Google OAuth 2.0 Quick Start Guide

This guide will show you how to obtain OAuth 2.0 bearer tokens (also called access tokens) for use with Gmail accounts.

To get started, you will need the following:

1.

2.

A Google account which you will need to register your application. You can create this for free at
https://accounts.google.com/SignUp

A Gmail account which you can use for testing purposes. You can create a free Gmail account at the sign up
process linked above, or you can sign up for G Suite at https://gsuite.google.com/products/gmail/

A copy of the Postman utility which can be downloaded for free from https://www.postman.com. We will use
this to compose the queries to Google’s servers to obtain the authorization code, bearer, and refresh tokens.

SocketTools 10 Build 1245 which supports authentication using OAuth 2.0 bearer tokens. If you have a current
development license, this is a free update. If you have an older version of SocketTools, you will need to upgrade

to the current version.

If you already have a Google account which uses a different (non-Gmail) email address, you can add a Gmail address to
your existing account as described at https://support.google.com/accounts/answer/72198

Once you have created your Google account, the first step is to open the Google Developers Console at
https://console.developers.google.com/

& Dashboard — APls & Services - b4
&« c O @ console.developers.google.com/projectselector?/apis/dashboard?supportedpurview=project w B
= Google Select a project = Q, Search for APls and Services - w9 A
API APIs & Services Dashboard
«;* Dashboard
@ Toview this page, select a project CREATE PROJECT
i Library
O Credentials

OAuth consent screen
Domain verification

Page usage agreements

From there, select Create Project. If you already have projects associated with your account, you can also click on Select
a project and then create a new project. Your project is what you’ll use to register your application with Google.

The project name should be simple and is typically the name of the application you're going to be registering. Project

names can contain spaces.

https://sockettools.com/
https://accounts.google.com/SignUp
https://gsuite.google.com/products/gmail/
https://www.postman.com/
https://support.google.com/accounts/answer/72198
https://console.developers.google.com/

New Project

Project name *
Test Application (7]

Project ID: test-application-287516. It cannot be changed later. EDIT

Location *
B Mo organization BROWSE

Parent organization or folder
CREATE CAMNCEL

For this guide, we’ll name our project Test Application and Google will assign it a unique Project ID. You can change the
project ID if you wish, but generally there’s no need.

@ voudon't have any APls available to use yet. To get started, click “Enable APls and services” or go to the AP library

After you’ve created your project, you’ll be sent back to the dashboard and you’ll see this message. Click on the link or
select Library on the left sidebar. This will take you to the API Library search form.

Search for Gmail APl and select it. You will be shown a confirmation screen to enable the API. Even though you won’t be
using the web API to access the Gmail account, it still needs to be enabled.

Gmail API

Google

Flexible, RESTful access to the user's inbox

ENABLE TRY THIS APl [

OVERVIEW DOCUMENTATION SUPPORT

After you have enabled the Gmail API, you will be taken to the API & Services section, and you may see a message about
creating credentials. Before we do that, there are a few more things we need to configure.

https://sockettools.com/

Return back to the Developers Console dashboard at https://console.developers.google.com/ select OAuth consent
screen from the left sidebar.

API

APls & Services OAuth consent screen

Choose how you want to configure and register your app, including your
target users. You can only associate one app with your project.

User Type
() Internal @

DAuth consent screen

Only available to users within your organization. You will not need to

Domain verification submit your app for verification.

Page usage agreements @ External @

Available to any user with a Google Account.

Let us know what you think about our QAuth experience

You want to select External as the user type and then click on Create and you will be shown the consent form where you
enter information about your application.

OAuth consent screen

Eefore your users authenticate, this consent screen will allow them to choose
whether they want to grant access to their private data, as well as give themn a link
to your terms of service and privacy policy. This page configures the consent
screen for all applications in this project.

Verification status
Mot published

Application name
The name of the app asking for consent

My Test Application
Application logo
An image on the consent screen that will help users recognize your app

Local file for upload Browse

Copyright © 2020 Catalyst Development Corporation. All rights reserved. Page 3

sockettools.com

https://sockettools.com/
https://console.developers.google.com/

This information is presented to the user whenever your application wants access to their account. