gets and sets the command that will be executed on the server.

[Visual Basic]
Public Property Command As String

[C#]
public string Command {get; set;}

Property Value
A string value that specifies the command which will be executed on the server.

Remarks
The Command property is used to specify a command and its arguments that should be executed on the
server. The output of the command will be returned to the application and can be read using the Read or
ReadLine method. If no command is specified, then the control will establish an interactive terminal
session instead.

The command and its arguments must follow the conventions used by the SSH server, and the command
will execute in the context of the authenticated user. The ExitCode property can be used to obtain the
numerical exit code of the remote program, if one is available.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Command Property

Returns a string that uniquely identifies the server.

[Visual Basic]
Public ReadOnly Property Fingerprint As String

[C#]
public string Fingerprint {get;}

Property Value
A string which represents an MD5 hash value that can be used to uniquely identify the server.

Remarks
The Fingerprint property returns a string that consists of a series of hexadecimal values separated by
colons. The value is unique to the server, and is an MD5 hash of the RSA host key. An application can use
this value to determine if a connection has been established with the server previously by storing the
server's host name, IP address and fingerprint in a file, registry key or a database.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Fingerprint Property

Gets a value that specifies the client handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current client session.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Handle Property

Gets a value which specifies the length of the message digest that was selected for a secure connection.

[Visual Basic]
Public ReadOnly Property HashStrength As Integer

[C#]
public int HashStrength {get;}

Property Value
An integer value which specifies the length of the message digest if a secure connection has been
established; otherwise a value of 0 is returned.

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that was
selected. Common values returned by this property are 128 and 160. If this property returns a value of 0,
this means that a secure connection has not been established with the remote host.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.HashStrength Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.HostAddress Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.HostName Property

Gets a value which indicates if the current thread is performing a blocking client operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next client operation will not fail. An application
should always check the return value from a client operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.IsBlocked Property

Gets a value which indicates if a connection to the remote host has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the remote
host. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.IsInitialized Property

Gets a value which indicates if there is data available to be read from the socket connection to the server.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to read the client. Note
that even if this property does return true indicating that there is data available to be read, applications
should always check the return value from the Read method.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.IsReadable Property

Gets a value which indicates if data can be written to the client without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the client; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to write data to the client.
Note that even if this property does return true indicating that data can be written to the client,
applications should always check the return value from the Write method.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.IsWritable Property

Gets and sets a value which determines if the client session should kept active.

[Visual Basic]
Public Property KeepAlive As Boolean

[C#]
public bool KeepAlive {get; set;}

Property Value
A boolean value which specifies if the client connection should be maintained over a long period of time.
A value of true indicates that the client should attempt to keep the connection active, even if it is idle for
more than two hours. A value of false specifies that the connection should be established normally.

Remarks
Setting the KeepAlive property to a value of true indicates that the client wishes to maintain a long-
duration session with the server. It is only necessary to set this property to a value of true if the client
session is interactive and the connection must be held open for more than two hours.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.KeepAlive Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public SshClient.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.LastErrorString Property

Gets the local Internet address that the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local Internet address that the client is bound to when a
connection is established with a remote host. This property may return either an IPv4 or IPv6 formatted
address, depending on the type of connection that was established.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.LocalAddress Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.LocalName Property

Gets the local port number the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalPort As Integer

[C#]
public int LocalPort {get;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to identify the local port number that the client is bound to to when a
connection is established with a remote host.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.LocalPort Property

Gets and sets the end-of-line character sequences sent to the server.

[Visual Basic]
Public Property NewLine As LineMode

[C#]
public SshClient.LineMode NewLine {get; set;}

Property Value
Returns an LineMode enumeration value which specify the current line mode for the client. The default
value for this property is newLineDefault.

Remarks
When a connection is initially established with the server, it determines what characters are used to
indicate the end-of-line and how they are displayed. On UNIX based systems, this is controlled by the
settings for the pseudo-terminal that is allocated for the client session, and can be changed using the stty
command. In most cases, the client line mode can be left at the default. However, in some cases you may
need to change the line mode, particularly if you intend to send data from a Windows text file or copied
from the clipboard.

Windows uses a carriage return and linefeed (CRLF) sequence to indicate the end-of-line and a UNIX
based server may interpret that as multiple newlines. To prevent this, set the NewLine property to
LineMode.newLineCR and the CRLF sequence in the text will be replaced by a single carriage return.

See Also
SshClient Class | SocketTools Namespace | Write Method | WriteLine Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.NewLine Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As ClientOptions

[C#]
public SshClient.ClientOptions Options {get; set;}

Property Value
Returns one or more ClientOptions enumeration flags which specify the options for the client. The default
value for this property is clientOptionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Options Property

Gets and sets the password used to authenticate the client session.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password.

Remarks
If a password is not specified when the Login method is called, the value of this property will be used as
the default password when authenticating the client session.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Password Property

Gets and sets the name of the private key file used to authenticate the client session.

[Visual Basic]
Public Property PrivateKey As String

[C#]
public string PrivateKey {get; set;}

Property Value
A string value which specifies the name of the private key file. An empty string specifies that no private key
is required to establish a connection with the server.

Remarks
The PrivateKey property specifies the name of the file that contains the private key that is used to
authenticate the client session. It is only necessary to set this property if the server requires the user to
provide a private key to establish the connection.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.PrivateKey Property

Gets and sets the hostname or IP address of a proxy server.

[Visual Basic]
Public Property ProxyHost As String

[C#]
public string ProxyHost {get; set;}

Property Value
A string which specifies the hostname or IP address of the proxy server that will be used when establishing
a connection.

Remarks
The ProxyHost property should be set to the name of the proxy server that you want to connect to. This
property may be set to either a fully qualified domain name, or an IP address. This property is only used if
the ProxyType property specifies a proxy server type other than proxyNone.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ProxyHost Property

Gets and sets the password used to authenticate the connection to a proxy server.

[Visual Basic]
Public Property ProxyPassword As String

[C#]
public string ProxyPassword {get; set;}

Property Value
A string which specifies a password.

Remarks
The ProxyPassword property specifies the password used to authenticate the user to the proxy server. If
a password is not required by the server, this property is ignored.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ProxyPassword Property

Gets and sets a value that specifies the proxy server port number.

[Visual Basic]
Public Property ProxyPort As Integer

[C#]
public int ProxyPort {get; set;}

Property Value
An integer value which specifies the proxy port number.

Remarks
The ProxyPort property is used to set the port number that the control will use to establish a connection
with the proxy server. A value of zero specifies that the client will connect to the proxy server using the
standard HTTP service port.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ProxyPort Property

Gets and sets the type of proxy server the client will use to establish a connection.

[Visual Basic]
Public Property ProxyType As ProxyTypes

[C#]
public SshClient.ProxyTypes ProxyType {get; set;}

Property Value
An ProxyTypes enumeration which specifies the type of proxy that the client will connect through.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ProxyType Property

Gets and sets the username used to authenticate the connection to a proxy server.

[Visual Basic]
Public Property ProxyUser As String

[C#]
public string ProxyUser {get; set;}

Property Value
A string which specifies the username.

Remarks
The ProxyUser property specifies the user that is logging in to the proxy server. If the proxy server does
not require the user to login, then this property is ignored.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ProxyUser Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.RemotePort Property

Gets and sets the number of rows for the virtual terminal session.

[Visual Basic]
Public Property Rows As Integer

[C#]
public int Rows {get; set;}

Property Value
An integer value that specifies the number of character rows for the virtual display.

Remarks
The Rows property returns the number of character rows for the virtual display. Setting this property prior
to calling the Connect method requests that the server create a pseudoterminal with the specified
number of rows. This property value is only meaningful for interactive terminal sessions, and is not used
when executing a command on the remote host.

The default value for this property is 24.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Rows Property

Gets and sets a value which specifies if a secure connection is established.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connection is established; otherwise returns false. The default value is false.

Remarks
The Secure property determines if a secure connection is established to the server. The default value for
this property is true, and it is included only for compatibility with the other SocketTools components.
Because all SSH connections must be secure, attempting to set this property to a value of false will result
in an error.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Secure Property

Gets a value that specifies the encryption algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureCipher As SecureCipherAlgorithm

[C#]
public SshClient.SecureCipherAlgorithm SecureCipher {get;}

Property Value
A SecureCipherAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureCipher property returns a value which identifies the algorithm used to encrypt the data
stream. If a secure connection has not been established, this property will return a value of cipherNone.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.SecureCipher Property

Gets a value that specifies the message digest algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureHash As SecureHashAlgorithm

[C#]
public SshClient.SecureHashAlgorithm SecureHash {get;}

Property Value
A SecureHashAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureHash property returns a value which identifies the message digest (hash) algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of hashNone.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.SecureHash Property

Gets a value that specifies the key exchange algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureKeyExchange As SecureKeyAlgorithm

[C#]
public SshClient.SecureKeyAlgorithm SecureKeyExchange {get;}

Property Value
A SecureKeyAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureKeyExchange property returns a value which identifies the key exchange algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of keyExchangeNone.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.SecureKeyExchange Property

Gets and sets a value which specifies the protocol used for a secure connection.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public SshClient.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when establishing a secure
connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when establishing a
secure connection with a server. By default, the control will attempt to use either SSH-1 or SSH-2 to
establish the connection, with the appropriate protocol automatically selected based on the capabilities of
the server. It is recommended that you only change this property value if you fully understand the
implications of doing so. Assigning a value to this property will override the default and force the class to
attempt to use only the protocol specified.

Multiple security protocols may be specified by combining the SecurityProtocols using a bitwise Or
operator. After a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been
established will result in an exception being thrown. This property should only be set before calling the
Connect method.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.SecureProtocol Property

Gets a value which specifies the current status of the client.

[Visual Basic]
Public ReadOnly Property Status As ClientStatus

[C#]
public SshClient.ClientStatus Status {get;}

Property Value
A ClientStatus enumeration value which specifies the current client status.

Remarks
The Status property returns the current status of the client. This property can be used to check on
blocking connections to determine if the client is interacting with the remote host before taking some
action.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Status Property

Gets and sets the terminal type used for a remote login session.

[Visual Basic]
Public Property Terminal As String

[C#]
public string Terminal {get; set;}

Property Value
A string which specifies the terminal type.

Remarks
The Terminal property specifies the terminal type of the remote host for display purposes. On UNIX
based systems, the terminal name corresponds to a termcap or terminfo entry as set in the TERM
environment variable. On Windows based systems which implement the rlogin service, this property may
be ignored and the server will assume that the client is capable of displaying ANSI escape sequences. On
VMS systems, the terminal name should correspond to the terminal type used with the SET
TERMINAL/DEVICE command.

If this property is set to an empty string and no terminal type is specified when the Login method is called,
a default terminal type named "unknown" will be used. On most UNIX and VMS systems this defines a
terminal which is not capable of cursor positioning using control or escape sequences. This terminal type
may not be recognized and an error may be displayed when the user logs in indicating that the terminal
type is invalid.

Refer to the documentation for the server system to determine what terminal type names are available to
you. Remember that on UNIX systems, the terminal type is case-sensitive. Some of the more common
terminal types are:

Terminal Description

ansi This terminal type is usually available on UNIX
based servers. This specifies that the client is
capable of displaying standard ANSI escape
sequences for cursor control.

dumb This terminal type typically specifies a terminal
display which does not support control or escape
sequences for cursor positioning. If you do not
want escape sequences embedded in the data
stream and the server returns an error if the
terminal type is not specified, try using this
terminal type.

pcansi This terminal type is usually available on UNIX
based servers. This specifies that the client is a
using a PC terminal emulator that supports basic
ANSI escape sequences for cursor control. This
may also enable escape sequences which can set
the display colors.

vt100 This terminal type is usually available on UNIX and
VMS based servers. On some VMS systems this

SshClient.Terminal Property

string may need to be specified as DEC-VT100.
This specifies that the client is capable of
emulating a DEC VT100 terminal. The VT100
supports many of the same cursor control
sequences as an ANSI terminal.

vt220 This terminal type is usually available on UNIX and
VMS based servers. On some VMS systems this
string may need to be specified as DEC-VT220.
This specifies that the client is capable of
emulating a DEC VT220 terminal, which is a later
version of the VT100.

vt320 This terminal type is usually available on UNIX and
VMS based servers. On some VMS systems this
string may need to be specified as DEC-VT320.
This specifies that the client is capable of
emulating a DEC VT320 terminal, which is similar
to the VT100 and VT220 and provides advanced
features such as the ability to set display colors.

xterm This terminal type is may be available on UNIX
based servers which have X Windows installed.
This specifies that the client is a using the X
Windows xterm emulator which supports standard
ANSI escape sequences for cursor control.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public SshClient.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
SshClient Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public SshClient.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.TraceFlags Property

Gets and sets the username used to authenticate the client session.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username.

Remarks
If a username is not specified when the Login method is called, the value of this property will be used as
the default username when authenticating the client session.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.UserName Property

Gets a value which returns the current version of the SshClient class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the SshClient class
library. This value can be used by an application for validation and debugging purposes.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Version Property

The methods of the SshClient class are listed below. For a complete list of SshClient class members, see
the SshClient Members topic.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Break Sends a break signal to the remote host.

Cancel Cancel the current blocking client operation.

Connect Overloaded. Establish a connection with a remote
host.

Control Send a control message to the server.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
SshClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

Execute Overloaded. Execute a command on the server
and return the output.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the SshClient
class.

Peek Overloaded. Read data returned by the server, but
do not remove it from the receive buffer.

Read Overloaded. Read data from the server and store
it in a byte array.

ReadLine Overloaded. Read up to a line of data from the
server and return it in a string buffer.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Search Overloaded. Search for a specific character
sequence in the data stream.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the server.

SshClient Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SshClient.Peek_overloads.html

WriteLine Overloaded. Send a line of text to the server,
terminated by a carriage-return and linefeed.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the SshClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the client could be attached to the current thread. If this method returns
false, the client could not be attached to the thread and the application should check the value of the
LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.AttachThread Method

Sends a break signal to the remote host.

[Visual Basic]
Public Function Break() As Boolean

[C#]
public bool Break();

Return Value
This method returns a Boolean value which specifies if the break signal was sent to the server. A value of
true indicates the method was successful. If an error occurs, the method will return false.

Remarks
The Break method a control message to the remote host which simulates a break signal on a physical
terminal. This is used by some operating systems as an instruction to enter a privileged configuration
mode. Note that this is not the same as sending an interrupt character such as Ctrl+C to the remote host.
This method is ignored for SSH 1.0 sessions.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Break Method

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Cancel Method

Establish a connection with a remote host.

Overload List
Establish a connection with a remote host.

public bool Connect();

Establish a connection with a remote host.

public bool Connect(string);

Establish a connection with a remote host.

public bool Connect(string,int);

Establish a connection with a remote host.

public bool Connect(string,int,int);

Establish a connection with a remote host.

public bool Connect(string,int,string,string);

Establish a connection with a remote host.

public bool Connect(string,int,string,string,int,ClientOptions);

Establish a connection with a remote host.

public bool Connect(string,string,string);

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Connect Method

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect() As Boolean

[C#]
public bool Connect();

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the HostName or HostAddress property will be used to determine the host name or
address to connect to.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
SshClient Class | SocketTools Namespace | SshClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Connect Method ()

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String _
) As Boolean

[C#]
public bool Connect(
 string hostName
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection by using assigned property values.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the UserName and Password properties will be used to authenticate the session.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
SshClient Class | SocketTools Namespace | SshClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Connect Method (String)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection by using assigned property values.

The value of the UserName and Password properties will be used to authenticate the session.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
SshClient Class | SocketTools Namespace | SshClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Connect Method (String, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection by using assigned property values.

The value of the UserName and Password properties will be used to authenticate the session.

The value of the Options property will be used to specify the default options for the connection.

See Also
SshClient Class | SocketTools Namespace | SshClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Connect Method (String, Int32, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal password As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string password
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session.

password
A string which specifies the password which will be used to authenticate the client session.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection by using assigned property values.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
SshClient Class | SocketTools Namespace | SshClient.Connect Overload List

SshClient.Connect Method (String, Int32, String, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal password As String, _
 ByVal timeout As Integer, _
 ByVal options As ClientOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 string userName,
 string password,
 int timeout,
 ClientOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session.

password
A string which specifies the password which will be used to authenticate the client session.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the ClientOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

SshClient.Connect Method (String, Int32, String, String, Int32,
ClientOptions)

See Also
SshClient Class | SocketTools Namespace | SshClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal userName As String, _
 ByVal password As String _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 string userName,
 string password
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

userName
A string which specifies the user name which will be used to authenticate the client session.

password
A string which specifies the password which will be used to authenticate the client session.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection by using assigned property values.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
SshClient Class | SocketTools Namespace | SshClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Connect Method (String, String, String)

Send a control message to the server.

[Visual Basic]
Public Function Control(_
 ByVal code As ControlCodes _
) As Boolean

[C#]
public bool Control(
 ControlCodes code
);

Parameters
code

A numeric control code which specifies the control message which should be sent to the server. This
argument must specify one of the ControlCodes enumeration values.

Return Value
This method returns a Boolean value which specifies if the control code was sent to the server. A value of
true indicates the method was successful. If an error occurs, the method will return false.

Remarks
The Control method enables an application to send control messages to the server, which can cause it to
take specific actions such as simulate a terminal break or request that the key exchange be performed
again. Some control messages are not supported by the SSH 1.0 protocol, in which case the control
message is ignored.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Control Method

Terminate the connection with a remote host.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and releases the client handle
allocated by the class. Note that the client socket is not immediately released when the connection is
terminated and will enter a wait state for two minutes. After the time wait period has elapsed, the client
will be released by the operating system. This is a normal safety mechanism to handle any packets that
may arrive after the connection has been closed.

The value of the ExitCode property is updated when the Disconnect method is called. This enables an
application to check the exit code returned by the shell or program that was executed on the server. In
most cases, an exit code value of zero indicates success, while any other value indicates an error
condition.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Disconnect Method

Releases all resources used by SshClient.

Overload List
Releases all resources used by SshClient.

public void Dispose();

Releases the unmanaged resources allocated by the SshClient class and optionally releases the managed
resources.

protected virtual void Dispose(bool);

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Dispose Method

Releases all resources used by SshClient.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
SshClient Class | SocketTools Namespace | SshClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Dispose Method ()

Releases the unmanaged resources allocated by the SshClient class and optionally releases the managed
resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the SshClient class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
SshClient Class | SocketTools Namespace | SshClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Dispose Method (Boolean)

Execute a command on the server and return the output.

Overload List
Execute a command on the server and return the output.

public string Execute();

Execute a command on the server and return the output.

public string Execute(string);

Execute a command on the server and return the output.

public string Execute(string,int);

Execute a command on the server and return the output.

public string Execute(string,int,string);

Execute a command on the server and return the output.

public string Execute(string,int,string,int);

Execute a command on the server and return the output.

public string Execute(string,int,string,string,string);

Execute a command on the server and return the output.

public string Execute(string,int,string,string,string,int);

Execute a command on the server and return the output.

public string Execute(string,int,string,string,string,int,ClientOptions);

Execute a command on the server and return the output.

public string Execute(string,string);

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Execute Method

Execute a command on the server and return the output.

[Visual Basic]
Overloads Public Function Execute() As String

[C#]
public string Execute();

Return Value
A string that contains the output of the command that was executed on the server. To get the exit code
returned by the program, check the value of the ExitCode property. If an empty string is returned, this
indicates that there was either no data available, or an error has occurred and the LastError property will
return a non-zero value.

Remarks
The Execute method establishes a network connection with a remote server and executes the specified
command. The output from the command is returned as a string. This method uses the following property
values:

The value of the HostName or HostAddress property will be used to determine the server hostname or
IP address.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the UserName and Password properties will be used to authenticate the session.

The value of the Command property will be used to specify the command that should executed on the
server.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

This method should not be used if the connection to the server must be established through a proxy
server. If the connection must be made through a proxy server, then you should set the Command
property to the specify the command to execute, call the Connect method to establish the connection,
and then use either the Read or ReadLine methods to read the output.

When the command output is being read from the server, this method will automatically convert the data
to match the end-of-line convention used on the Windows platform. This is useful when executing a
command on a UNIX based system where the end-of-line is indicated by a single linefeed, while on
Windows it is a carriage-return and linefeed pair. If the output contains embedded nulls or escape
sequences, then this conversion will not be performed.

See Also
SshClient Class | SocketTools Namespace | SshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Execute Method ()

Execute a command on the server and return the output.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal command As String _
) As String

[C#]
public string Execute(
 string command
);

Parameters
command

A string which specifies the command that will be executed on the server.

Return Value
A string that contains the output of the command that was executed on the server. To get the exit code
returned by the program, check the value of the ExitCode property. If an empty string is returned, this
indicates that there was either no data available, or an error has occurred and the LastError property will
return a non-zero value.

Remarks
The Execute method establishes a network connection with a remote server and executes the specified
command. The output from the command is returned as a string. This method uses the following property
values:

The value of the HostName or HostAddress property will be used to determine the server hostname or
IP address.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the UserName and Password properties will be used to authenticate the session.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

This method should not be used if the connection to the server must be established through a proxy
server. If the connection must be made through a proxy server, then you should set the Command
property to the specify the command to execute, call the Connect method to establish the connection,
and then use either the Read or ReadLine methods to read the output.

When the command output is being read from the server, this method will automatically convert the data
to match the end-of-line convention used on the Windows platform. This is useful when executing a
command on a UNIX based system where the end-of-line is indicated by a single linefeed, while on
Windows it is a carriage-return and linefeed pair. If the output contains embedded nulls or escape
sequences, then this conversion will not be performed.

See Also
SshClient Class | SocketTools Namespace | SshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Execute Method (String)

Execute a command on the server and return the output.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal command As String, _
 ByVal timeout As Integer _
) As String

[C#]
public string Execute(
 string command,
 int timeout
);

Parameters
command

A string which specifies the command that will be executed on the server.

timeout
The number of seconds that the client will wait for a response before failing the operation.

Return Value
A string that contains the output of the command that was executed on the server. To get the exit code
returned by the program, check the value of the ExitCode property. If an empty string is returned, this
indicates that there was either no data available, or an error has occurred and the LastError property will
return a non-zero value.

Remarks
The Execute method establishes a network connection with a remote server and executes the specified
command. The output from the command is returned as a string. This method uses the following property
values:

The value of the HostName or HostAddress property will be used to determine the server hostname or
IP address.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the UserName and Password properties will be used to authenticate the session.

The value of the Options property will be used to specify the default options for the connection.

This method should not be used if the connection to the server must be established through a proxy
server. If the connection must be made through a proxy server, then you should set the Command
property to the specify the command to execute, call the Connect method to establish the connection,
and then use either the Read or ReadLine methods to read the output.

When the command output is being read from the server, this method will automatically convert the data
to match the end-of-line convention used on the Windows platform. This is useful when executing a
command on a UNIX based system where the end-of-line is indicated by a single linefeed, while on
Windows it is a carriage-return and linefeed pair. If the output contains embedded nulls or escape
sequences, then this conversion will not be performed.

See Also
SshClient Class | SocketTools Namespace | SshClient.Execute Overload List

SshClient.Execute Method (String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Execute a command on the server and return the output.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal command As String _
) As String

[C#]
public string Execute(
 string hostName,
 string command
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

command
A string which specifies the command that will be executed on the server.

Return Value
A string that contains the output of the command that was executed on the server. To get the exit code
returned by the program, check the value of the ExitCode property. If an empty string is returned, this
indicates that there was either no data available, or an error has occurred and the LastError property will
return a non-zero value.

Remarks
The Execute method establishes a network connection with a remote server and executes the specified
command. The output from the command is returned as a string. This method uses the following property
values:

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the UserName and Password properties will be used to authenticate the session.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

This method should not be used if the connection to the server must be established through a proxy
server. If the connection must be made through a proxy server, then you should set the Command
property to the specify the command to execute, call the Connect method to establish the connection,
and then use either the Read or ReadLine methods to read the output.

When the command output is being read from the server, this method will automatically convert the data
to match the end-of-line convention used on the Windows platform. This is useful when executing a
command on a UNIX based system where the end-of-line is indicated by a single linefeed, while on
Windows it is a carriage-return and linefeed pair. If the output contains embedded nulls or escape
sequences, then this conversion will not be performed.

See Also
SshClient Class | SocketTools Namespace | SshClient.Execute Overload List

SshClient.Execute Method (String, String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Execute a command on the server and return the output.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal command As String, _
 ByVal timeout As Integer _
) As String

[C#]
public string Execute(
 string hostName,
 int hostPort,
 string command,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

command
A string which specifies the command that will be executed on the server.

timeout
The number of seconds that the client will wait for a response before failing the operation.

Return Value
A string that contains the output of the command that was executed on the server. To get the exit code
returned by the program, check the value of the ExitCode property. If an empty string is returned, this
indicates that there was either no data available, or an error has occurred and the LastError property will
return a non-zero value.

Remarks
The Execute method establishes a network connection with a remote server and executes the specified
command. The output from the command is returned as a string. This method uses the following property
values:

The value of the UserName and Password properties will be used to authenticate the session.

The value of the Options property will be used to specify the default options for the connection.

This method should not be used if the connection to the server must be established through a proxy
server. If the connection must be made through a proxy server, then you should set the Command
property to the specify the command to execute, call the Connect method to establish the connection,
and then use either the Read or ReadLine methods to read the output.

When the command output is being read from the server, this method will automatically convert the data
to match the end-of-line convention used on the Windows platform. This is useful when executing a

SshClient.Execute Method (String, Int32, String, Int32)

command on a UNIX based system where the end-of-line is indicated by a single linefeed, while on
Windows it is a carriage-return and linefeed pair. If the output contains embedded nulls or escape
sequences, then this conversion will not be performed.

See Also
SshClient Class | SocketTools Namespace | SshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Execute a command on the server and return the output.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal password As String, _
 ByVal command As String _
) As String

[C#]
public string Execute(
 string hostName,
 int hostPort,
 string userName,
 string password,
 string command
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session.

password
A string which specifies the password which will be used to authenticate the client session.

command
A string which specifies the command that will be executed on the server.

Return Value
A string that contains the output of the command that was executed on the server. To get the exit code
returned by the program, check the value of the ExitCode property. If an empty string is returned, this
indicates that there was either no data available, or an error has occurred and the LastError property will
return a non-zero value.

Remarks
The Execute method establishes a network connection with a remote server and executes the specified
command. The output from the command is returned as a string. This method uses the following property
values:

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

This method should not be used if the connection to the server must be established through a proxy
server. If the connection must be made through a proxy server, then you should set the Command

SshClient.Execute Method (String, Int32, String, String, String)

property to the specify the command to execute, call the Connect method to establish the connection,
and then use either the Read or ReadLine methods to read the output.

When the command output is being read from the server, this method will automatically convert the data
to match the end-of-line convention used on the Windows platform. This is useful when executing a
command on a UNIX based system where the end-of-line is indicated by a single linefeed, while on
Windows it is a carriage-return and linefeed pair. If the output contains embedded nulls or escape
sequences, then this conversion will not be performed.

See Also
SshClient Class | SocketTools Namespace | SshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Execute a command on the server and return the output.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal command As String _
) As String

[C#]
public string Execute(
 string hostName,
 int hostPort,
 string command
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

command
A string which specifies the command that will be executed on the server.

Return Value
A string that contains the output of the command that was executed on the server. To get the exit code
returned by the program, check the value of the ExitCode property. If an empty string is returned, this
indicates that there was either no data available, or an error has occurred and the LastError property will
return a non-zero value.

Remarks
The Execute method establishes a network connection with a remote server and executes the specified
command. The output from the command is returned as a string. This method uses the following property
values:

The value of the UserName and Password properties will be used to authenticate the session.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

This method should not be used if the connection to the server must be established through a proxy
server. If the connection must be made through a proxy server, then you should set the Command
property to the specify the command to execute, call the Connect method to establish the connection,
and then use either the Read or ReadLine methods to read the output.

When the command output is being read from the server, this method will automatically convert the data
to match the end-of-line convention used on the Windows platform. This is useful when executing a
command on a UNIX based system where the end-of-line is indicated by a single linefeed, while on
Windows it is a carriage-return and linefeed pair. If the output contains embedded nulls or escape

SshClient.Execute Method (String, Int32, String)

sequences, then this conversion will not be performed.

See Also
SshClient Class | SocketTools Namespace | SshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Execute a command on the server and return the output.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal password As String, _
 ByVal command As String, _
 ByVal timeout As Integer _
) As String

[C#]
public string Execute(
 string hostName,
 int hostPort,
 string userName,
 string password,
 string command,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session.

password
A string which specifies the password which will be used to authenticate the client session.

command
A string which specifies the command that will be executed on the server.

timeout
The number of seconds that the client will wait for a response before failing the operation.

Return Value
A string that contains the output of the command that was executed on the server. To get the exit code
returned by the program, check the value of the ExitCode property. If an empty string is returned, this
indicates that there was either no data available, or an error has occurred and the LastError property will
return a non-zero value.

Remarks
The Execute method establishes a network connection with a remote server and executes the specified
command. The output from the command is returned as a string.

This method should not be used if the connection to the server must be established through a proxy
server. If the connection must be made through a proxy server, then you should set the Command

SshClient.Execute Method (String, Int32, String, String, String, Int32)

property to the specify the command to execute, call the Connect method to establish the connection,
and then use either the Read or ReadLine methods to read the output.

When the command output is being read from the server, this method will automatically convert the data
to match the end-of-line convention used on the Windows platform. This is useful when executing a
command on a UNIX based system where the end-of-line is indicated by a single linefeed, while on
Windows it is a carriage-return and linefeed pair. If the output contains embedded nulls or escape
sequences, then this conversion will not be performed.

See Also
SshClient Class | SocketTools Namespace | SshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Execute a command on the server and return the output.

[Visual Basic]
Overloads Public Function Execute(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal userName As String, _
 ByVal password As String, _
 ByVal command As String, _
 ByVal timeout As Integer, _
 ByVal options As ClientOptions _
) As String

[C#]
public string Execute(
 string hostName,
 int hostPort,
 string userName,
 string password,
 string command,
 int timeout,
 ClientOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

userName
A string which specifies the user name which will be used to authenticate the client session.

password
A string which specifies the password which will be used to authenticate the client session.

command
A string which specifies the command that will be executed on the server.

timeout
The number of seconds that the client will wait for a response before failing the operation.

options
One or more of the ClientOptions enumeration flags.

Return Value
A string that contains the output of the command that was executed on the server. To get the exit code
returned by the program, check the value of the ExitCode property. If an empty string is returned, this
indicates that there was either no data available, or an error has occurred and the LastError property will
return a non-zero value.

SshClient.Execute Method (String, Int32, String, String, String, Int32,
ClientOptions)

Remarks
The Execute method establishes a network connection with a remote server and executes the specified
command. The output from the command is returned as a string.

This method should not be used if the connection to the server must be established through a proxy
server. If the connection must be made through a proxy server, then you should set the Command
property to the specify the command to execute, call the Connect method to establish the connection,
and then use either the Read or ReadLine methods to read the output.

When the command output is being read from the server, this method will automatically convert the data
to match the end-of-line convention used on the Windows platform. This is useful when executing a
command on a UNIX based system where the end-of-line is indicated by a single linefeed, while on
Windows it is a carriage-return and linefeed pair. If the output contains embedded nulls or escape
sequences, then this conversion will not be performed.

See Also
SshClient Class | SocketTools Namespace | SshClient.Execute Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Finalize Method

Initialize an instance of the SshClient class.

Overload List
Initialize an instance of the SshClient class.

public bool Initialize();

Initialize an instance of the SshClient class.

public bool Initialize(string);

See Also
SshClient Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Initialize Method

Initialize an instance of the SshClient class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the SshClient class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
SshClient Class | SocketTools Namespace | SshClient.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Initialize Method ()

Initialize an instance of the SshClient class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the SshClient class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the SshClient class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.SshClient sshClient = new SocketTools.SshClient();

if (sshClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(sshClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim sshClient As New SocketTools.SshClient

If sshClient.Initialize(strLicenseKey) = False Then
 MsgBox(sshClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
SshClient Class | SocketTools Namespace | SshClient.Initialize Overload List | RuntimeLicenseAttribute Class
| Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Initialize Method (String)

Read data from the server and store it in a byte array.

Overload List
Read data from the server and store it in a byte array.

public int Read(byte[]);

Read data from the server and store it in a byte array.

public int Read(byte[],int);

Read data from the server and store it in a string.

public int Read(ref string);

Read data from the server and store it in a string.

public int Read(ref string,int);

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Read Method

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the size of the byte array passed
to the method. If no data is available to be read, an error will be generated if the client is in non-blocking
mode. If the client is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

See Also
SshClient Class | SocketTools Namespace | SshClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Read Method (Byte[])

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

See Also
SshClient Class | SocketTools Namespace | SshClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Read Method (Byte[], Int32)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the client.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to a maximum of 4096 bytes. If no
data is available to be read, an error will be generated if the client is in non-blocking mode. If the client is
in blocking mode, the program will stop until data is received from the server or the connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
SshClient Class | SocketTools Namespace | SshClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Read Method (String)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
SshClient Class | SocketTools Namespace | SshClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Read Method (String, Int32)

Read up to a line of data from the server and return it in a string buffer.

Overload List
Read up to a line of data from the server and return it in a string buffer.

public bool ReadLine(ref string);

Read up to a line of data from the server and return it in a string buffer.

public bool ReadLine(ref string,int);

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ReadLine Method

Read up to a line of data from the server and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool ReadLine(
 ref string buffer
);

Parameters
buffer

A string which will contain the data read from the socket.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the server up to 4096 bytes in length or until an end-of-line
character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
method is specifically designed to return a single line of text data in a string variable. When an end-of-line
character sequence is encountered, the method will stop and return the data up to that point; the string
will not contain the carriage-return or linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the current thread to block until an end-of-line character sequence is processed,
the read operation times out or the remote host closes its end of the socket connection. If the Blocking
property is set to false, calling this method will automatically switch the client into a blocking mode, read
the data and then restore the client to non-blocking mode. If another network operation is attempted
while ReadLine is blocked waiting for data from the remote host, an error will occur. It is recommended
that this method only be used with blocking connections.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

See Also
SshClient Class | SocketTools Namespace | SshClient.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ReadLine Method (String)

Read up to a line of data from the server and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool ReadLine(
 ref string buffer,
 int length
);

Parameters
buffer

A string which will contain the data read from the socket.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the server up to the specified number of bytes or until an end-of-
line character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
method is specifically designed to return a single line of text data in a string variable. When an end-of-line
character sequence is encountered, the method will stop and return the data up to that point; the string
will not contain the carriage-return or linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the current thread to block until an end-of-line character sequence is processed,
the read operation times out or the remote host closes its end of the socket connection. If the Blocking
property is set to false, calling this method will automatically switch the client into a blocking mode, read
the data and then restore the client to non-blocking mode. If another network operation is attempted
while ReadLine is blocked waiting for data from the remote host, an error will occur. It is recommended
that this method only be used with blocking connections.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

SshClient.ReadLine Method (String, Int32)

See Also
SshClient Class | SocketTools Namespace | SshClient.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Reset Method

Search for a specific character sequence in the data stream.

Overload List
Search for a specific character sequence in the data stream.

public bool Search(string);

Search for a specific character sequence in the data stream.

public bool Search(string,byte[],ref int);

Search for a specific character sequence in the data stream.

public bool Search(string,ref string);

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Search Method

Search for a specific character sequence in the data stream.

[Visual Basic]
Overloads Public Function Search(_
 ByVal value As String _
) As Boolean

[C#]
public bool Search(
 string value
);

Parameters
value

A string argument which specifies the sequence of characters to search for in the data stream. When
this sequence of characters is found, the method will return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when it is
found. This is useful when the client wants to automate responses to the server, such as executing a
command and processing the output. The method will discard any data received up to and including the
specified character sequence.

See Also
SshClient Class | SocketTools Namespace | SshClient.Search Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Search Method (String)

Search for a specific character sequence in the data stream.

[Visual Basic]
Overloads Public Function Search(_
 ByVal value As String, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool Search(
 string value,
 byte[] buffer,
 ref int length
);

Parameters
value

A string argument which specifies the sequence of characters to search for in the data stream. When
this sequence of characters is found, the method will return.

buffer
An byte array that will contain the output sent by the server, up to and including the search string
character sequence.

length
An integer value passed by reference which should be initialized to the maximum number of bytes of
data to store in the buffer. When the method returns, this value will be updated with the actual
number of bytes stored in the buffer.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when it is
found. This is useful when the client wants to automate responses to the server, such as executing a
command and processing the output. The method collects the output from the server and stores it in a
buffer provided by the caller. When the method returns, the buffer will contain everything sent by the
server up to and including the search string.

See Also
SshClient Class | SocketTools Namespace | SshClient.Search Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Search Method (String, Byte[], Int32)

Search for a specific character sequence in the data stream.

[Visual Basic]
Overloads Public Function Search(_
 ByVal value As String, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool Search(
 string value,
 ref string buffer
);

Parameters
value

A string argument which specifies the sequence of characters to search for in the data stream. When
this sequence of characters is found, the method will return.

buffer
An string that will contain the output sent by the server, up to and including the search string
character sequence.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when it is
found. This is useful when the client wants to automate responses to the server, such as executing a
command and processing the output. The method collects the output from the server and stores it in a
buffer provided by the caller. When the method returns, the buffer will contain everything sent by the
server up to and including the search string.

See Also
SshClient Class | SocketTools Namespace | SshClient.Search Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Search Method (String, String)

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
SshClient Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Uninitialize Method

Write one or more bytes of data to the server.

Overload List
Write one or more bytes of data to the server.

public int Write(byte[]);

Write one or more bytes of data to the server.

public int Write(byte[],int);

Write a character to the server.

public int Write(char);

Write one or more characters to the server.

public int Write(char,int);

Write a string of characters to the server.

public int Write(string);

Write a string of characters to the server.

public int Write(string,int);

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Write Method

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the server.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
SshClient Class | SocketTools Namespace | SshClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Write Method (Byte[])

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the server.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
SshClient Class | SocketTools Namespace | SshClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Write Method (Byte[], Int32)

Write a character to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal key As Char _
) As Integer

[C#]
public int Write(
 char key
);

Parameters
key

A character which will be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends one character to the server. If the client is in non-blocking mode and the send
buffer is full, an error will occur.

See Also
SshClient Class | SocketTools Namespace | SshClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Write Method (Char)

Write one or more characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal key As Char, _
 ByVal repeat As Integer _
) As Integer

[C#]
public int Write(
 char key,
 int repeat
);

Parameters
key

A character which will be written to the server.

repeat
The number of characters that will be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends one or more characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
SshClient Class | SocketTools Namespace | SshClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Write Method (Char, Int32)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

See Also
SshClient Class | SocketTools Namespace | SshClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Write Method (String)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the server.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

See Also
SshClient Class | SocketTools Namespace | SshClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.Write Method (String, Int32)

Send an empty line of text to the server, terminated by a carriage-return and linefeed.

Overload List
Send an empty line of text to the server, terminated by a carriage-return and linefeed.

public bool WriteLine();

Send a line of text to the server, terminated by a carriage-return and linefeed.

public bool WriteLine(string);

Send a line of text to the server, terminated by a carriage-return and linefeed.

public bool WriteLine(string,ref int);

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.WriteLine Method

Send an empty line of text to the server, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine() As Boolean

[C#]
public bool WriteLine();

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method will send an empty line of text, terminated by a carriage-return and linefeed.
Calling this method will force the application to block until the complete line of text has been written, the
write operation times out or the remote host aborts the connection. If this method is called with the
Blocking property set to false, it will automatically switch the client into a blocking mode, send the data
and then restore the client to non-blocking mode. If another network operation is attempted while the
WriteLine method is blocked sending data to the remote host, an error will occur. It is recommended that
this method only be used with blocking connections.

The Write and WriteLine methods can be safely intermixed.

See Also
SshClient Class | SocketTools Namespace | SshClient.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.WriteLine Method ()

Send a line of text to the server, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool WriteLine(
 string buffer
);

Parameters
buffer

A string which contains the data that will be sent to the remote host. The data will always be
terminated with a carriage-return and linefeed control character sequence. If the string is empty, then
a only a carriage-return and linefeed are written to the socket. Note that if the string contains a null
character, any data that follows the null character will be discarded.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection. If this
method is called with the Blocking property set to false, it will automatically switch the client into a
blocking mode, send the data and then restore the client to non-blocking mode. If another network
operation is attempted while the WriteLine method is blocked sending data to the remote host, an error
will occur. It is recommended that this method only be used with blocking connections.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

The Write and WriteLine methods can be safely intermixed.

See Also
SshClient Class | SocketTools Namespace | SshClient.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.WriteLine Method (String)

Send a line of text to the server, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal buffer As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool WriteLine(
 string buffer,
 ref int length
);

Parameters
buffer

A string which contains the data that will be sent to the remote host. The data will always be
terminated with a carriage-return and linefeed control character sequence. If the string is empty, then
a only a carriage-return and linefeed are written to the socket. Note that if the string contains a null
character, any data that follows the null character will be discarded.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection. If this
method is called with the Blocking property set to false, it will automatically switch the client into a
blocking mode, send the data and then restore the client to non-blocking mode. If another network
operation is attempted while the WriteLine method is blocked sending data to the remote host, an error
will occur. It is recommended that this method only be used with blocking connections.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

The Write and WriteLine methods can be safely intermixed.

See Also
SshClient Class | SocketTools Namespace | SshClient.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.WriteLine Method (String, Int32)

The events of the SshClient class are listed below. For a complete list of SshClient class members, see the
SshClient Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.OnCancel Event

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a remote host as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a socket is
created but the connection is not actually established until after this event occurs. Between the time
connection process is started and this event fires, no operation may be performed on the client other than
calling the Disconnect method.

This event is only generated if the client is in non-blocking mode.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.OnConnect Event

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the remote host closes its connection, terminating the client
session with the application. Because there may still be data in the client receive buffers, you should
continue to read data from the client until the Read method returns a value of 0. Once all of the data has
been read, you should call the Disconnect method to close the local socket and release the resources
allocated for the client.

This event is only generated if the client is in non-blocking mode.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.OnDisconnect Event

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type SshClient.ErrorEventArgs containing data related to this
event. The following SshClient.ErrorEventArgs properties provide information specific to this event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see SshClient.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.SshClient.ErrorEventArgs

[Visual Basic]
Public Class SshClient.ErrorEventArgs
 Inherits EventArgs

[C#]
public class SshClient.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SshClient.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ErrorEventArgs Class

SshClient.ErrorEventArgs overview

Public Instance Constructors

 SshClient.ErrorEventArgs Constructor Initializes a new instance of the
SshClient.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SshClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ErrorEventArgs Members

Initializes a new instance of the SshClient.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public SshClient.ErrorEventArgs();

See Also
SshClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ErrorEventArgs Constructor

The properties of the SshClient.ErrorEventArgs class are listed below. For a complete list of
SshClient.ErrorEventArgs class members, see the SshClient.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
SshClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
SshClient.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public SshClient.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
SshClient.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ErrorEventArgs.Error Property

Occurs when data is available to be read from the client.

[Visual Basic]
Public Event OnRead As EventHandler

[C#]
public event EventHandler OnRead;

Remarks
The OnRead event occurs when data is available to be read from the client. This event is level-triggered,
which means that once this event fires, it will not occur again until some data has been read from the
client. This design prevents an application from being flooded with event notifications. It is recommended
that your application read all of the available data from the server and store it in a local buffer for
processing. See the example below.

This event is only generated if the client is in non-blocking mode.

Example

Private Sub Socket_OnRead(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Socket.OnRead
 Dim strBuffer As String
 Dim nRead As Integer

 Do
 ' Read up to m_nBufferSize bytes of data from the server
 nRead = Socket.Read(strBuffer, m_nBufferSize)

 If nRead > 0 Then
 ' Append the data to an internal buffer for processing
 m_dataBuffer = m_dataBuffer + strBuffer
 End If
 Loop Until nRead < 1

 ProcessData()
End Sub

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.OnRead Event

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.OnTimeout Event

Occurs when data can be written to the client.

[Visual Basic]
Public Event OnWrite As EventHandler

[C#]
public event EventHandler OnWrite;

Remarks
The OnWrite event occurs when the application can write data to the client. This event will typically occur
when a connection is first established with the remote host, and after the Write method has failed
because there was insufficient memory available in the client send buffers. In the second case, when some
of the buffered data has been successfully sent to the remote host and there is space available in the send
buffers, this event is used to signal the application that it may attempt to send more data.

This event is only generated if the client is in non-blocking mode.

See Also
SshClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.OnWrite Event

Specifies the options that the SshClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SshClient.ClientOptions

[C#]
[Flags]
public enum SshClient.ClientOptions

Remarks
The SshClient class uses the ClientOptions enumeration to specify one or more options to be used when
establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionDefault The default connection option. This is
the same as specifying optionNone.

0

optionKeepAlive This option specifies the library should
attempt to maintain an idle client
session for long periods of time. This
option is only necessary if you expect
that the connection will be held open
for more than two hours. This option is
the same as setting the KeepAlive
property to a value of true.

1

optionNoPTY This option specifies that a
pseudoterminal (PTY) should not be
created for the client session. This
option is automatically set if the
Command property specifies a
command to be executed on the server.

2

optionNoShell This option specifies that a command
shell should not be used when
executing a command on the remote
host.

4

optionNoAuthRSA This option specifies that RSA
authentication should not be used with
SSH-1 connections. This option is
ignored with SSH-2 connections and
should only be specified if required by
the remote host.

8

optionNoPwdNul This option specifies the user password 16

SshClient.ClientOptions Enumeration

cannot be terminated with a null byte.
This option is ignored with SSH-2
connections and should only be
specified if required by the remote host.

optionNoRekey This option specifies the client should
never attempt a repeat key exchange
with the server. Some SSH servers do
not support rekeying the session, and
this can cause the client to become
non-responsive or abort the connection
after being connected for an hour.

32

optionCompatSID This compatibility option changes how
the session ID is handled during public
key authentication with older SSH
servers. This option should only be
specified when connecting to servers
that use OpenSSH 2.2.0 or earlier
versions.

64

optionCompatHMAC This compatibility option changes how
the HMAC authentication codes are
generated. This option should only be
specified when connecting to servers
that use OpenSSH 2.2.0 or earlier
versions.

128

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the status values that may be returned by the SshClient class.

[Visual Basic]
Public Enum SshClient.ClientStatus

[C#]
public enum SshClient.ClientStatus

Remarks
The SshClient class uses the ClientStatus enumeration to identify the current status of the client.

Members

Member Name Description

statusUnused A client session has not been created. Attempts to
perform any network operations, such as sending
or receiving data, will generate an error.

statusIdle A client session has been created, but is not
currently in use. A blocking socket operation can
be executed at this point.

statusConnect The client is in the process of establishing a
connection with a remote host.

statusAuthenticate The client is authenticating the session.

statusRead The client is in the process of receiving data from a
remote host.

statusWrite The client is in the process of sending data to a
remote host.

statusDisconnect The client session is being closed and subsequent
attempts to access the client will result in an error.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ClientStatus Enumeration

Specifies the control codes that the SshClient class may send to the server.

[Visual Basic]
Public Enum SshClient.ControlCodes

[C#]
public enum SshClient.ControlCodes

Remarks
The SshClient class uses the ControlCodes enumeration to specify the control code that should be sent to
the server using the Control method. This enables an application to send control messages to the server,
which can cause it to take specific actions such as simulate a terminal break or request that the key
exchange be performed again. Note that some control messages are not supported by the SSH 1.0
protocol, in which case the control message is ignored.

Members

Member Name Description

controlBreak Sends a control message to the remote host which
simulates a break signal on a physical terminal.
This is used by some operating systems as an
instruction to enter a privileged configuration
mode. Note that this is not the same as sending an
interrupt character such as Ctrl+C to the remote
host. This control code is ignored for SSH 1.0
sessions. This is the same as calling the Break
method.

controlNoop Sends a control message to the remote host, but it
does not perform any operation. This is typically
used by clients to prevent the server from
automatically closing a session that has been idle
for a long period of time.

controlEof Sends a control message to the remote host
indicating that the client has finished sending data.
Note that this option is normally not used with
interactive terminal sessions, and should only be
used when required by the server.

controlPing Sends a control message to the remote host which
is used to test whether or not the remote host is
responsive to the client. This is typically used by
clients to attempt to detect if the connection to
the remote host is still active.

controlRekey Sends a control message to the remote host
requesting that the key exchange be performed
again. This control code is ignored for SSH 1.0
sessions.

SshClient.ControlCodes Enumeration

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the error codes returned by the SshClient class.

[Visual Basic]
Public Enum SshClient.ErrorCode

[C#]
public enum SshClient.ErrorCode

Remarks
The SshClient class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

SshClient.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies how end-of-line character sequences are sent to the server.

[Visual Basic]
Public Enum SshClient.LineMode

[C#]
public enum SshClient.LineMode

Members

Member Name Description

newLineDefault There are no changes to how data is sent to the
server. Any carriage return or linefeed characters
that are sent using the Write method will be sent
as-is. The WriteLine method will terminate each
line of text with a carriage return and linefeed
(CRLF) sequence. This is the default line mode that
is set when a new connection is established.

newLineCR A carriage return is used as the end-of-line
character. Any data sent using the Write method
that contains only a linefeed (LF) character or a
carriage return and linefeed (CRLF) sequence to
indicate the end-of-line will be replaced by a
carriage return (CR) character. The WriteLine
method will terminate each line of text with a
single carriage return character.

newLineLF A linefeed is used as the end-of-line character.
Any data sent using the Write method that
contains only a carriage return (CR) character or a
carriage return an linefeed (CRLF) sequence to
indicate the end-of-line will be replaced by a
linefeed (LF) character. The WriteLine method will
terminate each line of text with a single linefeed
character.

newLineCRLF A carriage return and linefeed (CRLF) character
sequence is used to indicate the end-of-line. Any
data sent using the Write method that contains
only a carriage return (CR) or linefeed (LF) will be
replaced by a carriage return and linefeed. The
WriteLine method will terminate each line of text
with a carriage return and linefeed sequence.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also

SshClient.LineMode Enumeration

SocketTools Namespace | NewLine Property (SocketTools.SshClient)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the type of proxy servers that the SshClient class supports.

[Visual Basic]
Public Enum SshClient.ProxyTypes

[C#]
public enum SshClient.ProxyTypes

Remarks
The SshClient class uses the ProxyTypes enumeration to specify the type of proxy server that the
connection should be established through, if any. By default, no proxy server is used when establishing a
connection.

Members

Member Name Description

proxyNone No proxy server. A direct connection will be
established with the server.

proxyHttp Establish a connection through a proxy server
using the Hypertext Transfer Protocol.

proxyTelnet Establish a connection through a proxy server
using the Telnet protocol.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.ProxyTypes Enumeration

Specifies the encryption algorithms that the SshClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SshClient.SecureCipherAlgorithm

[C#]
[Flags]
public enum SshClient.SecureCipherAlgorithm

Remarks
The SshClient class uses the SecureCipherAlgorithm enumeration to identify which encryption algorithm
was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

cipherNone No cipher has been selected. A secure
connection has not been established
with the remote host.

0

cipherRC2 The RC2 block cipher was selected. This
is a variable key length cipher which
supports keys between 40- and 128-bits
in length, in 8-bit increments.

1

cipherRC4 The RC4 stream cipher was selected.
This is a variable key length cipher
which supports keys between 40- and
128-bits in length, in 8-bit increments.

2

cipherRC5 The RC5 block cipher was selected. This
is a variable key length cipher which
supports keys up to 2040 bits, in 8-bit
increments.

4

cipherDES The DES (Data Encryption Standard)
block cipher was selected. This is a fixed
key length cipher using 56-bit keys.

8

cipherDES3 The Triple DES block cipher was
selected. This cipher encrypts the data
three times using different keys,
effectively using a 168-bit key length.

16

cipherDESX A variant of the DES block cipher which
XORs an extra 64-bits of the key before
and after the plaintext has been
encrypted, increasing the key size to
184 bits.

32

cipherAES The Advanced Encryption Standard 64

SshClient.SecureCipherAlgorithm Enumeration

cipher (also known as the Rijndael
cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits.
This cipher is supported on Windows XP
SP3 SP3 and later versions of the
operating system.

cipherSkipjack The Skipjack block cipher was selected.
This is a fixed key length cipher, using
80-bit keys.

128

cipherBlowfish The Blowfish block cipher was selected.
This is a variable key length cipher up to
448 bits, using a 64-bit block size.

256

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the hash algorithms that the SshClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SshClient.SecureHashAlgorithm

[C#]
[Flags]
public enum SshClient.SecureHashAlgorithm

Remarks
The SshClient class uses the SecureHashAlgorithm enumeration to identify the message digest (hash)
algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

hashNone No hash algorithm has been selected.
This is not a secure connection with the
server.

0

hashMD5 The MD5 algorithm was selected. This
algorithm produces a 128-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

1

hashSHA The SHA-1 algorithm was selected. This
algorithm produces a 160-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

2

hashSHA256 The SHA-256 algorithm was selected.
This algorithm produces a 256-bit
message digest.

4

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.SecureHashAlgorithm Enumeration

Specifies the key exchange algorithms that the SshClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SshClient.SecureKeyAlgorithm

[C#]
[Flags]
public enum SshClient.SecureKeyAlgorithm

Remarks
The SshClient class uses the SecureKeyAlgorithm enumeration to identify the key exchange algorithm
that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

keyExchangeNone No key exchange algorithm has been
selected. This is not a secure connection
with the server.

0

keyExchangeRSA The RSA public key exchange algorithm
has been selected.

1

keyExchangeKEA The KEA public key exchange algorithm
has been selected. This is an improved
version of the Diffie-Hellman public key
algorithm.

2

keyExchangeDH The Diffie-Hellman public key exchange
algorithm has been selected.

4

keyExchangeECDH The Elliptic Curve Diffie-Hellman key
exchange algorithm was selected. This is
a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography.
This key exchange algorithm is only
supported on Windows XP SP3 SP3 and
later versions of the operating system.

8

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.SecureKeyAlgorithm Enumeration

Specifies the security protocols that the SshClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SshClient.SecurityProtocols

[C#]
[Flags]
public enum SshClient.SecurityProtocols

Remarks
The SshClient class uses the SecurityProtocols enumeration to specify one or more security protocols to
be used when establishing a connection with a remote host. Multiple protocols may be specified if
necessary and the actual protocol used will be negotiated with the remote host. It is recommended that
most applications use protocolDefault when creating a secure connection.

Members

Member Name Description Value

protocolNone No security protocol has been selected.
Because all connections to an SSH
server are secure, this value indicates
that a connection has not been
established.

0

protocolSSH1 The Secure Shell 1.0 protocol should be
used. This version of the protocol has
been deprecated and is no longer
widely used. It is not recommended that
this version of the protocol be used to
establish a connection.

256

protocolSSH2 The Secure Shell 2.0 protocol should be
used. This is the most commonly used
version of the protocol. It is
recommended that this version of the
protocol be used unless the server
explicitly requires the client to use an
earlier version.

512

protocolDefault Either version 1.0 or 2.0 of the protocol
should be used when establishing the
connection. The correct version of the
protocol will be automatically selected,
based on which version is supported by
the server.

512

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

SshClient.SecurityProtocols Enumeration

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the SshClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SshClient.TraceOptions

[C#]
[Flags]
public enum SshClient.TraceOptions

Remarks
The SshClient class uses the TraceOptions enumeration to specify what kind of debugging information is
written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SocketTools Namespace

SshClient.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub SshClient.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void SshClient.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.OnErrorEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see SshClient.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.SshClient.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class SshClient.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class SshClient.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the SshClient class.

Example

<Assembly: SocketTools.SshClient.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.SshClient.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SshClient.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.RuntimeLicenseAttribute Class

SshClient.RuntimeLicenseAttribute overview

Public Instance Constructors

 SshClient.RuntimeLicenseAttribute Constructor Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SshClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public SshClient.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the SshClient class.

See Also
SshClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.RuntimeLicenseAttribute Constructor

The properties of the SshClient.RuntimeLicenseAttribute class are listed below. For a complete list of
SshClient.RuntimeLicenseAttribute class members, see the SshClient.RuntimeLicenseAttribute Members
topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
SshClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
SshClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClient.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see SshClientException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.SshClientException

[Visual Basic]
Public Class SshClientException
 Inherits ApplicationException

[C#]
public class SshClientException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A SshClientException is thrown by the SshClient class when an error occurs.

The default constructor for the SshClientException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SshClient (in SocketTools.SshClient.dll)

See Also
SshClientException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClientException Class

SshClientException overview

Public Instance Constructors

 SshClientException Overloaded. Initializes a new instance of the
SshClientException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

SshClientException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the SshClientException class with the last network error code.

Overload List
Initializes a new instance of the SshClientException class with the last network error code.

public SshClientException();

Initializes a new instance of the SshClientException class with a specified error number.

public SshClientException(int);

Initializes a new instance of the SshClientException class with a specified error message.

public SshClientException(string);

Initializes a new instance of the SshClientException class with a specified error message and a reference to
the inner exception that is the cause of this exception.

public SshClientException(string,Exception);

See Also
SshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClientException Constructor

Initializes a new instance of the SshClientException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public SshClientException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the SshClient.ErrorCode enumeration.

See Also
SshClientException Class | SocketTools Namespace | SshClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClientException Constructor ()

Initializes a new instance of the SshClientException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public SshClientException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
SshClientException Class | SocketTools Namespace | SshClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClientException Constructor (String)

Initializes a new instance of the SshClientException class with a specified error message and a reference to
the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public SshClientException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
SshClientException Class | SocketTools Namespace | SshClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClientException Constructor (String, Exception)

Initializes a new instance of the SshClientException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public SshClientException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the SshClient.ErrorCode enumeration.

See Also
SshClientException Class | SocketTools Namespace | SshClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClientException Constructor (Int32)

The properties of the SshClientException class are listed below. For a complete list of
SshClientException class members, see the SshClientException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
SshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClientException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public SshClient.ErrorCode ErrorCode {get;}

Property Value
Returns a SshClient.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the SshClientException class sets the error code to the last network error that
occurred. For more information about the errors that may occur, refer to the SshClient.ErrorCode
enumeration.

See Also
SshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClientException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
SshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClientException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
SshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClientException.Number Property

The methods of the SshClientException class are listed below. For a complete list of SshClientException
class members, see the SshClientException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClientException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
SshClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SshClientException.ToString Method

Implements the Telnet protocol.

For a list of all members of this type, see TelnetClient Members.

System.Object
 SocketTools.TelnetClient

[Visual Basic]
Public Class TelnetClient
 Implements IDisposable

[C#]
public class TelnetClient : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The Telnet protocol is used to establish a connection with a server which provides a virtual terminal
session for a user. Its functionality is similar to how character based consoles and serial terminals work,
enabling a user to login to the server, execute commands and interact with applications running on the
remote host. The TelnetClient class provides an interface for establishing the connection, negotiating
certain options (such as whether characters will be echoed back to the client) and handling the standard
I/O functions needed by the program. The class also provides functions that enable a program to easily
scan the data stream for specific sequences of characters, making it very simple to write light-weight client
interfaces to applications running on the server. This class can be combined with the
SocketTools.Terminal component to provide complete terminal emulation services for a standard ANSI
or DEC-VT220 terminal.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also
TelnetClient Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient Class

TelnetClient overview

Public Static (Shared) Fields

telnetPortDefault A constant value which specifies the default port
number.

telnetPortSecure A constant value which specifies the default port
number for a secure connection.

telnetTimeout A constant value which specifies the default
timeout period.

Public Instance Constructors

 TelnetClient Constructor Initializes a new instance of the TelnetClient class.

Public Instance Properties

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

CodePage Gets and sets the code page used when reading

TelnetClient Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.telnetPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.telnetPortSecure.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.telnetTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.CertificateUser.html

and writing text.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsThere Gets a value which indicates if the the remote host
is responsive

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalEcho Enables and disables the echoing of characters by
the remote host.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client session.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.RemoteService.html

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the client.

Terminal Gets and sets the terminal type used for a remote
login session.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the TelnetClient class library.

Public Instance Methods

Abort Aborts the current session and terminates the
connection.

AttachThread Attach an instance of the class to the current
thread

Break Sends a break signal to the remote host.

Cancel Cancel the current blocking client operation.

Connect Overloaded. Establish a connection with a remote
host.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
TelnetClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
TelnetClient class.

Login Overloaded. Login to the remote server.

Read Overloaded. Read data from the server and store
it in a byte array.

ReadLine Overloaded. Read up to a line of data from the
server and return it in a string buffer.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Search Overloaded. Search for a specific character
sequence in the data stream.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the server.

WriteLine Overloaded. Send a line of text to the server,
terminated by a carriage-return and linefeed.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the TelnetClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the TelnetClient class.

[Visual Basic]
Public Sub New()

[C#]
public TelnetClient();

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient Constructor

The properties of the TelnetClient class are listed below. For a complete list of TelnetClient class
members, see the TelnetClient Members topic.

Public Instance Properties

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the client certificate.

CertificatePassword Gets and sets the password associated with the
client certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the client
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

CodePage Gets and sets the code page used when reading
and writing text.

Handle Gets a value that specifies the client handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

TelnetClient Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.CertificateUser.html

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

IsThere Gets a value which indicates if the the remote host
is responsive

IsWritable Gets a value which indicates if data can be written
to the client without blocking.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalEcho Enables and disables the echoing of characters by
the remote host.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

Password Gets and sets the password used to authenticate
the client session.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.RemoteService.html

Status Gets a value which specifies the current status of
the client.

Terminal Gets and sets the terminal type used for a remote
login session.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

UserName Gets and sets the username used to authenticate
the client session.

Version Gets a value which returns the current version of
the TelnetClient class library.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.AutoResolve Property

Gets and sets a value which indicates if the client is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the client is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if client operations complete synchronously or asynchronously.
If set to true, then each client operation (such as sending or receiving data) will return when the operation
has completed or timed-out. If set to false, client operations will return immediately. If the operation
would result in the client blocking (such as attempting to read data when no data has been sent by the
remote host), an error is generated.

It is important to note that certain events, such as OnDisconnect, OnRead and OnWrite are only fired if
the client is in non-blocking mode.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Blocking Property

Get a value that specifies the date that the security certificate expires.

[Visual Basic]
Public ReadOnly Property CertificateExpires As String

[C#]
public string CertificateExpires {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateExpires property returns a string that specifies the date and time that the security
certificate expires. This property will return an empty string if a secure connection has not been
established with the remote host.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.CertificateExpires Property

Get a value that specifies the date that the security certificate was issued.

[Visual Basic]
Public ReadOnly Property CertificateIssued As String

[C#]
public string CertificateIssued {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateIssued property returns a string that specifies the date and time that the security certificate
was issued. This property will return an empty string if a secure connection has not been established with
the remote host.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.CertificateIssued Property

Get a value that provides information about the organization that issued the certificate.

[Visual Basic]
Public ReadOnly Property CertificateIssuer As String

[C#]
public string CertificateIssuer {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateIssuer property returns a string that contains information about the organization that
issued the server certificate. The string value is a comma separated list of tagged name and value pairs. In
the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.CertificateIssuer Property

Gets and sets a value that specifies the name of the client certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the certificate name.

Remarks
The CertificateName property is used to specify the name of a client certificate to use when establishing
a secure connection. It is only required that you set this property value if the server requires a client
certificate for authentication. If this property is not set, a client certificate will not be provided to the server.
If a certificate name is specified, the certificate must have a private key associated with it, otherwise the
connection attempt will fail because the control will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
TelnetClient Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.CertificateName Property

Gets a value which indicates the status of the security certificate returned by the remote host.

[Visual Basic]
Public ReadOnly Property CertificateStatus As SecurityCertificate

[C#]
public TelnetClient.SecurityCertificate CertificateStatus {get;}

Property Value
A SecurityCertificate enumeration value which specifies the status of the certificate.

Remarks
The CertificateStatus property is used to determine the status of the security certificate returned by the
remote host when a secure connection has been established. This property value should be checked after
the connection to the server has completed, but prior to beginning a transaction.

Note that if the certificate cannot be validated, the secure connection will not be automatically terminated.
It is the responsibility of your application to determine the best course of action to take if the certificate is
invalid. Even if the security certificate cannot be validated, the data exchanged with the remote host will
still be encrypted.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.CertificateStatus Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when establishing a secure connection. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and therefore it is
not necessary to set this property value because that is the default location that will be used to search for
the certificate. This property is only used if the CertificateName property is also set to a valid certificate
name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the property
should specify the full path to the file and must contain both the certificate and private key in PKCS #12

TelnetClient.CertificateStore Property

format. If the file is protected by a password, the CertificatePassword property must also be set to
specify the password.

See Also
TelnetClient Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.CertificatePassword.html

Gets a value that provides information about the organization that the server certificate was issued to.

[Visual Basic]
Public ReadOnly Property CertificateSubject As String

[C#]
public string CertificateSubject {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateSubject property returns a string that contains information about the organization that the
server certificate was issued to. The string value is a comma separated list of tagged name and value pairs.
In the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.CertificateSubject Property

Gets a value that indicates the length of the key used by the encryption algorithm for a secure connection.

[Visual Basic]
Public ReadOnly Property CipherStrength As Integer

[C#]
public int CipherStrength {get;}

Property Value
An integer value which specifies the encryption key length if a secure connection has been established;
otherwise a value of 0 is returned.

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure data
stream. Common values returned by this property are 128 and 256. A key length of 40 or 56 bits is
considered insecure and subject to brute force attacks. 128-bit and 256-bit keys are considered secure. If
this property returns a value of 0, this means that a secure connection has not been established with the
remote host.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.CipherStrength Property

Gets and sets the code page used when reading and writing text.

[Visual Basic]
Public Property CodePage As Integer

[C#]
public int CodePage {get; set;}

Property Value
An integer value which specifies the current code page. A value of zero specifies the default code page for
the current locale should be used. To preserve the original Unicode text, you can use code page 65001
which specifies UTF-8 character encoding.

Remarks
All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to as
"octets" in networking terminology. However, strings in .NET are Unicode where each character is
represented by 16 bits. To send and receive data using strings, these Unicode strings are converted to a
stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale, mapping
the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into a string buffer,
the stream of bytes received from the remote host are converted to Unicode before they are returned to
your application.

If you are exchanging text with another system and it appears to corrupted or characters are being
replaced with question marks or other symbols, it is likely the system is sending text which is using a
different character encoding. Most services use UTF-8 encoding to represent non-ASCII characters and
selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a string data type is not
recommended when reading or writing binary data to a socket. If possible, you should always use a byte
array as the buffer parameter for the Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, this class defaults to using the code page for the current locale. This property
value directly corresponds to Windows code page identifiers, and will accept any valid code page
supported by the .NET Framework. Setting this property to an invalid code page will generate an
exception.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.CodePage Property

Gets a value that specifies the client handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current client session.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Handle Property

Gets a value which specifies the length of the message digest that was selected for a secure connection.

[Visual Basic]
Public ReadOnly Property HashStrength As Integer

[C#]
public int HashStrength {get;}

Property Value
An integer value which specifies the length of the message digest if a secure connection has been
established; otherwise a value of 0 is returned.

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that was
selected. Common values returned by this property are 128 and 160. If this property returns a value of 0,
this means that a secure connection has not been established with the remote host.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.HashStrength Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.HostAddress Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.HostName Property

Gets a value which indicates if the current thread is performing a blocking client operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next client operation will not fail. An application
should always check the return value from a client operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.IsBlocked Property

Gets a value which indicates if a connection to the remote host has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the remote
host. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.IsInitialized Property

Gets a value which indicates if there is data available to be read from the socket connection to the server.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to read the client. Note
that even if this property does return true indicating that there is data available to be read, applications
should always check the return value from the Read method.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.IsReadable Property

Gets a value which indicates if the the remote host is responsive

[Visual Basic]
Public ReadOnly Property IsThere As Boolean

[C#]
public bool IsThere {get;}

Property Value
Returns true if the connection is active and the remote host is responsive to the client; otherwise returns
false.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.IsThere Property

Gets a value which indicates if data can be written to the client without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the client; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to write data to the client.
Note that even if this property does return true indicating that data can be written to the client,
applications should always check the return value from the Write method.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.IsWritable Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public TelnetClient.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.LastErrorString Property

Gets the local Internet address that the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local Internet address that the client is bound to when a
connection is established with a remote host. This property may return either an IPv4 or IPv6 formatted
address, depending on the type of connection that was established.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.LocalAddress Property

Enables and disables the echoing of characters by the remote host.

[Visual Basic]
Public Property LocalEcho As Boolean

[C#]
public bool LocalEcho {get; set;}

Property Value
A boolean value which specifies if local echo has been enabled.

Remarks
The LocalEcho property enables or disables the echoing of characters by the remote host. If set to true,
the remote host will be instructed to not echo characters, making the client responsible for displaying user
input. The default value for this property is false, specifying that the server should echo user input back to
the client.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.LocalEcho Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.LocalName Property

Gets the local port number the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalPort As Integer

[C#]
public int LocalPort {get;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to identify the local port number that the client is bound to to when a
connection is established with a remote host.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.LocalPort Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As TelnetOptions

[C#]
public TelnetClient.TelnetOptions Options {get; set;}

Property Value
Returns one or more TelnetOptions enumeration flags which specify the options for the client. The default
value for this property is clientOptionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Options Property

Gets and sets the password used to authenticate the client session.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password.

Remarks
If a password is not specified when the Login method is called, the value of this property will be used as
the default password when authenticating the client session.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Password Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.RemotePort Property

Gets and sets a value which specifies if a secure connection is established.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connection is established; otherwise returns false. The default value is false.

Remarks
The Secure property determines if a secure connection is established with the remote host. The default
value for this property is false, which specifies that a standard connection to the server is used. To
establish a secure connection, the application should set this property value to true prior to calling the
Connect method. Once the connection has been established, the client may exchange data with the
server as with standard connections.

It is strongly recommended that any application that sets this property true use error handling to trap an
errors that may occur. If the control is unable to initialize the security libraries, or otherwise cannot create
a secure session for the client, an exception may be generated when this property value is set.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Secure Property

Gets a value that specifies the encryption algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureCipher As SecureCipherAlgorithm

[C#]
public TelnetClient.SecureCipherAlgorithm SecureCipher {get;}

Property Value
A SecureCipherAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureCipher property returns a value which identifies the algorithm used to encrypt the data
stream. If a secure connection has not been established, this property will return a value of cipherNone.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.SecureCipher Property

Gets a value that specifies the message digest algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureHash As SecureHashAlgorithm

[C#]
public TelnetClient.SecureHashAlgorithm SecureHash {get;}

Property Value
A SecureHashAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureHash property returns a value which identifies the message digest (hash) algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of hashNone.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.SecureHash Property

Gets a value that specifies the key exchange algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureKeyExchange As SecureKeyAlgorithm

[C#]
public TelnetClient.SecureKeyAlgorithm SecureKeyExchange {get;}

Property Value
A SecureKeyAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureKeyExchange property returns a value which identifies the key exchange algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of keyExchangeNone.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.SecureKeyExchange Property

Gets and sets a value which specifies the protocol used for a secure connection.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public TelnetClient.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when establishing a secure
connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when establishing a
secure connection with a server or accepting a secure connection from a client. By default, the class will
attempt to use either SSL v3 or TLS v1 to establish the connection, with the appropriate protocol
automatically selected based on the capabilities of the remote host. It is recommended that you only
change this property value if you fully understand the implications of doing so. Assigning a value to this
property will override the default protocol and force the class to attempt to use only the protocol
specified.

Multiple security protocols may be specified by combining them using a bitwise or operator. After a
connection has been established, this property will identify the protocol that was selected. Attempting to
set this property after a connection has been established will result in an exception being thrown. This
property should only be set after setting the Secure property to true and before calling the Accept or
Connect methods.

In some cases, a server may only accept a secure connection if the TLS v1 protocol is specified. If the
security protocol is not compatible with the server, then the connection will fail with an error indicating
that the control is unable to establish a security context for the session. In this case, try assigning the
property to protocolTLS1 and attempt the connection again.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.SecureProtocol Property

Gets a value which specifies the current status of the client.

[Visual Basic]
Public ReadOnly Property Status As TelnetStatus

[C#]
public TelnetClient.TelnetStatus Status {get;}

Property Value
A TelnetStatus enumeration value which specifies the current client status.

Remarks
The Status property returns the current status of the client. This property can be used to check on
blocking connections to determine if the client is interacting with the remote host before taking some
action.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Status Property

Gets and sets the terminal type used for a remote login session.

[Visual Basic]
Public Property Terminal As String

[C#]
public string Terminal {get; set;}

Property Value
A string which specifies the terminal type.

Remarks
The Terminal property specifies the terminal type of the remote host for display purposes. On UNIX
based systems, the terminal name corresponds to a termcap or terminfo entry as set in the TERM
environment variable. On Windows based systems which implement the rlogin service, this property may
be ignored and the server will assume that the client is capable of displaying ANSI escape sequences. On
VMS systems, the terminal name should correspond to the terminal type used with the SET
TERMINAL/DEVICE command.

If this property is set to an empty string and no terminal type is specified when the Login method is called,
a default terminal type named "unknown" will be used. On most UNIX and VMS systems this defines a
terminal which is not capable of cursor positioning using control or escape sequences. This terminal type
may not be recognized and an error may be displayed when the user logs in indicating that the terminal
type is invalid.

Refer to the documentation for the server system to determine what terminal type names are available to
you. Remember that on UNIX systems, the terminal type is case-sensitive. Some of the more common
terminal types are:

Terminal Description

ansi This terminal type is usually available on UNIX
based servers. This specifies that the client is
capable of displaying standard ANSI escape
sequences for cursor control.

dumb This terminal type typically specifies a terminal
display which does not support control or escape
sequences for cursor positioning. If you do not
want escape sequences embedded in the data
stream and the server returns an error if the
terminal type is not specified, try using this
terminal type.

pcansi This terminal type is usually available on UNIX
based servers. This specifies that the client is a
using a PC terminal emulator that supports basic
ANSI escape sequences for cursor control. This
may also enable escape sequences which can set
the display colors.

vt100 This terminal type is usually available on UNIX and
VMS based servers. On some VMS systems this

TelnetClient.Terminal Property

string may need to be specified as DEC-VT100.
This specifies that the client is capable of
emulating a DEC VT100 terminal. The VT100
supports many of the same cursor control
sequences as an ANSI terminal.

vt220 This terminal type is usually available on UNIX and
VMS based servers. On some VMS systems this
string may need to be specified as DEC-VT220.
This specifies that the client is capable of
emulating a DEC VT220 terminal, which is a later
version of the VT100.

vt320 This terminal type is usually available on UNIX and
VMS based servers. On some VMS systems this
string may need to be specified as DEC-VT320.
This specifies that the client is capable of
emulating a DEC VT320 terminal, which is similar
to the VT100 and VT220 and provides advanced
features such as the ability to set display colors.

xterm This terminal type is may be available on UNIX
based servers which have X Windows installed.
This specifies that the client is a using the X
Windows xterm emulator which supports standard
ANSI escape sequences for cursor control.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public TelnetClient.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
TelnetClient Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TelnetClient.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public TelnetClient.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.TraceFlags Property

Gets and sets the username used to authenticate the client session.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username.

Remarks
If a username is not specified when the Login method is called, the value of this property will be used as
the default username when authenticating the client session.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.UserName Property

Gets a value which returns the current version of the TelnetClient class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the TelnetClient
class library. This value can be used by an application for validation and debugging purposes.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Version Property

The methods of the TelnetClient class are listed below. For a complete list of TelnetClient class
members, see the TelnetClient Members topic.

Public Instance Methods

Abort Aborts the current session and terminates the
connection.

AttachThread Attach an instance of the class to the current
thread

Break Sends a break signal to the remote host.

Cancel Cancel the current blocking client operation.

Connect Overloaded. Establish a connection with a remote
host.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
TelnetClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
TelnetClient class.

Login Overloaded. Login to the remote server.

Read Overloaded. Read data from the server and store
it in a byte array.

ReadLine Overloaded. Read up to a line of data from the
server and return it in a string buffer.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Search Overloaded. Search for a specific character
sequence in the data stream.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the server.

WriteLine Overloaded. Send a line of text to the server,
terminated by a carriage-return and linefeed.

TelnetClient Methods

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the TelnetClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Aborts the current session and terminates the connection.

[Visual Basic]
Public Function Abort() As Boolean

[C#]
public bool Abort();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Abort method sends an abort sequence to the server and the connection to the server is terminated.
Once this method returns, the client is no longer connected to the server. If a program is currently
executing on the server at the time this method is called, that program may be terminated as a result of
the session being aborted. Applications should normally call the Disconnect method to gracefully
disconnect from the server and should only use this method when the connection must be aborted
immediately.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Abort Method

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the client could be attached to the current thread. If this method returns
false, the client could not be attached to the thread and the application should check the value of the
LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.AttachThread Method

Sends a break signal to the remote host.

[Visual Basic]
Public Function Break() As Boolean

[C#]
public bool Break();

Remarks
The Break method sends a signal to the server which may terminate an application that is currently
running. The actual response to the break signal depends on the application.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Break Method

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Cancel Method

Establish a connection with a remote host.

Overload List
Establish a connection with a remote host.

public bool Connect();

Establish a connection with a remote host.

public bool Connect(string);

Establish a connection with a remote host.

public bool Connect(string,int);

Establish a connection with a remote host.

public bool Connect(string,int,int);

Establish a connection with a remote host.

public bool Connect(string,int,int,TelnetOptions);

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Connect Method

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect() As Boolean

[C#]
public bool Connect();

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the HostName or HostAddress property will be used to determine the host name or
address to connect to.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Connect Method ()

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String _
) As Boolean

[C#]
public bool Connect(
 string hostName
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Connect Method (String)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Connect Method (String, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Connect Method (String, Int32, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer, _
 ByVal options As TelnetOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout,
 TelnetOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the TelnetOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Connect Method (String, Int32, Int32, TelnetOptions)

Terminate the connection with a remote host.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and releases the client handle
allocated by the class. Note that the socket is not immediately released when the connection is terminated
and will enter a wait state for two minutes. After the time wait period has elapsed, the client will be
released by the operating system. This is a normal safety mechanism to handle any packets that may
arrive after the connection has been closed.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Disconnect Method

Releases all resources used by TelnetClient.

Overload List
Releases all resources used by TelnetClient.

public void Dispose();

Releases the unmanaged resources allocated by the TelnetClient class and optionally releases the
managed resources.

protected virtual void Dispose(bool);

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Dispose Method

Releases all resources used by TelnetClient.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Dispose Method ()

Releases the unmanaged resources allocated by the TelnetClient class and optionally releases the
managed resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the TelnetClient class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Finalize Method

Initialize an instance of the TelnetClient class.

Overload List
Initialize an instance of the TelnetClient class.

public bool Initialize();

Initialize an instance of the TelnetClient class.

public bool Initialize(string);

See Also
TelnetClient Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Initialize Method

Initialize an instance of the TelnetClient class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the TelnetClient class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Initialize Method ()

Initialize an instance of the TelnetClient class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the TelnetClient class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the TelnetClient class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.TelnetClient telnetClient = new SocketTools.TelnetClient();

if (telnetClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(telnetClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim telnetClient As New SocketTools.TelnetClient

If telnetClient.Initialize(strLicenseKey) = False Then
 MsgBox(telnetClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Initialize Method (String)

Login to the remote server.

Overload List
Login to the remote server.

public bool Login();

Login to the remote server.

public bool Login(string,string);

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Login Method

Login to the remote server.

[Visual Basic]
Overloads Public Function Login() As Boolean

[C#]
public bool Login();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Login method identifies the user to the remote server. The value of the UserName and Password
properties will be used to authenticate the client session. If the user name or password is invalid, an error
will occur. By default, when a connection is established, the user is automatically authenticated. This
method is typically used if you wish to log in as another user during the same session.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Login Method ()

Login to the remote server.

[Visual Basic]
Overloads Public Function Login(_
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Login(
 string userName,
 string userPassword
);

Parameters
userName

A string that specifies the name of the user logging into the server.

userPassword
A string that specifies the password used to authenticate the user.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Login method identifies the user to the remote server. If the user name or password is invalid, an
error will occur. By default, when a connection is established, the UserName, Password and Account
properties are used to automatically log the user in to the server. This method is typically used if you wish
to log in as another user during the same session.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Login Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Login Method (String, String)

Read data from the server and store it in a byte array.

Overload List
Read data from the server and store it in a byte array.

public int Read(byte[]);

Read data from the server and store it in a byte array.

public int Read(byte[],int);

Read data from the server and store it in a string.

public int Read(ref string);

Read data from the server and store it in a string.

public int Read(ref string,int);

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Read Method

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the size of the byte array passed
to the method. If no data is available to be read, an error will be generated if the client is in non-blocking
mode. If the client is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Read Method (Byte[])

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Read Method (Byte[], Int32)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the client.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to a maximum of 4096 bytes. If no
data is available to be read, an error will be generated if the client is in non-blocking mode. If the client is
in blocking mode, the program will stop until data is received from the server or the connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Read Method (String)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Read Method (String, Int32)

Read up to a line of data from the server and return it in a string buffer.

Overload List
Read up to a line of data from the server and return it in a string buffer.

public bool ReadLine(ref string);

Read up to a line of data from the server and return it in a string buffer.

public bool ReadLine(ref string,int);

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.ReadLine Method

Read up to a line of data from the server and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool ReadLine(
 ref string buffer
);

Parameters
buffer

A string which will contain the data read from the socket.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the server up to 4096 bytes in length or until an end-of-line
character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
method is specifically designed to return a single line of text data in a string variable. When an end-of-line
character sequence is encountered, the method will stop and return the data up to that point; the string
will not contain the carriage-return or linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the current thread to block until an end-of-line character sequence is processed,
the read operation times out or the remote host closes its end of the socket connection. If the Blocking
property is set to false, calling this method will automatically switch the client into a blocking mode, read
the data and then restore the client to non-blocking mode. If another network operation is attempted
while ReadLine is blocked waiting for data from the remote host, an error will occur. It is recommended
that this method only be used with blocking connections.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.ReadLine Method (String)

Read up to a line of data from the server and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool ReadLine(
 ref string buffer,
 int length
);

Parameters
buffer

A string which will contain the data read from the socket.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the server up to the specified number of bytes or until an end-of-
line character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
method is specifically designed to return a single line of text data in a string variable. When an end-of-line
character sequence is encountered, the method will stop and return the data up to that point; the string
will not contain the carriage-return or linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the current thread to block until an end-of-line character sequence is processed,
the read operation times out or the remote host closes its end of the socket connection. If the Blocking
property is set to false, calling this method will automatically switch the client into a blocking mode, read
the data and then restore the client to non-blocking mode. If another network operation is attempted
while ReadLine is blocked waiting for data from the remote host, an error will occur. It is recommended
that this method only be used with blocking connections.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

TelnetClient.ReadLine Method (String, Int32)

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Reset Method

Search for a specific character sequence in the data stream.

Overload List
Search for a specific character sequence in the data stream.

public bool Search(string);

Search for a specific character sequence in the data stream.

public bool Search(string,byte[],ref int);

Search for a specific character sequence in the data stream.

public bool Search(string,ref string);

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Search Method

Search for a specific character sequence in the data stream.

[Visual Basic]
Overloads Public Function Search(_
 ByVal value As String _
) As Boolean

[C#]
public bool Search(
 string value
);

Parameters
value

A string argument which specifies the sequence of characters to search for in the data stream. When
this sequence of characters is found, the method will return.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when it is
found. This is useful when the client wants to automate responses to the server, such as executing a
command and processing the output. The method will discard any data received up to and including the
specified character sequence.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Search Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Search Method (String)

Search for a specific character sequence in the data stream.

[Visual Basic]
Overloads Public Function Search(_
 ByVal value As String, _
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool Search(
 string value,
 byte[] buffer,
 ref int length
);

Parameters
value

A string argument which specifies the sequence of characters to search for in the data stream. When
this sequence of characters is found, the method will return.

buffer
An byte array that will contain the output sent by the server, up to and including the search string
character sequence.

length
An integer value passed by reference which should be initialized to the maximum number of bytes of
data to store in the buffer. When the method returns, this value will be updated with the actual
number of bytes stored in the buffer.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when it is
found. This is useful when the client wants to automate responses to the server, such as executing a
command and processing the output. The method collects the output from the server and stores it in a
buffer provided by the caller. When the method returns, the buffer will contain everything sent by the
server up to and including the search string.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Search Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Search Method (String, Byte[], Int32)

Search for a specific character sequence in the data stream.

[Visual Basic]
Overloads Public Function Search(_
 ByVal value As String, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool Search(
 string value,
 ref string buffer
);

Parameters
value

A string argument which specifies the sequence of characters to search for in the data stream. When
this sequence of characters is found, the method will return.

buffer
An string that will contain the output sent by the server, up to and including the search string
character sequence.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when it is
found. This is useful when the client wants to automate responses to the server, such as executing a
command and processing the output. The method collects the output from the server and stores it in a
buffer provided by the caller. When the method returns, the buffer will contain everything sent by the
server up to and including the search string.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Search Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Search Method (String, String)

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
TelnetClient Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Uninitialize Method

Write one or more bytes of data to the server.

Overload List
Write one or more bytes of data to the server.

public int Write(byte[]);

Write one or more bytes of data to the server.

public int Write(byte[],int);

Write a character to the server.

public int Write(char);

Write one or more characters to the server.

public int Write(char,int);

Write a string of characters to the server.

public int Write(string);

Write a string of characters to the server.

public int Write(string,int);

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Write Method

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the server.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Write Method (Byte[])

Write one or more bytes of data to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the server.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the server. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Write Method (Byte[], Int32)

Write a character to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal key As Char _
) As Integer

[C#]
public int Write(
 char key
);

Parameters
key

A character which will be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends one character to the server. If the client is in non-blocking mode and the send
buffer is full, an error will occur.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Write Method (Char)

Write one or more characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal key As Char, _
 ByVal repeat As Integer _
) As Integer

[C#]
public int Write(
 char key,
 int repeat
);

Parameters
key

A character which will be written to the server.

repeat
The number of characters that will be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends one or more characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Write Method (Char, Int32)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the server.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

You should never use strings to read and write binary data. Always use byte arrays to ensure that no
character conversion is performed.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Write Method (String)

Write a string of characters to the server.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the server.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the server. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the server. If there is enough room in the client's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the client is in
blocking mode, then the method will block until the data can be sent. If the client is in non-blocking mode
and the send buffer is full, an error will occur.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

You should never use strings to read and write binary data. Always use byte arrays to ensure that no
character conversion is performed.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.Write Method (String, Int32)

Send an empty line of text to the server, terminated by a carriage-return and linefeed.

Overload List
Send an empty line of text to the server, terminated by a carriage-return and linefeed.

public bool WriteLine();

Send a line of text to the server, terminated by a carriage-return and linefeed.

public bool WriteLine(string);

Send a line of text to the server, terminated by a carriage-return and linefeed.

public bool WriteLine(string,ref int);

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.WriteLine Method

Send an empty line of text to the server, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine() As Boolean

[C#]
public bool WriteLine();

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method will send an empty line of text, terminated by a carriage-return and linefeed.
Calling this method will force the application to block until the complete line of text has been written, the
write operation times out or the remote host aborts the connection. If this method is called with the
Blocking property set to false, it will automatically switch the client into a blocking mode, send the data
and then restore the client to non-blocking mode. If another network operation is attempted while the
WriteLine method is blocked sending data to the remote host, an error will occur. It is recommended that
this method only be used with blocking connections.

The Write and WriteLine methods can be safely intermixed.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.WriteLine Method ()

Send a line of text to the server, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool WriteLine(
 string buffer
);

Parameters
buffer

A string which contains the data that will be sent to the remote host. The data will always be
terminated with a carriage-return and linefeed control character sequence. If the string is empty, then
a only a carriage-return and linefeed are written to the socket. Note that if the string contains a null
character, any data that follows the null character will be discarded.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection. If this
method is called with the Blocking property set to false, it will automatically switch the client into a
blocking mode, send the data and then restore the client to non-blocking mode. If another network
operation is attempted while the WriteLine method is blocked sending data to the remote host, an error
will occur. It is recommended that this method only be used with blocking connections.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

You should never use strings to read and write binary data. Always use byte arrays to ensure that no
character conversion is performed.

The Write and WriteLine methods can be safely intermixed.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.WriteLine Method (String)

Send a line of text to the server, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal buffer As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool WriteLine(
 string buffer,
 ref int length
);

Parameters
buffer

A string which contains the data that will be sent to the remote host. The data will always be
terminated with a carriage-return and linefeed control character sequence. If the string is empty, then
a only a carriage-return and linefeed are written to the socket. Note that if the string contains a null
character, any data that follows the null character will be discarded.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection. If this
method is called with the Blocking property set to false, it will automatically switch the client into a
blocking mode, send the data and then restore the client to non-blocking mode. If another network
operation is attempted while the WriteLine method is blocked sending data to the remote host, an error
will occur. It is recommended that this method only be used with blocking connections.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

You should never use strings to read and write binary data. Always use byte arrays to ensure that no
character conversion is performed.

The Write and WriteLine methods can be safely intermixed.

See Also
TelnetClient Class | SocketTools Namespace | TelnetClient.WriteLine Overload List

TelnetClient.WriteLine Method (String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The events of the TelnetClient class are listed below. For a complete list of TelnetClient class members,
see the TelnetClient Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.OnCancel Event

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a remote host as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a socket is
created but the connection is not actually established until after this event occurs. Between the time
connection process is started and this event fires, no operation may be performed on the client other than
calling the Disconnect method.

This event is only generated if the client is in non-blocking mode.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.OnConnect Event

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the remote host closes its connection, terminating the client
session with the application. Because there may still be data in the client receive buffers, you should
continue to read data from the client until the Read method returns a value of 0. Once all of the data has
been read, you should call the Disconnect method to close the local socket and release the resources
allocated for the client.

This event is only generated if the client is in non-blocking mode.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.OnDisconnect Event

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type TelnetClient.ErrorEventArgs containing data related to
this event. The following TelnetClient.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see TelnetClient.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.TelnetClient.ErrorEventArgs

[Visual Basic]
Public Class TelnetClient.ErrorEventArgs
 Inherits EventArgs

[C#]
public class TelnetClient.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also
TelnetClient.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.ErrorEventArgs Class

TelnetClient.ErrorEventArgs overview

Public Instance Constructors

 TelnetClient.ErrorEventArgs Constructor Initializes a new instance of the
TelnetClient.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TelnetClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.ErrorEventArgs Members

Initializes a new instance of the TelnetClient.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public TelnetClient.ErrorEventArgs();

See Also
TelnetClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.ErrorEventArgs Constructor

The properties of the TelnetClient.ErrorEventArgs class are listed below. For a complete list of
TelnetClient.ErrorEventArgs class members, see the TelnetClient.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
TelnetClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
TelnetClient.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public TelnetClient.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
TelnetClient.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.ErrorEventArgs.Error Property

Occurs when data is available to be read from the client.

[Visual Basic]
Public Event OnRead As EventHandler

[C#]
public event EventHandler OnRead;

Remarks
The OnRead event occurs when data is available to be read from the client. This event is level-triggered,
which means that once this event fires, it will not occur again until some data has been read from the
client. This design prevents an application from being flooded with event notifications. It is recommended
that your application read all of the available data from the server and store it in a local buffer for
processing. See the example below.

This event is only generated if the client is in non-blocking mode.

Example

Private Sub Socket_OnRead(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Socket.OnRead
 Dim strBuffer As String
 Dim nRead As Integer

 Do
 ' Read up to m_nBufferSize bytes of data from the server
 nRead = Socket.Read(strBuffer, m_nBufferSize)

 If nRead > 0 Then
 ' Append the data to an internal buffer for processing
 m_dataBuffer = m_dataBuffer + strBuffer
 End If
 Loop Until nRead < 1

 ProcessData()
End Sub

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.OnRead Event

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.OnTimeout Event

Occurs when data can be written to the client.

[Visual Basic]
Public Event OnWrite As EventHandler

[C#]
public event EventHandler OnWrite;

Remarks
The OnWrite event occurs when the application can write data to the client. This event will typically occur
when a connection is first established with the remote host, and after the Write method has failed
because there was insufficient memory available in the client send buffers. In the second case, when some
of the buffered data has been successfully sent to the remote host and there is space available in the send
buffers, this event is used to signal the application that it may attempt to send more data.

This event is only generated if the client is in non-blocking mode.

See Also
TelnetClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.OnWrite Event

Specifies the error codes returned by the TelnetClient class.

[Visual Basic]
Public Enum TelnetClient.ErrorCode

[C#]
public enum TelnetClient.ErrorCode

Remarks
The TelnetClient class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

TelnetClient.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the encryption algorithms that the TelnetClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum TelnetClient.SecureCipherAlgorithm

[C#]
[Flags]
public enum TelnetClient.SecureCipherAlgorithm

Remarks
The TelnetClient class uses the SecureCipherAlgorithm enumeration to identify which encryption
algorithm was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

cipherNone No cipher has been selected. A secure
connection has not been established
with the remote host.

0

cipherRC2 The RC2 block cipher was selected. This
is a variable key length cipher which
supports keys between 40- and 128-bits
in length, in 8-bit increments.

1

cipherRC4 The RC4 stream cipher was selected.
This is a variable key length cipher
which supports keys between 40- and
128-bits in length, in 8-bit increments.

2

cipherRC5 The RC5 block cipher was selected. This
is a variable key length cipher which
supports keys up to 2040 bits, in 8-bit
increments.

4

cipherDES The DES (Data Encryption Standard)
block cipher was selected. This is a fixed
key length cipher using 56-bit keys.

8

cipherDES3 The Triple DES block cipher was
selected. This cipher encrypts the data
three times using different keys,
effectively using a 168-bit key length.

16

cipherDESX A variant of the DES block cipher which
XORs an extra 64-bits of the key before
and after the plaintext has been
encrypted, increasing the key size to
184 bits.

32

cipherAES The Advanced Encryption Standard 64

TelnetClient.SecureCipherAlgorithm Enumeration

cipher (also known as the Rijndael
cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits.
This cipher is supported on Windows XP
SP3 SP3 and later versions of the
operating system.

cipherSkipjack The Skipjack block cipher was selected.
This is a fixed key length cipher, using
80-bit keys.

128

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the hash algorithms that the TelnetClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum TelnetClient.SecureHashAlgorithm

[C#]
[Flags]
public enum TelnetClient.SecureHashAlgorithm

Remarks
The TelnetClient class uses the SecureHashAlgorithm enumeration to identify the message digest (hash)
algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

hashNone No hash algorithm has been selected.
This is not a secure connection with the
server.

0

hashMD5 The MD5 algorithm was selected. This
algorithm produces a 128-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

1

hashSHA The SHA-1 algorithm was selected. This
algorithm produces a 160-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

2

hashSHA256 The SHA-256 algorithm was selected.
This algorithm produces a 256-bit
message digest.

4

hashSHA384 The SHA-384 algorithm was selected.
This algorithm produces a 384-bit
message digest.

8

hashSHA512 The SHA-512 algorithm was selected.
This algorithm produces a 512-bit
message digest.

16

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also

TelnetClient.SecureHashAlgorithm Enumeration

SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the key exchange algorithms that the TelnetClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum TelnetClient.SecureKeyAlgorithm

[C#]
[Flags]
public enum TelnetClient.SecureKeyAlgorithm

Remarks
The TelnetClient class uses the SecureKeyAlgorithm enumeration to identify the key exchange algorithm
that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

keyExchangeNone No key exchange algorithm has been
selected. This is not a secure connection
with the server.

0

keyExchangeRSA The RSA public key exchange algorithm
has been selected.

1

keyExchangeKEA The KEA public key exchange algorithm
has been selected. This is an improved
version of the Diffie-Hellman public key
algorithm.

2

keyExchangeDH The Diffie-Hellman public key exchange
algorithm has been selected.

4

keyExchangeECDH The Elliptic Curve Diffie-Hellman key
exchange algorithm was selected. This is
a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography.
This key exchange algorithm is only
supported on Windows XP SP3 SP3 and
later versions of the operating system.

8

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.SecureKeyAlgorithm Enumeration

Specifies the security certificate status values that may be returned by the TelnetClient class.

[Visual Basic]
Public Enum TelnetClient.SecurityCertificate

[C#]
public enum TelnetClient.SecurityCertificate

Remarks
The TelnetClient class uses the SecurityCertificate enumeration to identify the current status of the
certificate that was provided by the remote host when a secure connection was established.

Members

Member Name Description

certificateNone No certificate information is available. A secure
connection was not established with the server.

certificateValid The certificate is valid.

certificateNoMatch The certificate is valid, however the domain name
specified in the certificate does not match the
domain name of the remote host. The application
can examine the CertificateSubject property to
determine the site the certificate was issued to.

certificateExpired The certificate has expired and is no longer valid.
The application can examine the
CertificateExpires property to determine when
the certificate expired.

certificateRevoked The certificate has been revoked and is no longer
valid. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateUntrusted The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the
local host. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateInvalid The certificate is invalid. This typically indicates that
the internal structure of the certificate is damaged.
It is recommended that the application
immediately terminate the connection if this status
is returned.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

TelnetClient.SecurityCertificate Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the security protocols that the TelnetClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum TelnetClient.SecurityProtocols

[C#]
[Flags]
public enum TelnetClient.SecurityProtocols

Remarks
The TelnetClient class uses the SecurityProtocols enumeration to specify one or more security protocols
to be used when establishing a connection with a remote host. Multiple protocols may be specified if
necessary and the actual protocol used will be negotiated with the remote host. It is recommended that
most applications use protocolDefault when creating a secure connection.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

TelnetClient.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolDefault The default selection of security
protocols will be used when establishing
a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

16

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the options that the TelnetClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum TelnetClient.TelnetOptions

[C#]
[Flags]
public enum TelnetClient.TelnetOptions

Remarks
The TelnetClient class uses the TelnetOptions enumeration to specify one or more options to be used
when establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionDefault The default connection option. This is
the same as specifying optionNone.

0

optionTunnel This option specifies that a tunneled
TCP connection and/or port-forwarding
is being used to establish the
connection to the server. This changes
the behavior of the client with regards
to internal checks of the destination IP
address and remote port number,
default capability selection and how the
connection is established. This option
also forces all connections to be
outbound and enables the firewall
compatibility features in the client.

1024

optionTrustedSite This option specifies the server is
trusted. The server certificate will not be
validated and the connection will always
be permitted. This option only affects
connections using either the SSL or TLS
protocols.

2048

optionSecure The default option for establishing a
secure connection. This option is the
same as specifying
optionSecureImplicit.

4096

optionSecureImplicit This option specifies the client should
attempt to establish a secure session
immediately after connecting to the
server. Note that the server must

4096

TelnetClient.TelnetOptions Enumeration

support secure connections using either
the SSL or TLS protocol.

optionSecureExplicit This option specifies the client should
attempt to establish a secure
connection with the server using
standard Telnet option negotiation. This
requires that the server support the
START_TLS option.

8192

optionSecureFallback This option specifies the client should
permit the use of less secure cipher
suites for compatibility with legacy
servers. If this option is specified, the
client will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

32768

optionPreferIPv6 This option specifies the client should
prefer the use of IPv6 if the server
hostname can be resolved to both an
IPv6 and IPv4 address. This option is
ignored if the local system does not
have IPv6 enabled, or when the
hostname can only be resolved to an
IPv4 address. If the server hostname can
only be resolved to an IPv6 address, the
client will attempt to establish a
connection using IPv6 regardless if this
option has been specified.

262144

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the status values that may be returned by the TelnetClient class.

[Visual Basic]
Public Enum TelnetClient.TelnetStatus

[C#]
public enum TelnetClient.TelnetStatus

Remarks
The TelnetClient class uses the TelnetStatus enumeration to identify the current status of the client.

Members

Member Name Description

statusUnused A client session has not been created. Attempts to
perform any network operations, such as sending
or receiving data, will generate an error.

statusIdle A client session has been created, but is not
currently in use. A blocking socket operation can
be executed at this point.

statusConnect The client is in the process of establishing a
connection with a remote host.

statusRead The client is in the process of receiving data from a
remote host.

statusWrite The client is in the process of sending data to a
remote host.

statusDisconnect The client session is being closed and subsequent
attempts to access the client will result in an error.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.TelnetStatus Enumeration

Specifies the logging options that the TelnetClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum TelnetClient.TraceOptions

[C#]
[Flags]
public enum TelnetClient.TraceOptions

Remarks
The TelnetClient class uses the TraceOptions enumeration to specify what kind of debugging information
is written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also
SocketTools Namespace

TelnetClient.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub TelnetClient.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void TelnetClient.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.OnErrorEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see TelnetClient.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.TelnetClient.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class TelnetClient.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class TelnetClient.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the TelnetClient class.

Example

<Assembly: SocketTools.TelnetClient.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.TelnetClient.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also
TelnetClient.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.RuntimeLicenseAttribute Class

TelnetClient.RuntimeLicenseAttribute overview

Public Instance Constructors

 TelnetClient.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TelnetClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public TelnetClient.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the TelnetClient class.

See Also
TelnetClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.RuntimeLicenseAttribute Constructor

The properties of the TelnetClient.RuntimeLicenseAttribute class are listed below. For a complete list of
TelnetClient.RuntimeLicenseAttribute class members, see the TelnetClient.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
TelnetClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
TelnetClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClient.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see TelnetClientException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.TelnetClientException

[Visual Basic]
Public Class TelnetClientException
 Inherits ApplicationException

[C#]
public class TelnetClientException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A TelnetClientException is thrown by the TelnetClient class when an error occurs.

The default constructor for the TelnetClientException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TelnetClient (in SocketTools.TelnetClient.dll)

See Also
TelnetClientException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClientException Class

TelnetClientException overview

Public Instance Constructors

 TelnetClientException Overloaded. Initializes a new instance of the
TelnetClientException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

TelnetClientException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TelnetClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the TelnetClientException class with the last network error code.

Overload List
Initializes a new instance of the TelnetClientException class with the last network error code.

public TelnetClientException();

Initializes a new instance of the TelnetClientException class with a specified error number.

public TelnetClientException(int);

Initializes a new instance of the TelnetClientException class with a specified error message.

public TelnetClientException(string);

Initializes a new instance of the TelnetClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

public TelnetClientException(string,Exception);

See Also
TelnetClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClientException Constructor

Initializes a new instance of the TelnetClientException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public TelnetClientException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the TelnetClient.ErrorCode enumeration.

See Also
TelnetClientException Class | SocketTools Namespace | TelnetClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClientException Constructor ()

Initializes a new instance of the TelnetClientException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public TelnetClientException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
TelnetClientException Class | SocketTools Namespace | TelnetClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClientException Constructor (String)

Initializes a new instance of the TelnetClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public TelnetClientException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
TelnetClientException Class | SocketTools Namespace | TelnetClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClientException Constructor (String, Exception)

Initializes a new instance of the TelnetClientException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public TelnetClientException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the TelnetClient.ErrorCode enumeration.

See Also
TelnetClientException Class | SocketTools Namespace | TelnetClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClientException Constructor (Int32)

The properties of the TelnetClientException class are listed below. For a complete list of
TelnetClientException class members, see the TelnetClientException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
TelnetClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClientException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public TelnetClient.ErrorCode ErrorCode {get;}

Property Value
Returns a TelnetClient.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the TelnetClientException class sets the error code to the last network error
that occurred. For more information about the errors that may occur, refer to the TelnetClient.ErrorCode
enumeration.

See Also
TelnetClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClientException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
TelnetClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClientException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
TelnetClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClientException.Number Property

The methods of the TelnetClientException class are listed below. For a complete list of
TelnetClientException class members, see the TelnetClientException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TelnetClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClientException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
TelnetClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TelnetClientException.ToString Method

Implements ANSI and DEC VT terminal emulation.

For a list of all members of this type, see Terminal Members.

System.Object
 System.MarshalByRefObject
 System.ComponentModel.Component
 System.Windows.Forms.Control
 System.Windows.Forms.ScrollableControl
 System.Windows.Forms.ContainerControl
 System.Windows.Forms.UserControl
 SocketTools.Terminal

[Visual Basic]
<ToolboxBitmap, _ DefaultEvent(Name:="Load"), _ DesignerCategory(Category:="UserControl"), _

 Designer(DesignerBaseTypeName:="System.ComponentModel.Design.IDesigner",
DesignerTypeName:="System.Windows.Forms.Design.ControlDesigner, System.Design,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"), _
 Designer(DesignerBaseTypeName:="System.ComponentModel.Design.IRootDesigner, System,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089",
DesignerTypeName:="System.Windows.Forms.Design.UserControlDocumentDesigner, System.Design,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"), _
 Designer(DesignerBaseTypeName:="System.ComponentModel.Design.IDesigner",
DesignerTypeName:="System.Windows.Forms.Design.ScrollableControlDesigner, System.Design,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"), _
 Designer(DesignerBaseTypeName:="System.ComponentModel.Design.IDesigner",
DesignerTypeName:="System.Windows.Forms.Design.ControlDesigner, System.Design,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"), _
 DefaultProperty(Name:="Text"), _ ToolboxItemFilter(FilterString:="System.Windows.Forms",
FilterType:=ToolboxItemFilterType.Allow), _
 DesignerSerializer(SerializerTypeName:="System.Windows.Forms.Design.ControlCodeDomSerializer,
System.Design, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a",
SerializerBaseTypeName:="System.ComponentModel.Design.Serialization.CodeDomSerializer,
System.Design, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a")>

Public Class Terminal
 Inherits UserControl

[C#]
[ToolboxBitmap]
[DefaultEvent(Name="Load")]
[DesignerCategory(Category="UserControl")]
[Designer(DesignerBaseTypeName="System.ComponentModel.Design.IDesigner",

DesignerTypeName="System.Windows.Forms.Design.ControlDesigner, System.Design,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a")]

[Designer(DesignerBaseTypeName="System.ComponentModel.Design.IRootDesigner, System,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089",
DesignerTypeName="System.Windows.Forms.Design.UserControlDocumentDesigner, System.Design,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a")]

[Designer(DesignerBaseTypeName="System.ComponentModel.Design.IDesigner",
DesignerTypeName="System.Windows.Forms.Design.ScrollableControlDesigner, System.Design,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a")]

[Designer(DesignerBaseTypeName="System.ComponentModel.Design.IDesigner",
DesignerTypeName="System.Windows.Forms.Design.ControlDesigner, System.Design,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a")]

[DefaultProperty(Name="Text")]
[ToolboxItemFilter(FilterString="System.Windows.Forms",

FilterType=ToolboxItemFilterType.Allow)]
[DesignerSerializer(SerializerTypeName="System.Windows.Forms.Design.ControlCodeDomSerializer,

System.Design, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a",
SerializerBaseTypeName="System.ComponentModel.Design.Serialization.CodeDomSerializer,
System.Design, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a")]

public class Terminal : UserControl

Terminal Class

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are
not guaranteed to be thread-safe.

Remarks
The Terminal control provides a comprehensive interface for emulating an ANSI, DEC VT100 or DEC VT220 character
terminal, with full support for all standard escape and control sequences, color mapping and other advanced features.
The control functions provide both a high level interface for parsing escape sequences and updating a display, as well
as lower level primitives for directly managing the virtual display, such as controlling the individual display cells, moving
the cursor position and specifying display attributes.

This control can be used in conjunction with the SocketTools.SshClient or SocketTools.TelnetClient classes to provide
terminal emulation services for an application, or it can be used independently. For example, this control could also be
used to provide emulation services for a program that requires serial modem connections to a server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
Terminal Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal overview

Public Instance Constructors

 Terminal Constructor Initializes a new instance of the Terminal control.

Public Instance Fields

Cell Gets and sets information about a character cell in
the virtual display.

ColorMap Gets and sets the color values used when
displaying text.

KeyMap Gets and sets the character sequence mapped to a
special key.

Public Instance Properties

AccessibilityObject (inherited from Control) Gets the AccessibleObject assigned to the control.

AccessibleDefaultActionDescription (inherited
from Control)

Gets or sets the default action description of the
control for use by accessibility client applications.

AccessibleDescription (inherited from Control) Gets or sets the description of the control used by
accessibility client applications.

AccessibleName (inherited from Control) Gets or sets the name of the control used by
accessibility client applications.

AccessibleRole (inherited from Control) Gets or sets the accessible role of the control

ActiveControl (inherited from ContainerControl) Gets or sets the active control on the container
control.

AllowDrop (inherited from Control) Gets or sets a value indicating whether the control
can accept data that the user drags onto it.

Anchor (inherited from Control) Gets or sets which edges of the control are
anchored to the edges of its container.

Attributes Gets and sets the current display attribute for the
terminal emulator.

AutoRefresh Enables and disables the automatic refreshing of
the virtual display.

AutoScroll (inherited from ScrollableControl) Gets or sets a value indicating whether the
container will allow the user to scroll to any
controls placed outside of its visible boundaries.

AutoScrollMargin (inherited from
ScrollableControl)

Gets or sets the size of the auto-scroll margin.

AutoScrollMinSize (inherited from
ScrollableControl)

Gets or sets the minimum size of the auto-scroll.

AutoScrollPosition (inherited from
ScrollableControl)

Gets or sets the location of the auto-scroll
position.

Terminal Members

AutoSelect Enables and disables the automatic selection of
text in the display.

AutoSize Enables and disables the automatic resizing of the
display.

AutoWrap Enables and disables the automatic wrapping of
text in the virtual display.

BackColor (inherited from Control) Gets or sets the background color for the control.

BackgroundImage (inherited from Control) Gets or sets the background image displayed in
the control.

Bell Enables and disables the audible bell.

BindingContext (inherited from
ContainerControl)

BoldColor Gets and sets the bold color of the control.

Bottom (inherited from Control) Gets the distance between the bottom edge of the
control and the top edge of its container's client
area.

Bounds (inherited from Control) Gets or sets the size and location of the control
including its nonclient elements.

CanFocus (inherited from Control) Gets a value indicating whether the control can
receive focus.

CanSelect (inherited from Control) Gets a value indicating whether the control can be
selected.

Capture (inherited from Control) Gets or sets a value indicating whether the control
has captured the mouse.

Caret Gets and sets the caret style of the control.

CausesValidation (inherited from Control) Gets or sets a value indicating whether the control
causes validation to be performed on any controls
that require validation when it receives focus.

CellHeight Gets the height of a character cell.

CellWidth Gets the width of a character cell.

ClientRectangle (inherited from Control) Gets the rectangle that represents the client area
of the control.

ClientSize (inherited from Control) Gets or sets the height and width of the client area
of the control.

CodePage Gets and sets the code page used when displaying
text.

Columns Gets and sets the number of columns in the virtual
display.

CompanyName (inherited from Control) Gets the name of the company or creator of the
application containing the control.

Container (inherited from Component) Gets the IContainer that contains the Component.

ContainsFocus (inherited from Control) Gets a value indicating whether the control, or one
of its child controls, currently has the input focus.

ContextMenu (inherited from Control) Gets or sets the shortcut menu associated with the
control.

Controls (inherited from Control) Gets the collection of controls contained within the
control.

Created (inherited from Control) Gets a value indicating whether the control has
been created.

Cursor (inherited from Control) Gets or sets the cursor that is displayed when the
mouse pointer is over the control.

CursorX Gets and sets the current cursor position in the
display.

CursorY Gets and sets the current cursor position in the
display.

DataBindings (inherited from Control) Gets the data bindings for the control.

Display Gets a value that specifies the virtual display
handle allocated for the control.

DisplayRectangle (inherited from
ScrollableControl)

Disposing (inherited from Control) Gets a value indicating whether the control is in
the process of being disposed of.

Dock (inherited from Control) Gets or sets which edge of the parent container a
control is docked to.

DockPadding (inherited from ScrollableControl) Gets the dock padding settings for all edges of the
control.

Emulation Gets and sets the emulation mode used by the
control.

Enabled (inherited from Control) Gets or sets a value indicating whether the control
can respond to user interaction.

Focused (inherited from Control) Gets a value indicating whether the control has
input focus.

Font (inherited from Control) Gets or sets the font of the text displayed by the
control.

FontName Gets and sets the name of the font used by the
control.

FontSize Gets and sets the size of the font used by the
control.

ForeColor (inherited from Control) Gets or sets the foreground color of the control.

Handle (inherited from Control) Gets the window handle that the control is bound
to.

HasChildren (inherited from Control) Gets a value indicating whether the control
contains one or more child controls.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.Terminal.FontName.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.Terminal.FontSize.html

Height (inherited from Control) Gets or sets the height of the control.

ImeMode (inherited from Control) Gets or sets the Input Method Editor (IME) mode
of the control.

InvokeRequired (inherited from Control) Gets a value indicating whether the caller must call
an invoke method when making method calls to
the control because the caller is on a different
thread than the one the control was created on.

IsAccessible (inherited from Control) Gets or sets a value indicating whether the control
is visible to accessibility applications.

IsDisposed (inherited from Control) Gets a value indicating whether the control has
been disposed of.

IsHandleCreated (inherited from Control) Gets a value indicating whether the control has a
handle associated with it.

IsInitialized Gets a value which indicates if the current instance
of the control has been initialized successfully.

LastError Gets or sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

Left (inherited from Control) Gets or sets the x-coordinate of a control's left
edge in pixels.

Location (inherited from Control) Gets or sets the coordinates of the upper-left
corner of the control relative to the upper-left
corner of its container.

MouseX Return the current mouse position in the display.

MouseY Return the current mouse position in the display.

Name (inherited from Control) Gets or sets the name of the control.

NewLine Gets and sets the newline mode for the virtual
display.

Parent (inherited from Control) Gets or sets the parent container of the control.

ParentForm (inherited from ContainerControl) Gets the form that the container control is
assigned to.

ProductName (inherited from Control) Gets the product name of the assembly containing
the control.

ProductVersion (inherited from Control) Gets the version of the assembly containing the
control.

RecreatingHandle (inherited from Control) Gets a value indicating whether the control is
currently re-creating its handle.

Region (inherited from Control) Gets or sets the window region associated with the
control.

Right (inherited from Control) Gets the distance between the right edge of the
control and the left edge of its container.

RightToLeft (inherited from Control) Gets or sets a value indicating whether control's
elements are aligned to support locales using
right-to-left fonts.

Rows Gets and sets the number of rows in the virtual
display.

ScrollBars Gets and sets the scrollbar display mode for the
control.

SelLength Gets and sets the number of characters selected in
the virtual display.

SelStart Gets and sets the starting position of the current
text selection.

SelText Gets the selected text or text from a specific
portion of the display.

Site (inherited from Control) Gets or sets the site of the control.

Size (inherited from Control) Gets or sets the height and width of the control.

TabIndex (inherited from Control) Gets or sets the tab order of the control within its
container.

TabStop (inherited from Control) Gets or sets a value indicating whether the user
can give the focus to this control using the TAB
key.

Tag (inherited from Control) Gets or sets the object that contains data about
the control.

Text Gets and sets the text displayed by the control.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Top (inherited from Control) Gets or sets the y-coordinate of the control's top
edge in pixels.

TopLevelControl (inherited from Control) Gets the parent control that is not parented by
another Windows Forms control. Typically, this is
the outermost Form that the control is contained
in.

Version Gets a value which returns the current version of
the Terminal control.

Visible (inherited from Control) Gets or sets a value indicating whether the control
is displayed.

Width (inherited from Control) Gets or sets the width of the control.

WindowTarget (inherited from Control)

Public Instance Methods

BeginInvoke (inherited from Control) Overloaded. Executes the specified delegate
asynchronously with the specified arguments, on
the thread that the control's underlying handle

was created on.

BringToFront (inherited from Control) Brings the control to the front of the z-order.

Clear Clear the terminal emulation window.

ClearEol Erase all characters from the current column to the
end of the line.

Contains (inherited from Control) Retrieves a value indicating whether the specified
control is a child of the control.

CreateControl (inherited from Control) Forces the creation of the control, including the
creation of the handle and any child controls.

CreateGraphics (inherited from Control) Creates the Graphics object for the control.

CreateObjRef (inherited from
MarshalByRefObject)

Creates an object that contains all the relevant
information required to generate a proxy used to
communicate with a remote object.

DelLine Delete the current line in the terminal emulation
display.

Deselect Deselects any selected text in the display.

Dispose (inherited from Component) Overloaded. Releases all resources used by the
Component.

DoDragDrop (inherited from Control) Begins a drag-and-drop operation.

EndInvoke (inherited from Control) Retrieves the return value of the asynchronous
operation represented by the IAsyncResult object
passed.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

FindForm (inherited from Control) Retrieves the form that the control is on.

Focus (inherited from Control) Sets input focus to the control.

GetChildAtPoint (inherited from Control) Retrieves the child control that is located at the
specified coordinates.

GetContainerControl (inherited from Control) Returns the next ContainerControl up the control's
chain of parent controls.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetLifetimeService (inherited from
MarshalByRefObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetNextControl (inherited from Control) Retrieves the next control forward or back in the
tab order of child controls.

GetType (inherited from Object) Gets the Type of the current instance.

Hide (inherited from Control) Conceals the control from the user.

Initialize Overloaded. Initialize an instance of the Terminal
control.

InitializeLifetimeService (inherited from
MarshalByRefObject)

Obtains a lifetime service object to control the
lifetime policy for this instance.

InsLine Insert an empty line at the current position in the
terminal emulation display.

Invalidate (inherited from Control) Overloaded. Invalidates the specified region of the
control (adds it to the control's update region,
which is the area that will be repainted at the next
paint operation), and causes a paint message to
be sent to the control.

Invoke (inherited from Control) Overloaded. Executes the specified delegate, on
the thread that owns the control's underlying
window handle, with the specified list of
arguments.

PerformLayout (inherited from Control) Overloaded. Forces the control to apply layout
logic to all its child controls.

PointToClient (inherited from Control) Computes the location of the specified screen
point into client coordinates.

PointToScreen (inherited from Control) Computes the location of the specified client point
into screen coordinates.

PreProcessMessage Preprocesses input messages within the message
loop before they are dispatched.

RectangleToClient (inherited from Control) Computes the size and location of the specified
screen rectangle in client coordinates.

RectangleToScreen (inherited from Control) Computes the size and location of the specified
client rectangle in screen coordinates.

Refresh Forces a complete redraw of the virtual display.

Reset Reset the internal state of the control, resetting all
properties to their default values.

ResetBackColor (inherited from Control) Resets the BackColor property to its default value.

ResetBindings (inherited from Control) Resets the DataBindings property to its default
value.

ResetCursor (inherited from Control) Resets the Cursor property to its default value.

ResetFont (inherited from Control) Resets the Fontproperty to its default value.

ResetForeColor (inherited from Control) Resets the ForeColor property to its default value.

ResetImeMode (inherited from Control) Resets the ImeMode property to its default value.

ResetRightToLeft (inherited from Control) Resets the RightToLeft property to its default
value.

ResetText (inherited from Control) Resets the Text property to its default value.

ResumeLayout (inherited from Control) Overloaded. Resumes normal layout logic.

Scale (inherited from Control) Overloaded. Scales the control and any child
controls to the specified ratio.

ScrollControlIntoView (inherited from

ScrollableControl)

ScrollDown Scroll the display down by one line.

ScrollUp Scroll the display up by one line.

Select (inherited from Control) Overloaded. Activates the control.

SelectNextControl (inherited from Control) Activates the next control.

SelectText Overloaded. Selects a region of the virtual display
and returns the selected text.

SendToBack (inherited from Control) Sends the control to the back of the z-order.

SetAutoScrollMargin (inherited from
ScrollableControl)

Sets the size of the auto-scroll margins.

SetBounds (inherited from Control) Overloaded. Sets the bounds of the control to the
specified location and size.

Show (inherited from Control) Displays the control to the user.

SuspendLayout (inherited from Control) Temporarily suspends the layout logic for the
control.

ToString (inherited from Component)

Uninitialize Uninitialize the control and release any resources
allocated for the current process.

Update (inherited from Control) Causes the control to redraw the invalidated
regions within its client area.

Validate (inherited from ContainerControl) Validates the last invalidated control and its
ancestors up through, but not including, the
current control.

Write Overloaded. Write the contents of a byte array to
the virtual display.

Public Instance Events

BackColorChanged (inherited from Control) Occurs when the value of the BackColor property
changes.

BackgroundImageChanged (inherited from
Control)

Occurs when the value of the BackgroundImage
property changes.

BindingContextChanged (inherited from
Control)

Occurs when the value of the BindingContext
property changes.

CausesValidationChanged (inherited from
Control)

Occurs when the value of the CausesValidation
property changes.

ChangeUICues (inherited from Control) Occurs when the focus or keyboard user interface
(UI) cues change.

Click (inherited from Control) Occurs when the control is clicked.

ContextMenuChanged (inherited from Control) Occurs when the value of the ContextMenu
property changes.

ControlAdded (inherited from Control) Occurs when a new control is added to the

ControlCollection .

ControlRemoved (inherited from Control) Occurs when a control is removed from the
ControlCollection .

CursorChanged (inherited from Control) Occurs when the value of the Cursor property
changes.

Disposed (inherited from Component) Adds an event handler to listen to the Disposed
event on the component.

DockChanged (inherited from Control) Occurs when the value of the Dock property
changes.

DoubleClick (inherited from Control) Occurs when the control is double-clicked.

DragDrop (inherited from Control) Occurs when a drag-and-drop operation is
completed.

DragEnter (inherited from Control) Occurs when an object is dragged into the
control's bounds.

DragLeave (inherited from Control) Occurs when an object is dragged out of the
control's bounds.

DragOver (inherited from Control) Occurs when an object is dragged over the
control's bounds.

EnabledChanged (inherited from Control) Occurs when the Enabled property value has
changed.

Enter (inherited from Control) Occurs when the control is entered.

FontChanged (inherited from Control) Occurs when the Font property value changes.

ForeColorChanged (inherited from Control) Occurs when the ForeColor property value
changes.

GiveFeedback (inherited from Control) Occurs during a drag operation.

GotFocus (inherited from Control) Occurs when the control receives focus.

HandleCreated (inherited from Control) Occurs when a handle is created for the control.

HandleDestroyed (inherited from Control) Occurs when the control's handle is in the process
of being destroyed.

HelpRequested (inherited from Control) Occurs when the user requests help for a control.

ImeModeChanged (inherited from Control) Occurs when the ImeMode property has changed.

Invalidated (inherited from Control) Occurs when a control's display requires
redrawing.

KeyDown (inherited from Control) Occurs when a key is pressed while the control has
focus.

KeyMapped Occurs when a mapped key is pressed.

KeyPress (inherited from Control) Occurs when a key is pressed while the control has
focus.

KeyUp (inherited from Control) Occurs when a key is released while the control
has focus.

Layout (inherited from Control) Occurs when a control should reposition its child

controls.

Leave (inherited from Control) Occurs when the input focus leaves the control.

Load (inherited from UserControl) Occurs before the control becomes visible for the
first time.

LocationChanged (inherited from Control) Occurs when the Location property value has
changed.

LostFocus (inherited from Control) Occurs when the control loses focus.

MouseDown (inherited from Control) Occurs when the mouse pointer is over the control
and a mouse button is pressed.

MouseEnter (inherited from Control) Occurs when the mouse pointer enters the control.

MouseHover (inherited from Control) Occurs when the mouse pointer hovers over the
control.

MouseLeave (inherited from Control) Occurs when the mouse pointer leaves the control.

MouseMove (inherited from Control) Occurs when the mouse pointer is moved over the
control.

MouseUp (inherited from Control) Occurs when the mouse pointer is over the control
and a mouse button is released.

MouseWheel (inherited from Control) Occurs when the mouse wheel moves while the
control has focus.

Move (inherited from Control) Occurs when the control is moved.

Paint (inherited from Control) Occurs when the control is redrawn.

ParentChanged (inherited from Control) Occurs when the Parent property value changes.

QueryAccessibilityHelp (inherited from Control) Occurs when AccessibleObject is providing help to
accessibility applications.

QueryContinueDrag (inherited from Control) Occurs during a drag-and-drop operation and
allows the drag source to determine whether the
drag-and-drop operation should be canceled.

Resize (inherited from Control) Occurs when the control is resized.

RightToLeftChanged (inherited from Control) Occurs when the RightToLeft property value
changes.

SizeChanged (inherited from Control) Occurs when the Size property value changes.

StyleChanged (inherited from Control) Occurs when the control style changes.

SystemColorsChanged (inherited from Control) Occurs when the system colors change.

TabIndexChanged (inherited from Control) Occurs when the TabIndex property value
changes.

TabStopChanged (inherited from Control) Occurs when the TabStop property value changes.

TextChanged (inherited from UserControl)

Validated (inherited from Control) Occurs when the control is finished validating.

Validating (inherited from Control) Occurs when the control is validating.

VisibleChanged (inherited from Control) Occurs when the Visible property value changes.

Protected Instance Properties

CreateParams (inherited from ContainerControl)

DefaultImeMode (inherited from Control) Gets the default Input Method Editor (IME) mode
supported by the control.

DefaultSize (inherited from UserControl)

DesignMode (inherited from Component) Gets a value that indicates whether the
Component is currently in design mode.

Events (inherited from Component) Gets the list of event handlers that are attached to
this Component.

FontHeight (inherited from Control) Gets or sets the height of the font of the control.

HScroll (inherited from ScrollableControl) Gets or sets a value indicating whether the
horizontal scroll bar is visible.

RenderRightToLeft (inherited from Control)

ResizeRedraw (inherited from Control) Gets or sets a value indicating whether the control
redraws itself when resized.

ShowFocusCues (inherited from Control) Gets a value indicating whether the control should
display focus rectangles.

ShowKeyboardCues (inherited from Control) Gets a value indicating whether the control should
display keyboard shortcuts.

VScroll (inherited from ScrollableControl) Gets or sets a value indicating whether the vertical
scroll bar is visible.

Protected Instance Methods

AccessibilityNotifyClients (inherited from
Control)

Notifies the accessibility client applications of the
specified AccessibleEvents for the specified child
control.

AdjustFormScrollbars (inherited from
ContainerControl)

CreateAccessibilityInstance (inherited from
Control)

Creates a new accessibility object for the control.

CreateControlsInstance (inherited from Control) Creates a new instance of the control collection for
the control.

CreateHandle (inherited from Control) Creates a handle for the control.

DefWndProc (inherited from Control) Sends the specified message to the default
window procedure.

DestroyHandle (inherited from Control) Destroys the handle associated with the control.

Dispose Overloaded. Releases the unmanaged resources
allocated by the Terminal class and optionally
releases the managed resources.

Finalize Destroys an instance of the control, releasing the

resources allocated for the virtual display.

GetScrollState (inherited from ScrollableControl)

GetService (inherited from Component) Returns an object that represents a service
provided by the Component or by its Container.

GetStyle (inherited from Control) Retrieves the value of the specified control style bit
for the control.

GetTopLevel (inherited from Control) Determines if the control is a top-level control.

InitLayout (inherited from Control) Called after the control has been added to
another container.

InvokeGotFocus (inherited from Control) Raises the GotFocus event for the specified
control.

InvokeLostFocus (inherited from Control) Raises the LostFocus event for the specified
control.

InvokeOnClick (inherited from Control) Raises the Click event for the specified control.

InvokePaint (inherited from Control) Raises the Paint event for the specified control.

InvokePaintBackground (inherited from Control) Raises the PaintBackground event for the specified
control.

IsInputChar (inherited from Control) Determines if a character is an input character that
the control recognizes.

IsInputKey (inherited from Control) Determines whether the specified key is a regular
input key or a special key that requires
preprocessing.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

NotifyInvalidate (inherited from Control)

OnBackColorChanged Raises the BackColorChanged event.

OnBackgroundImageChanged (inherited from
Control)

Raises the BackgroundImageChanged event.

OnBindingContextChanged (inherited from
Control)

Raises the BindingContextChangedevent.

OnCausesValidationChanged (inherited from
Control)

Raises the CausesValidationChangedevent.

OnChangeUICues (inherited from Control) Raises the ChangeUICues event.

OnClick (inherited from Control) Raises the Click event.

OnContextMenuChanged (inherited from
Control)

Raises the ContextMenuChangedevent.

OnControlAdded (inherited from Control) Raises the ControlAdded event.

OnControlRemoved (inherited from
ContainerControl)

OnCreateControl (inherited from UserControl)

OnCursorChanged (inherited from Control) Raises the CursorChangedevent.

OnDockChanged (inherited from Control) Raises the DockChangedevent.

OnDoubleClick (inherited from Control) Raises the DoubleClick event.

OnDragDrop (inherited from Control) Raises the DragDrop event.

OnDragEnter (inherited from Control) Raises the DragEnter event.

OnDragLeave (inherited from Control) Raises the DragLeave event.

OnDragOver (inherited from Control) Raises the DragOver event.

OnEnabledChanged (inherited from Control) Raises the EnabledChanged event.

OnEnter (inherited from Control) Raises the Enter event.

OnFontChanged Raises the FontChanged event.

OnForeColorChanged Raises the ForeColorChanged event.

OnGiveFeedback (inherited from Control) Raises the GiveFeedback event.

OnGotFocus Raises the GotFocus event.

OnHandleCreated (inherited from Control) Raises the HandleCreated event.

OnHandleDestroyed (inherited from Control) Raises the HandleDestroyed event.

OnHelpRequested (inherited from Control) Raises the HelpRequested event.

OnImeModeChanged (inherited from Control) Raises the ImeModeChanged event.

OnInvalidated (inherited from Control) Raises the Invalidated event.

OnKeyDown (inherited from Control) Raises the KeyDown event.

OnKeyPress (inherited from Control) Raises the KeyPress event.

OnKeyUp (inherited from Control) Raises the KeyUp event.

OnLayout (inherited from ScrollableControl)

OnLeave (inherited from Control) Raises the Leave event.

OnLoad (inherited from UserControl) Raises the Load event.

OnLocationChanged (inherited from Control) Raises the LocationChanged event.

OnLostFocus Raises the LostFocus event.

OnMouseDown Raises the MouseDown event.

OnMouseEnter (inherited from Control) Raises the MouseEnter event.

OnMouseHover (inherited from Control) Raises the MouseHover event.

OnMouseLeave (inherited from Control) Raises the MouseLeave event.

OnMouseMove Raises the MouseMove event.

OnMouseUp Raises the MouseUp event.

OnMouseWheel (inherited from
ScrollableControl)

OnMove (inherited from Control) Raises the Move event.

OnNotifyMessage (inherited from Control) Notifies the control of Windows messages.

OnPaint Raises the Paint event.

OnPaintBackground (inherited from Control) Paints the background of the control.

OnParentBackColorChanged (inherited from
Control)

Raises the BackColorChanged event when the
BackColor property value of the control's container
changes.

OnParentBackgroundImageChanged (inherited
from Control)

Raises the BackgroundImageChanged event when
the BackgroundImage property value of the
control's container changes.

OnParentBindingContextChanged (inherited
from Control)

Raises the BindingContextChanged event when
the BindingContext property value of the control's
container changes.

OnParentChanged Raises the ParentChanged event.

OnParentEnabledChanged (inherited from
Control)

Raises the EnabledChanged event when the
Enabled property value of the control's container
changes.

OnParentFontChanged (inherited from Control) Raises the FontChanged event when the Font
property value of the control's container changes.

OnParentForeColorChanged (inherited from
Control)

Raises the ForeColorChanged event when the
ForeColor property value of the control's container
changes.

OnParentRightToLeftChanged (inherited from
Control)

Raises the RightToLeftChanged event when the
RightToLeft property value of the control's
container changes.

OnParentVisibleChanged (inherited from
Control)

Raises the VisibleChanged event when the Visible
property value of the control's container changes.

OnQueryContinueDrag (inherited from Control) Raises the QueryContinueDrag event.

OnResize Raises the Resize event.

OnRightToLeftChanged (inherited from Control) Raises the RightToLeftChangedevent.

OnSizeChanged (inherited from Control) Raises the SizeChanged event.

OnStyleChanged (inherited from Control) Raises the StyleChanged event.

OnSystemColorsChanged (inherited from
Control)

Raises the SystemColorsChanged event.

OnTabIndexChanged (inherited from Control) Raises the TabIndexChanged event.

OnTabStopChanged (inherited from Control) Raises the TabStopChanged event.

OnTextChanged (inherited from Control) Raises the TextChanged event.

OnValidated (inherited from Control) Raises the Validated event.

OnValidating (inherited from Control) Raises the Validating event.

OnVisibleChanged (inherited from
ScrollableControl)

ProcessCmdKey (inherited from Control) Processes a command key.

ProcessDialogChar (inherited from
ContainerControl)

ProcessDialogKey (inherited from
ContainerControl)

ProcessKeyEventArgs (inherited from Control) Processes a key message and generates the
appropriate control events.

ProcessKeyPreview (inherited from Control) Previews a keyboard message.

ProcessMnemonic (inherited from
ContainerControl)

ProcessTabKey (inherited from
ContainerControl)

Selects the next available control and makes it the
active control.

RaiseDragEvent (inherited from Control)

RaiseKeyEvent (inherited from Control)

RaiseMouseEvent (inherited from Control)

RaisePaintEvent (inherited from Control)

RecreateHandle (inherited from Control) Forces the re-creation of the handle for the
control.

ResetMouseEventArgs (inherited from Control)

RtlTranslateAlignment (inherited from Control) Overloaded. Converts the specified
HorizontalAlignment to the appropriate
HorizontalAlignment to support right-to-left text.

RtlTranslateContent (inherited from Control) Converts the specified ContentAlignment to the
appropriate ContentAlignment to support right-
to-left text.

RtlTranslateHorizontal (inherited from Control) Converts the specified HorizontalAlignment to the
appropriate HorizontalAlignment to support right-
to-left text.

RtlTranslateLeftRight (inherited from Control) Converts the specified LeftRightAlignment to the
appropriate LeftRightAlignment to support right-
to-left text.

ScaleCore (inherited from ScrollableControl)

Select (inherited from ContainerControl) Overloaded.

SetBoundsCore (inherited from Control) Performs the work of setting the specified bounds
of this control.

SetClientSizeCore (inherited from Control) Sets the size of the client area of the control.

SetDisplayRectLocation (inherited from
ScrollableControl)

SetScrollState (inherited from ScrollableControl)

SetStyle (inherited from Control) Sets the specified style bit to the specified value.

SetTopLevel (inherited from Control) Sets the control as the top-level control.

SetVisibleCore (inherited from Control) Sets the control to the specified visible state.

UpdateBounds (inherited from Control) Overloaded. Updates the bounds of the control
with the current size and location.

UpdateDefaultButton (inherited from
ContainerControl)

UpdateStyles (inherited from Control) Forces the assigned styles to be reapplied to the
control.

UpdateZOrder (inherited from Control) Updates the control in its parent's z-order.

WndProc Processes Windows messages.

Protected Internal Instance Methods

ProcessKeyMessage (inherited from Control) Processes a keyboard message.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the Terminal control.

[Visual Basic]
Public Sub New()

[C#]
public Terminal();

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal Constructor

This structure is used by the Cell property to return information about a specific character cell in the virtual
display.

For a list of all members of this type, see Terminal.TerminalCell Members.

System.Object
 System.ValueType
 SocketTools.Terminal.TerminalCell

[Visual Basic]
Public Structure Terminal.TerminalCell

[C#]
public struct Terminal.TerminalCell

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
Terminal.TerminalCell Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalCell Structure

Terminal.TerminalCell overview

Public Instance Constructors

 Terminal.TerminalCell Overloaded. Initializes a new instance of the
Terminal.TerminalCell class.

Public Instance Fields

Attributes Gets the character attributes.

Character Gets the character value.

Public Instance Methods

Equals (inherited from ValueType) Indicates whether this instance and a specified
object are equal.

GetHashCode (inherited from ValueType) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from ValueType) Returns the fully qualified type name of this
instance.

See Also
Terminal.TerminalCell Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalCell Members

Initializes a new instance of the TerminalCell structure with the specified character.

Overload List
Initializes a new instance of the TerminalCell structure with the specified character.

public Terminal.TerminalCell(char);

Initializes a new instance of the TerminalCell structure with the specified character and attributes.

public Terminal.TerminalCell(char,TerminalAttributes);

See Also
Terminal.TerminalCell Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalCell Constructor

Initializes a new instance of the TerminalCell structure with the specified character.

[Visual Basic]
Overloads Public Sub New(_
 ByVal character As Char _
)

[C#]
public Terminal.TerminalCell(
 char character
);

Parameters
character

The character value used to initialize the structure.

Remarks
The TerminalCell structure will be initialized with the specified character. The default, normal attributes for
the character cell will be used.

See Also
Terminal.TerminalCell Class | SocketTools Namespace | Terminal.TerminalCell Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalCell Constructor (Char)

Initializes a new instance of the TerminalCell structure with the specified character and attributes.

[Visual Basic]
Overloads Public Sub New(_
 ByVal character As Char, _
 ByVal attributes As TerminalAttributes _
)

[C#]
public Terminal.TerminalCell(
 char character,
 TerminalAttributes attributes
);

Parameters
character

The character value used to initialize the structure.

attributes
A TerminalAttributes enumeration value which specifies the attributes for the character cell.

Remarks
The TerminalCell structure will be initialized with the specified character and attributes.

See Also
Terminal.TerminalCell Class | SocketTools Namespace | Terminal.TerminalCell Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalCell Constructor (Char, TerminalAttributes)

The fields of the Terminal.TerminalCell structure are listed below. For a complete list of
Terminal.TerminalCell structure members, see the Terminal.TerminalCell Members topic.

Public Instance Fields

Attributes Gets the character attributes.

Character Gets the character value.

See Also
Terminal.TerminalCell Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalCell Fields

Gets the character attributes.

[Visual Basic]
Public Attributes As TerminalAttributes

[C#]
public TerminalAttributes Attributes;

See Also
Terminal.TerminalCell Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalCell.Attributes Field

Gets the character value.

[Visual Basic]
Public Character As Char

[C#]
public char Character;

See Also
Terminal.TerminalCell Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalCell.Character Field

The properties of the Terminal class are listed below. For a complete list of Terminal class members, see
the Terminal Members topic.

Public Instance Properties

AccessibilityObject (inherited from Control) Gets the AccessibleObject assigned to the control.

AccessibleDefaultActionDescription (inherited
from Control)

Gets or sets the default action description of the
control for use by accessibility client applications.

AccessibleDescription (inherited from Control) Gets or sets the description of the control used by
accessibility client applications.

AccessibleName (inherited from Control) Gets or sets the name of the control used by
accessibility client applications.

AccessibleRole (inherited from Control) Gets or sets the accessible role of the control

ActiveControl (inherited from ContainerControl) Gets or sets the active control on the container
control.

AllowDrop (inherited from Control) Gets or sets a value indicating whether the control
can accept data that the user drags onto it.

Anchor (inherited from Control) Gets or sets which edges of the control are
anchored to the edges of its container.

Attributes Gets and sets the current display attribute for the
terminal emulator.

AutoRefresh Enables and disables the automatic refreshing of
the virtual display.

AutoScroll (inherited from ScrollableControl) Gets or sets a value indicating whether the
container will allow the user to scroll to any
controls placed outside of its visible boundaries.

AutoScrollMargin (inherited from
ScrollableControl)

Gets or sets the size of the auto-scroll margin.

AutoScrollMinSize (inherited from
ScrollableControl)

Gets or sets the minimum size of the auto-scroll.

AutoScrollPosition (inherited from
ScrollableControl)

Gets or sets the location of the auto-scroll
position.

AutoSelect Enables and disables the automatic selection of
text in the display.

AutoSize Enables and disables the automatic resizing of the
display.

AutoWrap Enables and disables the automatic wrapping of
text in the virtual display.

BackColor (inherited from Control) Gets or sets the background color for the control.

BackgroundImage (inherited from Control) Gets or sets the background image displayed in
the control.

Terminal Properties

Bell Enables and disables the audible bell.

BindingContext (inherited from
ContainerControl)

BoldColor Gets and sets the bold color of the control.

Bottom (inherited from Control) Gets the distance between the bottom edge of the
control and the top edge of its container's client
area.

Bounds (inherited from Control) Gets or sets the size and location of the control
including its nonclient elements.

CanFocus (inherited from Control) Gets a value indicating whether the control can
receive focus.

CanSelect (inherited from Control) Gets a value indicating whether the control can be
selected.

Capture (inherited from Control) Gets or sets a value indicating whether the control
has captured the mouse.

Caret Gets and sets the caret style of the control.

CausesValidation (inherited from Control) Gets or sets a value indicating whether the control
causes validation to be performed on any controls
that require validation when it receives focus.

CellHeight Gets the height of a character cell.

CellWidth Gets the width of a character cell.

ClientRectangle (inherited from Control) Gets the rectangle that represents the client area
of the control.

ClientSize (inherited from Control) Gets or sets the height and width of the client area
of the control.

CodePage Gets and sets the code page used when displaying
text.

Columns Gets and sets the number of columns in the virtual
display.

CompanyName (inherited from Control) Gets the name of the company or creator of the
application containing the control.

Container (inherited from Component) Gets the IContainer that contains the Component.

ContainsFocus (inherited from Control) Gets a value indicating whether the control, or one
of its child controls, currently has the input focus.

ContextMenu (inherited from Control) Gets or sets the shortcut menu associated with the
control.

Controls (inherited from Control) Gets the collection of controls contained within the
control.

Created (inherited from Control) Gets a value indicating whether the control has
been created.

Cursor (inherited from Control) Gets or sets the cursor that is displayed when the
mouse pointer is over the control.

CursorX Gets and sets the current cursor position in the
display.

CursorY Gets and sets the current cursor position in the
display.

DataBindings (inherited from Control) Gets the data bindings for the control.

Display Gets a value that specifies the virtual display
handle allocated for the control.

DisplayRectangle (inherited from
ScrollableControl)

Disposing (inherited from Control) Gets a value indicating whether the control is in
the process of being disposed of.

Dock (inherited from Control) Gets or sets which edge of the parent container a
control is docked to.

DockPadding (inherited from ScrollableControl) Gets the dock padding settings for all edges of the
control.

Emulation Gets and sets the emulation mode used by the
control.

Enabled (inherited from Control) Gets or sets a value indicating whether the control
can respond to user interaction.

Focused (inherited from Control) Gets a value indicating whether the control has
input focus.

Font (inherited from Control) Gets or sets the font of the text displayed by the
control.

FontName Gets and sets the name of the font used by the
control.

FontSize Gets and sets the size of the font used by the
control.

ForeColor (inherited from Control) Gets or sets the foreground color of the control.

Handle (inherited from Control) Gets the window handle that the control is bound
to.

HasChildren (inherited from Control) Gets a value indicating whether the control
contains one or more child controls.

Height (inherited from Control) Gets or sets the height of the control.

ImeMode (inherited from Control) Gets or sets the Input Method Editor (IME) mode
of the control.

InvokeRequired (inherited from Control) Gets a value indicating whether the caller must call
an invoke method when making method calls to
the control because the caller is on a different
thread than the one the control was created on.

IsAccessible (inherited from Control) Gets or sets a value indicating whether the control
is visible to accessibility applications.

IsDisposed (inherited from Control) Gets a value indicating whether the control has

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.Terminal.FontName.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.Terminal.FontSize.html

been disposed of.

IsHandleCreated (inherited from Control) Gets a value indicating whether the control has a
handle associated with it.

IsInitialized Gets a value which indicates if the current instance
of the control has been initialized successfully.

LastError Gets or sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

Left (inherited from Control) Gets or sets the x-coordinate of a control's left
edge in pixels.

Location (inherited from Control) Gets or sets the coordinates of the upper-left
corner of the control relative to the upper-left
corner of its container.

MouseX Return the current mouse position in the display.

MouseY Return the current mouse position in the display.

Name (inherited from Control) Gets or sets the name of the control.

NewLine Gets and sets the newline mode for the virtual
display.

Parent (inherited from Control) Gets or sets the parent container of the control.

ParentForm (inherited from ContainerControl) Gets the form that the container control is
assigned to.

ProductName (inherited from Control) Gets the product name of the assembly containing
the control.

ProductVersion (inherited from Control) Gets the version of the assembly containing the
control.

RecreatingHandle (inherited from Control) Gets a value indicating whether the control is
currently re-creating its handle.

Region (inherited from Control) Gets or sets the window region associated with the
control.

Right (inherited from Control) Gets the distance between the right edge of the
control and the left edge of its container.

RightToLeft (inherited from Control) Gets or sets a value indicating whether control's
elements are aligned to support locales using
right-to-left fonts.

Rows Gets and sets the number of rows in the virtual
display.

ScrollBars Gets and sets the scrollbar display mode for the
control.

SelLength Gets and sets the number of characters selected in
the virtual display.

SelStart Gets and sets the starting position of the current

text selection.

SelText Gets the selected text or text from a specific
portion of the display.

Site (inherited from Control) Gets or sets the site of the control.

Size (inherited from Control) Gets or sets the height and width of the control.

TabIndex (inherited from Control) Gets or sets the tab order of the control within its
container.

TabStop (inherited from Control) Gets or sets a value indicating whether the user
can give the focus to this control using the TAB
key.

Tag (inherited from Control) Gets or sets the object that contains data about
the control.

Text Gets and sets the text displayed by the control.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Top (inherited from Control) Gets or sets the y-coordinate of the control's top
edge in pixels.

TopLevelControl (inherited from Control) Gets the parent control that is not parented by
another Windows Forms control. Typically, this is
the outermost Form that the control is contained
in.

Version Gets a value which returns the current version of
the Terminal control.

Visible (inherited from Control) Gets or sets a value indicating whether the control
is displayed.

Width (inherited from Control) Gets or sets the width of the control.

WindowTarget (inherited from Control)

Protected Instance Properties

CreateParams (inherited from ContainerControl)

DefaultImeMode (inherited from Control) Gets the default Input Method Editor (IME) mode
supported by the control.

DefaultSize (inherited from UserControl)

DesignMode (inherited from Component) Gets a value that indicates whether the
Component is currently in design mode.

Events (inherited from Component) Gets the list of event handlers that are attached to
this Component.

FontHeight (inherited from Control) Gets or sets the height of the font of the control.

HScroll (inherited from ScrollableControl) Gets or sets a value indicating whether the
horizontal scroll bar is visible.

RenderRightToLeft (inherited from Control)

ResizeRedraw (inherited from Control) Gets or sets a value indicating whether the control
redraws itself when resized.

ShowFocusCues (inherited from Control) Gets a value indicating whether the control should
display focus rectangles.

ShowKeyboardCues (inherited from Control) Gets a value indicating whether the control should
display keyboard shortcuts.

VScroll (inherited from ScrollableControl) Gets or sets a value indicating whether the vertical
scroll bar is visible.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets the current display attribute for the terminal emulator.

[Visual Basic]
<Description(Description:="Set or return the current display attribute for the

terminal emulator."), _ Browsable(Browsable:=False)>
Public Property Attributes As TerminalAttributes

[C#]
[Description(Description="Set or return the current display attribute for the

terminal emulator.")]
[Browsable(Browsable=False)]
public Terminal.TerminalAttributes Attributes {get; set;}

Property Value
A TerminalAttributes enumeration value which specifies one or more display attributes.

Remarks
The Attributes property can be used to determine the current display attributes, or to change the current
attribute for subsequent text.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Attributes Property

Enables and disables the automatic refreshing of the virtual display.

[Visual Basic]
<Category(Category:="Design"), _ Description(Description:="Enable or disable the

automatic refreshing of the virtual display.")>
Public Property AutoRefresh As Boolean

[C#]
[Category(Category="Design")]
[Description(Description="Enable or disable the automatic refreshing of the virtual

display.")]
public bool AutoRefresh {get; set;}

Property Value
A boolean value which specifies if the display is automatically refreshed.

Remarks
The AutoRefresh property is used to enable or disable the automatic refreshing of the virtual display
whenever characters are written or the cursor position changes. By setting the property to false, the
display can be changed and those changes will not be displayed until the property is reset to true. This
allows an application to make a series of changes to the display text, attributes or cursor position without
causing it to flicker.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.AutoRefresh Property

Enables and disables the automatic selection of text in the display.

[Visual Basic]
<Description(Description:="Enable or disable the automatic selection of text in the

display."), _ Category(Category:="Design")>
Public Property AutoSelect As Boolean

[C#]
[Description(Description="Enable or disable the automatic selection of text in the

display.")]
[Category(Category="Design")]
public bool AutoSelect {get; set;}

Property Value
A boolean value which specifies if text is automatically selected using the mouse.

Remarks
The AutoSelect property is used to enable or disable the automatic selection of text in the virtual display.
When the property is set to true, the user can select text by clicking and dragging the mouse over the text
to be selected. When set to false, no text is selected if the user drags the mouse over the display.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.AutoSelect Property

Enables and disables the automatic resizing of the display.

[Visual Basic]
<Category(Category:="Design"), _ Description(Description:="Enable or disable the

automatic sizing of the display.")>
Public Property AutoSize As Boolean

[C#]
[Category(Category="Design")]
[Description(Description="Enable or disable the automatic sizing of the display.")]
public bool AutoSize {get; set;}

Property Value
A boolean value which specifies if the display is automatically resized.

Remarks
The AutoSize property determines if the control window is automatically resized when the parent window
changes size. A value of true specifies that the control window should automatically resize itself to the size
of its parent window. A value of false specifies that the control window should remain unchanged when
the parent window is resized.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.AutoSize Property

Enables and disables the automatic wrapping of text in the virtual display.

[Visual Basic]
<Description(Description:="Enable or disable the wrapping of text in the display."),

_ Category(Category:="Design")>
Public Property AutoWrap As Boolean

[C#]
[Description(Description="Enable or disable the wrapping of text in the display.")]
[Category(Category="Design")]
public bool AutoWrap {get; set;}

Property Value
A boolean value which specifies if automatic line wrapping is enabled.

Remarks
The AutoWrap property enables or disables the wrapping of text in the virtual display. If set to true, the
cursor is re-positioned to the first column on the next line when text reaches last column in the display. If
set to false, any text displayed beyond the last column is discarded.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.AutoWrap Property

Enables and disables the audible bell.

[Visual Basic]
<Category(Category:="Design"), _ Description(Description:="Enable or disable the

audible bell.")>
Public Property Bell As Boolean

[C#]
[Category(Category="Design")]
[Description(Description="Enable or disable the audible bell.")]
public bool Bell {get; set;}

Property Value
A boolean value which specifies if the audible bell is enabled.

Remarks
The Bell property enables or disables the audible bell which is played whenever the control character
Ctrl+G is encountered. The default property value is true.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Bell Property

Gets and sets the bold color of the control.

[Visual Basic]
<Category(Category:="Appearance"), _ Description(Description:="Sets or returns the

bold color for the control.")>
Public Property BoldColor As Color

[C#]
[Category(Category="Appearance")]
[Description(Description="Sets or returns the bold color for the control.")]
public System.Drawing.Color BoldColor {get; set;}

Property Value
A Color value which specifies the text foreground color to use when the bold attribute is set.

Remarks
The BoldColor property returns the current color used for bold text in the control. Setting the property
changes the color to the specified value.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.BoldColor Property

Gets and sets the caret style of the control.

[Visual Basic]
<Category(Category:="Design"), _ Description(Description:="Set or return the style

of caret displayed in the emulator.")>
Public Property Caret As TerminalCaret

[C#]
[Category(Category="Design")]
[Description(Description="Set or return the style of caret displayed in the

emulator.")]
public Terminal.TerminalCaret Caret {get; set;}

Property Value
A TerminalCaret enumeration value which specifies the caret style.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Caret Property

Gets and sets information about a character cell in the virtual display.

[Visual Basic]
<Browsable(Browsable:=False), _ Description(Description:="Returns information about

the specified character cell in the display.")>
Public ReadOnly Cell As DisplayCells

[C#]
[Browsable(Browsable=False)]
[Description(Description="Returns information about the specified character cell in

the display.")]
public readonly DisplayCells Cell;

Remarks
The Cell property is used to determine the character and attributes for a specific character cell in the
virtual display. The contents of the character cell can also be changed by assigning a value to this
property.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Cell Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.Terminal.DisplayCells.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.Terminal.DisplayCells.html

Gets the height of a character cell.

[Visual Basic]
<Category(Category:="Layout"), _ ReadOnly(IsReadOnly:=True), _

 Description(Description:="Returns the height of a text cell in pixels.")>
Public ReadOnly Property CellHeight As Integer

[C#]
[Category(Category="Layout")]
[ReadOnly(IsReadOnly=True)]
[Description(Description="Returns the height of a text cell in pixels.")]
public int CellHeight {get;}

Property Value
An integer value which specifies the height of a character cell in pixels.

Remarks
This value can be used in calculating the minimum height of the control window in order to display all
lines of text.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.CellHeight Property

Gets the width of a character cell.

[Visual Basic]
<Description(Description:="Returns the width of a text cell in pixels."), _

 Category(Category:="Layout"), _ ReadOnly(IsReadOnly:=True)>
Public ReadOnly Property CellWidth As Integer

[C#]
[Description(Description="Returns the width of a text cell in pixels.")]
[Category(Category="Layout")]
[ReadOnly(IsReadOnly=True)]
public int CellWidth {get;}

Property Value
An integer value which specifies the width of a character cell in pixels.

Remarks
This value can be used in calculating the minimum width of the control window in order to display all lines
of text.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.CellWidth Property

Gets and sets the code page used when displaying text.

[Visual Basic]
Public Property CodePage As Integer

[C#]
public int CodePage {get; set;}

Property Value
An integer value which specifies the current code page. A value of zero specifies the default code page for
the current locale should be used. To preserve the original Unicode text, you can use code page 65001
which specifies UTF-8 character encoding.

Remarks
By default, strings are converted to an array of bytes using the code page for the current locale, mapping
the 16-bit Unicode characters to bytes. Similarly, when reading text from the virtual display into a string
buffer, the characters are converted to Unicode before they are returned to your application.

If the text appears to corrupted or characters are being replaced with question marks or other symbols, it
is likely the text is using a different character encoding. Most services use UTF-8 encoding to represent
non-ASCII characters and selecting the UTF-8 code page will typically resolve the issue.

For backwards compatibility, this class defaults to using the code page for the current locale. This property
value directly corresponds to Windows code page identifiers, and will accept any valid code page
supported by the .NET Framework. Setting this property to an invalid code page will generate an
exception.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.CodePage Property

Gets and sets the color values used when displaying text.

[Visual Basic]
<Browsable(Browsable:=False), _ Description(Description:="Sets or returns the color

value used when displaying color text attributes.")>
Public ReadOnly ColorMap As DisplayColorMap

[C#]
[Browsable(Browsable=False)]
[Description(Description="Sets or returns the color value used when displaying color

text attributes.")]
public readonly DisplayColorMap ColorMap;

Remarks
The ColorMap array provides access to the virtual display color table which determines what color values
are used to display foreground and background text color attributes.

When the emulator processes an escape sequence that changes the current foreground or background
color, the actual RGB color value is determined by looking up the value in the virtual display's color table.
The ColorMap property is useful for determining what values are being used when a color attribute is set
and enables an application to change those colors. The emulator currently supports a maximum of sixteen
(16) color values, and the index into the table corresponds to the color as defined by the standard for
ANSI terminals.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.ColorMap Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.Terminal.DisplayColorMap.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.Terminal.DisplayColorMap.html

Gets and sets the number of columns in the virtual display.

[Visual Basic]
<Description(Description:="Set or return the number of columns in the emulation

display."), _ Category(Category:="Layout")>
Public Property Columns As Integer

[C#]
[Description(Description="Set or return the number of columns in the emulation

display.")]
[Category(Category="Layout")]
public int Columns {get; set;}

Property Value
An integer value which specifies the number of columns.

Remarks
The Columns property returns the number of columns in the virtual display, or allows the application to
change the number of columns. Currently, the number of columns may only be set to 80 or 132. Note
that changing the number of columns in the display causes the current display to be invalidated, and the
window will be cleared.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Columns Property

Gets and sets the current cursor position in the display.

[Visual Basic]
<Description(Description:="Set or return the current column in the display."), _

 Browsable(Browsable:=False)>
Public Property CursorX As Integer

[C#]
[Description(Description="Set or return the current column in the display.")]
[Browsable(Browsable=False)]
public int CursorX {get; set;}

Property Value
An integer value which specifies the current cursor column.

Remarks
The CursorX property returns the current position of the cursor in the display, or can be used to change
the current position. The current position is given in columns and indicates where the next text character
will be displayed. To calculate the pixel offset where the cursor is located in the control window, multiply
this value by the CellWidth property value.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.CursorX Property

Gets and sets the current cursor position in the display.

[Visual Basic]
<Browsable(Browsable:=False), _ Description(Description:="Set or return the current

row in the display.")>
Public Property CursorY As Integer

[C#]
[Browsable(Browsable=False)]
[Description(Description="Set or return the current row in the display.")]
public int CursorY {get; set;}

Property Value
An integer value which specifies the current cursor row.

Remarks
The CursorY property returns the current position of the cursor in the display, or can be used to change
the current position. The current position is given in rows and indicates where the next text character will
be displayed. To calculate the pixel offset where the cursor is located in the control window, multiply this
value by the CellHeight property value.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.CursorY Property

Gets a value that specifies the virtual display handle allocated for the control.

[Visual Basic]
<Description(Description:="Returns the handle to the virtual display."), _

 Browsable(Browsable:=False)>
Public ReadOnly Property Display As Integer

[C#]
[Description(Description="Returns the handle to the virtual display.")]
[Browsable(Browsable=False)]
public int Display {get;}

Property Value
An integer which represents a virtual display handle. If there is no current virtual display, a value of -1 is
returned.

Remarks
The Display property returns the numeric descriptor for the virtual display created by the control. This is a
read-only property value used for diagnostic purposes.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Display Property

Gets and sets the emulation mode used by the control.

[Visual Basic]
<Description(Description:="Set or return the emulation mode for the current

display."), _ Category(Category:="Design")>
Public Property Emulation As TerminalEmulation

[C#]
[Description(Description="Set or return the emulation mode for the current

display.")]
[Category(Category="Design")]
public Terminal.TerminalEmulation Emulation {get; set;}

Property Value
A TerminalEmulation enumeration value which specifies the emulation mode.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Emulation Property

Gets a value which indicates if the current instance of the control has been initialized successfully.

[Visual Basic]
<Description(Description:="Return if the control has been initialized."), _

 Browsable(Browsable:=False)>
Public ReadOnly Property IsInitialized As Boolean

[C#]
[Description(Description="Return if the control has been initialized.")]
[Browsable(Browsable=False)]
public bool IsInitialized {get;}

Property Value
Returns true if the control has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the control has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the control may not be able to initialize itself.

The most common reasons that a control may not initialize correctly is that no runtime license key has
been defined in the assembly or the license key provided is invalid. It may also indicate a problem with the
system configuration or user access rights, such as not being able to create the control window or not
being able to access the system registry.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.IsInitialized Property

Gets and sets the character sequence mapped to a special key.

[Visual Basic]
<Description(Description:="Set or return the character sequence mapped to a special

key."), _ Browsable(Browsable:=False)>
Public ReadOnly KeyMap As DisplayKeyMap

[C#]
[Description(Description="Set or return the character sequence mapped to a special

key.")]
[Browsable(Browsable=False)]
public readonly DisplayKeyMap KeyMap;

Remarks
The KeyMap array allows the application to define character sequences that should be mapped to special
keys. When a special key is pressed in the emulation window and there is an entry for it in the key map,
the KeyMapped event is fired.

The array index identifies the key which will be mapped. Refer to the TerminalKey enumeration for a list of
keys and their corresponding values which may be mapped by the application.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.KeyMap Field

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.Terminal.DisplayKeyMap.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.Terminal.DisplayKeyMap.html

Gets or sets a value which specifies the last error that has occurred.

[Visual Basic]
<Description(Description:="Set or return the last error code for this instance of

the control."), _ Browsable(Browsable:=False)>
Public Property LastError As ErrorCode

[C#]
[Description(Description="Set or return the last error code for this instance of the

control.")]
[Browsable(Browsable=False)]
public Terminal.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the control. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
<Description(Description:="Return a description of the last error that occurred."),

_ Browsable(Browsable:=False)>
Public ReadOnly Property LastErrorString As String

[C#]
[Description(Description="Return a description of the last error that occurred.")]
[Browsable(Browsable=False)]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the control. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.LastErrorString Property

Return the current mouse position in the display.

[Visual Basic]
<Description(Description:="Return the current mouse pointer position in the

display."), _ Browsable(Browsable:=False)>
Public ReadOnly Property MouseX As Integer

[C#]
[Description(Description="Return the current mouse pointer position in the

display.")]
[Browsable(Browsable=False)]
public int MouseX {get;}

Property Value
An integer value which specifies the column where the mouse pointer is positioned.

Remarks
The MouseX property returns the current position of the mouse pointer in the display. The current
position is given in columns, not pixels. To calculate the pixel offset where the mouse pointer is located in
the control window, multiply this value by the CellWidth property value.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.MouseX Property

Return the current mouse position in the display.

[Visual Basic]
<Browsable(Browsable:=False), _ Description(Description:="Return the current mouse

pointer position in the display.")>
Public ReadOnly Property MouseY As Integer

[C#]
[Browsable(Browsable=False)]
[Description(Description="Return the current mouse pointer position in the

display.")]
public int MouseY {get;}

Property Value
An integer value which specifies the row where the mouse pointer is positioned.

Remarks
The MouseY property returns the current position of the mouse pointer in the display. The current
position is given in rows, not pixels. To calculate the pixel offset where the mouse pointer is located in the
control window, multiply this value by the CellHeight property value.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.MouseY Property

Gets and sets the newline mode for the virtual display.

[Visual Basic]
<Description(Description:="Determine how carriage returns and linefeeds are

displayed."), _ Category(Category:="Design")>
Public Property NewLine As TerminalNewLine

[C#]
[Description(Description="Determine how carriage returns and linefeeds are

displayed.")]
[Category(Category="Design")]
public Terminal.TerminalNewLine NewLine {get; set;}

Property Value
A TerminalNewLine enumeration value which specifies the current newline mode.

Remarks
The NewLine property controls how carriage returns and linefeeds are processed by the emulator. The
default is for a carriage return to position the cursor to the first column, and a linefeed to advance the
cursor to the next row, scrolling the display if necessary.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.NewLine Property

Gets and sets the number of rows in the virtual display.

[Visual Basic]
<Description(Description:="Set or return the number of rows in the emulation

display."), _ Category(Category:="Layout")>
Public Property Rows As Integer

[C#]
[Description(Description="Set or return the number of rows in the emulation

display.")]
[Category(Category="Layout")]
public int Rows {get; set;}

Property Value
An integer value which specifies the number of rows.

Remarks
The Rows property returns the number of rows in the virtual display, or allows the application to change
the number of rows. Currently, the number of rows may only be set to 24 or 25. Note that changing the
number of rows in the display causes the current display to be invalidated, and the window will be cleared.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Rows Property

Gets and sets the scrollbar display mode for the control.

[Visual Basic]
<Description(Description:="Returns or sets a value indicating whether the control

has horizontal or vertical scroll bars."), _ Category(Category:="Design")>
Public Property ScrollBars As TerminalScrollBars

[C#]
[Description(Description="Returns or sets a value indicating whether the control has

horizontal or vertical scroll bars.")]
[Category(Category="Design")]
public Terminal.TerminalScrollBars ScrollBars {get; set;}

Property Value
A TerminalScrollBars enumeration value which specifies how scrollbars will be displayed.

Remarks
The ScrollBars property determines what kind of scroll bars are displayed if the virtual display is larger
than the emulation control's window. Scrollbars are only displayed if needed. If the emulation window is
large enough to display all of the columns and rows, no scrollbars will be drawn even if they are enabled
using this property.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.ScrollBars Property

Gets and sets the number of characters selected in the virtual display.

[Visual Basic]
<Description(Description:="Set or return the number of characters selected."), _

 Browsable(Browsable:=False)>
Public Property SelLength As Integer

[C#]
[Description(Description="Set or return the number of characters selected.")]
[Browsable(Browsable=False)]
public int SelLength {get; set;}

Property Value
An integer value which specifies the number of selected characters.

Remarks
The SelLength property is used to return the number of characters currently selected in the virtual
display. When used in conjunction with the SelStart property, it can be used to select text from the
display.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.SelLength Property

Gets and sets the starting position of the current text selection.

[Visual Basic]
<Description(Description:="Set or return the starting position of the current text

selection."), _ Browsable(Browsable:=False)>
Public Property SelStart As Integer

[C#]
[Description(Description="Set or return the starting position of the current text

selection.")]
[Browsable(Browsable=False)]
public int SelStart {get; set;}

Property Value
An integer value which specifies the starting position for the selected text.

Remarks
The SelStart property specifies an offset which is the starting position of the selected text. This property
can be used in conjunction with the SelLength property to select text in the virtual display.

To convert the cursor position to an offset, multiply the y-position by the number of columns and add the
x-position. The SelLength property determines the number of characters to copy from the starting
position. Reading the SelText property returns the text displayed at the selected location.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.SelStart Property

Gets the selected text or text from a specific portion of the display.

[Visual Basic]
<Browsable(Browsable:=False), _ Description(Description:="Returns the selected text

or text from a specific portion of the display.")>
Public ReadOnly Property SelText As String

[C#]
[Browsable(Browsable=False)]
[Description(Description="Returns the selected text or text from a specific portion

of the display.")]
public string SelText {get;}

Property Value
A string which contains the currently selected text.

Remarks
The SelText property returns the text which is currently selected in the virtual display. If no text has been
selected and the SelLength property is greater than zero, then the text starting at the position specified
by the SelStart property will be returned.

To read a single character a specific location in the display, it is preferable to use the Cell property rather
than calculating the offset, setting the SelStart property and then reading the SelText property.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.SelText Property

Gets and sets the text displayed by the control.

[Visual Basic]
<Description(Description:="Sets or returns the text displayed by the control."), _

 Category(Category:="Appearance")>
Overrides Public Property Text As String

[C#]
[Description(Description="Sets or returns the text displayed by the control.")]
[Category(Category="Appearance")]
public override string Text {get; set;}

Property Value
A string which contains the current display text.

Remarks
The Text property returns the text displayed by the control. The string that is returned contains each row
of text in the display, terminated with a carriage-return linefeed. Empty cells at the end of a row are
ignored so there are no extraneous spaces in the text. In other words, the value returned by the Text
property is similar to how text is returned from a multi-line edit control. If you need to access a character
at a specific location in the display, use the Cell property. If you need to access the text in a specific part of
the display, including any empty cells, then use the SelStart, SelLength and SelText properties instead.

Setting the Text property will cause the current contents of the display to be replaced by the contents of
the specified string. If the string contains escape sequences and/or control characters, they will be
processed according to how the Emulation property is set.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Text Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
<Browsable(Browsable:=False), _ Description(Description:="Set or return if the

control will throw an exception when an error occurs.")>
Public Property ThrowError As Boolean

[C#]
[Browsable(Browsable=False)]
[Description(Description="Set or return if the control will throw an exception when

an error occurs.")]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.ThrowError Property

Gets a value which returns the current version of the Terminal control.

[Visual Basic]
<Description(Description:="Return the current version of the object."), _

 Browsable(Browsable:=False)>
Public ReadOnly Property Version As String

[C#]
[Description(Description="Return the current version of the object.")]
[Browsable(Browsable=False)]
public string Version {get;}

Property Value
A string which specifies the version of the control.

Remarks
The Version property returns a string which identifies the current version and build of the Terminal
control. This value can be used by an application for validation and debugging purposes.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Version Property

The methods of the Terminal class are listed below. For a complete list of Terminal class members, see
the Terminal Members topic.

Public Instance Methods

BeginInvoke (inherited from Control) Overloaded. Executes the specified delegate
asynchronously with the specified arguments, on
the thread that the control's underlying handle
was created on.

BringToFront (inherited from Control) Brings the control to the front of the z-order.

Clear Clear the terminal emulation window.

ClearEol Erase all characters from the current column to the
end of the line.

Contains (inherited from Control) Retrieves a value indicating whether the specified
control is a child of the control.

CreateControl (inherited from Control) Forces the creation of the control, including the
creation of the handle and any child controls.

CreateGraphics (inherited from Control) Creates the Graphics object for the control.

CreateObjRef (inherited from
MarshalByRefObject)

Creates an object that contains all the relevant
information required to generate a proxy used to
communicate with a remote object.

DelLine Delete the current line in the terminal emulation
display.

Deselect Deselects any selected text in the display.

Dispose (inherited from Component) Overloaded. Releases all resources used by the
Component.

DoDragDrop (inherited from Control) Begins a drag-and-drop operation.

EndInvoke (inherited from Control) Retrieves the return value of the asynchronous
operation represented by the IAsyncResult object
passed.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

FindForm (inherited from Control) Retrieves the form that the control is on.

Focus (inherited from Control) Sets input focus to the control.

GetChildAtPoint (inherited from Control) Retrieves the child control that is located at the
specified coordinates.

GetContainerControl (inherited from Control) Returns the next ContainerControl up the control's
chain of parent controls.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

Terminal Methods

GetLifetimeService (inherited from
MarshalByRefObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetNextControl (inherited from Control) Retrieves the next control forward or back in the
tab order of child controls.

GetType (inherited from Object) Gets the Type of the current instance.

Hide (inherited from Control) Conceals the control from the user.

Initialize Overloaded. Initialize an instance of the Terminal
control.

InitializeLifetimeService (inherited from
MarshalByRefObject)

Obtains a lifetime service object to control the
lifetime policy for this instance.

InsLine Insert an empty line at the current position in the
terminal emulation display.

Invalidate (inherited from Control) Overloaded. Invalidates the specified region of the
control (adds it to the control's update region,
which is the area that will be repainted at the next
paint operation), and causes a paint message to
be sent to the control.

Invoke (inherited from Control) Overloaded. Executes the specified delegate, on
the thread that owns the control's underlying
window handle, with the specified list of
arguments.

PerformLayout (inherited from Control) Overloaded. Forces the control to apply layout
logic to all its child controls.

PointToClient (inherited from Control) Computes the location of the specified screen
point into client coordinates.

PointToScreen (inherited from Control) Computes the location of the specified client point
into screen coordinates.

PreProcessMessage Preprocesses input messages within the message
loop before they are dispatched.

RectangleToClient (inherited from Control) Computes the size and location of the specified
screen rectangle in client coordinates.

RectangleToScreen (inherited from Control) Computes the size and location of the specified
client rectangle in screen coordinates.

Refresh Forces a complete redraw of the virtual display.

Reset Reset the internal state of the control, resetting all
properties to their default values.

ResetBackColor (inherited from Control) Resets the BackColor property to its default value.

ResetBindings (inherited from Control) Resets the DataBindings property to its default
value.

ResetCursor (inherited from Control) Resets the Cursor property to its default value.

ResetFont (inherited from Control) Resets the Fontproperty to its default value.

ResetForeColor (inherited from Control) Resets the ForeColor property to its default value.

ResetImeMode (inherited from Control) Resets the ImeMode property to its default value.

ResetRightToLeft (inherited from Control) Resets the RightToLeft property to its default
value.

ResetText (inherited from Control) Resets the Text property to its default value.

ResumeLayout (inherited from Control) Overloaded. Resumes normal layout logic.

Scale (inherited from Control) Overloaded. Scales the control and any child
controls to the specified ratio.

ScrollControlIntoView (inherited from
ScrollableControl)

ScrollDown Scroll the display down by one line.

ScrollUp Scroll the display up by one line.

Select (inherited from Control) Overloaded. Activates the control.

SelectNextControl (inherited from Control) Activates the next control.

SelectText Overloaded. Selects a region of the virtual display
and returns the selected text.

SendToBack (inherited from Control) Sends the control to the back of the z-order.

SetAutoScrollMargin (inherited from
ScrollableControl)

Sets the size of the auto-scroll margins.

SetBounds (inherited from Control) Overloaded. Sets the bounds of the control to the
specified location and size.

Show (inherited from Control) Displays the control to the user.

SuspendLayout (inherited from Control) Temporarily suspends the layout logic for the
control.

ToString (inherited from Component)

Uninitialize Uninitialize the control and release any resources
allocated for the current process.

Update (inherited from Control) Causes the control to redraw the invalidated
regions within its client area.

Validate (inherited from ContainerControl) Validates the last invalidated control and its
ancestors up through, but not including, the
current control.

Write Overloaded. Write the contents of a byte array to
the virtual display.

Protected Instance Methods

AccessibilityNotifyClients (inherited from
Control)

Notifies the accessibility client applications of the
specified AccessibleEvents for the specified child
control.

AdjustFormScrollbars (inherited from
ContainerControl)

CreateAccessibilityInstance (inherited from Creates a new accessibility object for the control.

Control)

CreateControlsInstance (inherited from Control) Creates a new instance of the control collection for
the control.

CreateHandle (inherited from Control) Creates a handle for the control.

DefWndProc (inherited from Control) Sends the specified message to the default
window procedure.

DestroyHandle (inherited from Control) Destroys the handle associated with the control.

Dispose Overloaded. Releases the unmanaged resources
allocated by the Terminal class and optionally
releases the managed resources.

Finalize Destroys an instance of the control, releasing the
resources allocated for the virtual display.

GetScrollState (inherited from ScrollableControl)

GetService (inherited from Component) Returns an object that represents a service
provided by the Component or by its Container.

GetStyle (inherited from Control) Retrieves the value of the specified control style bit
for the control.

GetTopLevel (inherited from Control) Determines if the control is a top-level control.

InitLayout (inherited from Control) Called after the control has been added to
another container.

InvokeGotFocus (inherited from Control) Raises the GotFocus event for the specified
control.

InvokeLostFocus (inherited from Control) Raises the LostFocus event for the specified
control.

InvokeOnClick (inherited from Control) Raises the Click event for the specified control.

InvokePaint (inherited from Control) Raises the Paint event for the specified control.

InvokePaintBackground (inherited from Control) Raises the PaintBackground event for the specified
control.

IsInputChar (inherited from Control) Determines if a character is an input character that
the control recognizes.

IsInputKey (inherited from Control) Determines whether the specified key is a regular
input key or a special key that requires
preprocessing.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

NotifyInvalidate (inherited from Control)

OnBackColorChanged Raises the BackColorChanged event.

OnBackgroundImageChanged (inherited from
Control)

Raises the BackgroundImageChanged event.

OnBindingContextChanged (inherited from
Control)

Raises the BindingContextChangedevent.

OnCausesValidationChanged (inherited from Raises the CausesValidationChangedevent.

Control)

OnChangeUICues (inherited from Control) Raises the ChangeUICues event.

OnClick (inherited from Control) Raises the Click event.

OnContextMenuChanged (inherited from
Control)

Raises the ContextMenuChangedevent.

OnControlAdded (inherited from Control) Raises the ControlAdded event.

OnControlRemoved (inherited from
ContainerControl)

OnCreateControl (inherited from UserControl)

OnCursorChanged (inherited from Control) Raises the CursorChangedevent.

OnDockChanged (inherited from Control) Raises the DockChangedevent.

OnDoubleClick (inherited from Control) Raises the DoubleClick event.

OnDragDrop (inherited from Control) Raises the DragDrop event.

OnDragEnter (inherited from Control) Raises the DragEnter event.

OnDragLeave (inherited from Control) Raises the DragLeave event.

OnDragOver (inherited from Control) Raises the DragOver event.

OnEnabledChanged (inherited from Control) Raises the EnabledChanged event.

OnEnter (inherited from Control) Raises the Enter event.

OnFontChanged Raises the FontChanged event.

OnForeColorChanged Raises the ForeColorChanged event.

OnGiveFeedback (inherited from Control) Raises the GiveFeedback event.

OnGotFocus Raises the GotFocus event.

OnHandleCreated (inherited from Control) Raises the HandleCreated event.

OnHandleDestroyed (inherited from Control) Raises the HandleDestroyed event.

OnHelpRequested (inherited from Control) Raises the HelpRequested event.

OnImeModeChanged (inherited from Control) Raises the ImeModeChanged event.

OnInvalidated (inherited from Control) Raises the Invalidated event.

OnKeyDown (inherited from Control) Raises the KeyDown event.

OnKeyPress (inherited from Control) Raises the KeyPress event.

OnKeyUp (inherited from Control) Raises the KeyUp event.

OnLayout (inherited from ScrollableControl)

OnLeave (inherited from Control) Raises the Leave event.

OnLoad (inherited from UserControl) Raises the Load event.

OnLocationChanged (inherited from Control) Raises the LocationChanged event.

OnLostFocus Raises the LostFocus event.

OnMouseDown Raises the MouseDown event.

OnMouseEnter (inherited from Control) Raises the MouseEnter event.

OnMouseHover (inherited from Control) Raises the MouseHover event.

OnMouseLeave (inherited from Control) Raises the MouseLeave event.

OnMouseMove Raises the MouseMove event.

OnMouseUp Raises the MouseUp event.

OnMouseWheel (inherited from
ScrollableControl)

OnMove (inherited from Control) Raises the Move event.

OnNotifyMessage (inherited from Control) Notifies the control of Windows messages.

OnPaint Raises the Paint event.

OnPaintBackground (inherited from Control) Paints the background of the control.

OnParentBackColorChanged (inherited from
Control)

Raises the BackColorChanged event when the
BackColor property value of the control's container
changes.

OnParentBackgroundImageChanged (inherited
from Control)

Raises the BackgroundImageChanged event when
the BackgroundImage property value of the
control's container changes.

OnParentBindingContextChanged (inherited
from Control)

Raises the BindingContextChanged event when
the BindingContext property value of the control's
container changes.

OnParentChanged Raises the ParentChanged event.

OnParentEnabledChanged (inherited from
Control)

Raises the EnabledChanged event when the
Enabled property value of the control's container
changes.

OnParentFontChanged (inherited from Control) Raises the FontChanged event when the Font
property value of the control's container changes.

OnParentForeColorChanged (inherited from
Control)

Raises the ForeColorChanged event when the
ForeColor property value of the control's container
changes.

OnParentRightToLeftChanged (inherited from
Control)

Raises the RightToLeftChanged event when the
RightToLeft property value of the control's
container changes.

OnParentVisibleChanged (inherited from
Control)

Raises the VisibleChanged event when the Visible
property value of the control's container changes.

OnQueryContinueDrag (inherited from Control) Raises the QueryContinueDrag event.

OnResize Raises the Resize event.

OnRightToLeftChanged (inherited from Control) Raises the RightToLeftChangedevent.

OnSizeChanged (inherited from Control) Raises the SizeChanged event.

OnStyleChanged (inherited from Control) Raises the StyleChanged event.

OnSystemColorsChanged (inherited from
Control)

Raises the SystemColorsChanged event.

OnTabIndexChanged (inherited from Control) Raises the TabIndexChanged event.

OnTabStopChanged (inherited from Control) Raises the TabStopChanged event.

OnTextChanged (inherited from Control) Raises the TextChanged event.

OnValidated (inherited from Control) Raises the Validated event.

OnValidating (inherited from Control) Raises the Validating event.

OnVisibleChanged (inherited from
ScrollableControl)

ProcessCmdKey (inherited from Control) Processes a command key.

ProcessDialogChar (inherited from
ContainerControl)

ProcessDialogKey (inherited from
ContainerControl)

ProcessKeyEventArgs (inherited from Control) Processes a key message and generates the
appropriate control events.

ProcessKeyPreview (inherited from Control) Previews a keyboard message.

ProcessMnemonic (inherited from
ContainerControl)

ProcessTabKey (inherited from
ContainerControl)

Selects the next available control and makes it the
active control.

RaiseDragEvent (inherited from Control)

RaiseKeyEvent (inherited from Control)

RaiseMouseEvent (inherited from Control)

RaisePaintEvent (inherited from Control)

RecreateHandle (inherited from Control) Forces the re-creation of the handle for the
control.

ResetMouseEventArgs (inherited from Control)

RtlTranslateAlignment (inherited from Control) Overloaded. Converts the specified
HorizontalAlignment to the appropriate
HorizontalAlignment to support right-to-left text.

RtlTranslateContent (inherited from Control) Converts the specified ContentAlignment to the
appropriate ContentAlignment to support right-
to-left text.

RtlTranslateHorizontal (inherited from Control) Converts the specified HorizontalAlignment to the
appropriate HorizontalAlignment to support right-
to-left text.

RtlTranslateLeftRight (inherited from Control) Converts the specified LeftRightAlignment to the
appropriate LeftRightAlignment to support right-
to-left text.

ScaleCore (inherited from ScrollableControl)

Select (inherited from ContainerControl) Overloaded.

SetBoundsCore (inherited from Control) Performs the work of setting the specified bounds
of this control.

SetClientSizeCore (inherited from Control) Sets the size of the client area of the control.

SetDisplayRectLocation (inherited from
ScrollableControl)

SetScrollState (inherited from ScrollableControl)

SetStyle (inherited from Control) Sets the specified style bit to the specified value.

SetTopLevel (inherited from Control) Sets the control as the top-level control.

SetVisibleCore (inherited from Control) Sets the control to the specified visible state.

UpdateBounds (inherited from Control) Overloaded. Updates the bounds of the control
with the current size and location.

UpdateDefaultButton (inherited from
ContainerControl)

UpdateStyles (inherited from Control) Forces the assigned styles to be reapplied to the
control.

UpdateZOrder (inherited from Control) Updates the control in its parent's z-order.

WndProc Processes Windows messages.

Protected Internal Instance Methods

ProcessKeyMessage (inherited from Control) Processes a keyboard message.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Clear the terminal emulation window.

[Visual Basic]
Public Sub Clear()

[C#]
public void Clear();

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Clear Method

Erase all characters from the current column to the end of the line.

[Visual Basic]
Public Sub ClearEol()

[C#]
public void ClearEol();

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.ClearEol Method

Delete the current line in the terminal emulation display.

[Visual Basic]
Public Sub DelLine()

[C#]
public void DelLine();

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.DelLine Method

Deselects any selected text in the display.

[Visual Basic]
Public Sub Deselect()

[C#]
public void Deselect();

Remarks
The Deselect method deselects any text that has been previously selected using the Select method, or by
the user using the mouse if the AutoSelect property has been set to true.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Deselect Method

Releases the unmanaged resources allocated by the Terminal class and optionally releases the managed
resources.

Overload List
Inherited from Component.

public void Dispose();

Releases the unmanaged resources allocated by the Terminal class and optionally releases the managed
resources.

protected override void Dispose(bool);

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Dispose Method

ms-help://ms.netframeworksdkv1.1/cpref/html/frlrfSystemComponentModelComponentClassDisposeTopic.htm

Releases the unmanaged resources allocated by the Terminal class and optionally releases the managed
resources.

[Visual Basic]
Overrides Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected override void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method releases the resources allocated for this instance of the class. In some cases, better
performance can be achieved if the programmer explicitly releases resources when they are no longer
being used. The Dispose method provides explicit control over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the Terminal class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
Terminal Class | SocketTools Namespace | Terminal.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Dispose Method (Boolean)

Destroys an instance of the control, releasing the resources allocated for the virtual display.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Finalize Method

Initialize an instance of the Terminal control.

Overload List
Initialize an instance of the Terminal control.

public bool Initialize();

Initialize an instance of the Terminal control.

public bool Initialize(string);

See Also
Terminal Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Initialize Method

Initialize an instance of the Terminal control.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the Terminal control and allocating
resources for the current thread. Typically it is not necessary to explicitly call this method because the
instance of the class is initialized by the class constructor. However, if the Uninitialize method is called,
the control must be re-initialized before any other methods are called.

See Also
Terminal Class | SocketTools Namespace | Terminal.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Initialize Method ()

Initialize an instance of the Terminal control.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the control.

Return Value
A boolean value which specifies if the control was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the Terminal control. Typically an
application would define the license key as a custom attribute, however this method can be used to
initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the Terminal control.

See Also
Terminal Class | SocketTools Namespace | Terminal.Initialize Overload List | RuntimeLicenseAttribute Class
| Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Initialize Method (String)

Insert an empty line at the current position in the terminal emulation display.

[Visual Basic]
Public Sub InsLine()

[C#]
public void InsLine();

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.InsLine Method

Raises the BackColorChanged event.

[Visual Basic]
<EditorBrowsable(State:=EditorBrowsableState.Advanced)>
Overrides Protected Sub OnBackColorChanged(_
 ByVal e As EventArgs _
)

[C#]
[EditorBrowsable(State=EditorBrowsableState.Advanced)]
protected override void OnBackColorChanged(
 EventArgs e
);

Parameters
e

An EventArgs that contains the event data.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.OnBackColorChanged Method

Raises the FontChanged event.

[Visual Basic]
<EditorBrowsable(State:=EditorBrowsableState.Advanced)>
Overrides Protected Sub OnFontChanged(_
 ByVal e As EventArgs _
)

[C#]
[EditorBrowsable(State=EditorBrowsableState.Advanced)]
protected override void OnFontChanged(
 EventArgs e
);

Parameters
e

An EventArgs that contains the event data.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.OnFontChanged Method

Raises the ForeColorChanged event.

[Visual Basic]
<EditorBrowsable(State:=EditorBrowsableState.Advanced)>
Overrides Protected Sub OnForeColorChanged(_
 ByVal e As EventArgs _
)

[C#]
[EditorBrowsable(State=EditorBrowsableState.Advanced)]
protected override void OnForeColorChanged(
 EventArgs e
);

Parameters
e

An EventArgs that contains the event data.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.OnForeColorChanged Method

Raises the GotFocus event.

[Visual Basic]
<EditorBrowsable(State:=EditorBrowsableState.Advanced)>
Overrides Protected Sub OnGotFocus(_
 ByVal e As EventArgs _
)

[C#]
[EditorBrowsable(State=EditorBrowsableState.Advanced)]
protected override void OnGotFocus(
 EventArgs e
);

Parameters
e

An EventArgs that contains the event data.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.OnGotFocus Method

Raises the LostFocus event.

[Visual Basic]
<EditorBrowsable(State:=EditorBrowsableState.Advanced)>
Overrides Protected Sub OnLostFocus(_
 ByVal e As EventArgs _
)

[C#]
[EditorBrowsable(State=EditorBrowsableState.Advanced)]
protected override void OnLostFocus(
 EventArgs e
);

Parameters
e

An EventArgs that contains the event data.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.OnLostFocus Method

Raises the MouseDown event.

[Visual Basic]
<EditorBrowsable(State:=EditorBrowsableState.Advanced)>
Overrides Protected Sub OnMouseDown(_
 ByVal e As MouseEventArgs _
)

[C#]
[EditorBrowsable(State=EditorBrowsableState.Advanced)]
protected override void OnMouseDown(
 MouseEventArgs e
);

Parameters
e

A MouseEventArgs that contains the event data.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.OnMouseDown Method

Raises the MouseMove event.

[Visual Basic]
<EditorBrowsable(State:=EditorBrowsableState.Advanced)>
Overrides Protected Sub OnMouseMove(_
 ByVal e As MouseEventArgs _
)

[C#]
[EditorBrowsable(State=EditorBrowsableState.Advanced)]
protected override void OnMouseMove(
 MouseEventArgs e
);

Parameters
e

A MouseEventArgs that contains the event data.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.OnMouseMove Method

Raises the MouseUp event.

[Visual Basic]
<EditorBrowsable(State:=EditorBrowsableState.Advanced)>
Overrides Protected Sub OnMouseUp(_
 ByVal e As MouseEventArgs _
)

[C#]
[EditorBrowsable(State=EditorBrowsableState.Advanced)]
protected override void OnMouseUp(
 MouseEventArgs e
);

Parameters
e

A MouseEventArgs that contains the event data.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.OnMouseUp Method

Raises the Paint event.

[Visual Basic]
<EditorBrowsable(State:=EditorBrowsableState.Advanced)>
Overrides Protected Sub OnPaint(_
 ByVal e As PaintEventArgs _
)

[C#]
[EditorBrowsable(State=EditorBrowsableState.Advanced)]
protected override void OnPaint(
 PaintEventArgs e
);

Parameters
e

A PaintEventArgs that contains the event data.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.OnPaint Method

Raises the ParentChanged event.

[Visual Basic]
<EditorBrowsable(State:=EditorBrowsableState.Advanced)>
Overrides Protected Sub OnParentChanged(_
 ByVal e As EventArgs _
)

[C#]
[EditorBrowsable(State=EditorBrowsableState.Advanced)]
protected override void OnParentChanged(
 EventArgs e
);

Parameters
e

An EventArgs that contains the event data.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.OnParentChanged Method

Raises the Resize event.

[Visual Basic]
<EditorBrowsable(State:=EditorBrowsableState.Advanced)>
Overrides Protected Sub OnResize(_
 ByVal e As EventArgs _
)

[C#]
[EditorBrowsable(State=EditorBrowsableState.Advanced)]
protected override void OnResize(
 EventArgs e
);

Parameters
e

An EventArgs that contains the event data.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.OnResize Method

Preprocesses input messages within the message loop before they are dispatched.

[Visual Basic]
Overrides Public Function PreProcessMessage(_
 ByRef msg As Message _
) As Boolean

[C#]
public override bool PreProcessMessage(
 ref Message msg
);

Parameters
msg

A Message passed by reference, that represents the message to process.

Return Value
A value of true if the message was processed by the control; otherwise, false.

Remarks
PreProcessMessage is called by the application's message loop to preprocess input messages before
they are dispatched. Possible values for the msg.message field are WM_KEYDOWN, WM_SYSKEYDOWN,
WM_CHAR, and WM_SYSCHAR.

When overriding preProcessMessage(), a control should return true to indicate that it has processed the
message. For messages that are not processed by the control, the result of base.preProcessMessage()
should be returned. Controls will typically override one of the more specialized methods such as
isInputChar(), isInputKey(), processCmdKey(), processDialogChar(), or processDialogKey() instead
of overriding preProcessMessage().

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.PreProcessMessage Method

Forces a complete redraw of the virtual display.

[Visual Basic]
Overrides Public Sub Refresh()

[C#]
public override void Refresh();

Remarks
The Refresh method forces the control to redraw the virtual display. Normally, the virtual display is
automatically redrawn after the display has been modified and there are no other events being processed.
However, there may be situations where you want the display updated immediately.

To prevent the control from automatically redrawing the window when the virtual display has been
modified, set the AutoRefresh property to false. You can then call the Refresh method to force the
control to be redrawn as needed

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Refresh Method

Reset the internal state of the control, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Reset Method

Scroll the display down by one line.

[Visual Basic]
Public Sub ScrollDown()

[C#]
public void ScrollDown();

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.ScrollDown Method

Scroll the display up by one line.

[Visual Basic]
Public Sub ScrollUp()

[C#]
public void ScrollUp();

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.ScrollUp Method

Selects a region of the virtual display and returns the selected text.

Overload List
Selects a region of the virtual display and returns the selected text.

public string SelectText();

Selects a region of the virtual display and returns the selected text.

public string SelectText(int,int);

Selects a region of the virtual display and returns the selected text.

public string SelectText(int,int,int,int);

Selects a region of the virtual display and returns the selected text.

public string SelectText(int,int,int,int,TerminalSelection);

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.SelectText Method

Selects a region of the virtual display and returns the selected text.

[Visual Basic]
Overloads Public Function SelectText() As String

[C#]
public string SelectText();

Return Value
A string which contains the selected text.

Remarks
The Select method selects the entire contents of the virtual display. If the method fails because incorrect
row or column values were used, or because an invalid option was specified, it will return an empty string.

See Also
Terminal Class | SocketTools Namespace | Terminal.SelectText Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.SelectText Method ()

Selects a region of the virtual display and returns the selected text.

[Visual Basic]
Overloads Public Function SelectText(_
 ByVal column As Integer, _
 ByVal row As Integer _
) As String

[C#]
public string SelectText(
 int column,
 int row
);

Parameters
column

An integer value which specifies the starting column for the text selection.

row
An integer value which specifies the starting row for the text selection.

Return Value
A string which contains the selected text.

Remarks
The Select method selects a region of the virtual display, from the specified column and row to the end of
the virtual display. This enables the application to select text in the same way that a user would by clicking
and dragging the mouse over the display window. If the method fails because incorrect row or column
values were used, or because an invalid option was specified, it will return an empty string.

See Also
Terminal Class | SocketTools Namespace | Terminal.SelectText Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.SelectText Method (Int32, Int32)

Selects a region of the virtual display and returns the selected text.

[Visual Basic]
Overloads Public Function SelectText(_
 ByVal column1 As Integer, _
 ByVal row1 As Integer, _
 ByVal column2 As Integer, _
 ByVal row2 As Integer _
) As String

[C#]
public string SelectText(
 int column1,
 int row1,
 int column2,
 int row2
);

Parameters
column1

An integer value which specifies the starting column for the text selection.

row1
An integer value which specifies the starting row for the text selection.

column2
An integer value which specifies the ending column for the text selection.

row2
An integer value which specifies the ending row for the text selection.

Return Value
A string which contains the selected text.

Remarks
The Select method selects a region of the virtual display. This enables the application to select text in the
same way that a user would by clicking and dragging the mouse over the display window. If the method
fails because incorrect row or column values were used, or because an invalid option was specified, it will
return an empty string.

See Also
Terminal Class | SocketTools Namespace | Terminal.SelectText Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.SelectText Method (Int32, Int32, Int32, Int32)

Selects a region of the virtual display and returns the selected text.

[Visual Basic]
Overloads Public Function SelectText(_
 ByVal column1 As Integer, _
 ByVal row1 As Integer, _
 ByVal column2 As Integer, _
 ByVal row2 As Integer, _
 ByVal options As TerminalSelection _
) As String

[C#]
public string SelectText(
 int column1,
 int row1,
 int column2,
 int row2,
 TerminalSelection options
);

Parameters
column1

An integer value which specifies the starting column for the text selection.

row1
An integer value which specifies the starting row for the text selection.

column2
An integer value which specifies the ending column for the text selection.

row2
An integer value which specifies the ending row for the text selection.

options
A TerminalSelection enumeration value which specifies one or more selection options.

Return Value
A string which contains the selected text.

Remarks
The Select method selects a region of the virtual display. This enables the application to select text in the
same way that a user would by clicking and dragging the mouse over the display window. If the method
fails because incorrect row or column values were used, or because an invalid option was specified, it will
return an empty string.

See Also
Terminal Class | SocketTools Namespace | Terminal.SelectText Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.SelectText Method (Int32, Int32, Int32, Int32,
TerminalSelection)

Uninitialize the control and release any resources allocated for the current process.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize destroys the virtual display and releases resources allocated for the current thread. After
this method has been called, the control must re-initialized before it can be used.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the control is no longer needed.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Uninitialize Method

Processes Windows messages.

[Visual Basic]
<EditorBrowsable(State:=EditorBrowsableState.Advanced)>
Overrides Protected Sub WndProc(_
 ByRef m As Message _
)

[C#]
[EditorBrowsable(State=EditorBrowsableState.Advanced)]
protected override void WndProc(
 ref Message m
);

Parameters
m

The Windows message to process.

Remarks
All messages are sent to the WndProc method after getting filtered through the PreProcessMessage
method. The WndProc method corresponds exactly to the Windows WindowProc function. For more
information about processing Windows messages, see the WindowProc function documentation in the
Windows Platform SDK reference located in the MSDN Library.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.WndProc Method

Write the contents of a byte array to the virtual display.

Overload List
Write the contents of a byte array to the virtual display.

public bool Write(byte[]);

Write the contents of a byte array to the virtual display.

public bool Write(byte[],int);

Write a character to the virtual display.

public bool Write(char);

Write one or more characters to the virtual display.

public bool Write(char,int);

Write the contents of a string to the virtual display.

public bool Write(string);

Write the contents of a string to the virtual display.

public bool Write(string,int);

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Write Method

Write the contents of a byte array to the virtual display.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Boolean

[C#]
public bool Write(
 byte[] buffer
);

Parameters
buffer

A byte array which contains the data to be written to the virtual display.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred.

Remarks
The Write method writes the data in the specified byte array to the virtual display at the current cursor
location. If the data contains control characters or escape sequences, they will be processed according the
Emulation property setting.

See Also
Terminal Class | SocketTools Namespace | Terminal.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Write Method (Byte[])

Write the contents of a byte array to the virtual display.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array which contains the data to be written to the virtual display.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred.

Remarks
The Write method writes the data in the specified byte array to the virtual display at the current cursor
location. If the data contains control characters or escape sequences, they will be processed according the
Emulation property setting.

See Also
Terminal Class | SocketTools Namespace | Terminal.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Write Method (Byte[], Int32)

Write a character to the virtual display.

[Visual Basic]
Overloads Public Function Write(_
 ByVal character As Char _
) As Boolean

[C#]
public bool Write(
 char character
);

Parameters
character

A character which will be written to the virtual display.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred.

Remarks
The Write method writes one character to the virtual display at the current cursor location. If a control
characters is specified, it will be processed according the Emulation property setting.

See Also
Terminal Class | SocketTools Namespace | Terminal.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Write Method (Char)

Write one or more characters to the virtual display.

[Visual Basic]
Overloads Public Function Write(_
 ByVal character As Char, _
 ByVal repeat As Integer _
) As Boolean

[C#]
public bool Write(
 char character,
 int repeat
);

Parameters
character

A character which will be written to the virtual display.

repeat
The number of characters that will be written.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred.

Remarks
The Write method writes the specified character to the virtual display at the current cursor location. If one
or more control characters are specified, they will be processed according the Emulation property setting.

See Also
Terminal Class | SocketTools Namespace | Terminal.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Write Method (Char, Int32)

Write the contents of a string to the virtual display.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the virtual display.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred.

Remarks
The Write method writes the data in the specified string to the virtual display at the current cursor
location. If the data contains control characters or escape sequences, they will be processed according the
Emulation property setting.

See Also
Terminal Class | SocketTools Namespace | Terminal.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Write Method (String)

Write the contents of a string to the virtual display.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the virtual display.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred.

Remarks
The Write method writes the data in the specified string to the virtual display at the current cursor
location. If the data contains control characters or escape sequences, they will be processed according the
Emulation property setting.

See Also
Terminal Class | SocketTools Namespace | Terminal.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.Write Method (String, Int32)

The events of the Terminal class are listed below. For a complete list of Terminal class members, see the
Terminal Members topic.

Public Instance Events

BackColorChanged (inherited from Control) Occurs when the value of the BackColor property
changes.

BackgroundImageChanged (inherited from
Control)

Occurs when the value of the BackgroundImage
property changes.

BindingContextChanged (inherited from
Control)

Occurs when the value of the BindingContext
property changes.

CausesValidationChanged (inherited from
Control)

Occurs when the value of the CausesValidation
property changes.

ChangeUICues (inherited from Control) Occurs when the focus or keyboard user interface
(UI) cues change.

Click (inherited from Control) Occurs when the control is clicked.

ContextMenuChanged (inherited from Control) Occurs when the value of the ContextMenu
property changes.

ControlAdded (inherited from Control) Occurs when a new control is added to the
ControlCollection .

ControlRemoved (inherited from Control) Occurs when a control is removed from the
ControlCollection .

CursorChanged (inherited from Control) Occurs when the value of the Cursor property
changes.

Disposed (inherited from Component) Adds an event handler to listen to the Disposed
event on the component.

DockChanged (inherited from Control) Occurs when the value of the Dock property
changes.

DoubleClick (inherited from Control) Occurs when the control is double-clicked.

DragDrop (inherited from Control) Occurs when a drag-and-drop operation is
completed.

DragEnter (inherited from Control) Occurs when an object is dragged into the
control's bounds.

DragLeave (inherited from Control) Occurs when an object is dragged out of the
control's bounds.

DragOver (inherited from Control) Occurs when an object is dragged over the
control's bounds.

EnabledChanged (inherited from Control) Occurs when the Enabled property value has
changed.

Enter (inherited from Control) Occurs when the control is entered.

FontChanged (inherited from Control) Occurs when the Font property value changes.

Terminal Events

ForeColorChanged (inherited from Control) Occurs when the ForeColor property value
changes.

GiveFeedback (inherited from Control) Occurs during a drag operation.

GotFocus (inherited from Control) Occurs when the control receives focus.

HandleCreated (inherited from Control) Occurs when a handle is created for the control.

HandleDestroyed (inherited from Control) Occurs when the control's handle is in the process
of being destroyed.

HelpRequested (inherited from Control) Occurs when the user requests help for a control.

ImeModeChanged (inherited from Control) Occurs when the ImeMode property has changed.

Invalidated (inherited from Control) Occurs when a control's display requires
redrawing.

KeyDown (inherited from Control) Occurs when a key is pressed while the control has
focus.

KeyMapped Occurs when a mapped key is pressed.

KeyPress (inherited from Control) Occurs when a key is pressed while the control has
focus.

KeyUp (inherited from Control) Occurs when a key is released while the control
has focus.

Layout (inherited from Control) Occurs when a control should reposition its child
controls.

Leave (inherited from Control) Occurs when the input focus leaves the control.

Load (inherited from UserControl) Occurs before the control becomes visible for the
first time.

LocationChanged (inherited from Control) Occurs when the Location property value has
changed.

LostFocus (inherited from Control) Occurs when the control loses focus.

MouseDown (inherited from Control) Occurs when the mouse pointer is over the control
and a mouse button is pressed.

MouseEnter (inherited from Control) Occurs when the mouse pointer enters the control.

MouseHover (inherited from Control) Occurs when the mouse pointer hovers over the
control.

MouseLeave (inherited from Control) Occurs when the mouse pointer leaves the control.

MouseMove (inherited from Control) Occurs when the mouse pointer is moved over the
control.

MouseUp (inherited from Control) Occurs when the mouse pointer is over the control
and a mouse button is released.

MouseWheel (inherited from Control) Occurs when the mouse wheel moves while the
control has focus.

Move (inherited from Control) Occurs when the control is moved.

Paint (inherited from Control) Occurs when the control is redrawn.

ParentChanged (inherited from Control) Occurs when the Parent property value changes.

QueryAccessibilityHelp (inherited from Control) Occurs when AccessibleObject is providing help to
accessibility applications.

QueryContinueDrag (inherited from Control) Occurs during a drag-and-drop operation and
allows the drag source to determine whether the
drag-and-drop operation should be canceled.

Resize (inherited from Control) Occurs when the control is resized.

RightToLeftChanged (inherited from Control) Occurs when the RightToLeft property value
changes.

SizeChanged (inherited from Control) Occurs when the Size property value changes.

StyleChanged (inherited from Control) Occurs when the control style changes.

SystemColorsChanged (inherited from Control) Occurs when the system colors change.

TabIndexChanged (inherited from Control) Occurs when the TabIndex property value
changes.

TabStopChanged (inherited from Control) Occurs when the TabStop property value changes.

TextChanged (inherited from UserControl)

Validated (inherited from Control) Occurs when the control is finished validating.

Validating (inherited from Control) Occurs when the control is validating.

VisibleChanged (inherited from Control) Occurs when the Visible property value changes.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Occurs when a mapped key is pressed.

[Visual Basic]
Public Event KeyMapped As KeyMappedEventHandler

[C#]
public event KeyMappedEventHandler KeyMapped;

Event Data
The event handler receives an argument of type Terminal.KeyMappedEventArgs containing data related to
this event. The following Terminal.KeyMappedEventArgs properties provide information specific to this
event.

Property Description

Alt Gets a value indicating whether the ALT key was
pressed.

Control Gets a value indicating whether the CTRL key was
pressed.

KeyCode Gets a value which specifies the key that was
pressed.

KeyValue Gets the escape sequence mapped to the special
key.

Shift Gets a value indicating whether the SHIFT key was
pressed.

Remarks
This event is generated when the user presses a special key while the emulation window has focus, and
that key is mapped to a string using the KeyMap array.

See Also
Terminal Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.KeyMapped Event

Provides data for the KeyMapped event.

For a list of all members of this type, see Terminal.KeyMappedEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.Terminal.KeyMappedEventArgs

[Visual Basic]
Public Class Terminal.KeyMappedEventArgs
 Inherits EventArgs

[C#]
public class Terminal.KeyMappedEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The KeyMapped event is generated when the user presses a special key while the emulation window has
focus, and that key is mapped to a string using the KeyMap array.

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
Terminal.KeyMappedEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.KeyMappedEventArgs Class

Terminal.KeyMappedEventArgs overview

Public Instance Constructors

 Terminal.KeyMappedEventArgs Constructor Initializes a new instance of the
Terminal.KeyMappedEventArgs class.

Public Instance Properties

Alt Gets a value indicating whether the ALT key was
pressed.

Control Gets a value indicating whether the CTRL key was
pressed.

KeyCode Gets a value which specifies the key that was
pressed.

KeyValue Gets the escape sequence mapped to the special
key.

Shift Gets a value indicating whether the SHIFT key was
pressed.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
Terminal.KeyMappedEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.KeyMappedEventArgs Members

Initializes a new instance of the Terminal.KeyMappedEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public Terminal.KeyMappedEventArgs();

See Also
Terminal.KeyMappedEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.KeyMappedEventArgs Constructor

The properties of the Terminal.KeyMappedEventArgs class are listed below. For a complete list of
Terminal.KeyMappedEventArgs class members, see the Terminal.KeyMappedEventArgs Members topic.

Public Instance Properties

Alt Gets a value indicating whether the ALT key was
pressed.

Control Gets a value indicating whether the CTRL key was
pressed.

KeyCode Gets a value which specifies the key that was
pressed.

KeyValue Gets the escape sequence mapped to the special
key.

Shift Gets a value indicating whether the SHIFT key was
pressed.

See Also
Terminal.KeyMappedEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.KeyMappedEventArgs Properties

Gets a value indicating whether the ALT key was pressed.

[Visual Basic]
Public ReadOnly Property Alt As Boolean

[C#]
public bool Alt {get;}

Property Value
A boolean value that is true if the ALT key was pressed; otherwise, false.

See Also
Terminal.KeyMappedEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.KeyMappedEventArgs.Alt Property

Gets a value indicating whether the CTRL key was pressed.

[Visual Basic]
Public ReadOnly Property Control As Boolean

[C#]
public bool Control {get;}

Property Value
A boolean value that is true if the CTRL key was pressed; otherwise, false.

See Also
Terminal.KeyMappedEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.KeyMappedEventArgs.Control Property

Gets a value which specifies the key that was pressed.

[Visual Basic]
Public ReadOnly Property KeyCode As TerminalKey

[C#]
public Terminal.TerminalKey KeyCode {get;}

Property Value
A TerminalKey enumeration value which specifies the key that was pressed.

See Also
Terminal.KeyMappedEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.KeyMappedEventArgs.KeyCode Property

Gets the escape sequence mapped to the special key.

[Visual Basic]
Public ReadOnly Property KeyValue As String

[C#]
public string KeyValue {get;}

Property Value
A string which specifies the escape sequence mapped to the key that was pressed.

See Also
Terminal.KeyMappedEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.KeyMappedEventArgs.KeyValue Property

Gets a value indicating whether the SHIFT key was pressed.

[Visual Basic]
Public ReadOnly Property Shift As Boolean

[C#]
public bool Shift {get;}

Property Value
A boolean value that is true if the SHIFT key was pressed; otherwise, false.

See Also
Terminal.KeyMappedEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.KeyMappedEventArgs.Shift Property

Specifies the error codes returned by the HttpClient class.

[Visual Basic]
Public Enum Terminal.ErrorCode

[C#]
public enum Terminal.ErrorCode

Remarks
The HttpClient class uses the ErrorCode enumeration to specify what error has occurred when a method
fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorOutOfMemory The specified file or directory does not exist.Out of
memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorInvalidBuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
SocketTools Namespace

Terminal.ErrorCode Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the caret styles supported by the Terminal control.

[Visual Basic]
Public Enum Terminal.TerminalCaret

[C#]
public enum Terminal.TerminalCaret

Members

Member Name Description

None No caret is displayed.

Underline The caret is displayed as an underline.

Block The caret is displayed as a block that is the full
height of the character cell.

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalCaret Enumeration

Specifies the character cell attributes supported by the Terminal control.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum Terminal.TerminalAttributes

[C#]
[Flags]
public enum Terminal.TerminalAttributes

Members

Member Name Description Value

Normal Normal, default attributes. 0

Reverse Foreground and background cell colors
are reversed.

1

Bold The character is displayed using a
higher intensity color.

2

Dim The character is displayed using a lower
intensity color.

4

Blink This attribute is currently not supported. 8

Underline The character is displayed with an
underline.

16

Hidden The character is stored in display
memory, but not shown.

32

Protect The character is protected and cannot
be cleared.

64

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalAttributes Enumeration

Specifies the colors supported by the Terminal control.

[Visual Basic]
Public Enum Terminal.TerminalColor

[C#]
public enum Terminal.TerminalColor

Remarks
A standard ANSI color terminal supports eight standard colors (0-7). To select a foreground color, you
add 30 to the color index and pass that value as a parameter to the SGR (select graphic rendition) escape
sequence. To select a background color, you add 40 to the color index. For example, to set the current
foreground color to white and the background color to blue, you could send the following escape
sequence:

 ESC [37;44 m

Note that if you wanted to set the foreground color to a bold version of standard yellow, you would first
set the bold attribute, and then use the index value of 3, such as:

 ESC [1;33m

Changing the value of the ColorMap array allows the application to make selective changes to the actual
RGB color value that is used when a color attribute is set. Note that changes to the color map will only
affect new characters as they are displayed, not any previously displayed characters

Members

Member Name Description

Black Color value RGB(0,0,0)

Red Color value RGB(160,0,0)

Green Color value RGB(0,160,0)

Yellow Color value RGB(160,160,0)

Blue Color value RGB(0,0,160)

Magenta Color value RGB(160,0,160)

Cyan Color value RGB(0,160,160)

White Color value RGB(224,224,224)

Gray Color value RGB(192,192,192)

LtRed Color value RGB(255,128,128)

LtGreen Color value RGB(144,238,144)

LtYellow Color value RGB(255,255,192)

LtBlue Color value RGB(173,216,230)

LtMagenta Color value RGB(255,192,255)

LtCyan Color value RGB(224,255,255)

Terminal.TerminalColor Enumeration

HiWhite Color value RGB(255,255,255)

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the terminal emulation types supported by the Terminal class.

[Visual Basic]
Public Enum Terminal.TerminalEmulation

[C#]
public enum Terminal.TerminalEmulation

Members

Member Name Description

None The virtual display does not emulate any specific
terminal type, and does not process any escape
sequences.

ANSI The virtual display will process ANSI escape
sequences. The default keymap for an ANSI
console is loaded. This is the default value.

VT100 The virtual display will process DEC VT100 escape
sequences. The default keymap for a VT100
terminal is loaded.

VT220 The virtual display will process DEC VT220 escape
sequences. The default keymap for a VT220
terminal is loaded.

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalEmulation Enumeration

Specifies the special function keys which may be mapped by the Terminal control.

[Visual Basic]
Public Enum Terminal.TerminalKey

[C#]
public enum Terminal.TerminalKey

Remarks
This TerminalKey enumeration lists the constants which can be used as the index value with the KeyMap
array to map control or escape sequences to certain keys. These values are also used by the KeyMapped
event when the user presses a mapped key.

Members

Member Name Description

F1 The F1 function key.

F2 The F2 function key.

F3 The F3 function key.

F4 The F4 function key.

F5 The F5 function key.

F6 The F6 function key.

F7 The F7 function key.

F8 The F8 function key.

F9 The F9 function key.

F10 The F10 function key.

F11 The F11 function key.

F12 The F12 function key.

ShiftF1 The Shift+F1 function key.

ShiftF2 The Shift+F2 function key.

ShiftF3 The Shift+F3 function key.

ShiftF4 The Shift+F4 function key.

ShiftF5 The Shift+F5 function key.

ShiftF6 The Shift+F6 function key.

ShiftF7 The Shift+F7 function key.

ShiftF8 The Shift+F8 function key.

ShiftF9 The Shift+F9 function key.

ShiftF10 The Shift+F10 function key.

ShiftF11 The Shift+F11 function key.

Terminal.TerminalKey Enumeration

ShiftF12 The Shift+F12 function key.

Enter The enter or return key.

Erase The backspace or erase key.

Up The cursor up key.

Down The cursor down key.

Left The cursor left key.

Right The cursor right key.

Insert The insert key.

Delete The delete key.

Home The home cursor key.

End The end cursor key.

PageUp The page up key.

PageDown The page down key.

ArrowUp The up arrow key.

ArrowDown The down arrow key.

ArrowLeft The left arrow key.

ArrowRight The right arrow key.

KeypadEnter The keypad enter key.

Keypad0 The keypad 0 key.

Keypad1 The keypad 1 key.

Keypad2 The keypad 2 key.

Keypad3 The keypad 3 key.

Keypad4 The keypad 4 key.

Keypad5 The keypad 5 key.

Keypad6 The keypad 6 key.

Keypad7 The keypad 7 key.

Keypad8 The keypad 8 key.

Keypad9 The keypad 9 key.

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the end-of-line character sequences supported by the Terminal control.

[Visual Basic]
Public Enum Terminal.TerminalNewLine

[C#]
public enum Terminal.TerminalNewLine

Members

Member Name Description

CRLF A carriage return positions the cursor to the first
column, and a linefeed advances the cursor to the
next row, scrolling the display if necessary. This is
the default value.

CR A carriage return positions the cursor to the first
column and advances to the next row, scrolling
the display if necessary.

LF A linefeed positions the cursor to the first column
and advances to the next row, scrolling the display
if necessary.

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalNewLine Enumeration

Specifies the scrollbar modes supported by the Terminal control.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum Terminal.TerminalScrollBars

[C#]
[Flags]
public enum Terminal.TerminalScrollBars

Remarks
Scrollbars are only displayed if needed. If the emulation window is large enough to display all of the
columns and rows, no scrollbars will be drawn even if they are enabled.

Members

Member Name Description Value

None Scrollbars are not displayed. 0

Horizontal A horizontal scrollbar is displayed if
necessary.

1

Vertical A vertical scrollbar is displayed if
necessary.

2

Both Both a horizontal vertical scrollbars are
displayed if necessary.

3

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.TerminalScrollBars Enumeration

The selection options supported by the Terminal control.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum Terminal.TerminalSelection

[C#]
[Flags]
public enum Terminal.TerminalSelection

Members

Member Name Description Value

Default The default selection option. If there is a
region of the display already selected, it
will be cleared and the new region is
selected. The selected text is buffered
and can be accessed using the SelText
property.

0

Clipboard Copy the selected text to the clipboard.
If this option is not specified, the
selected text is buffered and may be
accessed using the SelText property.

1

NoRefresh The display is not refreshed when the
region is selected. This is useful if the
application is going to be selecting
multiple regions of the display, or
combining more than one region, in
order to minimize output to the
window.

4096

NoBuffer Do not buffer the text in the selected
region of the display. The display will
show any text as being selected, but it
will not be available to the application.
This can be useful if the application is
going to select multiple regions and
combine them.

8192

Combine If there is already a region of the display
that has been selected, the new region
is combined with the previous region,
selecting all of the text.

16384

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

Terminal.TerminalSelection Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the KeyMapped event

[Visual Basic]
Public Delegate Sub Terminal.KeyMappedEventHandler(_
 ByVal sender As Object, _
 ByVal e As KeyMappedEventArgs _
)

[C#]
public delegate void Terminal.KeyMappedEventHandler(

 object sender,
 KeyMappedEventArgs e
);

Parameters
sender

The source of the event.

e

A KeyMappedEventArgs that contains the event data.

Remarks
When you create an KeyMappedEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
KeyMappedEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.KeyMappedEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see Terminal.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.Terminal.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class Terminal.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class Terminal.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the Terminal class.

Example

<Assembly: SocketTools.Terminal.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.Terminal.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
Terminal.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.RuntimeLicenseAttribute Class

Terminal.RuntimeLicenseAttribute overview

Public Instance Constructors

 Terminal.RuntimeLicenseAttribute Constructor Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
Terminal.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public Terminal.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the Terminal class.

See Also
Terminal.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.RuntimeLicenseAttribute Constructor

The properties of the Terminal.RuntimeLicenseAttribute class are listed below. For a complete list of
Terminal.RuntimeLicenseAttribute class members, see the Terminal.RuntimeLicenseAttribute Members
topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
Terminal.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
Terminal.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when an error occurs.

For a list of all members of this type, see TerminalEmulationException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.TerminalEmulationException

[Visual Basic]
Public Class TerminalEmulationException
 Inherits ApplicationException

[C#]
public class TerminalEmulationException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A TerminalEmulationException is thrown by the Terminal control when an error occurs.

The default constructor for the TerminalEmulationException class sets the ErrorCode property to the
socket error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.Terminal (in SocketTools.Terminal.dll)

See Also
TerminalEmulationException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TerminalEmulationException Class

TerminalEmulationException overview

Public Instance Constructors

 TerminalEmulationException Overloaded. Initializes a new instance of the
TerminalEmulationException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

TerminalEmulationException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TerminalEmulationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the TerminalEmulationException class.

Overload List
Initializes a new instance of the TerminalEmulationException class.

public TerminalEmulationException();

Initializes a new instance of the TerminalEmulationException class with the specified error code.

public TerminalEmulationException(int);

Initializes a new instance of the TerminalEmulationException class with the specified error message.

public TerminalEmulationException(string);

Initializes a new instance of the TerminalEmulationException class with the specified error message and a
reference to the inner exception that is the cause of this exception.

public TerminalEmulationException(string,Exception);

See Also
TerminalEmulationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TerminalEmulationException Constructor

Initializes a new instance of the TerminalEmulationException class.

[Visual Basic]
Overloads Public Sub New()

[C#]
public TerminalEmulationException();

Return Value
The ctor constructor sets the ErrorCode property to the last socket error that occurred. For more
information about the errors that may occur, refer to the Terminal.ErrorCode enumeration.

See Also
TerminalEmulationException Class | SocketTools Namespace | TerminalEmulationException Constructor
Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TerminalEmulationException Constructor ()

Initializes a new instance of the TerminalEmulationException class with the specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public TerminalEmulationException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Return Value
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
TerminalEmulationException Class | SocketTools Namespace | TerminalEmulationException Constructor
Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TerminalEmulationException Constructor (String)

Initializes a new instance of the TerminalEmulationException class with the specified error message and a
reference to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public TerminalEmulationException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
TerminalEmulationException Class | SocketTools Namespace | TerminalEmulationException Constructor
Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TerminalEmulationException Constructor (String, Exception)

Initializes a new instance of the TerminalEmulationException class with the specified error code.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public TerminalEmulationException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Return Value
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the Terminal.ErrorCode enumeration.

See Also
TerminalEmulationException Class | SocketTools Namespace | TerminalEmulationException Constructor
Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TerminalEmulationException Constructor (Int32)

The properties of the TerminalEmulationException class are listed below. For a complete list of
TerminalEmulationException class members, see the TerminalEmulationException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
TerminalEmulationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TerminalEmulationException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public Terminal.ErrorCode ErrorCode {get;}

Property Value
Returns a Terminal.ErrorCode enumeration value which specifies the error code

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the TerminalEmulationException class sets the error code to the last network
error that occurred. For more information about the errors that may occur, refer to the
Terminal.ErrorCode enumeration.

See Also
TerminalEmulationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TerminalEmulationException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
TerminalEmulationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TerminalEmulationException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception.

See Also
TerminalEmulationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TerminalEmulationException.Number Property

The methods of the TerminalEmulationException class are listed below. For a complete list of
TerminalEmulationException class members, see the TerminalEmulationException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TerminalEmulationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TerminalEmulationException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
TerminalEmulationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TerminalEmulationException.ToString Method

Send text messages to a mobile communications device using a gateway service.

For a list of all members of this type, see TextMessage Members.

System.Object
 SocketTools.TextMessage

[Visual Basic]
Public Class TextMessage
 Implements IDisposable

[C#]
public class TextMessage : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
Short Message Service (SMS) is a text messaging service used by mobile communication devices to
exchange brief text messages. Most service providers also provide gateway servers that can be used to
send messages to a wireless device on their network using standard email protocols. The
SocketTools.TextMessage class provides methods that can be used to determine the provider
associated with a specific telephone number and send a text message to the device using the provider's
mail gateway.

This class has been designed to assist developers in sending text message notifications as part of their
application. For example, it can be used to enable your software to automatically send notifications when
a specific event occurs, such as an error condition. This class is not designed to be used with software that
will send out a large number of text messages to many users, and there are limitations on the number of
messages that may be sent to different phone numbers over a short period of time. Because many
recipients must pay a fee for each text message they receive, text messages should only be sent to those
who explicitly request them.

Note: This component only supports service providers in North America and cannot be used to send text
messages to mobile devices that use providers outside of the United States and Canada. Some service
providers may prevent messages from being sent through their gateway to a user that does not have
unlimited text messaging as part of their service agreement.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TextMessage (in SocketTools.TextMessage.dll)

See Also
TextMessage Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage Class

TextMessage overview

Public Instance Constructors

 TextMessage Constructor Initializes a new instance of the TextMessage class.

Public Instance Properties

Account Gets and sets a value which specifies an account
name used to authenticate a client session.

AuthType Gets and sets the type of client authentication that
should be used.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

Message Gets and sets the current message text.

Password Gets and sets the password used to authenticate
the session.

PhoneNumber Gets and sets the phone number for the mobile
device.

Provider Gets and sets the name of the preferred wireless
service provider.

Providers Gets a collection of known wireless service
providers.

Relay Enable or disable the use of an intermediate relay
server to send messages.

Secure Enable or disable secure connections to the server.

Sender Gets and sets the value that identifies the sender
of the message.

ServerName Gets and sets the name of the server that is used
to send messages.

ServerPort Gets and sets the port number used to establish a
connection.

ServiceType Gets and sets the type of service used to send
messages.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout

TextMessage Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TextMessage.IsInitialized.html

period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

Urgent Enable or disable the option that flags a message
as urgent.

UserName Gets and sets the user name or ID used to
authenticate the session.

Version Gets a value which returns the current version of
the TextMessage class library.

Public Instance Methods

Dispose Overloaded. Releases all resources used by
TextMessage.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetAddress Get the email address associated with the specified
phone number.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetProvider Get the name of the wireless service provider
associated with a phone number.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
TextMessage class.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SendMessage Overloaded. Send a text message to the specified
mobile device.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Public Instance Events

OnError Occurs when an client operation fails.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the TextMessage class and optionally

releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the TextMessage class.

[Visual Basic]
Public Sub New()

[C#]
public TextMessage();

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage Constructor

The properties of the TextMessage class are listed below. For a complete list of TextMessage class
members, see the TextMessage Members topic.

Public Instance Properties

Account Gets and sets a value which specifies an account
name used to authenticate a client session.

AuthType Gets and sets the type of client authentication that
should be used.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

Message Gets and sets the current message text.

Password Gets and sets the password used to authenticate
the session.

PhoneNumber Gets and sets the phone number for the mobile
device.

Provider Gets and sets the name of the preferred wireless
service provider.

Providers Gets a collection of known wireless service
providers.

Relay Enable or disable the use of an intermediate relay
server to send messages.

Secure Enable or disable secure connections to the server.

Sender Gets and sets the value that identifies the sender
of the message.

ServerName Gets and sets the name of the server that is used
to send messages.

ServerPort Gets and sets the port number used to establish a
connection.

ServiceType Gets and sets the type of service used to send
messages.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network

TextMessage Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.TextMessage.IsInitialized.html

function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

Urgent Enable or disable the option that flags a message
as urgent.

UserName Gets and sets the user name or ID used to
authenticate the session.

Version Gets a value which returns the current version of
the TextMessage class library.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets a value which specifies an account name used to authenticate a client session.

[Visual Basic]
Public Property Account As String

[C#]
public string Account {get; set;}

Property Value
A string which specifies the account name.

Remarks
This property is provided for future expansion when additional gateway service types and authentication
methods are added to this component. This Account property is not used when a message is sent using
an SMTP gateway.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Account Property

Gets and sets the type of client authentication that should be used.

[Visual Basic]
Public Property AuthType As AuthTypes

[C#]
public TextMessage.AuthTypes AuthType {get; set;}

Property Value
A TextMessage.AuthTypes enumeration that specifies the authentication method.

Remarks
This property is provided for future expansion when additional gateway service types and authentication
methods are added to this component. Applications should not change the value of the AuthType
property.

See Also
TextMessage Class | SocketTools Namespace | TextMessage.AuthTypes

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.AuthType Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
TextMessage.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.ErrorEventArgs.Description Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public TextMessage.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.LastErrorString Property

Gets and sets the current message text.

[Visual Basic]
Public Property Message As String

[C#]
public string Message {get; set;}

Property Value
A string that contains the current text message.

Remarks
This property returns the current message text. Changing the value of this property will change the
message text sent by the SendMessage method if no message is explicitly specified. In most cases, a
message should not exceed 160 characters in length, although some service providers may accept longer
messages. If a message exceeds the maximum number of characters accepted by a service provider, the
message may be ignored or it may be split into multiple messages.

See Also
TextMessage Class | SocketTools Namespace | PhoneNumber Property | Sender Property | SendMessage
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Message Property

Gets and sets the password used to authenticate the session.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string that specifies the current password used to authenticate the client session.

Remarks
This property is used to authenticate the current client session. If the message is being sent using SMTP,
this value is used to specify a password when connecting to the mail server . If no authentication is
required, this property may be an empty string. Note that some service providers may use terminology
other than "password" with their documentation; in that case, this property will always specify the second
of a pair of authentication tokens sent to the server to identify the client.

See Also
TextMessage Class | SocketTools Namespace | Relay Property | ServerName Property | ServerPort Property
| UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Password Property

Gets and sets the phone number for the mobile device.

[Visual Basic]
Public Property PhoneNumber As String

[C#]
public string PhoneNumber {get; set;}

Property Value
A string which specifies the phone number for the mobile device.

Remarks
The PhoneNumber property returns the current phone number. Changing the value of this property will
change the default phone number the SendMessage method will use when sending a message. This can
be a standard E.164 formatted phone number or an unformatted number. Any extraneous whitespace,
punctuation or other non-numeric characters in the string will be ignored.

See Also
TextMessage Class | SocketTools Namespace | Message Property | Relay Property | Sender Property |
SendMessage Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.PhoneNumber Property

Gets and sets the name of the preferred wireless service provider.

[Visual Basic]
Public Property Provider As String

[C#]
public string Provider {get; set;}

Property Value
A string which specifies the preferred wireless service provider associated with the mobile device.

Remarks
This property returns the preferred wireless service provider associated with the current phone number.
Changing the value of this property will change the preferred wireless service provider. If this property is
an empty string, the default provider assigned to the recipient's phone number will be used. This property
is only used with messages sent using SMTP and is ignored for other message services.

In the United States and Canada, most wireless common carriers are required to provide wireless number
portability (WNP) which allows a customer to continue to use their current phone number even if they
switch to another service provider. This can result in a situation where a specific phone number is shown
as allocated to one provider, but in actuality that user has switched to a different provider. For example, a
user may have originally purchased a phone and service with AT&T and then later switched to Verizon,
but decided to keep their phone number. In this case, if Verizon was not specified as the preferred
provider, the library would attempt to send the message to the AT&T gateway, since that was the original
provider who allocated the phone number.

For most applications, the correct way to handle the situation in which a user may have switched to a
different service provider is to allow them to select a preferred provider in your user interface. For
example, you could display a drop-down list of available providers for them to select from, populated
using the Providers property. If they select a preferred provider, then you would assign that value to this
property. If they choose to use the default provider, set this property to an empty string.

See Also
TextMessage Class | SocketTools Namespace | Providers Property | SendMessage Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Provider Property

Gets a collection of known wireless service providers.

[Visual Basic]
Public Property Providers As ArrayList

[C#]
public System.Collections.ArrayList Providers {get; set;}

Property Value
A collection of strings that specify the names of known wireless service providers.

Remarks
This property will return a read-only collection of known wireless service providers in the United States and
Canada. Typically this collection would be used to populate a UI control such as a ListBox or ComboBox to
provide the user with a list of service providers to choose from.

Attempting to assign a value to this property will cause a System.NotSupportedException exception to
be raised.

See Also
TextMessage Class | SocketTools Namespace | Provider Property | GetProvider Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Providers Property

Enable or disable the use of an intermediate relay server to send messages.

[Visual Basic]
Public Property Relay As Boolean

[C#]
public bool Relay {get; set;}

Property Value
A boolean value which specifies if a relay mail server will be used to send the text message. A value of
true specifies that a relay server will be used, while a value of false specifies that the message will be sent
directly to the wireless service provider's gateway.

Remarks
The Relay property is used to determine if the class will send the message directly to the wireless service
provider's gateway server, or if the message will be relayed through another mail server. The default value
for this property is false. Setting this property to true will cause the control to connect to the mail server
specified by the ServerName property, authenticate the client session if necessary and then submit the
message.

When a text message is sent using the SMTP service, the default action is to attempt to connect directly to
the wireless service provider's gateway server. However, many residential Internet service providers (ISPs)
do not permit their customers to connect to third-party mail servers and will block the outbound
connection. Some wireless service providers may also reject messages that originate from residential IP
addresses.

To resolve this issue, the developer should allow the user to specify an alternate mail server that will relay
the message to the wireless service provider. For residential users, this will typically be the mail server
provided by their ISP. For business users, this will usually be their corporate mail server. The ServerName
and ServerPort properties are used to identify the relay server, and the UserName and Password
properties provide the credentials to authenticate the client session.

See Also
TextMessage Class | SocketTools Namespace | Password Property | ServerName Property | ServerPort
Property | UserName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Relay Property

Enable or disable secure connections to the server.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
A boolean value which specifies if a secure connection should be established.

Remarks
The Secure property determines if a secure connection is established to the server. The default value for
this property is false, which specifies that a standard connection to the server is used. To establish a
secure connection, the application must set this property value to true prior to calling the SendMessage
method.

This property is only used when sending a message through a relay server using the SMTP service.
Messages that are sent directly to the wireless service provider's gateway do not use authentication and
are not secure, regardless of the value of this property.

See Also
TextMessage Class | SocketTools Namespace | Relay Property | SendMessage Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Secure Property

Gets and sets the value that identifies the sender of the message.

[Visual Basic]
Public Property Sender As String

[C#]
public string Sender {get; set;}

Property Value
A string value that identifies the person sending the text message.

Remarks
The Sender property returns the email address of the sender when the SMTP service is used to send the
message. For other service types, this property typically specifies the phone number or shortcode
associated with the sender. Assigning a value to this property will set the default sender when the
SendMessage method is called.

See Also
TextMessage Class | SocketTools Namespace | PhoneNumber Property | SendMessage Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Sender Property

Gets and sets the name of the server that is used to send messages.

[Visual Basic]
Public Property ServerName As String

[C#]
public string ServerName {get; set;}

Property Value
A string that specifies the host name or IP address of a mail server.

Remarks
The ServerName property is used to specify an alternate server that is used to deliver messages. When
the SMTP service is used, this property is used in conjunction with the Relay property to enable the
relaying of messages through another mail server.

By default, the phone number is used to automatically determine the host name of the gateway server
that is responsible for accepting messages for the mobile device. However, under some circumstances it
may not be possible to send messages directly to the wireless service provider's gateway. For example,
many Internet service providers (ISPs) require that customers relay all messages through their servers and
block any attempt to establish a direct connection with another mail server. This property can be used to
specify an alternate server that will be responsible for sending the message.

See Also
TextMessage Class | SocketTools Namespace | Relay Property | ServerPort Property | SendMessage
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.ServerName Property

Gets and sets the port number used to establish a connection.

[Visual Basic]
Public Property ServerPort As Integer

[C#]
public int ServerPort {get; set;}

Property Value
An integer value that specifies the mail server port number.

Remarks
The ServerPort property defines the port number which is used to establish a connection with the server.
This property is used in conjunction with the ServerName property to specify an alternate server which is
responsible for delivering messages.

See Also
TextMessage Class | SocketTools Namespace | Relay Property | ServerName Property | SendMessage
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.ServerPort Property

Gets and sets the type of service used to send messages.

[Visual Basic]
Public Property ServiceType As ServiceTypes

[C#]
public TextMessage.ServiceTypes ServiceType {get; set;}

Property Value
A SocketTools.ServiceTypes enumeration that specifies the type of service.

Remarks
This property is provided for future expansion when additional gateway service types and authentication
methods are added to this component. Applications should not change the value of the ServiceType
property.

See Also
TextMessage Class | SocketTools Namespace | TextMessage.ServiceTypes

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.ServiceType Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and the
method returns to the caller. This includes the amount of time the control will spend attempting to
connect to a remote host, and if the connection is not established within the given time period, the
connection attempt will fail.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public TextMessage.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.TraceFlags Property

Enable or disable the option that flags a message as urgent.

[Visual Basic]
Public Property Urgent As Boolean

[C#]
public bool Urgent {get; set;}

Property Value
A boolean value which specifies if the message should be flagged as urgent.

Remarks
The Urgent property specifies whether a message will be flagged as urgent or not. If this property is set to
true, the message will sent with a high priority. Note that this does not guarantee the message will be
received any differently than a standard text message. Each wireless service provider may handle urgent
messages differently, and some providers may simply ignore the message priority. By default, this property
is false.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Urgent Property

Gets and sets the user name or ID used to authenticate the session.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string that specifies the current username used to authenticate the client session.

Remarks
The UserName property is used to authenticate the current session. If the message is being sent using
SMTP, this property is used to specify a user name when connecting to the mail server . If no
authentication is required, this property may be an empty string. Note that some service providers may
use terminology other than "username" with their documentation; in that case, this property will always
specify the first of a pair of authentication tokens sent to the server to identify the client.

See Also
TextMessage Class | SocketTools Namespace | Password Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.UserName Property

Gets a value which returns the current version of the TextMessage class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the TextMessage
class library. This value can be used by an application for validation and debugging purposes.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Version Property

The methods of the TextMessage class are listed below. For a complete list of TextMessage class
members, see the TextMessage Members topic.

Public Instance Methods

Dispose Overloaded. Releases all resources used by
TextMessage.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetAddress Get the email address associated with the specified
phone number.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetProvider Get the name of the wireless service provider
associated with a phone number.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
TextMessage class.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SendMessage Overloaded. Send a text message to the specified
mobile device.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the TextMessage class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage Methods

Releases all resources used by TextMessage.

Overload List
Releases all resources used by TextMessage.

public void Dispose();

Releases the unmanaged resources allocated by the TextMessage class and optionally releases the
managed resources.

protected virtual void Dispose(bool);

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Dispose Method

Releases all resources used by TextMessage.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
TextMessage Class | SocketTools Namespace | TextMessage.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Dispose Method ()

Releases the unmanaged resources allocated by the TextMessage class and optionally releases the
managed resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the TextMessage class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
TextMessage Class | SocketTools Namespace | TextMessage.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Finalize Method

Get the email address associated with the specified phone number.

[Visual Basic]
Public Function GetAddress(_
 ByVal phoneNumber As String, _
 ByRef mailAddress As String _
) As Boolean

[C#]
public bool GetAddress(
 string phoneNumber,
 ref string mailAddress
);

Parameters
phoneNumber

A string value which specifies the phone number of the mobile device. This can be a standard E.164
formatted number or an unformatted number. Any extraneous whitespace, punctuation or other non-
numeric characters in the string will be ignored.

mailAddress
A string that will contain the email address associated with the specified phone number when the
method returns. A mail message sent to this address will be forwarded to the mobile device as a text
message. This parameter must be passed by reference.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetAddress method can be used to determine if a phone number is associated with a mobile device
and obtain the email address for the wireless service provider's gateway. This is done by sending an query
to a server that will check the phone number against a database of known providers and the phone
numbers that have been allocated for wireless devices.

This method sends an HTTP query to the server api.sockettools.com to obtain information about the
phone number and wireless service provider. This requires that the local system can establish a standard
network connection over port 80. If the client cannot connect to the server, the method will fail and an
appropriate error will be returned. The server imposes a limit on the maximum number of connections
that can be established and the maximum number of requests that can be issued per minute. If this
method is called multiple times over a short period, the control may also force the application to block
briefly. Server responses are cached per session, so calling this method multiple times using the same
phone number will not increase the request count.

See Also
TextMessage Class | SocketTools Namespace | Provider Property | Providers Property | GetProvider
Method | SendMessage Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.GetAddress Method

Get the name of the wireless service provider associated with a phone number.

[Visual Basic]
Public Function GetProvider(_
 ByVal phoneNumber As String, _
 ByRef providerName As String _
) As Boolean

[C#]
public bool GetProvider(
 string phoneNumber,
 ref string providerName
);

Parameters
phoneNumber

A string value which specifies the phone number of the mobile device. This can be a standard E.164
formatted number or an unformatted number. Any extraneous whitespace, punctuation or other non-
numeric characters in the string will be ignored.

providerName
A string that will contain the name of the wireless service provider associated with the specified phone
number when the method returns. This parameter must be passed by reference.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The GetProvider method can be used to determine if a phone number is associated with a mobile device
and obtain the name of the service provider associated with the number. This is done by sending an query
to a server that will check the phone number against a database of known providers and the phone
numbers that have been allocated for wireless devices.

This method sends an HTTP query to the server api.sockettools.com to obtain information about the
phone number and wireless service provider. This requires that the local system can establish a standard
network connection over port 80. If the client cannot connect to the server, the method will fail and an
appropriate error will be returned. The server imposes a limit on the maximum number of connections
that can be established and the maximum number of requests that can be issued per minute. If this
method is called multiple times over a short period, the control may also force the application to block
briefly. Server responses are cached per session, so calling this method multiple times using the same
phone number will not increase the request count.

See Also
TextMessage Class | SocketTools Namespace | Provider Property | Providers Property | GetAddress
Method | SendMessage Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.GetProvider Method

Initialize an instance of the TextMessage class.

Overload List
Initialize an instance of the TextMessage class.

public bool Initialize();

Initialize an instance of the TextMessage class.

public bool Initialize(string);

See Also
TextMessage Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Initialize Method

Initialize an instance of the TextMessage class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the TextMessage class, loading the
networking library and allocating resources for the current thread. This must be the first method that is
called before you attempt to modify any property values or invoke other methods in this instance. Failure
to initialize the class may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of the
number of times that it has been called by any thread in the current process. The Uninitialize method
decrements this counter, and when the usage count drops to zero, the class will automatically unload the
system libraries that it has dynamically loaded and will destroy the process heap that was allocated when
the first instance of the class was created.

See Also
TextMessage Class | SocketTools Namespace | TextMessage.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Initialize Method ()

Initialize an instance of the TextMessage class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the TextMessage class, loading the
networking library and allocating resources for the current thread. This must be the first method that is
called before you attempt to modify any property values or invoke other methods in this instance. Failure
to initialize the class may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of the
number of times that it has been called by any thread in the current process. The Uninitialize method
decrements this counter, and when the usage count drops to zero, the class will automatically unload the
system libraries that it has dynamically loaded and will destroy the process heap that was allocated when
the first instance of the class was created.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.TextMessage txtMessage = new SocketTools.TextMessage();

if (txtMessage.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(txtMessage.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim txtMessage As New SocketTools.TextMessage

If txtMessage.Initialize(strLicenseKey) = False Then
 MsgBox(txtMessage.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
TextMessage Class | SocketTools Namespace | TextMessage.Initialize Overload List |
RuntimeLicenseAttribute Class | Uninitialize Method

TextMessage.Initialize Method (String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Reset Method

Send a text message to the specified mobile device.

Overload List
Send a text message to the specified mobile device.

public bool SendMessage();

Send a text message to the specified mobile device.

public bool SendMessage(string);

Send a text message to the specified mobile device.

public bool SendMessage(string,string,string);

See Also
TextMessage Class | SocketTools Namespace | Message Property | PhoneNumber Property | Relay
Property | Sender Property | ServiceType Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.SendMessage Method

Send a text message to the specified mobile device.

[Visual Basic]
Overloads Public Function SendMessage() As Boolean

[C#]
public bool SendMessage();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method is used to send a text message to a mobile device. This class is designed to
support multiple methods of sending text messages, with the ServiceType property determining how the
message is sent.

The value of the PhoneNumber property is used to determine the phone number of the mobile device
that the message will be sent to. The value of the Sender property is used to specify the sender of the
message. The value of the Message property specifies the content of the message that is sent.

For more information, refer to the SendMessage method.

See Also
TextMessage Class | SocketTools Namespace | TextMessage.SendMessage Overload List | Message
Property | PhoneNumber Property | Relay Property | Sender Property | ServiceType Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.SendMessage Method ()

Send a text message to the specified mobile device.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal phoneNumber As String _
) As Boolean

[C#]
public bool SendMessage(
 string phoneNumber
);

Parameters
phoneNumber

An string value which specifies the phone number of the mobile device. This can be a standard E.164
formatted number or an unformatted number. Any extraneous whitespace, punctuation or other non-
numeric characters in the string will be ignored.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method is used to send a text message to a mobile device. This class is designed to
support multiple methods of sending text messages, with the ServiceType property determining how the
message is sent.

The value of the Sender property is used to specify the sender of the message. The value of the Message
property specifies the content of the message that is sent.

For more information, refer to the SendMessage method.

See Also
TextMessage Class | SocketTools Namespace | TextMessage.SendMessage Overload List | Message
Property | Relay Property | Sender Property | ServiceType Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.SendMessage Method (String)

Send a text message to the specified mobile device.

[Visual Basic]
Overloads Public Function SendMessage(_
 ByVal phoneNumber As String, _
 ByVal sender As String, _
 ByVal message As String _
) As Boolean

[C#]
public bool SendMessage(
 string phoneNumber,
 string sender,
 string message
);

Parameters
phoneNumber

An string value which specifies the phone number of the mobile device. This can be a standard E.164
formatted number or an unformatted number. Any extraneous whitespace, punctuation or other non-
numeric characters in the string will be ignored.

sender
A string value that identifies the sender of the message. For messages being sent using SMTP, this
should be a valid email address.

message
A string value that contains the text message that will be sent.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SendMessage method is used to send a text message to a mobile device. This control is designed to
support multiple methods of sending text messages, with the ServiceType property determining how the
message is sent:

ServiceTypes.serviceSmtp
This message service sends the message through the wireless service provider's mail gateway using the
SMTP protocol. However, it is important to note that many of these gateways will not accept messages
from a client that is connected to them using a residential Internet service provider. If the application is
being run on a system that uses a residential provider, that service provider may also block outbound
connections to all mail servers other than their own. These anti-spam measures typically require that most
end-user applications specify a relay mail server rather than submitting the message directly to the
wireless provider's gateway.

Because most wireless carriers in the United States and Canada must provide for wireless number
portability, there is the possibility that the provider information returned may no longer correspond to the
telephone number. It is recommended that you provide your end-user with the ability to specify an
alternate preferred provider to use when sending the text message. For more information, refer to
Providers properties.

TextMessage.SendMessage Method (String, String, String)

This method sends an HTTP query to the server api.sockettools.com to obtain information about the
phone number and wireless service provider. This requires that the local system can establish a standard
network connection over port 80. If the client cannot connect to the server, the method will fail and an
appropriate error will be returned. The server imposes a limit on the maximum number of connections
that can be established and the maximum number of requests that can be issued per minute. If this
method is called multiple times over a short period, the control may also force the application to block
briefly. Server responses are cached per session, so calling this method multiple times using the same
phone number will not increase the request count.

See Also
TextMessage Class | SocketTools Namespace | TextMessage.SendMessage Overload List | Providers
Property | Relay Property | ServiceType Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any connection established by the control and resets the internal
state of the class. This method is not typically used because any resources that have been allocated by an
instance of the class will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of the
number of times that it has been called by any thread in the current process. The Uninitialize method
decrements this counter, and when the usage count drops to zero, the class will automatically unload the
system libraries that it has dynamically loaded and will destroy the process heap that was allocated when
the first instance of the class was created.

See Also
TextMessage Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.Uninitialize Method

The events of the TextMessage class are listed below. For a complete list of TextMessage class
members, see the TextMessage Members topic.

Public Instance Events

OnError Occurs when an client operation fails.

See Also
TextMessage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage Events

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type TextMessage.ErrorEventArgs containing data related to
this event. The following TextMessage.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
TextMessage Class | SocketTools Namespace | ErrorCode Enumeration | LastError Property |
LastErrorString Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see TextMessage.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.TextMessage.ErrorEventArgs

[Visual Basic]
Public Class TextMessage.ErrorEventArgs
 Inherits EventArgs

[C#]
public class TextMessage.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TextMessage (in SocketTools.TextMessage.dll)

See Also
TextMessage.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.ErrorEventArgs Class

TextMessage.ErrorEventArgs overview

Public Instance Constructors

 TextMessage.ErrorEventArgs Constructor Initializes a new instance of the
TextMessage.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TextMessage.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.ErrorEventArgs Members

Initializes a new instance of the TextMessage.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public TextMessage.ErrorEventArgs();

See Also
TextMessage.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.ErrorEventArgs Constructor

The properties of the TextMessage.ErrorEventArgs class are listed below. For a complete list of
TextMessage.ErrorEventArgs class members, see the TextMessage.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
TextMessage.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.ErrorEventArgs Properties

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public TextMessage.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
TextMessage.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.ErrorEventArgs.Error Property

Specifies the authentication methods that the TextMessage class supports.

[Visual Basic]
Public Enum TextMessage.AuthTypes

[C#]
public enum TextMessage.AuthTypes

Members

Member Name Description

authDefault The default authentication method for this service
type should be used. Most applications should use
this value unless a service type provides multiple
authentication methods.

authUserName The service requires authentication using a
username and password. This value can be used
with an SMTP service that requires user
authentication and is typically needed when using
a mail server relay. For the serviceSmtp service,
this is the default authentication method.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TextMessage (in SocketTools.TextMessage.dll)

See Also
SocketTools Namespace | ServiceTypes Enumeration | AuthType Property (SocketTools.TextMessage)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.AuthTypes Enumeration

Specifies the error codes returned by the TextMessage class.

[Visual Basic]
Public Enum TextMessage.ErrorCode

[C#]
public enum TextMessage.ErrorCode

Remarks
The TextMessage class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

TextMessage.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TextMessage (in SocketTools.TextMessage.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the gateway services that the TextMessage class supports.

[Visual Basic]
Public Enum TextMessage.ServiceTypes

[C#]
public enum TextMessage.ServiceTypes

Members

Member Name Description

serviceSmtp The text message will be sent through the mail
gateway for the specified service provider. This
service uses SMTP to submit the message for
delivery, either directly to the server provider's
mail gateway server or through a relay server. This
is the default service type.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TextMessage (in SocketTools.TextMessage.dll)

See Also
SocketTools Namespace | AuthTypes Enumeration | ServiceType Property (SocketTools.TextMessage)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.ServiceTypes Enumeration

Specifies the logging options that the TextMessage class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum TextMessage.TraceOptions

[C#]
[Flags]
public enum TextMessage.TraceOptions

Remarks
The TextMessage class uses the TraceOptions enumeration to specify what kind of debugging
information is written to the trace logfile. These options are only meaningful when trace logging is
enabled by setting the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

Requirements
Namespace: SocketTools

Assembly: SocketTools.TextMessage (in SocketTools.TextMessage.dll)

See Also
SocketTools Namespace | Trace Property (SocketTools.TextMessage) | TraceFile Property
(SocketTools.TextMessage) | TraceFlags Property (SocketTools.TextMessage)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.TraceOptions Enumeration

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub TextMessage.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void TextMessage.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TextMessage (in SocketTools.TextMessage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.OnErrorEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see TextMessage.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.TextMessage.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class TextMessage.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class TextMessage.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the TextMessage class.

Example

<Assembly: SocketTools.TextMessage.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.TextMessage.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.TextMessage (in SocketTools.TextMessage.dll)

See Also
TextMessage.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.RuntimeLicenseAttribute Class

TextMessage.RuntimeLicenseAttribute overview

Public Instance Constructors

 TextMessage.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TextMessage.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public TextMessage.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the TextMessage class.

See Also
TextMessage.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.RuntimeLicenseAttribute Constructor

The properties of the TextMessage.RuntimeLicenseAttribute class are listed below. For a complete list
of TextMessage.RuntimeLicenseAttribute class members, see the
TextMessage.RuntimeLicenseAttribute Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
TextMessage.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
TextMessage.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessage.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see TextMessageException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.TextMessageException

[Visual Basic]
Public Class TextMessageException
 Inherits ApplicationException

[C#]
public class TextMessageException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A TextMessageException is thrown by the TextMessage class when an error occurs.

The default constructor for the TextMessageException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.TextMessage (in SocketTools.TextMessage.dll)

See Also
TextMessageException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessageException Class

TextMessageException overview

Public Instance Constructors

 TextMessageException Overloaded. Initializes a new instance of the
TextMessageException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

TextMessageException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TextMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the TextMessageException class with the last network error code.

Overload List
Initializes a new instance of the TextMessageException class with the last network error code.

public TextMessageException();

Initializes a new instance of the TextMessageException class with a specified error number.

public TextMessageException(int);

Initializes a new instance of the TextMessageException class with a specified error message.

public TextMessageException(string);

Initializes a new instance of the TextMessageException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

public TextMessageException(string,Exception);

See Also
TextMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessageException Constructor

Initializes a new instance of the TextMessageException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public TextMessageException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the TextMessage.ErrorCode enumeration.

See Also
TextMessageException Class | SocketTools Namespace | TextMessageException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessageException Constructor ()

Initializes a new instance of the TextMessageException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public TextMessageException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the TextMessage.ErrorCode enumeration.

See Also
TextMessageException Class | SocketTools Namespace | TextMessageException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessageException Constructor (Int32)

Initializes a new instance of the TextMessageException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public TextMessageException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
TextMessageException Class | SocketTools Namespace | TextMessageException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessageException Constructor (String)

Initializes a new instance of the TextMessageException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public TextMessageException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
TextMessageException Class | SocketTools Namespace | TextMessageException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessageException Constructor (String, Exception)

The properties of the TextMessageException class are listed below. For a complete list of
TextMessageException class members, see the TextMessageException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
TextMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessageException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public TextMessage.ErrorCode ErrorCode {get;}

Property Value
Returns a TextMessage.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the TextMessageException class sets the error code to the last network error
that occurred. For more information about the errors that may occur, refer to the TextMessage.ErrorCode
enumeration.

See Also
TextMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessageException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
TextMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessageException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. For network related errors, this value is the same as the values returned by the Windows
Sockets API. For more information about socket error codes, see the Windows Socket Version 2 API error
code documentation in MSDN.

See Also
TextMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessageException.Number Property

The methods of the TextMessageException class are listed below. For a complete list of
TextMessageException class members, see the TextMessageException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
TextMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessageException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
TextMessageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

TextMessageException.ToString Method

Get physical location information for the local computer system.

For a list of all members of this type, see WebLocation Members.

System.Object
 SocketTools.WebLocation

[Visual Basic]
Public Class WebLocation
 Implements IDisposable

[C#]
public class WebLocation : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The SocketTools.WebLocation class returns information about the location associated with the with the
external IP address of the local system. The accuracy of this information can vary depending on the
location, with the most detailed information being available for North America. The country and time zone
information for all locations is generally accurate. However, as the location information becomes more
precise, details such as city names, postal codes and specific geographic locations (e.g.: longitude and
latitude) may have reduced accuracy.

This location information should not be used by applications which require extremely accurate map
coordinates, such as navigation software. The location information in North America should be generally
accurate within a 25 mile (40km) radius. However, given the nature of how IP address location works,
there is no guarantee that location information for any specific IP address or network will be accurate.

Software that is designed to protect the privacy of users, such as those which route all Internet traffic
through proxy servers or VPNs, can significantly impact the accuracy of this information. In this case, the
data returned by this class may reflect the location of the network or proxy server, and not the location of
the person using your application. It is recommended that you always request permission from the user
before acquiring their location, have them confirm that the location is correct and provide a mechanism
for them to update that information.

This component uses SocketTools Web Services and will only function if there is an active Internet
connection and the local system is capable of establishing a secure connection to the location service.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebLocation (in SocketTools.WebLocation.dll)

See Also
WebLocation Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation Class

WebLocation overview

Public Instance Constructors

 WebLocation Constructor Initializes a new instance of the WebLocation class.

Public Instance Properties

ASNumber Gets the autonomous system number for the
network.

CityName Gets the city name for the current location.

Coordinates Gets the GPS coordinates for the current location.

CountryAlpha Gets the ISO code for the country at the current
location.

CountryCode Gets the numeric code for the country at the
current location.

CountryName Gets the name of the country for the current
location.

IPAddress Gets the external IP address for the local system.

IsInitialized Determine if the class instance has been initialized.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LastUpdate Gets the number of seconds since the last location
update.

Latitude Gets the latitude for the current location.

LocalTime Gets the local time adjusted for the location's time
zone.

LocationId Gets a unique identifier for the current location.

Longitude Gets the longitude for the current location

Organization Gets the name of the organization that owns the
network.

PostalCode Gets the postal code for the current location.

RegionCode Gets the numeric region code for the current
location.

RegionName Gets the region name for the current location

Subdivision Gets the subdivision name for the current location.

SubdivisionCode Gets the alphanumeric code for the current
subdivision.

ThrowError Gets and sets a value which specifies if method

WebLocation Members

calls should throw exceptions when an error
occurs.

Timeout Gets and sets the number of seconds to wait until
a location query fails.

Timezone Gets the time zone for the current location.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

TzOffset Gets the time zone offset in seconds for the
current location.

TzShortName Gets an abbreviated time zone name for the
current location.

Version Gets a value which returns the current version of
the WebLocation class library.

Public Instance Methods

Dispose Overloaded. Releases all resources used by
WebLocation.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
WebLocation class.

Reset Reset the internal state of the object, resetting all
properties to their default values.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Update Update the current location information for the
local system.

Public Instance Events

OnError Occurs when an client operation fails.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the WebLocation class and optionally

releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebLocation.Finalize.html

Initializes a new instance of the WebLocation class.

[Visual Basic]
Public Sub New()

[C#]
public WebLocation();

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation Constructor

The properties of the WebLocation class are listed below. For a complete list of WebLocation class
members, see the WebLocation Members topic.

Public Instance Properties

ASNumber Gets the autonomous system number for the
network.

CityName Gets the city name for the current location.

Coordinates Gets the GPS coordinates for the current location.

CountryAlpha Gets the ISO code for the country at the current
location.

CountryCode Gets the numeric code for the country at the
current location.

CountryName Gets the name of the country for the current
location.

IPAddress Gets the external IP address for the local system.

IsInitialized Determine if the class instance has been initialized.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LastUpdate Gets the number of seconds since the last location
update.

Latitude Gets the latitude for the current location.

LocalTime Gets the local time adjusted for the location's time
zone.

LocationId Gets a unique identifier for the current location.

Longitude Gets the longitude for the current location

Organization Gets the name of the organization that owns the
network.

PostalCode Gets the postal code for the current location.

RegionCode Gets the numeric region code for the current
location.

RegionName Gets the region name for the current location

Subdivision Gets the subdivision name for the current location.

SubdivisionCode Gets the alphanumeric code for the current
subdivision.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

WebLocation Properties

Timeout Gets and sets the number of seconds to wait until
a location query fails.

Timezone Gets the time zone for the current location.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

TzOffset Gets the time zone offset in seconds for the
current location.

TzShortName Gets an abbreviated time zone name for the
current location.

Version Gets a value which returns the current version of
the WebLocation class library.

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets the autonomous system number for the network.

[Visual Basic]
Public ReadOnly Property ASNumber As Integer

[C#]
public int ASNumber {get;}

Property Value
An integer value which uniquely identifies a global network.

Remarks
This property returns an integer value which is used to uniquely identify a global network (autonomous
system) that is connected to the Internet. This number is assigned by regional registries and used by large
networks, such as Internet Service Providers, for exchanging routing information with one another. This
value can be used to determine the ownership of a particular network.

See Also
WebLocation Class | SocketTools Namespace | IPAddress Property | LocationId Property | Organization
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.ASNumber Property

Gets the city name for the current location.

[Visual Basic]
Public ReadOnly Property CityName As String

[C#]
public string CityName {get;}

Property Value
A string which identifies the city in which the external IP address is located.

Remarks
This property returns a string which identifies the city in which the external IP address is located. These
names will always be in English, regardless of the current system locale. If the city name cannot be
determined, this property may return an empty string.

See Also
WebLocation Class | SocketTools Namespace | CountryName Property | PostalCode Property |
RegionName Property | Subdivision Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.CityName Property

Gets the GPS coordinates for the current location.

[Visual Basic]
Public ReadOnly Property Coordinates As String

[C#]
public string Coordinates {get;}

Property Value
A string which specifies the location coordinates.

Remarks
This property returns a string which specifies the location expressed using the Universal Transverse
Mercator (UTM) coordinate system with the WGS-84 ellipsoid. UTM coordinates are commonly used with
the Global Positioning System (GPS) and are comprised of three parts: the zone, the easting (the
eastward-measured distance or x-coordinate) and the northing (the northward-measured distance or y-
coordinate). An example of a string value returned by this property would be "14S 702089E 3646476N".

See Also
WebLocation Class | SocketTools Namespace | Latitude Property | Longitude Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Coordinates Property

Gets the ISO code for the country at the current location.

[Visual Basic]
Public ReadOnly Property CountryAlpha As String

[C#]
public string CountryAlpha {get;}

Property Value
A string which contains the ISO 3166-1 alpha-2 code for the country.

Remarks
This property returns a string which contains the ISO 3166-1 alpha-2 code for the country the external IP
address is located in. This is a two-letter country code established by the International Organization for
Standardization (ISO).

The SubdivisionCode property can be used to determine the standard ISO standard code for a regional
subdivision (such as a state, province or territory). For example, if the IP address is located in Los Angeles,
California the CountryAlpha property would return "US" and the SubdivisionCode property would return
"CA".

See Also
WebLocation Class | SocketTools Namespace | CountryCode Property | CountryName Property |
RegionName Property | Subdivision Property | SubdivisionCode Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.CountryAlpha Property

Gets the numeric code for the country at the current location.

[Visual Basic]
Public ReadOnly Property CountryCode As Integer

[C#]
public int CountryCode {get;}

Property Value
An integer value which identifies the country where the external IP address is located.

Remarks
This property returns an integer value which identifies the country where the external IP address is located.
These codes can be up to three digits (usually displayed with leading zeros as necessary) and correspond
to the country codes assigned by the United Nations. For example, the code for the United States is 840. It
is important to note that these are not international dialing codes and should not be used with telephony
applications.

See Also
WebLocation Class | SocketTools Namespace | CountryAlpha Property | CountryName Property |
RegionName Property | Subdivision Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.CountryCode Property

Gets the name of the country for the current location.

[Visual Basic]
Public ReadOnly Property CountryName As String

[C#]
public string CountryName {get;}

Property Value
A string which contains the full name of the country.

Remarks
This property returns a string which contains the full name of the country in which the external IP address
is located. These names will always be in English, regardless of the current system locale.

See Also
WebLocation Class | SocketTools Namespace | CountryAlpha Property | CountryCode Property |
RegionName Property | Subdivision Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.CountryName Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
WebLocation.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.ErrorEventArgs.Description Property

Gets the external IP address for the local system.

[Visual Basic]
Public ReadOnly Property IPAddress As String

[C#]
public string IPAddress {get;}

Property Value
a string which specifies the external IP address for the local system.

Remarks
This property returns a string which specifies the external IP address for the local system. If the system has
been assigned multiple IP addresses, it reflects the address of the interface that was used to establish a
connection with the SocketTools server. If the connection is made through a Virtual Private Network (VPN)
it will use that assigned IP address. If a connection is made through a proxy server, the IP address may be
address of the proxy rather than the local host, depending on how the connection is made.

This property cannot be assigned a value to query the location of different IP addresses. If the external IP
address of the local system cannot be determined, this property will return an empty string.

See Also
WebLocation Class | SocketTools Namespace | ASNumber Property | LocationId Property | Organization
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.IPAddress Property

Determine if the class instance has been initialized.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
A boolean value which specifies if the class instance has been initialized.

Remarks
This property is used to determine if the current instance of the class has been initialized properly.
Normally this is done by calling the Initialize method after the class has been instantiated. If this property
returns false, the application must call the Initialize method with a valid runtime license key before
performing any other operation.

The most common reason that the class instance may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also indicate a
problem with the system configuration or user access rights, such as not being able to load the required
networking libraries or not being able to access the system registry

See Also
WebLocation Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.IsInitialized Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public WebLocation.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.LastErrorString Property

Gets the number of seconds since the last location update.

[Visual Basic]
Public ReadOnly Property LastUpdate As Integer

[C#]
public int LastUpdate {get;}

Property Value
An integer value which specifies the number of seconds since the last location query was performed.

Remarks
This property returns an integer value which specifies the number of seconds since the last location query
was performed. A return value of zero indicates that the current location has not been updated.

See Also
WebLocation Class | SocketTools Namespace | Reset Method | Update Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.LastUpdate Property

Gets the latitude for the current location.

[Visual Basic]
Public ReadOnly Property Latitude As Double

[C#]
public double Latitude {get;}

Property Value
A numeric value which specifies the latitude of the current location in decimal format

Remarks
This property returns a value which specifies the latitude of the current location in decimal format. A
positive value indicates a location that is north of the equator, while a negative value is a location that is
south of the equator.

See Also
WebLocation Class | SocketTools Namespace | Coordinates Property | Longitude Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Latitude Property

Gets the local time adjusted for the location's time zone.

[Visual Basic]
Public ReadOnly Property LocalTime As Date

[C#]
public System.DateTime LocalTime {get;}

Property Value
A DateTime value which contains the date and time at the current location.

Remarks
This property returns the current date and time at the location, adjusted for its time zone and whether or
not it's in daylight savings time.

If the current location cannot be determined, this property will return DateTime.MinValue.

See Also
WebLocation Class | SocketTools Namespace | Timezone Property | TzOffset Property | TzShortName
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.LocalTime Property

Gets a unique identifier for the current location.

[Visual Basic]
Public ReadOnly Property LocationId As String

[C#]
public string LocationId {get;}

Property Value
A string of hexadecimal characters which uniquely identifies the location for this computer system

Remarks
This property returns a string of hexadecimal characters which uniquely identifies the location for this
computer system. This value is used internally by the location service, and may also be used by the
application for its own purposes. If this value changes in subsequent queries, it indicates the external IP
address for the local system has changed.

See Also
WebLocation Class | SocketTools Namespace | ASNumber Property | IPAddress Property | Organization
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.LocationId Property

Gets the longitude for the current location

[Visual Basic]
Public ReadOnly Property Longitude As Double

[C#]
public double Longitude {get;}

Property Value
A numeric value which specifies the longitude of the current location in decimal format

Remarks
This property returns a value which specifies the longitude of the current location in decimal format. A
positive value indicates a location that is east of the prime meridian, while a negative value is a location
that is west of the prime meridian.

See Also
WebLocation Class | SocketTools Namespace | Coordinates Property | Latitude Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Longitude Property

Gets the name of the organization that owns the network.

[Visual Basic]
Public ReadOnly Property Organization As String

[C#]
public string Organization {get;}

Property Value
A string which identifies the organization associated with the local system's external IP address.

Remarks
This property returns a string which identifies the organization associated with the local system's external
IP address. For residential end-users this is typically the name of their Internet Service provider, however it
may also identify a private company such as Microsoft, Google or Amazon. Because of the nature of how
this information is updated, the organization names can change over time due to acquisitions or changes
of ownership. If the owner of the network cannot be determined, this property may return an empty
string.

See Also
WebLocation Class | SocketTools Namespace | ASNumber Property | IPAddress Property | LocationId
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Organization Property

Gets the postal code for the current location.

[Visual Basic]
Public ReadOnly Property PostalCode As String

[C#]
public string PostalCode {get;}

Property Value
A string which specifies the postal code for the current location.

Remarks
This property returns a string which contains the postal code associated with the area where the IP
address is located. In the United States, this is a 5-digit numeric code. In Canada, this will contain the
forward sortation area (the first three characters of the six character postal code). Local delivery portions
of a postal code (such as the ZIP+4 code in the United States, or the local delivery unit in Canada) are not
included.

This information will be most accurate within the geographic region of North America. Postal codes are
locale specific, and this property may return an empty string if the postal code for the location cannot be
determined.

See Also
WebLocation Class | SocketTools Namespace | CityName Property | CountryName Property | RegionName
Property | Subdivision Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.PostalCode Property

Gets the numeric region code for the current location.

[Visual Basic]
Public ReadOnly Property RegionCode As Integer

[C#]
public int RegionCode {get;}

Property Value
An integer value which identifies the geographical region in which the external IP address is located.

Remarks
This property returns an integer value which identifies the geographical region in which the external IP
address is located. This value corresponds to the name returned by the RegionName property. The
numeric values use the UN M49 standard established by the United Nations Statistics Division.

See Also
WebLocation Class | SocketTools Namespace | CityName Property | CountryName Property | RegionName
Property | Subdivision Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.RegionCode Property

Gets the region name for the current location

[Visual Basic]
Public ReadOnly Property RegionName As String

[C#]
public string RegionName {get;}

Property Value
A string which identifies the region in which the external IP address is located.

Remarks
This property returns a string which identifies the region in which the external IP address is located. This
refers to a broad geographical area, such as "North America" or "Southeast Asia" and uses the
conventions for supranational regions as defined by UN M49 codes. These names will always be in English,
regardless of the current system locale.

See Also
WebLocation Class | SocketTools Namespace | CityName Property | CountryName Property | RegionCode
Property | Subdivision Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.RegionName Property

Gets the subdivision name for the current location.

[Visual Basic]
Public ReadOnly Property Subdivision As String

[C#]
public string Subdivision {get;}

Property Value
A string which identifies the geopolitical subdivision within a country where the external IP address is
located.

Remarks
This property returns a string which identifies the geopolitical subdivision within a country where the
external IP address is located. In the United States, this will contain the full name of the state or
commonwealth. In Canada, this will contain the name of the province or territory. These names will always
be in English, regardless of the current system locale.

If a subdivision name does not exist for the location, this property will return an empty string.

The SubdivisionCode property will return a standardized abbreviation for the area. For example, in the
United States it would return the two-character code for the state.

See Also
WebLocation Class | SocketTools Namespace | CityName Property | CountryName Property | RegionName
Property | SubdivisionCode Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Subdivision Property

Gets the alphanumeric code for the current subdivision.

[Visual Basic]
Public ReadOnly Property SubdivisionCode As String

[C#]
public string SubdivisionCode {get;}

Property Value
A string which is either a two- or three-letter code which identifies a geopolitical subdivision within the
country.

Remarks
This property returns a string string which is either a two- or three-letter code which identifies a
geopolitical subdivision within the country where the external IP address is located. These codes are
defined by the ISO 3166-2 standard. For example, the code for the state of California in the United States
is "CA".

For international specificity, these subdivision codes are often combined with the value of the ISO alpha-2
code returned by the CountryAlpha property. For example, to identify the state of California, you could
combine with the alpha-2 code for the United States, creating "US-CA" as an identifier.

If a subdivision code does not exist for the location, this property will return an empty string.

See Also
WebLocation Class | SocketTools Namespace | CityName Property | CountryName Property | RegionName
Property | Subdivision Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.SubdivisionCode Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
WebLocation Class | SocketTools Namespace | LastError Property | LastErrorString Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.ThrowError Property

Gets and sets the number of seconds to wait until a location query fails.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting this property specifies the number of seconds until a request for location information fails and
returns an error. This includes the amount of time spent attempting to connect to the location service. If a
connection cannot be established within the given time period, the operation will fail.

See Also
WebLocation Class | SocketTools Namespace | Update Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Timeout Property

Gets the time zone for the current location.

[Visual Basic]
Public ReadOnly Property Timezone As String

[C#]
public string Timezone {get;}

Property Value
A string which specifies the full time zone name in which the external IP address is located.

Remarks
This property returns a string which specifies the full time zone name in which the external IP address is
located. These names are defined by the Internet Assigned Numbers Authority (IANA) and have values like
"America/Los_Angeles" and "Europe/London". These time zones may also be defined as "Etc/GMT+10" if
there is not a regional name associated with the time zone.

The TzShortName property will return an abbreviated time zone name, such as "PST".

See Also
WebLocation Class | SocketTools Namespace | LocalTime Property | TzOffset Property | TzShortName
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Timezone Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
component is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public WebLocation.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.TraceFlags Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebLocation.TraceOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebLocation.TraceOptions.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebLocation.TraceOptions.html

Gets the time zone offset in seconds for the current location.

[Visual Basic]
Public ReadOnly Property TzOffset As Integer

[C#]
public int TzOffset {get;}

Property Value
An integer which specifies the number of seconds east or west of the prime meridian (UTC).

Remarks
This property returns an integer which specifies the number of seconds east or west of the prime meridian
(UTC). A positive value indicates a time zone that is east of the prime meridian and a negative value
indicates a time zone that is west of the prime meridian. For example, the Pacific time zone in the western
United States during daylight savings time would have a value of -25200 (7 hours).

See Also
WebLocation Class | SocketTools Namespace | LocalTime Property | Timezone Property | TzShortName
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.TzOffset Property

Gets an abbreviated time zone name for the current location.

[Visual Basic]
Public ReadOnly Property TzShortName As String

[C#]
public string TzShortName {get;}

Property Value
A string which specifies the abbreviated time zone code for the current location.

Remarks
This property returns a string which specifies the abbreviated time zone code in which the external IP
address is located. If daylight savings time is used within the time zone, then this value can change based
on whether or not daylight savings is in effect. For example, if the IP address is located within the Pacific
time zone in the United States, this will return "PDT" when daylight savings is in effect and "PST" when it is
not.

If the time zone code cannot be determined for this location, a value such as "UTC+9" may be returned,
indicating the number of hours ahead or behind UTC.

See Also
WebLocation Class | SocketTools Namespace | LocalTime Property | Timezone Property | TzOffset
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.TzShortName Property

Gets a value which returns the current version of the WebLocation class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the WebLocation
class library. This value can be used by an application for validation and debugging purposes.

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Version Property

The methods of the WebLocation class are listed below. For a complete list of WebLocation class
members, see the WebLocation Members topic.

Public Instance Methods

Dispose Overloaded. Releases all resources used by
WebLocation.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
WebLocation class.

Reset Reset the internal state of the object, resetting all
properties to their default values.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Update Update the current location information for the
local system.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the WebLocation class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebLocation.Finalize.html

Releases all resources used by WebLocation.

Overload List
Releases all resources used by WebLocation.

public void Dispose();

Releases the unmanaged resources allocated by the WebLocation class and optionally releases the
managed resources.

protected virtual void Dispose(bool);

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Dispose Method

Releases all resources used by WebLocation.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
WebLocation Class | SocketTools Namespace | WebLocation.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Dispose Method ()

Releases the unmanaged resources allocated by the WebLocation class and optionally releases the
managed resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the WebLocation class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
WebLocation Class | SocketTools Namespace | WebLocation.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Dispose Method (Boolean)

Initialize an instance of the WebLocation class.

Overload List
Initialize an instance of the WebLocation class.

public bool Initialize();

Initialize an instance of the WebLocation class.

public bool Initialize(string);

See Also
WebLocation Class | SocketTools Namespace | Uninitialize Method | RuntimeLicenseAttribute Class

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Initialize Method

Initialize an instance of the WebLocation class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the WebLocation class, loading
the networking library and allocating resources for the current thread. This must be the first method that is
called before you attempt invoke other methods. Failure to initialize the class may result in subsequent
errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of the
number of times that it has been called by any thread in the current process. The Uninitialize method
decrements this counter, and when the usage count drops to zero, the class will automatically unload the
system libraries that it has dynamically loaded and will destroy the process heap that was allocated when
the first instance of the class was created.

See Also
WebLocation Class | SocketTools Namespace | WebLocation.Initialize Overload List | Uninitialize Method |
RuntimeLicenseAttribute Class

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Initialize Method ()

Initialize an instance of the WebLocation class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the WebLocation class, loading
the networking library and allocating resources for the current thread. This must be the first method that is
called before you attempt invoke other methods. Failure to initialize the class may result in subsequent
errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of the
number of times that it has been called by any thread in the current process. The Uninitialize method
decrements this counter, and when the usage count drops to zero, the class will automatically unload the
system libraries that it has dynamically loaded and will destroy the process heap that was allocated when
the first instance of the class was created.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.WebLocation myLocation = new SocketTools.WebLocation();

if (txtMessage.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(myLocation.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim myLocation As New SocketTools.WebLocation

If myLocation.Initialize(strLicenseKey) = False Then
 MsgBox(myLocation.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
WebLocation Class | SocketTools Namespace | WebLocation.Initialize Overload List | Uninitialize Method |
RuntimeLicenseAttribute Class

WebLocation.Initialize Method (String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Reset Method

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method resets the internal state of the class instance and releases the system resources it
has allocated. This method is not typically used because any resources that have been allocated by an
instance of the class will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of the
number of times that it has been called by any thread in the current process. The Uninitialize method
decrements this counter, and when the usage count drops to zero, the class will automatically unload the
system libraries that it has dynamically loaded and will destroy the process heap that was allocated when
the first instance of the class was created.

See Also
WebLocation Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Uninitialize Method

Update the current location information for the local system.

[Visual Basic]
Public Function Update() As Boolean

[C#]
public bool Update();

Return Value
A boolean value which indicates if the location information was updated for the local system.

Remarks
This method causes the component to query the location service to obtain current information about the
physical location of the computer system based on its external IP address. The location data is cached and
additional queries are only performed if it detects the external IP address for the local system has
changed.

A return value of true means the current location was updated successfully. A return value of false
indicates that the current location could not be determined. The LastError property can be used to
identify the specific cause of the failure.

See Also
WebLocation Class | SocketTools Namespace | LastError Property | LastUpdate Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.Update Method

The events of the WebLocation class are listed below. For a complete list of WebLocation class
members, see the WebLocation Members topic.

Public Instance Events

OnError Occurs when an client operation fails.

See Also
WebLocation Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation Events

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type WebLocation.ErrorEventArgs containing data related to
this event. The following WebLocation.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
WebLocation Class | SocketTools Namespace | ErrorCode Enumeration | LastError Property |
LastErrorString Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see WebLocation.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.WebLocation.ErrorEventArgs

[Visual Basic]
Public Class WebLocation.ErrorEventArgs
 Inherits EventArgs

[C#]
public class WebLocation.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebLocation (in SocketTools.WebLocation.dll)

See Also
WebLocation.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.ErrorEventArgs Class

WebLocation.ErrorEventArgs overview

Public Instance Constructors

 WebLocation.ErrorEventArgs Constructor Initializes a new instance of the
WebLocation.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebLocation.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.ErrorEventArgs Members

Initializes a new instance of the WebLocation.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public WebLocation.ErrorEventArgs();

See Also
WebLocation.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.ErrorEventArgs Constructor

The properties of the WebLocation.ErrorEventArgs class are listed below. For a complete list of
WebLocation.ErrorEventArgs class members, see the WebLocation.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
WebLocation.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.ErrorEventArgs Properties

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public WebLocation.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
WebLocation.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.ErrorEventArgs.Error Property

Specifies the error codes returned by the WebLocation class.

[Visual Basic]
Public Enum WebLocation.ErrorCode

[C#]
public enum WebLocation.ErrorCode

Remarks
The WebLocation class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

WebLocation.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebLocation (in SocketTools.WebLocation.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub WebLocation.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void WebLocation.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebLocation (in SocketTools.WebLocation.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.OnErrorEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see WebLocation.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.WebLocation.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class WebLocation.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class WebLocation.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the WebLocation class.

Example

<Assembly: SocketTools.WebLocation.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.WebLocation.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebLocation (in SocketTools.WebLocation.dll)

See Also
WebLocation.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.RuntimeLicenseAttribute Class

WebLocation.RuntimeLicenseAttribute overview

Public Instance Constructors

 WebLocation.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebLocation.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public WebLocation.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the WebLocation class.

See Also
WebLocation.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.RuntimeLicenseAttribute Constructor

The properties of the WebLocation.RuntimeLicenseAttribute class are listed below. For a complete list
of WebLocation.RuntimeLicenseAttribute class members, see the
WebLocation.RuntimeLicenseAttribute Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
WebLocation.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
WebLocation.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocation.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see WebLocationException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.WebLocationException

[Visual Basic]
Public Class WebLocationException
 Inherits ApplicationException

[C#]
public class WebLocationException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A WebLocationException is thrown by the WebLocation class when an error occurs.

The default constructor for the WebLocationException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebLocation (in SocketTools.WebLocation.dll)

See Also
WebLocationException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocationException Class

WebLocationException overview

Public Instance Constructors

 WebLocationException Overloaded. Initializes a new instance of the
WebLocationException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

WebLocationException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebLocationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the WebLocationException class with the last network error code.

Overload List
Initializes a new instance of the WebLocationException class with the last network error code.

public WebLocationException();

Initializes a new instance of the WebLocationException class with a specified error number.

public WebLocationException(int);

Initializes a new instance of the WebLocationException class with a specified error message.

public WebLocationException(string);

Initializes a new instance of the WebLocationException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

public WebLocationException(string,Exception);

See Also
WebLocationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocationException Constructor

Initializes a new instance of the WebLocationException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public WebLocationException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the WebLocation.ErrorCode enumeration.

See Also
WebLocationException Class | SocketTools Namespace | WebLocationException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocationException Constructor ()

Initializes a new instance of the WebLocationException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public WebLocationException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
WebLocationException Class | SocketTools Namespace | WebLocationException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocationException Constructor (String)

Initializes a new instance of the WebLocationException class with a specified error message and a
reference to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public WebLocationException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
WebLocationException Class | SocketTools Namespace | WebLocationException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocationException Constructor (String, Exception)

Initializes a new instance of the WebLocationException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public WebLocationException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the WebLocation.ErrorCode enumeration.

See Also
WebLocationException Class | SocketTools Namespace | WebLocationException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocationException Constructor (Int32)

The properties of the WebLocationException class are listed below. For a complete list of
WebLocationException class members, see the WebLocationException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
WebLocationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocationException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public WebLocation.ErrorCode ErrorCode {get;}

Property Value
Returns a WebLocation.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the WebLocationException class sets the error code to the last network error
that occurred. For more information about the errors that may occur, refer to the WebLocation.ErrorCode
enumeration.

See Also
WebLocationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocationException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
WebLocationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocationException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. For network related errors, this value is the same as the values returned by the Windows
Sockets API. For more information about socket error codes, see the Windows Socket Version 2 API error
code documentation in MSDN.

See Also
WebLocationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocationException.Number Property

The methods of the WebLocationException class are listed below. For a complete list of
WebLocationException class members, see the WebLocationException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebLocationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocationException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
WebLocationException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebLocationException.ToString Method

Application storage and data management services.

For a list of all members of this type, see WebStorage Members.

System.Object
 SocketTools.WebStorage

[Visual Basic]
Public Class WebStorage
 Implements IDisposable

[C#]
public class WebStorage : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Example
The WebStorage class enables an application to securely store and manage data remotely.

This class uses SocketTools Web Services. It will only function if there is an active Internet connection and
the local system is capable of establishing a secure connection to the storage servers.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
WebStorage Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage Class

WebStorage overview

Public Static (Shared) Fields

webTimeout A constant value which specifies the default
timeout period.

Public Static (Shared) Methods

ErrorText Returns the description of an error code.

Public Instance Constructors

 WebStorage Constructor Initializes a new instance of the WebStorage class.

Public Instance Properties

AccountId Gets a value that specifies the storage account ID
associated with the development license.

AppId Gets and sets the application identifier associated
with the storage container.

Handle Gets a value that specifies the storage handle
allocated for the current session.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking storage operation.

IsConnected Gets a value which indicates if a connection to the
storage server has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsOpened Gets a value which indicates if a storage container
has been opened.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

ObjectAttributes Gets the attributes for the current object.

ObjectContent Gets the content type for the current object.

ObjectCreated Gets the date and time the current object was
created.

ObjectDigest Gets the SHA-256 digest value for the current
object.

ObjectId Gets the unique identifier for the current object.

ObjectLabel Gets the label for the current object.

ObjectLimit Gets the maximum number of objects that may be

WebStorage Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.webTimeout.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.ErrorText.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.IsOpened.html

created.

ObjectModified Gets the date and time the current object was last
modified.

ObjectSize Gets the size of the current object in bytes

StorageFree Gets the total number of bytes available to store
new objects.

StorageId Gets a unique identifier for the current storage
container.

StorageLimit Gets the maximum number of bytes of storage
available.

StorageObjects Gets the current number of objects stored for your
account.

StorageType Gets the current storage container type identifier.

StorageUsed Gets the current number of bytes of storage used
for your account.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

TransferBytes Gets a value which specifies the number of bytes
transferred to or from the server.

TransferRate Gets a value which specifies the data transfer rate
in bytes per second.

TransferTime Gets a value which specifies the number of
seconds elapsed during a data transfer.

Version Gets a value which returns the current version of
the WebStorage class library.

Public Instance Methods

Cancel Cancel the current storage operation.

Close Close the storage container.

CompareData Overloaded. Compare the data in a byte buffer
with a stored object.

CompareFile Compare the data in a file with a stored object.

Copy Overloaded. Copy the contents of a stored object

to another container.

Delete Delete a stored object from the container.

DeleteAll Delete all stored objects in the container.

Dispose Overloaded. Releases all resources used by
WebStorage.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

Exists Determine if a stored object exists in the container.

FindFirst Overloaded. Find the first stored object that
matches a label or content type.

FindNext Find the next stored object that matches a label or
content type.

GetData Overloaded. Download the data in a stored object
to a byte array buffer

GetFile Download the data in a stored object to a local
file.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
WebStorage class.

Move Move the contents of a stored object to another
container.

Open Overloaded. Open a storage container for the
specified application.

PutData Overloaded. Upload the data in a byte array buffer
to the storage container.

PutFile Overloaded. Upload a local file to the current
storage container.

RegisterId Register a new application identifier with the
storage service.

Rename Change the label of an existing storage object.

Reset Reset the internal state of the class instance,
resetting all properties to their default values.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

UnregisterId Unregister a previously registered application
identifier.

ValidateId Check an application identifier to ensure it is valid

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.Dispose_overload_1.html

and exists.

ValidateLabel Validate an object label to ensure it uses allowed
characters.

Public Instance Events

OnCancel Occurs when a storage operation is canceled.

OnDownload Occurs when a storage object has been
downloaded.

OnError Occurs when an storage operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnUpload Occurs when a storage object has been uploaded.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the WebStorage class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.Dispose_overload_2.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.Finalize.html

Initializes a new instance of the WebStorage class.

[Visual Basic]
Public Sub New()

[C#]
public WebStorage();

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage Constructor

The properties of the WebStorage class are listed below. For a complete list of WebStorage class
members, see the WebStorage Members topic.

Public Instance Properties

AccountId Gets a value that specifies the storage account ID
associated with the development license.

AppId Gets and sets the application identifier associated
with the storage container.

Handle Gets a value that specifies the storage handle
allocated for the current session.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking storage operation.

IsConnected Gets a value which indicates if a connection to the
storage server has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsOpened Gets a value which indicates if a storage container
has been opened.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

ObjectAttributes Gets the attributes for the current object.

ObjectContent Gets the content type for the current object.

ObjectCreated Gets the date and time the current object was
created.

ObjectDigest Gets the SHA-256 digest value for the current
object.

ObjectId Gets the unique identifier for the current object.

ObjectLabel Gets the label for the current object.

ObjectLimit Gets the maximum number of objects that may be
created.

ObjectModified Gets the date and time the current object was last
modified.

ObjectSize Gets the size of the current object in bytes

StorageFree Gets the total number of bytes available to store
new objects.

StorageId Gets a unique identifier for the current storage
container.

WebStorage Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.IsOpened.html

StorageLimit Gets the maximum number of bytes of storage
available.

StorageObjects Gets the current number of objects stored for your
account.

StorageType Gets the current storage container type identifier.

StorageUsed Gets the current number of bytes of storage used
for your account.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

TransferBytes Gets a value which specifies the number of bytes
transferred to or from the server.

TransferRate Gets a value which specifies the data transfer rate
in bytes per second.

TransferTime Gets a value which specifies the number of
seconds elapsed during a data transfer.

Version Gets a value which returns the current version of
the WebStorage class library.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets a value that specifies the storage account ID associated with the development license.

[Visual Basic]
Public ReadOnly Property AccountId As String

[C#]
public string AccountId {get;}

Property Value
A string which contains the account ID.

Remarks
The account ID is a string that uniquely identifies the web services account that is associated with the
session. The account ID corresponds with your product serial number and runtime license key, but it is not
identical to either of those values.

If you are using an evaluation license, the account ID is temporary and only valid during the evaluation
period. After the evaluation period has expired, the account ID is revoked and objects stored using this ID
will be deleted. It is not recommended that you store critical application data using an evaluation license.

See Also
WebStorage Class | SocketTools Namespace | AppId Property | StorageId Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.AccountId Property

Gets and sets the application identifier associated with the storage container.

[Visual Basic]
Public Property AppId As String

[C#]
public string AppId {get; set;}

Property Value
A string which contains the application identifier.

Remarks
This property returns the current application ID. The application ID is a string that uniquely identifies the
application and can only contain letters, numbers, the period and the underscore character. The default
value for this property is SocketTools.Storage.Default.

You can register a unique identifier for your application using the RegisterId method

See Also
WebStorage Class | SocketTools Namespace | AccountId Property | StorageId Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.AppId Property

Gets a value that specifies the storage handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current storage session.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Handle Property

Gets a value which indicates if the current thread is performing a blocking storage operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing a storage operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution, this
property should be checked before performing a storage operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next storage request will not fail. An application
should always check the return value from a method and check the value of the LastError property if an
error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
WebStorage Class | SocketTools Namespace | IsConnected Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.IsBlocked Property

Gets a value which indicates if a connection to the storage server has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
This property will return false if the Open method has not been called to open a storage container, or if
the connection to the server has been terminated. A value of true indicates that the storage container has
been opened and there is a valid connection to the server.

The client does not maintain a continuous, persistent connection with the storage server. The connection
may be closed and reopened internally as needed. If the client session has been idle for a period of time,
this property can return false. If the LastError property returns errorNotConnected it means the client
session is valid, however it not currently connected to the storage server. The next call to store or retrieve
an object will the cause the client to reconnect automatically.

See Also
WebStorage Class | SocketTools Namespace | IsBlocked Property | LastError Property | Close Method |
Open Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.IsInitialized Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public WebStorage.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.LastErrorString Property

Gets the attributes for the current object.

[Visual Basic]
Public ReadOnly Property ObjectAttributes As Attributes

[C#]
public WebStorage.Attributes ObjectAttributes {get;}

Property Value
Returns an Attributes enumeration value which specifies one or more attribute flags for the current
storage object.

See Also
WebStorage Class | SocketTools Namespace | Exists Method | FindFirst Method | FindNext Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ObjectAttributes Property

Gets the content type for the current object.

[Visual Basic]
Public ReadOnly Property ObjectContent As String

[C#]
public string ObjectContent {get;}

Property Value
A string which specifies the MIME content type for the current storage object.

Remarks
This property returns a string which specifies the MIME content type for the current storage object. The
content type is typically determined by the object label and evaluating the contents of the object. It is also
possible for the application to explicitly specify the content type of the object when it is created.

The object content type will always be in the format type/subtype where the type specifies a common
media type (e.g.: text, audio, video, etc.) and subtype specifies the specific content. The most common
content type for text files is text/plain. If the content type is unknown, the default content type is
application/octet-stream.

Text objects may also optionally include the character encoding as part of the content type. For example,
if an object contains UTF-8 encoded text, the content type may be returned as text/plain; charset=utf-8. If
your application is parsing the content types, you must check if a character encoding was also included in
the value. Text objects that do not specify an encoding either contain ASCII or text which uses the system
code page. Unicode text will always be stored using UTF-8 encoding.

See Also
WebStorage Class | SocketTools Namespace | Exists Method | PutData Method | PutFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ObjectContent Property

Gets the date and time the current object was created.

[Visual Basic]
Public ReadOnly Property ObjectCreated As Date

[C#]
public System.DateTime ObjectCreated {get;}

Property Value
A DateTime value which contains the date and time when the current object was created.

Remarks
This property returns object creation date and time using Coordinated Universal Time (UTC) and is not
adjusted for the local timezone.

If there is no current object, this property will return a value of DateTime.MinValue.

See Also
WebStorage Class | SocketTools Namespace | ObjectModified Property | Exists Method | GetData Method
| GetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ObjectCreated Property

Gets the SHA-256 digest value for the current object.

[Visual Basic]
Public ReadOnly Property ObjectDigest As String

[C#]
public string ObjectDigest {get;}

Property Value
A string value which specifies the digest of the object contents, computed using an SHA-256 hash.

Remarks
This property returns a string value which specifies the digest of the object contents, computed using an
SHA-256 hash. The digest value is always represented as a string of hexadecimal numbers that is exactly
64 characters long. It is important to note that even a zero-length object will have a digest, which is the
standard SHA-256 NULL hash value.

See Also
WebStorage Class | SocketTools Namespace | ObjectContent Property | ObjectId Property | ObjectSize
Property | Exists Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ObjectDigest Property

Gets the unique identifier for the current object.

[Visual Basic]
Public ReadOnly Property ObjectId As String

[C#]
public string ObjectId {get;}

Property Value
A string value which uniquely identifies the current object.

Remarks
This property returns a unique identifier associated with the current object. Object IDs are guaranteed to
be unique for each storage object that is created by the application.

See Also
WebStorage Class | SocketTools Namespace | ObjectContent Property | ObjectLabel Property | ObjectSize
Property | Exists Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ObjectId Property

Gets the label for the current object.

[Visual Basic]
Public Property ObjectLabel As String

[C#]
public string ObjectLabel {get; set;}

Property Value
A string value which contains the label assigned to the object.

Remarks
This property returns a string which specifies the label assigned to the current object by the application.
Object labels are case-sensitive and must be unique for each object. An application uses labels to
reference an object with a human-recognizable name, rather than referencing them by their object ID.

Object labels are similar to Windows file names, except they are case-sensitive. The maximum length of a
label string is 511 characters. Leading and trailing whitespace (spaces, tabs, linebreaks, etc.) are ignored in
label names.

Illegal characters include ASCII and Unicode control characters 0 through 31, single quotes (39), double
quotes (34), less than symbol (60), greater than symbol (62), pipe (124), asterisk (42) and question mark
(63). It is not possible to embed null characters in the label name.

Labels can contain Unicode characters which are internally encoded as UTF-8.

See Also
WebStorage Class | SocketTools Namespace | ObjectContent Property | ObjectDigest Property | ObjectId
Property | ObjectSize Property | Exists Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ObjectLabel Property

Gets the maximum number of objects that may be created.

[Visual Basic]
Public ReadOnly Property ObjectLimit As Long

[C#]
public long ObjectLimit {get;}

Property Value
An integer value which specifies the maximum number of storage objects that may be created.

Remarks
This property returns an integer value which specifies the maximum number of storage objects that may
be created. In addition to the limit on the total amount of storage that may be used, there is a limit on the
total number of objects that may be created by all applications.

See Also
WebStorage Class | SocketTools Namespace | StorageFree Property | StorageLimit Property |
StorageObjects Property | StorageUsed Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ObjectLimit Property

Gets the date and time the current object was last modified.

[Visual Basic]
Public ReadOnly Property ObjectModified As Date

[C#]
public System.DateTime ObjectModified {get;}

Property Value
A DateTime value which contains the date and time when the current object was last modified.

Remarks
This property returns object creation date and time using Coordinated Universal Time (UTC) and is not
adjusted for the local timezone.

If there is no current object, this property will return a value of DateTime.MinValue.

See Also
WebStorage Class | SocketTools Namespace | ObjectCreated Property | Exists Method | GetData Method |
GetFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ObjectModified Property

Gets the size of the current object in bytes

[Visual Basic]
Public ReadOnly Property ObjectSize As Long

[C#]
public long ObjectSize {get;}

Property Value
An integer value that specifies the size of the current storage object in bytes.

Remarks
This property returns a value that specifies the size of the current storage object in bytes. If there is no
current object, this property will return a value of zero.

See Also
WebStorage Class | SocketTools Namespace | StorageFree Property | StorageLimit Property |
StorageObjects Property | StorageUsed Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ObjectSize Property

Gets the total number of bytes available to store new objects.

[Visual Basic]
Public ReadOnly Property StorageFree As Long

[C#]
public long StorageFree {get;}

Property Value
An integer value which specifies the number of bytes available for the storage of new objects.

Remarks
This property returns a value which specifies the number of bytes available for the storage of new objects.
This value reflects the total amount of available storage across all applications registered with the
development account. If this value is zero, your storage account has reached its storage limit.

If your storage quota has been exceeded, either because the total number of objects or the total bytes of
storage has reached their limit, your applications will be unable to create new objects. Your application
can continue to access existing objects, regardless of your current quota limits.

To free storage space, use the Delete method to delete individual storage objects that are no longer
needed by your application, or use the DeleteAll method to delete all objects in the current container.

See Also
WebStorage Class | SocketTools Namespace | StorageLimit Property | StorageUsed Property | Delete
Method | DeleteAll Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.StorageFree Property

Gets a unique identifier for the current storage container.

[Visual Basic]
Public ReadOnly Property StorageId As String

[C#]
public string StorageId {get;}

Property Value
A string value which identifies the current storage container.

Remarks
This property returns a string which identifies the current storage container opened with the Open
method. The storage ID is associated with your development license and is guaranteed to be a unique
value. If no storage container has been opened, this property will return an empty string.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.StorageId Property

Gets the maximum number of bytes of storage available.

[Visual Basic]
Public ReadOnly Property StorageLimit As Long

[C#]
public long StorageLimit {get;}

Property Value
An integer value which specifies the maximum number of bytes of data storage available.

Remarks
This property returns a value which specifies the maximum number of bytes of data storage available. This
limit applies to all applications registered with the development account. In addition to limits on the total
number of bytes that can be stored, there are also limits on the total number objects which may be
created, and the individual size of each object.

Storage quota limits are assigned for each SocketTools development account. Accounts that are created
with an evaluation license have much lower quota limits than a standard account and should be used for
testing purposes only. After the evaluation period has ended, all objects stored using the evaluation
license will be deleted.

This value does not represent limits on the storage used by a specific application. Quotas limits apply to all
applications that are registered with the development account, which is identified with the runtime license
key passed to the Initialize method.

If your storage quota has been exceeded, either because the total number of objects or the total bytes of
storage has reached their limit, your applications will be unable to create new objects. Your application
can continue to access existing objects, regardless of your current quota limits.

To free storage space, use the Delete method to delete individual storage objects that are no longer
needed by your application, or use the DeleteAll method to delete all objects in the current container.

See Also
WebStorage Class | SocketTools Namespace | ObjectLimit Property | StorageFree Property |
StorageObjects Property | StorageUsed Property | Delete Method | DeleteAll Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.StorageLimit Property

Gets the current number of objects stored for your account.

[Visual Basic]
Public ReadOnly Property StorageObjects As Long

[C#]
public long StorageObjects {get;}

Property Value
An integer value which specifies the number of storage objects allocated for the account.

Remarks
This property returns an integer value which specifies the number of storage objects allocated for the
account. This value may not exceed the total number of objects specified by the ObjectLimit property.

See Also
WebStorage Class | SocketTools Namespace | ObjectLimit Property | StorageFree Property | StorageUsed
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.StorageObjects Property

Gets the current storage container type identifier.

[Visual Basic]
Public ReadOnly Property StorageType As Container

[C#]
public WebStorage.Container StorageType {get;}

Property Value
A Container enumeration which identifies the current storage container type

Remarks
The storage type specifies the type of container that objects will be stored in. You can think of the storage
containers as special folders which store individual objects. In most cases, we recommend using
Container.storageGlobal which means that stored objects will be accessible to all users of your
application. However, you can limit access to the stored objects based on the local domain, local machine
ID or the current user SID.

If you specify anything other than global storage, objects can be orphaned if the system configuration
changes. For example, if Container.storageMachine is specified, the objects that are stored there can
only be accessed from that computer system. If the system is reconfigured (for example, the boot volume
formatted and Windows is reinstalled) the unique identifier for that system will change and the previous
objects that were stored by your application can no longer be accessed.

It is advisable is to store critical application data and configuration information using
Container.storageGlobal and use other non-global storage containers for configuration information that
is unique to that system and/or user which is not critical and can be easily recreated.

See Also
WebStorage Class | SocketTools Namespace | StorageId Property | Open Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.StorageType Property

Gets the current number of bytes of storage used for your account.

[Visual Basic]
Public ReadOnly Property StorageUsed As Long

[C#]
public long StorageUsed {get;}

Property Value
An integer value which specifies the total number of bytes of data allocated for all storage objects.

Remarks
This property returns a value which specifies the total number of bytes of data allocated for all storage
objects. This value may not exceed the total number of bytes of storage available, which is returned by the
StorageLimit property.

This value does not represent the storage used by a specific application. This property returns the amount
of storage used by all applications that are registered with the development account, which is identified
with the runtime license key passed to the Initialize method.

See Also
WebStorage Class | SocketTools Namespace | ObjectLimit Property | StorageFree Property | StorageLimit
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.StorageUsed Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a storage operation fails and returns
an error. For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public WebStorage.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.TraceFlags Property

Gets a value which specifies the number of bytes transferred to or from the server.

[Visual Basic]
Public ReadOnly Property TransferBytes As Long

[C#]
public long TransferBytes {get;}

Property Value
An integer value which specifies the number of bytes of data transferred to or from the server.

Remarks
The TransferBytes property returns the number of bytes that have been copied to or from the server. If
this property is read while a transfer is ongoing, the property returns the number of bytes that have been
copied up to that point. If read after a transfer has completed, the total number of bytes copied is
returned. This property value is reset with every data transfer.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.TransferBytes Property

Gets a value which specifies the data transfer rate in bytes per second.

[Visual Basic]
Public ReadOnly Property TransferRate As Integer

[C#]
public int TransferRate {get;}

Property Value
An integer value which specifies the transfer rate in bytes per second.

Remarks
The TransferRate property returns the rate at which the file data is being transferred, expressed in bytes
per second. If this property is read while a transfer is ongoing, it returns the current average transfer rate.

If this property is read after the transfer has completed, it returns the final transfer rate which is calculated
as the total number of bytes transferred divided by the number of seconds to complete the transfer.

This property value is reset with every data transfer.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.TransferRate Property

Gets a value which specifies the number of seconds elapsed during a data transfer.

[Visual Basic]
Public ReadOnly Property TransferTime As Integer

[C#]
public int TransferTime {get;}

Property Value
An integer value which specifies the transfer time in seconds.

Remarks
The TransferTime property returns the number of seconds that have elapsed since the data transfer
began. If the property is read while a transfer is ongoing, it returns the elapsed time. If the property is read
after the transfer is complete, it returns the total number of seconds it took to transfer the data.

This property value is reset with every data transfer.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.TransferTime Property

Gets a value which returns the current version of the WebStorage class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the WebStorage
class library. This value can be used by an application for validation and debugging purposes.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Version Property

The methods of the WebStorage class are listed below. For a complete list of WebStorage class
members, see the WebStorage Members topic.

Public Static (Shared) Methods

ErrorText Returns the description of an error code.

Public Instance Methods

Cancel Cancel the current storage operation.

Close Close the storage container.

CompareData Overloaded. Compare the data in a byte buffer
with a stored object.

CompareFile Compare the data in a file with a stored object.

Copy Overloaded. Copy the contents of a stored object
to another container.

Delete Delete a stored object from the container.

DeleteAll Delete all stored objects in the container.

Dispose Overloaded. Releases all resources used by
WebStorage.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

Exists Determine if a stored object exists in the container.

FindFirst Overloaded. Find the first stored object that
matches a label or content type.

FindNext Find the next stored object that matches a label or
content type.

GetData Overloaded. Download the data in a stored object
to a byte array buffer

GetFile Download the data in a stored object to a local
file.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
WebStorage class.

Move Move the contents of a stored object to another
container.

Open Overloaded. Open a storage container for the
specified application.

WebStorage Methods

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.ErrorText.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.Dispose_overload_1.html

PutData Overloaded. Upload the data in a byte array buffer
to the storage container.

PutFile Overloaded. Upload a local file to the current
storage container.

RegisterId Register a new application identifier with the
storage service.

Rename Change the label of an existing storage object.

Reset Reset the internal state of the class instance,
resetting all properties to their default values.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

UnregisterId Unregister a previously registered application
identifier.

ValidateId Check an application identifier to ensure it is valid
and exists.

ValidateLabel Validate an object label to ensure it uses allowed
characters.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the WebStorage class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.Dispose_overload_2.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WebStorage.Finalize.html

Cancel the current storage operation.

[Visual Basic]
Public Function Cancel() As Boolean

[C#]
public bool Cancel();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If no storage
container is currently open, or the current operation cannot be canceled, the return value will be false.

Remarks
When the Cancel method is called, the current storage operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel a data transfer and immediately issue a request for another storage object. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further method
calls.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Cancel Method

Close the storage container.

[Visual Basic]
Public Function Close() As Boolean

[C#]
public bool Close();

Return Value
This method returns a Boolean value. If the storage container is closed, the return value is true. If no
storage container is currently open, or the container cannot be closed, the return value will be false.

Remarks
The Close method should be called after all operations using the storage container have completed. The
access token granted to the application will be released and the memory allocated for the session cache
will be freed.

This method is automatically invoked when the object is disposed or the Reset method is called.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Close Method

Compare the data in a byte buffer with a stored object.

Overload List
Compare the data in a byte buffer with a stored object.

public bool CompareData(string,byte[],int);

Compare the data in a MemoryStream object with a stored object.

public bool CompareData(string,MemoryStream);

Compare the text in a string with a stored object.

public bool CompareData(string,string);

See Also
WebStorage Class | SocketTools Namespace | CompareFile Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.CompareData Method

Compare the data in a byte buffer with a stored object.

[Visual Basic]
Overloads Public Function CompareData(_
 ByVal labelName As String, _
 ByVal byteBuffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool CompareData(
 string labelName,
 byte[] byteBuffer,
 int length
);

Parameters
labelName

A string which specifies the label of the object that should be compared against the contents of the
byte array buffer.

byteBuffer
A byte array which contains the data that should be compared against the contents. of the object.

length
An integer value which specifies the number of bytes to compare with the contents of the stored
object. This value must match the size of the object exactly.

Return Value
This method returns a Boolean value. If the data matches the contents of the stored object exactly, it will
return true, otherwise it will return false.

Remarks
The CompareData method performs a binary comparison of the data in the specified byte array with the
contents of the storage object on the server. The amount of data in the buffer must match the size of the
stored object exactly, or this method will fail. Partial comparisons are not supported by this method.

If you need to compare the contents of a file with a stored object, use the CompareFile method.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.CompareData Overload List | CompareFile
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.CompareData Method (String, Byte[], Int32)

Compare the data in a MemoryStream object with a stored object.

[Visual Basic]
Overloads Public Function CompareData(_
 ByVal labelName As String, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool CompareData(
 string labelName,
 MemoryStream memStream
);

Parameters
labelName

A string which specifies the label of the object that should be compared against the contents of the
MemoryStream.

memStream
A MemoryStream object which contains the data that should be compared against the contents of
the stored object.

Return Value
This method returns a Boolean value. If the data matches the contents of the stored object exactly, it will
return true, otherwise it will return false.

Remarks
The CompareData method performs a binary comparison of the data in the MemoryStream object with
the contents of the storage object on the server. The amount of data in the MemoryStream must match
the size of the stored object exactly, or this method will fail. Partial comparisons are not supported by this
method.

If you need to compare the contents of a file with a stored object, use the CompareFile method.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.CompareData Overload List | CompareFile
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.CompareData Method (String, MemoryStream)

Compare the text in a string with a stored object.

[Visual Basic]
Overloads Public Function CompareData(_
 ByVal labelName As String, _
 ByVal textBuffer As String _
) As Boolean

[C#]
public bool CompareData(
 string labelName,
 string textBuffer
);

Parameters
labelName

A string which specifies the label of the object that should be compared against the contents of the
text buffer.

textBuffer
A string which contains the text that should be compared against the contents of the stored object.

Return Value
This method returns a Boolean value. If the data matches the contents of the stored object exactly, it will
return true, otherwise it will return false.

Remarks
The CompareData method performs a comparison of the text in the string buffer with the contents of the
storage object on the server. The amount of text in the string buffer must match the size of the stored
object exactly, or this method will fail. Partial comparisons are not supported by this method.

All text objects are stored using UTF-8 encoding and the contents of the textBuffer parameter will be
encoded as UTF-8 prior to being compared with the contents of the stored object. If you need to perform
a binary comparison of the data, use the version of this method that accepts a byte array or
MemoryStream object.

If you need to compare the contents of a file with a stored object, use the CompareFile method.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.CompareData Overload List | CompareFile
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.CompareData Method (String, String)

Compare the data in a file with a stored object.

[Visual Basic]
Public Function CompareFile(_
 ByVal labelName As String, _
 ByVal localFile As String _
) As Boolean

[C#]
public bool CompareFile(
 string labelName,
 string localFile
);

Parameters
labelName

A string which specifies the label of the object that should be compared against the contents of the
local file.

localFile
A string which specifies the name of the file to compare against the contents of the stored object. If no
path is specified in the file name, the current working directory will be used.

Return Value
This method returns a Boolean value. If the contents of the file matches the contents of the stored object
exactly, it will return true, otherwise it will return false.

Remarks
The CompareFile method performs a binary comparison of the data in the file with the contents of the
storage object on the server. The contents of the file must be identical to the contents of the stored object
or the method will fail.

If you need to compare the contents of a file with a string or byte array, use the CompareData method.

See Also
WebStorage Class | SocketTools Namespace | CompareData Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.CompareFile Method

Copy the contents of a stored object within the current container.

Overload List
Copy the contents of a stored object within the current container.

public bool Copy(string,string);

Copy the contents of a stored object to another container.

public bool Copy(string,string,Container);

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Copy Method

Copy the contents of a stored object within the current container.

[Visual Basic]
Overloads Public Function Copy(_
 ByVal oldLabel As String, _
 ByVal newLabel As String _
) As Boolean

[C#]
public bool Copy(
 string oldLabel,
 string newLabel
);

Parameters
oldLabel

A string which specifies the label of the object that should be copied.

newLabel
A string which specifies the new label for the copied object.

Return Value
This method returns a Boolean value. If the stored object was copied, it will return true, otherwise it will
return false.

Remarks
The Copy method is used to create a copy of an existing storage object. It may be used to duplicate an
object with a different label, or it may be used to copy the object to a new storage container type.

Copied objects are assigned their own unique ID and are not linked to one another. Any subsequent
changes made to the original object will not affect the copied object. Attempting to copy an object to
itself or another existing object will result in an error.

This method updates the current object. Various properties such as ObjectId and ObjectLabel will reflect
the values associated with the new, copied object and not the original object it was copied from.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.Copy Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Copy Method (String, String)

Copy the contents of a stored object to another container.

[Visual Basic]
Overloads Public Function Copy(_
 ByVal oldLabel As String, _
 ByVal newLabel As String, _
 ByVal storageType As Container _
) As Boolean

[C#]
public bool Copy(
 string oldLabel,
 string newLabel,
 Container storageType
);

Parameters
oldLabel

A string which specifies the label of the object that should be copied.

newLabel
A string which specifies the new label for the copied object.

storageType
A Container enumeration which specifies the storage container that the stored object should be
copied to.

Return Value
This method returns a Boolean value. If the stored object was copied to the container, it will return true,
otherwise it will return false.

Remarks
The Copy method is used to create a copy of an existing storage object. It may be used to duplicate an
object with a different label, or it may be used to copy the object to a new storage container type. For
example, it can copy an object originally created in the Container.storageUser container to a new object
stored in the Container.storageMachine container.

Copied objects are assigned their own unique ID and are not linked to one another. Any subsequent
changes made to the original object will not affect the copied object. Attempting to copy an object to
itself or another existing object will result in an error.

This method updates the current object. Various properties such as ObjectId and ObjectLabel will reflect
the values associated with the new, copied object and not the original object it was copied from.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.Copy Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Copy Method (String, String, Container)

Delete a stored object from the container.

[Visual Basic]
Public Function Delete(_
 ByVal labelName As String _
) As Boolean

[C#]
public bool Delete(
 string labelName
);

Parameters
labelName

A string which specifies the label of the object that should be deleted.

Return Value
This method returns a Boolean value. If the stored object was deleted, it will return true, otherwise it will
return false.

Remarks
The Delete method is used to delete a stored object from the container. This method permanently
deletes the storage object and its associated data from the server. Deleted objects cannot be recovered
by the application. To remove all objects stored in the container, use the DeleteAll method.

See Also
WebStorage Class | SocketTools Namespace | DeleteAll Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Delete Method

Delete all stored objects in the container.

[Visual Basic]
Public Function DeleteAll() As Boolean

[C#]
public bool DeleteAll();

Return Value
This method returns a Boolean value. If all stored objects in the container have been deleted, it will return
true, otherwise it will return false.

Remarks
The storage container contains information for each of the objects that have been stored by the
application. Each of these objects are associated with the application ID and the storage type that was
specified when calling the Open method. The DeleteAll method instructs the server to remove all objects
in the continer, resetting it back to its initial state.

Exercise caution when using this method. The operation is immediate and the objects that are stored in
the container are permanently deleted. They cannot be recovered by your application.

See Also
WebStorage Class | SocketTools Namespace | Delete Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.DeleteAll Method

Determine if a stored object exists in the container.

[Visual Basic]
Public Function Exists(_
 ByVal labelName As String _
) As Boolean

[C#]
public bool Exists(
 string labelName
);

Parameters
labelName

A string which specifies the label of the object.

Return Value
This method returns a Boolean value. If an object exists in the current container with the specified label, it
will return true, other, otherwise it will return false.

Remarks
The Exists method is used to check for the existence of a stored object in the current container. If the
object exists, various properties that return information about the current object, such as ObjectId and
ObjectSize will be updated to return the metadata associated with the object.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created. The object label cannot contain wildcard characters.

To obtain information about how much storage your applications are using and the total number of
stored objects, use the StorageUsed and StorageObjects properties.

If you wish to enumerate all of the stored objects within the container, use the FindFirst and FindNext
methods.

See Also
WebStorage Class | SocketTools Namespace | ObjectId Property | ObjectModified Property |
StorageObjects Property | FindFirst Method | FindNext Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Exists Method

Find the first stored object in the storage container.

Overload List
Find the first stored object in the storage container.

public bool FindFirst();

Find the first stored object that matches a label.

public bool FindFirst(string);

Find the first stored object that matches a label or content type.

public bool FindFirst(string,string);

See Also
WebStorage Class | SocketTools Namespace | Exists Method | FindNext Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.FindFirst Method

Find the first stored object in the storage container.

[Visual Basic]
Overloads Public Function FindFirst() As Boolean

[C#]
public bool FindFirst();

Return Value
This method returns a Boolean value. If a storage obgject is found in the container, this method will return
true, otherwise it will return false.

Remarks
The FindFirst method returns information about the first object in the current storage container. It is used
in conjunction with the FindNext method to enumerate all of the objects in the container.

If an object exists, various properties that return information about the current object, such as ObjectId
and ObjectSize will be updated to return the metadata associated with the object.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.FindFirst Overload List | Exists Method |
FindNext Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.FindFirst Method ()

Find the first stored object that matches a label.

[Visual Basic]
Overloads Public Function FindFirst(_
 ByVal matchLabel As String _
) As Boolean

[C#]
public bool FindFirst(
 string matchLabel
);

Parameters
matchLabel

A string which specifies the value to match against the object labels in the container. The string may
contain wildcard characters similar to those use with the Windows filesystem. A "?" character matches
any single character, and "*" matches any number of characters in the label. If this parameter is an
empty string, all objects in the container will be matched.

Return Value
This method returns a Boolean value. If a matching object label is found in the current storage container,
this method will return true, otherwise it will return false.

Remarks
The FindFirst method returns information about the first object that matches a given label. It is used in
conjunction with the FindNext method to enumerate all of the matching objects in the storage container.

If a matching object exists, various properties that return information about the current object, such as
ObjectId and ObjectSize will be updated to return the metadata associated with the object.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.FindFirst Overload List | Exists Method |
FindNext Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.FindFirst Method (String)

Find the first stored object that matches a label or content type.

[Visual Basic]
Overloads Public Function FindFirst(_
 ByVal matchLabel As String, _
 ByVal contentType As String _
) As Boolean

[C#]
public bool FindFirst(
 string matchLabel,
 string contentType
);

Parameters
matchLabel

A string which specifies the value to match against the object labels in the container. The string may
contain wildcard characters similar to those use with the Windows filesystem. A "?" character matches
any single character, and "*" matches any number of characters in the label. If this parameter is an
empty string, all objects in the container will be matched.

contentType
A string which specifies the content type of the objects to be enumerated. If this parameter is an
empty string, the content type is ignored and all matching objects are returned. If a content type is
specified, it must be a valid MIME media content type designated using the standard type/subtype
nomenclature.

Return Value
This method returns a Boolean value. If a matching object label or content type is found in the current
storage container, this method will return true, otherwise it will return false.

Remarks
The FindFirst method returns information about the first object that matches a given label, content type
or both. It is used in conjunction with the FindNext method to enumerate all of the matching objects in
the storage container.

If a matching object exists, various properties that return information about the current object, such as
ObjectId and ObjectSize will be updated to return the metadata associated with the object.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.FindFirst Overload List | Exists Method |
FindNext Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.FindFirst Method (String, String)

Find the next stored object that matches a label or content type.

[Visual Basic]
Public Function FindNext() As Boolean

[C#]
public bool FindNext();

Return Value
This method returns a Boolean value. If the next matching object label or content type is found, this
method will return true, otherwise it will return false.

Remarks
The FindNext method returns information about the next object that matches a given label, content type
or both. This method may only be called after the FindFirst method is called, otherwise it will fail.

If a matching object exists, various properties that return information about the current object, such as
ObjectId and ObjectSize will be updated to return the metadata associated with the object.

See Also
WebStorage Class | SocketTools Namespace | Exists Method | FindFirst Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.FindNext Method

Download the data in a stored object to a byte array buffer

Overload List
Download the data in a stored object to a byte array buffer

public bool GetData(string,byte[],ref int);

Download the data in a stored object to a byte array buffer

public bool GetData(string,ref byte[]);

Download the data in a stored object to a MemoryStream.

public bool GetData(string,MemoryStream);

Download the data in a stored object to a MemoryStream.

public bool GetData(string,ref string);

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.GetData Method

Download the data in a stored object to a byte array buffer

[Visual Basic]
Overloads Public Function GetData(_
 ByVal labelName As String, _
 ByVal byteBuffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool GetData(
 string labelName,
 byte[] byteBuffer,
 ref int length
);

Parameters
labelName

A string which specifies the label of the object that should be retrieved from the server.

byteBuffer
A byte array that will contain the object data when the method returns.

length
An integer variable passed by reference that will contain the number of bytes of data copied into the
buffer. If the variable is initialized to a non-zero value prior to calling this method, this specifies the
maximum number of bytes of data that may be copied into the buffer.

Return Value
This method returns a Boolean value. If the object exists and could be retrieved from the server, this
method will return true, otherwise it will return false.

Remarks
The GetData method transfers data from a stored object to the specified buffer. This method will cause
the current thread to block until the data transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

When this method returns, various properties that contain information about the current object, such as
ObjectId and ObjectSize, will be updated to return the metadata associated with the object which was
downloaded.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.GetData Method (String, Byte[], Int32)

Download the data in a stored object to a byte array buffer

[Visual Basic]
Overloads Public Function GetData(_
 ByVal labelName As String, _
 ByRef byteBuffer As Byte() _
) As Boolean

[C#]
public bool GetData(
 string labelName,
 ref byte[] byteBuffer
);

Parameters
labelName

A string which specifies the label of the object that should be retrieved from the server.

byteBuffer
A byte array variable passed by reference that will contain the object data when the method returns.

Return Value
This method returns a Boolean value. If the object exists and could be retrieved from the server, this
method will return true, otherwise it will return false.

Remarks
The GetData method transfers data from a stored object to the specified buffer. This method will cause
the current thread to block until the data transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

When this method returns, various properties that contain information about the current object, such as
ObjectId and ObjectSize, will be updated to return the metadata associated with the object which was
downloaded.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.GetData Method (String, Byte[])

Download the data in a stored object to a MemoryStream.

[Visual Basic]
Overloads Public Function GetData(_
 ByVal labelName As String, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool GetData(
 string labelName,
 MemoryStream memStream
);

Parameters
labelName

A string which specifies the label of the object that should be retrieved from the server.

memStream
A System.IO.MemoryStream object that will contain the object data when the method returns. This
stream must be open and writable.

Return Value
This method returns a Boolean value. If the object exists and could be retrieved from the server, this
method will return true, otherwise it will return false.

Remarks
The GetData method transfers data from a stored object to the specified buffer. This method will cause
the current thread to block until the data transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

When this method returns, various properties that contain information about the current object, such as
ObjectId and ObjectSize, will be updated to return the metadata associated with the object which was
downloaded.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.GetData Method (String, MemoryStream)

Download the data in a stored object to a MemoryStream.

[Visual Basic]
Overloads Public Function GetData(_
 ByVal labelName As String, _
 ByRef textBuffer As String _
) As Boolean

[C#]
public bool GetData(
 string labelName,
 ref string textBuffer
);

Parameters
labelName

A string which specifies the label of the object that should be retrieved from the server.

textBuffer
A string variable passed by reference which will contain the the contents of the stored object when the
method returns.

Return Value
This method returns a Boolean value. If the object exists and could be retrieved from the server, this
method will return true, otherwise it will return false.

Remarks
The GetData method transfers data from a stored object to the specified string. This method will cause
the current thread to block until the data transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

This version of the method should only be used with objects which only contain text. It should never be
used to retrieve the contents of a stored object which contains binary data.

When this method returns, various properties that contain information about the current object, such as
ObjectId and ObjectSize, will be updated to return the metadata associated with the object which was
downloaded.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.GetData Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.GetData Method (String, String)

Download the data in a stored object to a local file.

[Visual Basic]
Public Function GetFile(_
 ByVal localFile As String, _
 ByVal labelName As String _
) As Boolean

[C#]
public bool GetFile(
 string localFile,
 string labelName
);

Parameters
localFile

A string which specifies the name of the local file that will be created or overwritten with the contents
of the storage object. If a path is not specified, the file will be created in the current working directory.

labelName
A string which specifies specifies the label of the object that should be retrieved from the server.

Return Value
This method returns a Boolean value. If the object exists and could be retrieved from the server, this
method will return true, otherwise it will return false.

Remarks
The GetFile method downloads data from a stored object to a local file. This method will cause the
current thread to block until the data transfer completes, a timeout occurs or the transfer is canceled.
During the transfer, the OnProgress event will fire periodically, enabling the application to update any
user interface objects such as a progress bar.

When this method returns, various properties that contain information about the current object, such as
ObjectId and ObjectSize, will be updated to return the metadata associated with the object which was
downloaded.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.GetFile Method

Initialize an instance of the WebStorage class.

Overload List
Initialize an instance of the WebStorage class.

public bool Initialize();

Initialize an instance of the WebStorage class.

public bool Initialize(string);

See Also
WebStorage Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Initialize Method

Initialize an instance of the WebStorage class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the WebStorage class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Initialize Method ()

Initialize an instance of the WebStorage class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the WebStorage class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the WebStorage class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.WebStorage webClient = new SocketTools.WebStorage();

if (webClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(webClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim webClient As New SocketTools.WebStorage

If webClient.Initialize(strLicenseKey) = False Then
 MsgBox(httpClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
WebStorage Class | SocketTools Namespace | WebStorage.Initialize Overload List |
RuntimeLicenseAttribute Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Initialize Method (String)

Move the contents of a stored object to another container.

[Visual Basic]
Public Function Move(_
 ByVal oldLabel As String, _
 ByVal newLabel As String, _
 ByVal storageType As Container _
) As Boolean

[C#]
public bool Move(
 string oldLabel,
 string newLabel,
 Container storageType
);

Parameters
oldLabel

A string which specifies the label of the object that should be moved.

newLabel
A string which specifies the new label for the object being moved.

storageType
A Container enumeration which specifies the storage container that the stored object should be
moved to.

Return Value
This method returns a Boolean value. If the stored object was moved to the container, it will return true,
otherwise it will return false.

Remarks
The Move method is used to move an existing storage object to a new container. For example, it can
move an object originally created in the Container.storageUser container to the
Container.storageMachine container. Using this method to move an object within the same container is
effectively the same as calling the Rename method.

This method updates the current object. Various properties such as ObjectId and ObjectLabel will reflect
the values associated with the object which has been moved.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Move Method

Open the global storage container for the current application.

Overload List
Open the global storage container for the current application.

public bool Open();

Open a storage container for the current application.

public bool Open(Container);

Open the global storage container for the specified application.

public bool Open(string);

Open a storage container for the specified application.

public bool Open(string,Container);

Open a storage container for the specified application.

public bool Open(string,Container,int);

See Also
WebStorage Class | SocketTools Namespace | Close Method | Container Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Open Method

Open the global storage container for the current application.

[Visual Basic]
Overloads Public Function Open() As Boolean

[C#]
public bool Open();

Return Value
This method returns a Boolean value. If the container was opened, it will return true, otherwise it will
return false.

Remarks
The Open method opens the global storage container and requests an access token for the application.
This method that must be called prior to accessing any stored objects.

It is advisable is to store critical application data and configuration information in the global storage
container and use other non-global storage containers for configuration information that is unique to that
system and/or user which is not critical and can be easily recreated.

If a storage container was opened prior to calling this method, the current container will be closed and the
new container opened.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.Open Overload List | Close Method | Container
Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Open Method ()

Open a storage container for the current application.

[Visual Basic]
Overloads Public Function Open(_
 ByVal storageType As Container _
) As Boolean

[C#]
public bool Open(
 Container storageType
);

Parameters
storageType

A Container enumeration which specifies the storage container.

Return Value
This method returns a Boolean value. If the container was opened, it will return true, otherwise it will
return false.

Remarks
The Open method opens the specified storage container using the current application ID and requests an
access token for the application. This method that must be called prior to accessing any stored objects.

The storageType parameter specifies the type of container that objects will be stored in. In most cases, we
recommend using Container.storageGlobal which means that stored objects will be accessible to all
users of your application. However, you can limit access to the stored objects based on the local domain,
local machine ID or the current user SID.

If you specify anything other than global storage, objects can be orphaned if the system configuration
changes. For example, if Container.storageMachine is specified, the objects that are stored there can
only be accessed from that computer system. If the system is reconfigured (for example, the boot volume
formatted and Windows is reinstalled) the unique identifier for that system will change and the previous
objects that were stored by your application wil no longer be accessible.

It is advisable is to store critical application data and configuration information in the
Container.storageGlobal container and use other non-global storage containers for configuration
information that is unique to that system and/or user which is not critical and can be easily recreated.

If a storage container was opened prior to calling this method, the current container will be closed and the
new container opened.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.Open Overload List | Close Method | Container
Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Open Method (Container)

Open the global storage container for the specified application.

[Visual Basic]
Overloads Public Function Open(_
 ByVal appId As String _
) As Boolean

[C#]
public bool Open(
 string appId
);

Parameters
appId

A string which specifies the application ID for the storage container. The application ID is a string that
uniquely identifies the application and can only contain letters, numbers, the period and the
underscore character. will be used.

Return Value
This method returns a Boolean value. If the container was opened, it will return true, otherwise it will
return false.

Remarks
The Open method opens the specified storage container and requests an access token for the
application. This method that must be called prior to accessing any stored objects.

The application ID is a string that uniquely identifies the application requesting the access and must have
been previously registered with the server by calling the RegisterId method. If the appId parameter is an
empty string, the a default internal ID will be used which is allocated for each storage account. You can
use this default ID if you wish to share data between all of the applications you create.

The storageType parameter specifies the type of container that objects will be stored in. In most cases, we
recommend using Container.storageGlobal which means that stored objects will be accessible to all
users of your application. However, you can limit access to the stored objects based on the local domain,
local machine ID or the current user SID.

If you specify anything other than global storage, objects can be orphaned if the system configuration
changes. For example, if Container.storageMachine is specified, the objects that are stored there can
only be accessed from that computer system. If the system is reconfigured (for example, the boot volume
formatted and Windows is reinstalled) the unique identifier for that system will change and the previous
objects that were stored by your application wil no longer be accessible.

It is advisable is to store critical application data and configuration information in the
Container.storageGlobal container and use other non-global storage containers for configuration
information that is unique to that system and/or user which is not critical and can be easily recreated.

If a storage container was opened prior to calling this method, the current container will be closed and the
new container opened.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.Open Overload List | Close Method | Container
Enumeration

WebStorage.Open Method (String)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Open a storage container for the specified application.

[Visual Basic]
Overloads Public Function Open(_
 ByVal appId As String, _
 ByVal storageType As Container _
) As Boolean

[C#]
public bool Open(
 string appId,
 Container storageType
);

Parameters
appId

A string which specifies the application ID for the storage container. The application ID is a string that
uniquely identifies the application and can only contain letters, numbers, the period and the
underscore character. will be used.

storageType
A Container enumeration which specifies the storage container. The default container is
Container.storageGlobal.

Return Value
This method returns a Boolean value. If the container was opened, it will return true, otherwise it will
return false.

Remarks
The Open method opens the specified storage container and requests an access token for the
application. This method that must be called prior to accessing any stored objects.

The application ID is a string that uniquely identifies the application requesting the access and must have
been previously registered with the server by calling the RegisterId method. If the appId parameter is an
empty string, the a default internal ID will be used which is allocated for each storage account. You can
use this default ID if you wish to share data between all of the applications you create.

The storageType parameter specifies the type of container that objects will be stored in. In most cases, we
recommend using Container.storageGlobal which means that stored objects will be accessible to all
users of your application. However, you can limit access to the stored objects based on the local domain,
local machine ID or the current user SID.

If you specify anything other than global storage, objects can be orphaned if the system configuration
changes. For example, if Container.storageMachine is specified, the objects that are stored there can
only be accessed from that computer system. If the system is reconfigured (for example, the boot volume
formatted and Windows is reinstalled) the unique identifier for that system will change and the previous
objects that were stored by your application wil no longer be accessible.

It is advisable is to store critical application data and configuration information in the
Container.storageGlobal container and use other non-global storage containers for configuration
information that is unique to that system and/or user which is not critical and can be easily recreated.

If a storage container was opened prior to calling this method, the current container will be closed and the

WebStorage.Open Method (String, Container)

new container opened.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.Open Overload List | Close Method | Container
Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Open a storage container for the specified application.

[Visual Basic]
Overloads Public Function Open(_
 ByVal appId As String, _
 ByVal storageType As Container, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Open(
 string appId,
 Container storageType,
 int timeout
);

Parameters
appId

A string which specifies the application ID for the storage container. The application ID is a string that
uniquely identifies the application and can only contain letters, numbers, the period and the
underscore character. will be used.

storageType
A Container enumeration which specifies the storage container. The default container is
Container.storageGlobal.

timeout

Return Value
This method returns a Boolean value. If the container was opened, it will return true, otherwise it will
return false.

Remarks
The Open method opens the specified storage container and requests an access token for the
application. This method that must be called prior to accessing any stored objects.

The application ID is a string that uniquely identifies the application requesting the access and must have
been previously registered with the server by calling the RegisterId method. If the appId parameter is an
empty string, the a default internal ID will be used which is allocated for each storage account. You can
use this default ID if you wish to share data between all of the applications you create.

The storageType parameter specifies the type of container that objects will be stored in. In most cases, we
recommend using Container.storageGlobal which means that stored objects will be accessible to all
users of your application. However, you can limit access to the stored objects based on the local domain,
local machine ID or the current user SID.

If you specify anything other than global storage, objects can be orphaned if the system configuration
changes. For example, if Container.storageMachine is specified, the objects that are stored there can
only be accessed from that computer system. If the system is reconfigured (for example, the boot volume
formatted and Windows is reinstalled) the unique identifier for that system will change and the previous
objects that were stored by your application wil no longer be accessible.

It is advisable is to store critical application data and configuration information in the
Container.storageGlobal container and use other non-global storage containers for configuration

WebStorage.Open Method (String, Container, Int32)

information that is unique to that system and/or user which is not critical and can be easily recreated.

If a storage container was opened prior to calling this method, the current container will be closed and the
new container opened.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.Open Overload List | Close Method | Container
Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the data in a byte array buffer to the storage container.

Overload List
Upload the data in a byte array buffer to the storage container.

public bool PutData(string,Attributes,byte[],int);

Upload the data in a MemoryStream object to the storage container.

public bool PutData(string,Attributes,MemoryStream);

Upload the text in a string to the storage container.

public bool PutData(string,Attributes,string);

Upload the data in a byte array buffer to the storage container.

public bool PutData(string,byte[]);

Upload the data in a byte array buffer to the storage container.

public bool PutData(string,byte[],int);

Upload the data in a MemoryStream object to the storage container.

public bool PutData(string,MemoryStream);

Upload the text in a string to the storage container.

public bool PutData(string,string);

Upload the data in a byte array buffer to the storage container.

public bool PutData(string,string,Attributes,byte[],int);

Upload the data in a MemoryStream object to the storage container.

public bool PutData(string,string,Attributes,MemoryStream);

Upload the text in a string to the storage container.

public bool PutData(string,string,Attributes,string);

Upload the data in a byte array buffer to the storage container.

public bool PutData(string,string,byte[],int);

Upload the data in a MemoryStream object to the storage container.

public bool PutData(string,string,MemoryStream);

Upload the text in a string to the storage container.

public bool PutData(string,string,string);

See Also
WebStorage Class | SocketTools Namespace | Close Method | GetData Method | Open Method |
Attributes Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.PutData Method

Upload the data in a byte array buffer to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal contentType As String, _
 ByVal objAttributes As Attributes, _
 ByVal byteBuffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 string contentType,
 Attributes objAttributes,
 byte[] byteBuffer,
 int length
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

contentType
An string which identifies the contents of the buffer being stored. If this parameter is an empty string,
the method will attempt to automatically determine the content type based on the object label and
the contents of the buffer

objAttributes
An Attributes enumeration which specifies the attributes for the object being stored.

byteBuffer
A byte array which contains the data to be stored.

length
An integer value which specifies the number of bytes of data to be stored. This value cannot exceed
the size of the byte array.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a byte array to the current storage container. If an object
exists with the same label, it will be replaced. During the transfer, the OnProgress event will fire
periodically, enabling the application to update any user interface objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the

WebStorage.PutData Method (String, String, Attributes, Byte[], Int32)

Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

If a content type is provided, it must specify a valid MIME media type and subtype. For example, normal
text has a content type of text/plain while XML-formatted text would have a content type of text/xml.
Data that contains unstructured binary data is typically identified as application/octet-stream.. If you do
not specify a content type, an appropriate content type will be determined automatically based on the
label and the contents of the buffer.

If you wish to upload the contents of a file, use the PutFile method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method | Attributes Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the data in a byte array buffer to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal contentType As String, _
 ByVal byteBuffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 string contentType,
 byte[] byteBuffer,
 int length
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

contentType
An string which identifies the contents of the buffer being stored. If this parameter is an empty string,
the method will attempt to automatically determine the content type based on the object label and
the contents of the buffer

byteBuffer
A byte array which contains the data to be stored.

length
An integer value which specifies the number of bytes of data to be stored. This value cannot exceed
the size of the byte array.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a byte array to the current storage container with default
attributes. If an object exists with the same label, it will be replaced. During the transfer, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

If a content type is provided, it must specify a valid MIME media type and subtype. For example, normal

WebStorage.PutData Method (String, String, Byte[], Int32)

text has a content type of text/plain while XML-formatted text would have a content type of text/xml.
Data that contains unstructured binary data is typically identified as application/octet-stream.. If you do
not specify a content type, an appropriate content type will be determined automatically based on the
label and the contents of the buffer.

If you wish to upload the contents of a file, use the PutFile method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the data in a byte array buffer to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal objAttributes As Attributes, _
 ByVal byteBuffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 Attributes objAttributes,
 byte[] byteBuffer,
 int length
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

objAttributes
An Attributes enumeration which specifies the attributes for the object being stored.

byteBuffer
A byte array which contains the data to be stored.

length
An integer value which specifies the number of bytes of data to be stored. This value cannot exceed
the size of the byte array.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a byte array to the current storage container with a default
content type. If an object exists with the same label, it will be replaced. During the transfer, the
OnProgress event will fire periodically, enabling the application to update any user interface objects such
as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

An appropriate content type for the data will be determined automatically based on the label and the
contents of the buffer.

If you wish to upload the contents of a file, use the PutFile method.

WebStorage.PutData Method (String, Attributes, Byte[], Int32)

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method | Attributes Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the data in a byte array buffer to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal byteBuffer As Byte(), _
 ByVal length As Integer _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 byte[] byteBuffer,
 int length
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

byteBuffer
A byte array which contains the data to be stored.

length
An integer value which specifies the number of bytes of data to be stored. This value cannot exceed
the size of the byte array.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a byte array to the current storage container with default
attributes and a default content type. If an object exists with the same label, it will be replaced. During the
transfer, the OnProgress event will fire periodically, enabling the application to update any user interface
objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

An appropriate content type for the data will be determined automatically based on the label and the
contents of the buffer.

If you wish to upload the contents of a file, use the PutFile method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

WebStorage.PutData Method (String, Byte[], Int32)

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the data in a byte array buffer to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal byteBuffer As Byte() _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 byte[] byteBuffer
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

byteBuffer
A byte array which contains the data to be stored.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a byte array to the current storage container with default
attributes and a default content type. If an object exists with the same label, it will be replaced. During the
transfer, the OnProgress event will fire periodically, enabling the application to update any user interface
objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

An appropriate content type for the data will be determined automatically based on the label and the
contents of the buffer.

If you wish to upload the contents of a file, use the PutFile method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.PutData Method (String, Byte[])

Upload the data in a MemoryStream object to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal contentType As String, _
 ByVal objAttributes As Attributes, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 string contentType,
 Attributes objAttributes,
 MemoryStream memStream
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

contentType
An string which identifies the contents of the buffer being stored. If this parameter is an empty string,
the method will attempt to automatically determine the content type based on the object label and
the contents of the buffer

objAttributes
An Attributes enumeration which specifies the attributes for the object being stored.

memStream
A MemoryStream object which contains the data to be stored. The stream must be open and
readable.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a MemoryStream object to the current storage container.
If a storage object exists with the same label, it will be replaced. During the transfer, the OnProgress
event will fire periodically, enabling the application to update any user interface objects such as a progress
bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

WebStorage.PutData Method (String, String, Attributes,
MemoryStream)

If a content type is provided, it must specify a valid MIME media type and subtype. For example, normal
text has a content type of text/plain while XML-formatted text would have a content type of text/xml.
Data that contains unstructured binary data is typically identified as application/octet-stream.. If you do
not specify a content type, an appropriate content type will be determined automatically based on the
label and the contents of the buffer.

If you wish to upload the contents of a file, use the PutFile method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method | Attributes Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the data in a MemoryStream object to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal contentType As String, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 string contentType,
 MemoryStream memStream
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

contentType
An string which identifies the contents of the buffer being stored. If this parameter is an empty string,
the method will attempt to automatically determine the content type based on the object label and
the contents of the buffer

memStream
A MemoryStream object which contains the data to be stored. The stream must be open and
readable.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a MemoryStream object to the current storage container
using default attributes. If a storage object exists with the same label, it will be replaced. During the
transfer, the OnProgress event will fire periodically, enabling the application to update any user interface
objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

If a content type is provided, it must specify a valid MIME media type and subtype. For example, normal
text has a content type of text/plain while XML-formatted text would have a content type of text/xml.
Data that contains unstructured binary data is typically identified as application/octet-stream.. If you do
not specify a content type, an appropriate content type will be determined automatically based on the
label and the contents of the buffer.

WebStorage.PutData Method (String, String, MemoryStream)

If you wish to upload the contents of a file, use the PutFile method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the data in a MemoryStream object to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal objAttributes As Attributes, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 Attributes objAttributes,
 MemoryStream memStream
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

objAttributes
An Attributes enumeration which specifies the attributes for the object being stored.

memStream
A MemoryStream object which contains the data to be stored. The stream must be open and
readable.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a MemoryStream object to the current storage container
using the default content type for the data being stored. If a storage object exists with the same label, it
will be replaced. During the transfer, the OnProgress event will fire periodically, enabling the application
to update any user interface objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

An appropriate content type is be determined automatically based on the label and the contents of the
buffer.

If you wish to upload the contents of a file, use the PutFile method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

WebStorage.PutData Method (String, Attributes, MemoryStream)

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method | Attributes Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the data in a MemoryStream object to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal memStream As MemoryStream _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 MemoryStream memStream
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

memStream
A MemoryStream object which contains the data to be stored. The stream must be open and
readable.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a MemoryStream object to the current storage container
using the default attributes and content type for the data being stored. If a storage object exists with the
same label, it will be replaced. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

An appropriate content type is be determined automatically based on the label and the contents of the
buffer.

If you wish to upload the contents of a file, use the PutFile method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method

WebStorage.PutData Method (String, MemoryStream)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the text in a string to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal contentType As String, _
 ByVal objAttributes As Attributes, _
 ByVal textBuffer As String _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 string contentType,
 Attributes objAttributes,
 string textBuffer
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

contentType
An string which identifies the contents of the buffer being stored. If this parameter is an empty string,
the method will attempt to automatically determine the content type based on the object label and
the contents of the buffer

objAttributes
An Attributes enumeration which specifies the attributes for the object being stored.

textBuffer
A string which contains the text to be stored.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a string to the current storage container. If the string
contains non-ASCII characters, they will automatically converted to use UTF-8 encoding prior to being
stored on the server. If a storage object exists with the same label, it will be replaced. During the transfer,
the OnProgress event will fire periodically, enabling the application to update any user interface objects
such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

If a content type is provided, it must specify a valid MIME media type and subtype. For example, normal

WebStorage.PutData Method (String, String, Attributes, String)

text has a content type of text/plain while XML-formatted text would have a content type of text/xml. If
you do not specify a content type, an appropriate content type will be determined automatically based on
the label and the contents of the string. In most cases, the content type will default to text/plain.

This version of the PutData method should never be used to store binary data, particularly data that
contains embedded null bytes. You should only use this method to store plain text. If you need to store
binary data, use the version of PutData which accepts either a byte array or MemoryStream object.

If you wish to upload the contents of a file, use the PutFile method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method | Attributes Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the text in a string to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal contentType As String, _
 ByVal textBuffer As String _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 string contentType,
 string textBuffer
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

contentType
An string which identifies the contents of the buffer being stored. If this parameter is an empty string,
the method will attempt to automatically determine the content type based on the object label and
the contents of the buffer

textBuffer
A string which contains the text to be stored.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a string to the current storage container using default
attributes. If the string contains non-ASCII characters, they will be converted to use UTF-8 encoding prior
to being stored on the server. If a storage object exists with the same label, it will be replaced. During the
transfer, the OnProgress event will fire periodically, enabling the application to update any user interface
objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

If a content type is provided, it must specify a valid MIME media type and subtype. For example, normal
text has a content type of text/plain while XML-formatted text would have a content type of text/xml. If
you do not specify a content type, an appropriate content type will be determined automatically based on
the label and the contents of the string. In most cases, the content type will default to text/plain.

This version of the PutData method should never be used to store binary data, particularly data that

WebStorage.PutData Method (String, String, String)

contains embedded null. bytes. You should only use this method to store plain text. If you need to store
binary data, use the version of PutData which accepts either a byte array or MemoryStream object.

If you wish to upload the contents of a file, use the PutFile method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the text in a string to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal objAttributes As Attributes, _
 ByVal textBuffer As String _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 Attributes objAttributes,
 string textBuffer
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

objAttributes
An Attributes enumeration which specifies the attributes for the object being stored.

textBuffer
A string which contains the text to be stored.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a string to the current storage container. If the string
contains non-ASCII characters, they will automatically converted to use UTF-8 encoding prior to being
stored on the server. If a storage object exists with the same label, it will be replaced. During the transfer,
the OnProgress event will fire periodically, enabling the application to update any user interface objects
such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

An appropriate content type will be determined automatically based on the label and the contents of the
string. In most cases, the content type will default to text/plain.

This version of the PutData method should never be used to store binary data, particularly data that
contains embedded null bytes. You should only use this method to store plain text. If you need to store
binary data, use the version of PutData which accepts either a byte array or MemoryStream object.

If you wish to upload the contents of a file, use the PutFile method.

WebStorage.PutData Method (String, Attributes, String)

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method | Attributes Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload the text in a string to the storage container.

[Visual Basic]
Overloads Public Function PutData(_
 ByVal labelName As String, _
 ByVal textBuffer As String _
) As Boolean

[C#]
public bool PutData(
 string labelName,
 string textBuffer
);

Parameters
labelName

A string which specifies the label of the object that should be uploaded to the server. If an object with
the same label already exists, it will be replaced with the contents of the buffer

textBuffer
A string which contains the text to be stored.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutData method uploads the contents of a string to the current storage container using default
attributes. If the string contains non-ASCII characters, they will automatically converted to use UTF-8
encoding prior to being stored on the server. If a storage object exists with the same label, it will be
replaced. During the transfer, the OnProgress event will fire periodically, enabling the application to
update any user interface objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

An appropriate content type will be determined automatically based on the label and the contents of the
string. In most cases, the content type will default to text/plain.

This version of the PutData method should never be used to store binary data, particularly data that
contains embedded null bytes. You should only use this method to store plain text. If you need to store
binary data, use the version of PutData which accepts either a byte array or MemoryStream object.

If you wish to upload the contents of a file, use the PutFile method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also

WebStorage.PutData Method (String, String)

WebStorage Class | SocketTools Namespace | WebStorage.PutData Overload List | Close Method |
GetData Method | Open Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a local file to the current storage container.

Overload List
Upload a local file to the current storage container.

public bool PutFile(string,string);

Upload a local file to the current storage container.

public bool PutFile(string,string,Attributes);

Upload a local file to the current storage container.

public bool PutFile(string,string,string);

Upload a local file to the current storage container.

public bool PutFile(string,string,string,Attributes);

See Also
WebStorage Class | SocketTools Namespace | Close Method | GetFile Method | Open Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.PutFile Method

Upload a local file to the current storage container.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal labelName As String _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string labelName
);

Parameters
localFile

A string which specifies the name of the local file that will be uploaded to the current storage
container. If a path is not specified, the file will be opened in the current working directory.

labelName
A string which specifies the label of the object that should be created. If an object with the same label
already exists, it will be replaced with the contents of the file.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutFile method uploads the contents of a file to the current storage container. If an object exists with
the same label, it will be replaced. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

An appropriate content type for the stored object will be determined automatically based on the file name
and contents.

If you wish to upload the contents of a string or byte array, use the PutData method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutFile Overload List | Close Method | GetFile
Method | Open Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.PutFile Method (String, String)

Upload a local file to the current storage container.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal labelName As String, _
 ByVal objAttributes As Attributes _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string labelName,
 Attributes objAttributes
);

Parameters
localFile

A string which specifies the name of the local file that will be uploaded to the current storage
container. If a path is not specified, the file will be opened in the current working directory.

labelName
A string which specifies the label of the object that should be created. If an object with the same label
already exists, it will be replaced with the contents of the file.

objAttributes
An Attributes enumeration which specifies the attributes for the object being created or replaced.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutFile method uploads the contents of a file to the current storage container. If an object exists with
the same label, it will be replaced. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

An appropriate content type for the stored object will be determined automatically based on the file name
and contents.

If you wish to upload the contents of a string or byte array, use the PutData method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also

WebStorage.PutFile Method (String, String, Attributes)

WebStorage Class | SocketTools Namespace | WebStorage.PutFile Overload List | Close Method | GetFile
Method | Open Method | Attributes Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a local file to the current storage container.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal labelName As String, _
 ByVal contentType As String _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string labelName,
 string contentType
);

Parameters
localFile

A string which specifies the name of the local file that will be uploaded to the current storage
container. If a path is not specified, the file will be opened in the current working directory.

labelName
A string which specifies the label of the object that should be created. If an object with the same label
already exists, it will be replaced with the contents of the file.

contentType
An string which identifies the contents of the file being uploaded. If this parameter is an empty string,
the method will attempt to automatically determine the content type based on the object label and
the contents of the file.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutFile method uploads the contents of a file to the current storage container. If an object exists with
the same label, it will be replaced. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

If a content type is provided, it must specify a valid MIME media type and subtype. For example, normal
text has a content type of text/plain while XML-formatted text would have a content type of text/xml.
Data that contains unstructured binary data is typically identified as application/octet-stream. If you do
not specify a content type, an appropriate content type will be determined automatically based on the file
name and contents.

If you wish to upload the contents of a string or byte array, use the PutData method.

WebStorage.PutFile Method (String, String, String)

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutFile Overload List | Close Method | GetFile
Method | Open Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Upload a local file to the current storage container.

[Visual Basic]
Overloads Public Function PutFile(_
 ByVal localFile As String, _
 ByVal labelName As String, _
 ByVal contentType As String, _
 ByVal objAttributes As Attributes _
) As Boolean

[C#]
public bool PutFile(
 string localFile,
 string labelName,
 string contentType,
 Attributes objAttributes
);

Parameters
localFile

A string which specifies the name of the local file that will be uploaded to the current storage
container. If a path is not specified, the file will be opened in the current working directory.

labelName
A string which specifies the label of the object that should be created. If an object with the same label
already exists, it will be replaced with the contents of the file.

contentType
An string which identifies the contents of the file being uploaded. If this parameter is an empty string,
the method will attempt to automatically determine the content type based on the object label and
the contents of the file.

objAttributes
An Attributes enumeration which specifies the attributes for the object being created or replaced.

Return Value
This method returns a Boolean value. If the data has been uploaded to the storage server, it will return
true, otherwise it will return false.

Remarks
The PutFile method uploads the contents of a file to the current storage container. If an object exists with
the same label, it will be replaced. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it was
created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with the
Attributes.objectReadOnly attribute, this method will fail. To replace a read-only object, the application
must explicitly move, rename or delete the existing object.

If a content type is provided, it must specify a valid MIME media type and subtype. For example, normal
text has a content type of text/plain while XML-formatted text would have a content type of text/xml.

WebStorage.PutFile Method (String, String, String, Attributes)

Data that contains unstructured binary data is typically identified as application/octet-stream. If you do
not specify a content type, an appropriate content type will be determined automatically based on the file
name and contents.

If you wish to upload the contents of a string or byte array, use the PutData method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated to
reflect the values associated with the object that was created or replaced on the server.

See Also
WebStorage Class | SocketTools Namespace | WebStorage.PutFile Overload List | Close Method | GetFile
Method | Open Method | Attributes Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Register a new application identifier with the storage service.

[Visual Basic]
Public Function RegisterId(_
 ByVal appId As String _
) As Boolean

[C#]
public bool RegisterId(
 string appId
);

Parameters
appId

A string which identifies the application requesting access. If the application ID contains illegal
characters, the method will fail. See the remarks below on the recommended practice for identifying
your application.

Return Value
This method returns a Boolean value. If the application ID has been registered, it will return true,
otherwise it will return false.

Remarks
The RegisterId method registers an application ID with the server which uniquely identifies the application
that is requesting access to the storage container. The ID must only consist of ASCII letters, numbers, the
period and underscore character. Whitespace characters and non-ASCII Unicode characters are not
permitted. The maximum length of an application ID string is 63 characters.

It is recommended that you use a standard format for the application ID that consists of your company
name, application name and optionally a version number. For example:

MyCompany.MyApplication

MyCompany.MyApplication.1

It is important to note that with these two example IDs, although they are similar, they reference two
different applications. Objects stored using the first ID will not be accessible using the second ID. If you
want to store objects that should be shared between all versions of the application, it is recommended
that you use the first form, without the version number. If you want to store objects that should only be
accessible to a specific version of your application, then it is recommended that you use the second form
that includes the version number.

It is safe to call this method with an application ID that was previously registered. If the provided
application ID has already been registered, this method will succeed.

If you no longer wish to use an application ID you have previously registered, you can call the
UnregisterId method. Exercise caution when unregistering an application. This will cause all objects
stored using that ID to be deleted by the storage server. Once an application ID has been unregistered,
the operation is permanent. Calling UnregisterId and then RegisterId again using the same ID will force
the system to create new access tokens for your application. You will not be able to regain access to the
objects that were previously stored using that application ID.

The application ID is intended to be an application defined human-readable string that uniquely identifies
your application. If you want to obtain the internal storage ID associated with your application, get the

WebStorage.RegisterId Method

value of the StorageId property. The storage ID is a fixed-length string of letters and numbers
guaranteed to be unique across all applications that you register.

It is not required for your application to create a unique application ID. Each storage account has a default
internal application ID named SocketTools.Storage.Default. This default ID is used if an application-
defined ID is not provided to the Open method. It is intended to identify storage available to all
applications that you create.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Change the label of an existing storage object.

[Visual Basic]
Public Function Rename(_
 ByVal oldLabel As String, _
 ByVal newLabel As String _
) As Boolean

[C#]
public bool Rename(
 string oldLabel,
 string newLabel
);

Parameters
oldLabel

A string which specifies the label of the object that should be renamed.

newLabel
A string which specifies the new label for the object being renamed.

Return Value
This method returns a Boolean value. If the stored object was renamed, it will return true, otherwise it will
return false.

Remarks
The Rename method is used to change the label of an existing storage object within the current
container. If you wish to move an object to a different, use the Move method.

This method updates the current object. Various properties such as ObjectId and ObjectLabel will reflect
the values associated with the object which has been renamed.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Rename Method

Reset the internal state of the class instance, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the class instance to its defaults. Property values are initialized to their internal
defaults, the current storage container is closed and any handles allocated by the class will be released.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Reset Method

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
WebStorage Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Uninitialize Method

Unregister a previously registered application identifier.

[Visual Basic]
Public Function UnregisterId(_
 ByVal appId As String _
) As Boolean

[C#]
public bool UnregisterId(
 string appId
);

Parameters
appId

A string which specifies the application ID to be deleted. If the application ID is a zero-length string or
contains illegal characters, the method will fail.

Return Value
This method returns a Boolean value. If the application ID was deleted, it will return true, otherwise it will
return false.

Remarks
The UnregisterId method deletes the internal storage identifier associated with the application ID and
revokes all access tokens that were granted for the application. This operation is immediate and
permanent.

Exercise caution when using this method. This will permanently delete all objects that were stored for the
specified application. Calling UnregisterId and then RegisterId again using the same ID will force the
system to create new access tokens for your application. You will not be able to regain access to the
objects that were previously stored using that ID.

This method cannot be used to unregister the default storage application identifier
SocketTools.Storage.Default. If this ID is specified, the method will fail with an error indicating that the
ID is invalid.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.UnregisterId Method

Check an application identifier to ensure it is valid and exists.

[Visual Basic]
Public Function ValidateId(_
 ByVal appId As String _
) As Boolean

[C#]
public bool ValidateId(
 string appId
);

Parameters
appId

A string which specifies the application ID to be validated. If the application ID is a zero-length string
or contains illegal characters, the method will fail.

Return Value
This method returns a Boolean value. If the application ID is valid and exists, it will return true, otherwise it
will return false.

Remarks
The ValidateId method is used to determine if the specified application identifier is valid and has been
previously registered using the RegisterId method. The ID must only consist of ASCII letters, numbers, the
period and underscore character. Whitespace characters and non-ASCII Unicode characters are not
permitted. The maximum length of an application ID string is 63 characters.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ValidateId Method

Validate an object label to ensure it uses allowed characters.

[Visual Basic]
Public Function ValidateLabel(_
 ByVal labelName As String _
) As Boolean

[C#]
public bool ValidateLabel(
 string labelName
);

Parameters
labelName

A string which specifies the object label to be validated. This parameter cannot be an empty string.

Return Value
This method returns a Boolean value. If the object label is valid, it will return true, otherwise it will return
false.

Remarks
Object labels are similar to Windows file names, except they are case-sensitive. The maximum length of a
label string is 511 characters. Leading and trailing whitespace (spaces, tabs, linebreaks, etc.) are ignored in
label names.

Illegal characters include ASCII and Unicode control characters 0 through 31, single quotes (39), double
quotes (34), less than symbol (60), greater than symbol (62), pipe (124), asterisk (42) and question mark
(63). It is not possible to embed null characters in the label name.

Label names may contain forward slash (47) characters and backslash (92) characters, however it is
important to note that objects are not stored in a hierarchical structure. An application can create its own
folder-like structure to the labels it creates, but this structure is not imposed or enforced by the class.

Labels can contain Unicode characters which are internally encoded as UTF-8.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ValidateLabel Method

The events of the WebStorage class are listed below. For a complete list of WebStorage class members,
see the WebStorage Members topic.

Public Instance Events

OnCancel Occurs when a storage operation is canceled.

OnDownload Occurs when a storage object has been
downloaded.

OnError Occurs when an storage operation fails.

OnProgress Occurs as a data stream is being read or written to
the client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnUpload Occurs when a storage object has been uploaded.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage Events

Occurs when a storage operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a storage operation, such as uploading or download data, is
canceled with the Cancel method.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.OnCancel Event

Occurs when a storage object has been downloaded.

[Visual Basic]
Public Event OnDownload As OnDownloadEventHandler

[C#]
public event OnDownloadEventHandler OnDownload;

Event Data
The event handler receives an argument of type WebStorage.DownloadEventArgs containing data related
to this event. The following WebStorage.DownloadEventArgs properties provide information specific to
this event.

Property Description

ObjectLabel Gets a value which specifies the object label.

ObjectSize Get a value which specifies the size of the object.

Remarks
The OnDownload event is generated when a stored object has been successfully uploaded using either
the GetData or GetFile methods.

When this event occurs, the transfer has completed successfully and the downloaded object becomes the
current object for the session. Prior to this event, the OnProgress event will occur periodically which
provides information about the progress of the data transfer.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.OnDownload Event

Provides data for the OnDownload event.

For a list of all members of this type, see WebStorage.DownloadEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.WebStorage.DownloadEventArgs

[Visual Basic]
Public Class WebStorage.DownloadEventArgs
 Inherits EventArgs

[C#]
public class WebStorage.DownloadEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
DownloadEventArgs specifies the label and size for for the object that has been downloaded.

The OnDownload event occurs whenever a storage object has been successfully downloaded.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
WebStorage.DownloadEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.DownloadEventArgs Class

WebStorage.DownloadEventArgs overview

Public Instance Constructors

 WebStorage.DownloadEventArgs Constructor Initializes a new instance of the
WebStorage.DownloadEventArgs class.

Public Instance Properties

ObjectLabel Gets a value which specifies the object label.

ObjectSize Get a value which specifies the size of the object.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebStorage.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.DownloadEventArgs Members

Initializes a new instance of the WebStorage.DownloadEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public WebStorage.DownloadEventArgs();

See Also
WebStorage.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.DownloadEventArgs Constructor

The properties of the WebStorage.DownloadEventArgs class are listed below. For a complete list of
WebStorage.DownloadEventArgs class members, see the WebStorage.DownloadEventArgs Members
topic.

Public Instance Properties

ObjectLabel Gets a value which specifies the object label.

ObjectSize Get a value which specifies the size of the object.

See Also
WebStorage.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.DownloadEventArgs Properties

Gets a value which specifies the object label.

[Visual Basic]
Public ReadOnly Property ObjectLabel As String

[C#]
public string ObjectLabel {get;}

Property Value
A string value which contains the object label.

Remarks
This string contains the label of the stored object that was downloaded.

See Also
WebStorage.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.DownloadEventArgs.ObjectLabel Property

Get a value which specifies the size of the object.

[Visual Basic]
Public ReadOnly Property ObjectSize As Long

[C#]
public long ObjectSize {get;}

Property Value
A long integer value which contains the object size in bytes.

Remarks
This integer contains the size of the downloaded object in bytes.

See Also
WebStorage.DownloadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.DownloadEventArgs.ObjectSize Property

Occurs when an storage operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type WebStorage.ErrorEventArgs containing data related to
this event. The following WebStorage.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a storage operation fails.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see WebStorage.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.WebStorage.ErrorEventArgs

[Visual Basic]
Public Class WebStorage.ErrorEventArgs
 Inherits EventArgs

[C#]
public class WebStorage.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
WebStorage.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ErrorEventArgs Class

WebStorage.ErrorEventArgs overview

Public Instance Constructors

 WebStorage.ErrorEventArgs Constructor Initializes a new instance of the
WebStorage.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebStorage.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ErrorEventArgs Members

Initializes a new instance of the WebStorage.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public WebStorage.ErrorEventArgs();

See Also
WebStorage.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ErrorEventArgs Constructor

The properties of the WebStorage.ErrorEventArgs class are listed below. For a complete list of
WebStorage.ErrorEventArgs class members, see the WebStorage.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
WebStorage.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
WebStorage.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public WebStorage.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
WebStorage.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ErrorEventArgs.Error Property

Occurs as a data stream is being read or written to the client.

[Visual Basic]
Public Event OnProgress As OnProgressEventHandler

[C#]
public event OnProgressEventHandler OnProgress;

Event Data
The event handler receives an argument of type WebStorage.ProgressEventArgs containing data related
to this event. The following WebStorage.ProgressEventArgs properties provide information specific to
this event.

Property Description

BytesCopied Gets a value which specifies the number of bytes
of data that has been sent or received.

BytesTotal Gets a value which specifies the size of object
being transferred.

ObjectLabel Gets a value which specifies the object label.

Percent Gets a value which specifies the percentage of
data that has been sent or received.

Remarks
The OnProgress event occurs as a data stream is being read or written to the client. If large amounts of
data are being read or written, this event can be used to update a progress bar or other user-interface
component to provide the user with some visual feedback on the progress of the operation.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.OnProgress Event

Provides data for the OnProgress event.

For a list of all members of this type, see WebStorage.ProgressEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.WebStorage.ProgressEventArgs

[Visual Basic]
Public Class WebStorage.ProgressEventArgs
 Inherits EventArgs

[C#]
public class WebStorage.ProgressEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ProgressEventArgs specifies the number of bytes copied from the data stream, the total number of bytes
in the data stream and a completion percentage.

The OnProgress event occurs as a data stream is being read or written to the client. This event only occurs
when the GetData, GetFile, PostData, PostFile, PutData, PutFile or SubmitForm methods are called.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
WebStorage.ProgressEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ProgressEventArgs Class

WebStorage.ProgressEventArgs overview

Public Instance Constructors

 WebStorage.ProgressEventArgs Constructor Initializes a new instance of the
WebStorage.ProgressEventArgs class.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been sent or received.

BytesTotal Gets a value which specifies the size of object
being transferred.

ObjectLabel Gets a value which specifies the object label.

Percent Gets a value which specifies the percentage of
data that has been sent or received.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebStorage.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ProgressEventArgs Members

Initializes a new instance of the WebStorage.ProgressEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public WebStorage.ProgressEventArgs();

See Also
WebStorage.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ProgressEventArgs Constructor

The properties of the WebStorage.ProgressEventArgs class are listed below. For a complete list of
WebStorage.ProgressEventArgs class members, see the WebStorage.ProgressEventArgs Members
topic.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been sent or received.

BytesTotal Gets a value which specifies the size of object
being transferred.

ObjectLabel Gets a value which specifies the object label.

Percent Gets a value which specifies the percentage of
data that has been sent or received.

See Also
WebStorage.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ProgressEventArgs Properties

Gets a value which specifies the number of bytes of data that has been sent or received.

[Visual Basic]
Public ReadOnly Property BytesCopied As Long

[C#]
public long BytesCopied {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesCopied property specifies the number of bytes that have been read from the client and stored
in the local stream buffer, or written from the stream buffer to the client.

See Also
WebStorage.ProgressEventArgs Class | SocketTools Namespace | BytesTotal Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ProgressEventArgs.BytesCopied Property

Gets a value which specifies the size of object being transferred.

[Visual Basic]
Public ReadOnly Property BytesTotal As Long

[C#]
public long BytesTotal {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesTotal property specifies the total amount of data being exchanged with the storage server.

See Also
WebStorage.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ProgressEventArgs.BytesTotal Property

Gets a value which specifies the object label.

[Visual Basic]
Public ReadOnly Property ObjectLabel As String

[C#]
public string ObjectLabel {get;}

Property Value
A string value which specifies the label for the object being transferred.

See Also
WebStorage.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ProgressEventArgs.ObjectLabel Property

Gets a value which specifies the percentage of data that has been sent or received.

[Visual Basic]
Public ReadOnly Property Percent As Integer

[C#]
public int Percent {get;}

Property Value
An integer value which specifies a percentage.

Remarks
The Percent property specifies the percentage of data that has been transmitted, expressed as an integer
value between 0 and 100, inclusive.

See Also
WebStorage.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | BytesTotal
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.ProgressEventArgs.Percent Property

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.OnTimeout Event

Occurs when a storage object has been uploaded.

[Visual Basic]
Public Event OnUpload As OnUploadEventHandler

[C#]
public event OnUploadEventHandler OnUpload;

Event Data
The event handler receives an argument of type WebStorage.UploadEventArgs containing data related to
this event. The following WebStorage.UploadEventArgs properties provide information specific to this
event.

Property Description

ObjectLabel Gets a value which specifies the object label.

ObjectSize Get a value which specifies the size of the object.

Remarks
The OnUpload event is generated when a stored object has been successfully uploaded using either the
PutData or PutFile methods.

When this event occurs, the transfer has completed successfully and the uploaded object becomes the
current object for the session. Prior to this event, the OnProgress event will occur periodically which
provides information about the progress of the data transfer.

See Also
WebStorage Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.OnUpload Event

Provides data for the OnUpload event.

For a list of all members of this type, see WebStorage.UploadEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.WebStorage.UploadEventArgs

[Visual Basic]
Public Class WebStorage.UploadEventArgs
 Inherits EventArgs

[C#]
public class WebStorage.UploadEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
UploadEventArgs specifies the label and size for for the object that has been uploaded.

The OnUpload event occurs whenever a storage object has been successfully uploaded.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
WebStorage.UploadEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.UploadEventArgs Class

WebStorage.UploadEventArgs overview

Public Instance Constructors

 WebStorage.UploadEventArgs Constructor Initializes a new instance of the
WebStorage.UploadEventArgs class.

Public Instance Properties

ObjectLabel Gets a value which specifies the object label.

ObjectSize Get a value which specifies the size of the object.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebStorage.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.UploadEventArgs Members

Initializes a new instance of the WebStorage.UploadEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public WebStorage.UploadEventArgs();

See Also
WebStorage.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.UploadEventArgs Constructor

The properties of the WebStorage.UploadEventArgs class are listed below. For a complete list of
WebStorage.UploadEventArgs class members, see the WebStorage.UploadEventArgs Members topic.

Public Instance Properties

ObjectLabel Gets a value which specifies the object label.

ObjectSize Get a value which specifies the size of the object.

See Also
WebStorage.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.UploadEventArgs Properties

Gets a value which specifies the object label.

[Visual Basic]
Public ReadOnly Property ObjectLabel As String

[C#]
public string ObjectLabel {get;}

Property Value
A string value which contains the object label.

Remarks
This string contains the label of the stored object that was uploaded.

See Also
WebStorage.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.UploadEventArgs.ObjectLabel Property

Get a value which specifies the size of the object.

[Visual Basic]
Public ReadOnly Property ObjectSize As Long

[C#]
public long ObjectSize {get;}

Property Value
A long integer value which contains the object size in bytes.

Remarks
This integer contains the size of the uploaded object in bytes.

See Also
WebStorage.UploadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.UploadEventArgs.ObjectSize Property

The attributes for stored objects.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum WebStorage.Attributes

[C#]
[Flags]
public enum WebStorage.Attributes

Remarks
This identifies the attributes that can be specified for stored objects.

Members

Member Name Description Value

objectDefault Default object attributes. This value is
used to indicate the object can be
modified, or that the attributes for a
previously existing object should not be
changed.

0

objectNormal A normal object that that can be read
and modified by the application. This is
the default attribute for new objects that
are created by the application.

1

objectReadOnly A read-only object that can only be
read by the application. Attempts to
modify or replace the contents of the
object will fail. Read-only objects can be
deleted.

2

objectHidden A hidden object. Objects with this
attribute are not returned when
enumerated using the FindFirst and
FindNext methods. The object can only
be accessed directly when specifying its
label.

3

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.Attributes Enumeration

Identifies the storage container type.

[Visual Basic]
Public Enum WebStorage.Container

[C#]
public enum WebStorage.Container

Remarks
This enumeration identifies the storage containers that are available to the application. You can think of
the storage containers as special folders which store individual objects. In most cases, we recommend
using storageGlobal which means that stored objects will be accessible to all users of your application.

Members

Member Name Description

storageDefault The default storage type. If a storage container has
been opened, this value specifies that the current
storage type for the container should be used.
Otherwise, this value will default to using global
storage.

storageGlobal Global storage. Objects stored using this storage
type are available to all users. Any changes made
to objects using this storage type will affect all
users of the application. Unless there is a specific
need to limit access to the objects stored by the
application to specific domains, local machines or
users, it is recommended that you use this storage
type when creating new objects.

storageDomain Local domain storage. Objects stored using this
storage type are only available to users in the
same local domain, as defined by the domain
name or workgroup name assigned to the local
system. If the domain or workgroup name
changes, objects previously stored using this
storage type will not be available to the
application.

storageMachine Local machine storage. Objects stored using this
storage type are only available to users on the
same local machine. The local machine is identified
by unique characteristics of the system, including
the boot volume GUID. Objects previously stored
using this storage type will not be available on that
system if the boot disk is reformatted.

storageUser Current user storage. Objects stored using this
storage type are only available to the current user
logged in on the local machine. The user identifier

WebStorage.Container Enumeration

is based on the Windows user SID that is assigned
when the user account is created. If the user
account is deleted, the objects previously stored
using this storage type will not be available to the
application.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the error codes returned by the WebStorage class.

[Visual Basic]
Public Enum WebStorage.ErrorCode

[C#]
public enum WebStorage.ErrorCode

Remarks
The WebStorage class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

WebStorage.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

errorInvalidAccountUuid The account unique identifier is invalid

errorInvalidAccountId The application account identifier is invalid

errorInvalidProductId The product identifier identifier is invalid

errorInvalidSerialNumber The product serial number is invalid

errorInvalidAppId The application identifier is invalid

errorInvalidApiKey The application key is invalid

errorAccountExists The application account identifier already exists

errorAccountNotCreated The application account identifier was not created

errorAccountNotFound The application account identifier was not found

errorAccountNotExpired access to this account has not expired

errorAccountNotUpdated The application account could not be updated

errorAccountExpired access to this account has expired

errorAccountRevoked access to this account has been revoked

errorApiKeyNotCreated The application key could not be created

errorApiKeyNotFound The application key could not be found

errorApiKeyNotExpired The application key has not expired

errorApiKeyNotUnique The application key identifier is not unique

errorApiKeyNotUpdated They application key could not be updated

errorApiKeyNotDeleted The application key could not be deleted

errorApiKeyExists The application key already exists

errorApiKeyExpired The application key has expired and must be
refreshed

errorApiKeyRevoked The application key has been revoked

errorApiKeyAppId The application was not found or was not specified

errorInvalidToken The access token is invalid or was not specified

errorTokenNotCreated The access token could not be created

errorTokenNotFound The access token could not be found

errorTokenNotExpired The access token has not expired

errorTokenNotUpdated The access token was not updated

errorTokenNotDeleted The access token could not be deleted

errorTokenExpired The access token has expired and must be
refreshed

errorTokenRevoked The access token has been revoked

errorNoApiKeysFound no application keys found for this account

errorNoTokensFound no access tokens found for this application key

errorNoTokensRevoked no access tokens have been revoked

errorInvalidStorageObject invalid storage object identifier

errorStorageObjectReadOnly The storage object is read-only

errorStorageObjectExpired access to the storage object has expired

errorStorageObjectSize The storage object size exceeds storage limits

errorStorageObjectDigest The storage object digest is invalid or cannot be
computed

errorStorageObjectExists a storage object with this label already exists

errorStorageObjectModified a storage object with this label has been modified

errorStorageObjectNotOwner The current user is not the storage object owner

errorStorageObjectNotFound The specified storage object does not exist

errorStorageObjectNotCreated The storage object was not created

errorStorageObjectNotModified The storage object was not modified

errorStorageObjectNotRenamed The storage object was not renamed

errorStorageFolderEmpty The storage folder does not contain any objects

errorStorageAccountQuota The storage account has exceeded its quota

errorStorageAccountLimit The storage account has exceeded its object limit

errorInvalidStorageType The specified storage type is invalid

errorInvalidStorageProvider The specified storage provider is not available

errorInvalidStorageRegion The specified storage region is not available

errorInvalidStorageContainer The storage container does not exist or cannot be
accessed

errorInvalidStorageLabel The storage object label is invalid or undefined

Requirements

Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the WebStorage class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum WebStorage.TraceOptions

[C#]
[Flags]
public enum WebStorage.TraceOptions

Remarks
The WebStorage class uses the TraceOptions enumeration to specify what kind of debugging
information is written to the trace logfile. These options are only meaningful when trace logging is
enabled by setting the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
SocketTools Namespace

WebStorage.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Represents the method that will handle the OnDownload event.

[Visual Basic]
Public Delegate Sub WebStorage.OnDownloadEventHandler(_
 ByVal sender As Object, _
 ByVal e As DownloadEventArgs _
)

[C#]
public delegate void WebStorage.OnDownloadEventHandler(

 object sender,
 DownloadEventArgs e
);

Parameters
sender

The source of the event.

e
A DownloadEventArgs object that contains the event data.

Remarks
When you create an OnDownloadEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnDownloadEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.OnDownloadEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub WebStorage.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void WebStorage.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.OnErrorEventHandler Delegate

Represents the method that will handle the OnProgress event.

[Visual Basic]
Public Delegate Sub WebStorage.OnProgressEventHandler(_
 ByVal sender As Object, _
 ByVal e As ProgressEventArgs _
)

[C#]
public delegate void WebStorage.OnProgressEventHandler(

 object sender,
 ProgressEventArgs e
);

Parameters
sender

The source of the event.

e
A ProgressEventArgs that contains the event data.

Remarks
When you create an OnProgressEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnProgressEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.OnProgressEventHandler Delegate

Represents the method that will handle the OnUpload event.

[Visual Basic]
Public Delegate Sub WebStorage.OnUploadEventHandler(_
 ByVal sender As Object, _
 ByVal e As UploadEventArgs _
)

[C#]
public delegate void WebStorage.OnUploadEventHandler(

 object sender,
 UploadEventArgs e
);

Parameters
sender

The source of the event.

e
A UploadEventArgs object that contains the event data.

Remarks
When you create an OnUploadEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnUploadEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.OnUploadEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see WebStorage.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.WebStorage.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class WebStorage.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class WebStorage.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the WebStorage class.

Example

<Assembly: SocketTools.WebStorage.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.WebStorage.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
WebStorage.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.RuntimeLicenseAttribute Class

WebStorage.RuntimeLicenseAttribute overview

Public Instance Constructors

 WebStorage.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebStorage.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public WebStorage.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the WebStorage class.

See Also
WebStorage.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.RuntimeLicenseAttribute Constructor

The properties of the WebStorage.RuntimeLicenseAttribute class are listed below. For a complete list
of WebStorage.RuntimeLicenseAttribute class members, see the WebStorage.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
WebStorage.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
WebStorage.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorage.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see WebStorageException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.WebStorageException

[Visual Basic]
Public Class WebStorageException
 Inherits ApplicationException

[C#]
public class WebStorageException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A WebStorageException is thrown by the WebStorage class when an error occurs.

The default constructor for the WebStorageException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WebStorage (in SocketTools.WebStorage.dll)

See Also
WebStorageException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorageException Class

WebStorageException overview

Public Instance Constructors

 WebStorageException Overloaded. Initializes a new instance of the
WebStorageException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

WebStorageException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebStorageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the WebStorageException class with the last network error code.

Overload List
Initializes a new instance of the WebStorageException class with the last network error code.

public WebStorageException();

Initializes a new instance of the WebStorageException class with a specified error number.

public WebStorageException(int);

Initializes a new instance of the WebStorageException class with a specified error message.

public WebStorageException(string);

Initializes a new instance of the WebStorageException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

public WebStorageException(string,Exception);

See Also
WebStorageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorageException Constructor

Initializes a new instance of the WebStorageException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public WebStorageException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the WebStorage.ErrorCode enumeration.

See Also
WebStorageException Class | SocketTools Namespace | WebStorageException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorageException Constructor ()

Initializes a new instance of the WebStorageException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public WebStorageException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
WebStorageException Class | SocketTools Namespace | WebStorageException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorageException Constructor (String)

Initializes a new instance of the WebStorageException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public WebStorageException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
WebStorageException Class | SocketTools Namespace | WebStorageException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorageException Constructor (String, Exception)

Initializes a new instance of the WebStorageException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public WebStorageException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the WebStorage.ErrorCode enumeration.

See Also
WebStorageException Class | SocketTools Namespace | WebStorageException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorageException Constructor (Int32)

The properties of the WebStorageException class are listed below. For a complete list of
WebStorageException class members, see the WebStorageException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
WebStorageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorageException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public WebStorage.ErrorCode ErrorCode {get;}

Property Value
Returns a WebStorage.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the WebStorageException class sets the error code to the last network error
that occurred. For more information about the errors that may occur, refer to the WebStorage.ErrorCode
enumeration.

See Also
WebStorageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorageException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
WebStorageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorageException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
WebStorageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorageException.Number Property

The methods of the WebStorageException class are listed below. For a complete list of
WebStorageException class members, see the WebStorageException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WebStorageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorageException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
WebStorageException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WebStorageException.ToString Method

Request registration information for an Internet domain name.

For a list of all members of this type, see WhoisClient Members.

System.Object
 SocketTools.WhoisClient

[Visual Basic]
Public Class WhoisClient
 Implements IDisposable

[C#]
public class WhoisClient : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The WhoisClient class library provides an interface for requesting registration information for an Internet
domain name. When a domain name is registered, the organization that registers the domain must
provide certain contact information along with technical information such as the primary name servers for
that domain.

This class provides an interface for requesting that information and returning it to the program so that it
can be displayed or processed. This class would be most commonly used to query the Whois server at
whois.internic.net to obtain information about a specific Internet domain name or an administrative
contact at that domain.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WhoisClient (in SocketTools.WhoisClient.dll)

See Also
WhoisClient Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient Class

WhoisClient overview

Public Static (Shared) Fields

whoisPortDefault A constant value which specifies the default port
number.

whoisTimeout A constant value which specifies the default
timeout period.

Public Instance Constructors

 WhoisClient Constructor Initializes a new instance of the WhoisClient class.

Public Instance Properties

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

Handle Gets a value that specifies the client handle
allocated for the current session.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

Keyword Gets and sets the default search keyword.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

WhoisClient Members

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WhoisClient.whoisPortDefault.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WhoisClient.whoisTimeout.html

Options Gets and sets a value which specifies one or more
client options.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

SearchType Gets and sets the type of query to be performed
by the remote server.

Status Gets a value which specifies the current status of
the client.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

Version Gets a value which returns the current version of
the WhoisClient class library.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

Connect Overloaded. Establish a connection with a remote
host.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
WhoisClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WhoisClient.RemoteService.html

WhoisClient class.

Read Overloaded. Read data from the server and store
it in a byte array.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Search Overloaded. Search for the specified record using
the specified keyword and search type.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the WhoisClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the WhoisClient class.

[Visual Basic]
Public Sub New()

[C#]
public WhoisClient();

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient Constructor

The properties of the WhoisClient class are listed below. For a complete list of WhoisClient class
members, see the WhoisClient Members topic.

Public Instance Properties

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Blocking Gets and sets a value which indicates if the client is
in blocking mode.

Handle Gets a value that specifies the client handle
allocated for the current session.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking client operation.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsReadable Gets a value which indicates if there is data
available to be read from the socket connection to
the server.

Keyword Gets and sets the default search keyword.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LocalAddress Gets the local Internet address that the client is
bound to.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets the local port number the client is bound to.

Options Gets and sets a value which specifies one or more
client options.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

SearchType Gets and sets the type of query to be performed

WhoisClient Properties

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WhoisClient.RemoteService.html

by the remote server.

Status Gets a value which specifies the current status of
the client.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the logfile.

TraceFlags Gets and sets a value which specifies the client
function tracing flags.

Version Gets a value which returns the current version of
the WhoisClient class library.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.AutoResolve Property

Gets and sets a value which indicates if the client is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the client is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if client operations complete synchronously or asynchronously.
If set to true, then each client operation (such as sending or receiving data) will return when the operation
has completed or timed-out. If set to false, client operations will return immediately. If the operation
would result in the client blocking (such as attempting to read data when no data has been sent by the
remote host), an error is generated.

It is important to note that certain events, such as OnDisconnect, OnRead and OnWrite are only fired if
the client is in non-blocking mode.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Blocking Property

Gets a value that specifies the client handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a client handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the numeric descriptor of the current client session.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Handle Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.HostAddress Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.HostName Property

Gets a value which indicates if the current thread is performing a blocking client operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next client operation will not fail. An application
should always check the return value from a client operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.IsBlocked Property

Gets a value which indicates if a connection to the remote host has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the remote
host. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.IsInitialized Property

Gets a value which indicates if there is data available to be read from the socket connection to the server.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the client without blocking. For non-
blocking sessions, this property can be checked before the application attempts to read the client. Note
that even if this property does return true indicating that there is data available to be read, applications
should always check the return value from the Read method.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.IsReadable Property

Gets and sets the default search keyword.

[Visual Basic]
Public Property Keyword As String

[C#]
public string Keyword {get; set;}

Property Value
A string which specifies the default search keyword.

Remarks
The Keyword property specifies the value used when querying the remote server. The keyword may refer
to a handle, a user name or a mailbox name. Setting this property provides the default keyword for the
Search method.

Keywords may contain special characters that instruct the server how to match the value. These values are
outlined in RFC 954, the standards document that describes the WHOIS/NICNAME protocol. These forms
are typically recognized:

Example Description

value Search for value as either a user name or a handle.

value... Search for value that matches anything up to that
point.

!value Search for a handle that matches the given value.

last, first Search for the specified name.

user@ Search for mailboxes with the given user name.

@host Search for mailboxes on the specified host.

user@host Search for mailboxes for the user on the specified
host.

If the keyword uses any of these special forms, the SearchType property must be set to searchAny, which
tells the control not to modify the keyword value when submitting the query to the server. Note that all
keyword forms may not be supported by a given server, and additional types of searches may be
supported.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Keyword Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public WhoisClient.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.LastErrorString Property

Gets the local Internet address that the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalAddress As String

[C#]
public string LocalAddress {get;}

Property Value
A string which specifies an Internet address.

Remarks
The LocalAddress property returns the local Internet address that the client is bound to when a
connection is established with a remote host. This property may return either an IPv4 or IPv6 formatted
address, depending on the type of connection that was established.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.LocalAddress Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.LocalName Property

Gets the local port number the client is bound to.

[Visual Basic]
Public ReadOnly Property LocalPort As Integer

[C#]
public int LocalPort {get;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to identify the local port number that the client is bound to to when a
connection is established with a remote host.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.LocalPort Property

Gets and sets a value which specifies one or more client options.

[Visual Basic]
Public Property Options As WhoisOptions

[C#]
public WhoisClient.WhoisOptions Options {get; set;}

Property Value
Returns one or more WhoisOptions enumeration flags which specify the options for the client. The default
value for this property is whoisOptionNone.

Remarks
The Options property specifies one or more default options options which are used when establishing a
connection using the Connect method.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Options Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.RemotePort Property

Gets and sets the type of query to be performed by the remote server.

[Visual Basic]
Public Property SearchType As WhoisSearchType

[C#]
public WhoisClient.WhoisSearchType SearchType {get; set;}

Property Value
A WhoisSearchType enumeration value which specifies the default type of search to be performed.

Remarks
The SearchType property specifies the default type of query to be performed by the remote server using
the Search method. If you wish to perform a more complex query using the syntax outlined in RFC 954,
specify a search type of searchAny and then provide the search string value that you want to submit.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.SearchType Property

Gets a value which specifies the current status of the client.

[Visual Basic]
Public ReadOnly Property Status As WhoisStatus

[C#]
public WhoisClient.WhoisStatus Status {get;}

Property Value
A WhoisStatus enumeration value which specifies the current client status.

Remarks
The Status property returns the current status of the client. This property can be used to check on
blocking connections to determine if the client is interacting with the remote host before taking some
action.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Status Property

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public WhoisClient.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
WhoisClient Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.ThreadModel Property

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WhoisClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WhoisClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WhoisClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WhoisClient.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.WhoisClient.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error.

The timeout period is only used when the client is in blocking mode. Although this property can be
changed when the client is in non-blocking mode, the value will be ignored until the client is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Trace Property

Gets and sets a value which specifies the name of the logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.TraceFile Property

Gets and sets a value which specifies the client function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public WhoisClient.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.TraceFlags Property

Gets a value which returns the current version of the WhoisClient class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the WhoisClient
class library. This value can be used by an application for validation and debugging purposes.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Version Property

The methods of the WhoisClient class are listed below. For a complete list of WhoisClient class
members, see the WhoisClient Members topic.

Public Instance Methods

AttachThread Attach an instance of the class to the current
thread

Cancel Cancel the current blocking client operation.

Connect Overloaded. Establish a connection with a remote
host.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
WhoisClient.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
WhoisClient class.

Read Overloaded. Read data from the server and store
it in a byte array.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Search Overloaded. Search for the specified record using
the specified keyword and search type.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the WhoisClient class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WhoisClient Class | SocketTools Namespace

WhoisClient Methods

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the client could be attached to the current thread. If this method returns
false, the client could not be attached to the thread and the application should check the value of the
LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.AttachThread Method

Cancel the current blocking client operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking client operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Cancel Method

Establish a connection with a remote host.

Overload List
Establish a connection with a remote host.

public bool Connect();

Establish a connection with a remote host.

public bool Connect(string);

Establish a connection with a remote host.

public bool Connect(string,int);

Establish a connection with a remote host.

public bool Connect(string,int,int);

Establish a connection with a remote host.

public bool Connect(string,int,int,WhoisOptions);

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Connect Method

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect() As Boolean

[C#]
public bool Connect();

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method establishes a connection using assigned property values.

The value of the HostName or HostAddress property will be used to determine the host name or
address to connect to.

The value of the RemotePort property will be used to determine the port number to connect to.

The value of the Timeout property will be used to specify the timeout period.

The value of the Options property will be used to specify the default options for the connection.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Connect Method ()

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String _
) As Boolean

[C#]
public bool Connect(
 string hostName
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Connect Method (String)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Connect Method (String, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Connect Method (String, Int32, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer, _
 ByVal options As WhoisOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout,
 WhoisOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking connections.

options
One or more of the WhoisOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the client is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the client is in non-blocking mode, a return value of true indicates
that the client has successfully created a socket and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Connect Method (String, Int32, Int32, WhoisOptions)

Terminate the connection with a remote host.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and releases the client handle
allocated by the class. Note that the socket is not immediately released when the connection is terminated
and will enter a wait state for two minutes. After the time wait period has elapsed, the client will be
released by the operating system. This is a normal safety mechanism to handle any packets that may
arrive after the connection has been closed.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Disconnect Method

Releases all resources used by WhoisClient.

Overload List
Releases all resources used by WhoisClient.

public void Dispose();

Releases the unmanaged resources allocated by the WhoisClient class and optionally releases the
managed resources.

protected virtual void Dispose(bool);

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Dispose Method

Releases all resources used by WhoisClient.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Dispose Method ()

Releases the unmanaged resources allocated by the WhoisClient class and optionally releases the
managed resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the WhoisClient class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Finalize Method

Initialize an instance of the WhoisClient class.

Overload List
Initialize an instance of the WhoisClient class.

public bool Initialize();

Initialize an instance of the WhoisClient class.

public bool Initialize(string);

See Also
WhoisClient Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Initialize Method

Initialize an instance of the WhoisClient class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the WhoisClient class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Initialize Method ()

Initialize an instance of the WhoisClient class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the WhoisClient class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the WhoisClient class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.WhoisClient whoisClient = new SocketTools.WhoisClient();

if (whoisClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(whoisClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim whoisClient As New SocketTools.WhoisClient

If whoisClient.Initialize(strLicenseKey) = False Then
 MsgBox(whoisClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Initialize Overload List | RuntimeLicenseAttribute
Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Initialize Method (String)

Read data from the server and store it in a byte array.

Overload List
Read data from the server and store it in a byte array.

public int Read(byte[]);

Read data from the server and store it in a byte array.

public int Read(byte[],int);

Read data from the server and store it in a string.

public int Read(ref string);

Read data from the server and store it in a string.

public int Read(ref string,int);

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Read Method

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the size of the byte array passed
to the method. If no data is available to be read, an error will be generated if the client is in non-blocking
mode. If the client is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Read Method (Byte[])

Read data from the server and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Read Method (Byte[], Int32)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the client.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to a maximum of 4096 bytes. If no
data is available to be read, an error will be generated if the client is in non-blocking mode. If the client is
in blocking mode, the program will stop until data is received from the server or the connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Read Method (String)

Read data from the server and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the server. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the client is in non-blocking mode. If the client
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Read Method (String, Int32)

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Reset Method

Search for the specified record using the default keyword and search type.

Overload List
Search for the specified record using the default keyword and search type.

public bool Search();

Search for the specified record using the default search type.

public bool Search(string);

Search for the specified record using the specified keyword and search type.

public bool Search(string,WhoisSearchType);

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Search Method

Search for the specified record using the default keyword and search type.

[Visual Basic]
Overloads Public Function Search() As Boolean

[C#]
public bool Search();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Search method submits the specified keyword and type of search to the server. The data returned by
the server can be read using the Read method. Note that the text returned by a UNIX based server may
only contain linefeeds at the end of each line of text, rather than the standard carriage return/linefeed
used on Windows systems.

The value of the Keyword property will specify the search keyword. The value of the SearchType
property is used to specify the type of search that is performed. By default, all record types will be
searched.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Search Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Search Method ()

Search for the specified record using the default search type.

[Visual Basic]
Overloads Public Function Search(_
 ByVal keyword As String _
) As Boolean

[C#]
public bool Search(
 string keyword
);

Parameters
keyword

A string which specifies the keyword to search for. Typically this is the name of a domain, user handle
or an email address.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Search method submits the specified keyword and type of search to the server. The data returned by
the server can be read using the Read method. Note that the text returned by a UNIX based server may
only contain linefeeds at the end of each line of text, rather than the standard carriage return/linefeed
used on Windows systems.

The value of the SearchType property is used to specify the type of search that is performed. By default,
all record types will be searched.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Search Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Search Method (String)

Search for the specified record using the specified keyword and search type.

[Visual Basic]
Overloads Public Function Search(_
 ByVal keyword As String, _
 ByVal search As WhoisSearchType _
) As Boolean

[C#]
public bool Search(
 string keyword,
 WhoisSearchType search
);

Parameters
keyword

A string which specifies the keyword to search for. Typically this is the name of a domain, user handle
or an email address.

search
A WhoisSearchType enumeration which specifies the type of search to be performed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Search method submits the specified keyword and type of search to the server. The data returned by
the server can be read using the Read method. Note that the text returned by a UNIX based server may
only contain linefeeds at the end of each line of text, rather than the standard carriage return/linefeed
used on Windows systems.

See Also
WhoisClient Class | SocketTools Namespace | WhoisClient.Search Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Search Method (String, WhoisSearchType)

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
WhoisClient Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.Uninitialize Method

The events of the WhoisClient class are listed below. For a complete list of WhoisClient class members,
see the WhoisClient Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an client operation fails.

OnRead Occurs when data is available to be read from the
client.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.OnCancel Event

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a remote host as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a socket is
created but the connection is not actually established until after this event occurs. Between the time
connection process is started and this event fires, no operation may be performed on the client other than
calling the Disconnect method.

This event is only generated if the client is in non-blocking mode.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.OnConnect Event

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the remote host closes its connection, terminating the client
session with the application. Because there may still be data in the client receive buffers, you should
continue to read data from the client until the Read method returns a value of 0. Once all of the data has
been read, you should call the Disconnect method to close the local socket and release the resources
allocated for the client.

This event is only generated if the client is in non-blocking mode.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.OnDisconnect Event

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type WhoisClient.ErrorEventArgs containing data related to
this event. The following WhoisClient.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see WhoisClient.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.WhoisClient.ErrorEventArgs

[Visual Basic]
Public Class WhoisClient.ErrorEventArgs
 Inherits EventArgs

[C#]
public class WhoisClient.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WhoisClient (in SocketTools.WhoisClient.dll)

See Also
WhoisClient.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.ErrorEventArgs Class

WhoisClient.ErrorEventArgs overview

Public Instance Constructors

 WhoisClient.ErrorEventArgs Constructor Initializes a new instance of the
WhoisClient.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WhoisClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.ErrorEventArgs Members

Initializes a new instance of the WhoisClient.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public WhoisClient.ErrorEventArgs();

See Also
WhoisClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.ErrorEventArgs Constructor

The properties of the WhoisClient.ErrorEventArgs class are listed below. For a complete list of
WhoisClient.ErrorEventArgs class members, see the WhoisClient.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
WhoisClient.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
WhoisClient.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public WhoisClient.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
WhoisClient.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.ErrorEventArgs.Error Property

Occurs when data is available to be read from the client.

[Visual Basic]
Public Event OnRead As EventHandler

[C#]
public event EventHandler OnRead;

Remarks
The OnRead event occurs when data is available to be read from the client. This event is level-triggered,
which means that once this event fires, it will not occur again until some data has been read from the
client. This design prevents an application from being flooded with event notifications. It is recommended
that your application read all of the available data from the server and store it in a local buffer for
processing. See the example below.

This event is only generated if the client is in non-blocking mode.

Example

Private Sub Socket_OnRead(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Socket.OnRead
 Dim strBuffer As String
 Dim nRead As Integer

 Do
 ' Read up to m_nBufferSize bytes of data from the server
 nRead = Socket.Read(strBuffer, m_nBufferSize)

 If nRead > 0 Then
 ' Append the data to an internal buffer for processing
 m_dataBuffer = m_dataBuffer + strBuffer
 End If
 Loop Until nRead < 1

 ProcessData()
End Sub

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.OnRead Event

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.OnTimeout Event

Occurs when data can be written to the client.

[Visual Basic]
Public Event OnWrite As EventHandler

[C#]
public event EventHandler OnWrite;

Remarks
The OnWrite event occurs when the application can write data to the client. This event will typically occur
when a connection is first established with the remote host, and after the Write method has failed
because there was insufficient memory available in the client send buffers. In the second case, when some
of the buffered data has been successfully sent to the remote host and there is space available in the send
buffers, this event is used to signal the application that it may attempt to send more data.

This event is only generated if the client is in non-blocking mode.

See Also
WhoisClient Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.OnWrite Event

Specifies the error codes returned by the WhoisClient class.

[Visual Basic]
Public Enum WhoisClient.ErrorCode

[C#]
public enum WhoisClient.ErrorCode

Remarks
The WhoisClient class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

WhoisClient.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WhoisClient (in SocketTools.WhoisClient.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the logging options that the WhoisClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum WhoisClient.TraceOptions

[C#]
[Flags]
public enum WhoisClient.TraceOptions

Remarks
The WhoisClient class uses the TraceOptions enumeration to specify what kind of debugging information
is written to the trace logfile. These options are only meaningful when trace logging is enabled by setting
the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.WhoisClient (in SocketTools.WhoisClient.dll)

See Also
SocketTools Namespace

WhoisClient.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the options that the WhoisClient class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum WhoisClient.WhoisOptions

[C#]
[Flags]
public enum WhoisClient.WhoisOptions

Remarks
The WhoisClient class uses the WhoisOptions enumeration to specify one or more options to be used
when establishing a connection with a remote host. Multiple options may be specified if necessary.

There are currently no additional options for WhoisClient class. This enumeration is provided for future
expansion.

Members

Member Name Description Value

optionNone No option specified. 0

optionDefault The default connection option. This is
the same as specifying optionNone.

0

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

Requirements
Namespace: SocketTools

Assembly: SocketTools.WhoisClient (in SocketTools.WhoisClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.WhoisOptions Enumeration

Specifies the search options supported by the WhoisClient class.

[Visual Basic]
Public Enum WhoisClient.WhoisSearchType

[C#]
public enum WhoisClient.WhoisSearchType

Remarks
The WhoisSearchType enumeration specifies the types of queries that can be performed using the
Search method. If you wish to perform a more complex query using the syntax outlined in RFC 954,
specify a search type of searchAny and then provide the search string value that you want to submit.

Members

Member Name Description

searchAny Search for any value that matches the given
keyword value. This is the default search type.

searchHandle Search for a handle that matches the given
keyword value.

searchName Search for a user name that matches the given
keyword value.

searchMailbox Search for a user mailbox that matches the given
keyword value.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WhoisClient (in SocketTools.WhoisClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.WhoisSearchType Enumeration

Specifies the status values that may be returned by the WhoisClient class.

[Visual Basic]
Public Enum WhoisClient.WhoisStatus

[C#]
public enum WhoisClient.WhoisStatus

Remarks
The WhoisClient class uses the WhoisStatus enumeration to identify the current status of the client.

Members

Member Name Description

statusUnused A client session has not been created. Attempts to
perform any network operations, such as sending
or receiving data, will generate an error.

statusIdle A client session has been created, but is not
currently in use. A blocking socket operation can
be executed at this point.

statusConnect The client is in the process of establishing a
connection with a remote host.

statusRead The client is in the process of receiving data from a
remote host.

statusWrite The client is in the process of sending data to a
remote host.

statusDisconnect The client session is being closed and subsequent
attempts to access the client will result in an error.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WhoisClient (in SocketTools.WhoisClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.WhoisStatus Enumeration

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub WhoisClient.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void WhoisClient.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WhoisClient (in SocketTools.WhoisClient.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.OnErrorEventHandler Delegate

Attribute that defines the runtime license key for the class.

For a list of all members of this type, see WhoisClient.RuntimeLicenseAttribute Members.

System.Object
 System.Attribute
 SocketTools.WhoisClient.RuntimeLicenseAttribute

[Visual Basic]
<AttributeUsage(ValidOn:=AttributeTargets.Assembly, AllowMultiple:=False,

Inherited:=True)>
Public Class WhoisClient.RuntimeLicenseAttribute
 Inherits Attribute

[C#]
[AttributeUsage(ValidOn=AttributeTargets.Assembly, AllowMultiple=False,

Inherited=True)]
public class WhoisClient.RuntimeLicenseAttribute : Attribute

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The RuntimeLicense attribute is used to define the runtime license key that will be used when an instance
of the class is created. This attribute is defined in the assembly information module for the language, such
as AssemblyInfo.cs when programming C#. The runtime license key must be defined if you wish to
redistribute your application.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the WhoisClient class.

Example

<Assembly: SocketTools.WhoisClient.RuntimeLicense("abcdefghijklmnop")>

[assembly: SocketTools.WhoisClient.RuntimeLicense("abcdefghijklmnop")]

Requirements
Namespace: SocketTools

Assembly: SocketTools.WhoisClient (in SocketTools.WhoisClient.dll)

See Also
WhoisClient.RuntimeLicenseAttribute Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.RuntimeLicenseAttribute Class

WhoisClient.RuntimeLicenseAttribute overview

Public Instance Constructors

 WhoisClient.RuntimeLicenseAttribute
Constructor

Constructor for the RuntimeLicense attribute which
defines the runtime license key.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

Public Instance Methods

Equals (inherited from Attribute)

GetHashCode (inherited from Attribute) Returns the hash code for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IsDefaultAttribute (inherited from Attribute) When overridden in a derived class, returns an
indication whether the value of this instance is the
default value for the derived class.

Match (inherited from Attribute) When overridden in a derived class, returns a
value indicating whether this instance equals a
specified object.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WhoisClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.RuntimeLicenseAttribute Members

Constructor for the RuntimeLicense attribute which defines the runtime license key.

[Visual Basic]
Public Sub New(_
 ByVal licenseKey As String _
)

[C#]
public WhoisClient.RuntimeLicenseAttribute(
 string licenseKey
);

Parameters
licenseKey

A string argument which specifies the runtime license key which will be used to initialize the class
library.

Remarks
The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the WhoisClient class.

See Also
WhoisClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.RuntimeLicenseAttribute Constructor

The properties of the WhoisClient.RuntimeLicenseAttribute class are listed below. For a complete list of
WhoisClient.RuntimeLicenseAttribute class members, see the WhoisClient.RuntimeLicenseAttribute
Members topic.

Public Instance Properties

LicenseKey Returns the value of the runtime license key.

TypeId (inherited from Attribute) When implemented in a derived class, gets a
unique identifier for this Attribute.

See Also
WhoisClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.RuntimeLicenseAttribute Properties

Returns the value of the runtime license key.

[Visual Basic]
Public Property LicenseKey As String

[C#]
public string LicenseKey {get; set;}

Property Value
A string which contains the runtime license key.

See Also
WhoisClient.RuntimeLicenseAttribute Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClient.RuntimeLicenseAttribute.LicenseKey Property

The exception that is thrown when a client error occurs.

For a list of all members of this type, see WhoisClientException Members.

System.Object
 System.Exception
 System.ApplicationException
 SocketTools.WhoisClientException

[Visual Basic]
Public Class WhoisClientException
 Inherits ApplicationException

[C#]
public class WhoisClientException : ApplicationException

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
A WhoisClientException is thrown by the WhoisClient class when an error occurs.

The default constructor for the WhoisClientException class sets the ErrorCode property to the last client
error that occurred.

Requirements
Namespace: SocketTools

Assembly: SocketTools.WhoisClient (in SocketTools.WhoisClient.dll)

See Also
WhoisClientException Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClientException Class

WhoisClientException overview

Public Instance Constructors

 WhoisClientException Overloaded. Initializes a new instance of the
WhoisClientException class.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Properties

WhoisClientException Members

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WhoisClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the WhoisClientException class with the last network error code.

Overload List
Initializes a new instance of the WhoisClientException class with the last network error code.

public WhoisClientException();

Initializes a new instance of the WhoisClientException class with a specified error number.

public WhoisClientException(int);

Initializes a new instance of the WhoisClientException class with a specified error message.

public WhoisClientException(string);

Initializes a new instance of the WhoisClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

public WhoisClientException(string,Exception);

See Also
WhoisClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClientException Constructor

Initializes a new instance of the WhoisClientException class with the last network error code.

[Visual Basic]
Overloads Public Sub New()

[C#]
public WhoisClientException();

Remarks
The ctor constructor sets the ErrorCode property to the last client error that occurred. For more
information about the errors that may occur, refer to the WhoisClient.ErrorCode enumeration.

See Also
WhoisClientException Class | SocketTools Namespace | WhoisClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClientException Constructor ()

Initializes a new instance of the WhoisClientException class with a specified error message.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String _
)

[C#]
public WhoisClientException(
 string message
);

Parameters
message

The error message that explains the reason for the exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

See Also
WhoisClientException Class | SocketTools Namespace | WhoisClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClientException Constructor (String)

Initializes a new instance of the WhoisClientException class with a specified error message and a reference
to the inner exception that is the cause of this exception.

[Visual Basic]
Overloads Public Sub New(_
 ByVal message As String, _
 ByVal innerException As Exception _
)

[C#]
public WhoisClientException(
 string message,
 Exception innerException
);

Parameters
message

The error message that explains the reason for the exception.

innerException
The exception that is the cause of the current exception. If the innerException parameter is not a null
reference, the current exception is raised in a catch block that handles the inner exception.

Remarks
The content of the message parameter is intended to be understood by humans. The caller of this
constructor is required to ensure that this string has been localized for the current system culture.

An exception that is thrown as a direct result of a previous exception should include a reference to the
previous exception in the InnerException property. The InnerException property returns the same value
that is passed into the constructor, or a null reference if the InnerException property does not supply the
inner exception value to the constructor.

See Also
WhoisClientException Class | SocketTools Namespace | WhoisClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClientException Constructor (String, Exception)

Initializes a new instance of the WhoisClientException class with a specified error number.

[Visual Basic]
Overloads Public Sub New(_
 ByVal code As Integer _
)

[C#]
public WhoisClientException(
 int code
);

Parameters
code

An integer value which specifies an error code.

Remarks
This constructor sets the ErrorCode property to the specified error code. For more information about the
errors that may occur, refer to the WhoisClient.ErrorCode enumeration.

See Also
WhoisClientException Class | SocketTools Namespace | WhoisClientException Constructor Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClientException Constructor (Int32)

The properties of the WhoisClientException class are listed below. For a complete list of
WhoisClientException class members, see the WhoisClientException Members topic.

Public Instance Properties

ErrorCode Gets a value which specifies the error that caused
the exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exception instance that caused the
current exception.

Message Gets a value which describes the error that caused
the exception.

Number Gets a value which specifies the numeric value of
the error that caused the exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

See Also
WhoisClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClientException Properties

Gets a value which specifies the error that caused the exception.

[Visual Basic]
Public ReadOnly Property ErrorCode As ErrorCode

[C#]
public WhoisClient.ErrorCode ErrorCode {get;}

Property Value
Returns a WhoisClient.ErrorCode enumeration value which specifies the error code.

Remarks
The ErrorCode property returns the error code that specifies the cause of the exception.

The default constructor for the WhoisClientException class sets the error code to the last network error
that occurred. For more information about the errors that may occur, refer to the WhoisClient.ErrorCode
enumeration.

See Also
WhoisClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClientException.ErrorCode Property

Gets a value which describes the error that caused the exception.

[Visual Basic]
Overrides Public ReadOnly Property Message As String

[C#]
public override string Message {get;}

Property Value
A string which describes the error that caused the exception.

Remarks
The Message property returns a string which describes the error that caused the exception.

See Also
WhoisClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClientException.Message Property

Gets a value which specifies the numeric value of the error that caused the exception.

[Visual Basic]
Public ReadOnly Property Number As Integer

[C#]
public int Number {get;}

Property Value
An integer value that specifies the error that caused the exception.

Remarks
The Number property returns an integer value which specifies the numeric value of the error that caused
the exception. This value is the same as the values returned by the Windows Sockets API. For more
information about socket error codes, see the Windows Socket Version 2 API error code documentation in
MSDN.

See Also
WhoisClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClientException.Number Property

The methods of the WhoisClientException class are listed below. For a complete list of
WhoisClientException class members, see the WhoisClientException Members topic.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Creates and returns a string representation of the
current exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
WhoisClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClientException Methods

Creates and returns a string representation of the current exception.

[Visual Basic]
Overrides Public Function ToString() As String

[C#]
public override string ToString();

Return Value
A string representation of the current exception.

Remarks
The ToString method returns a representation of the current exception that is intended to be understood
by humans. Where the exception contains culture-sensitive data, the string representation returned by
ToString is required to take into account the current system culture. Although there are no exact
requirements for the format of the returned string, it should attempt to reflect the value of the object as
perceived by the user.

This implementation of ToString obtains the numeric error code value and a description of the error that
caused the current exception. If there is no error message or it is an empty string, then no error message
is returned.

This method overrides ApplicationException.ToString.

See Also
WhoisClientException Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

WhoisClientException.ToString Method

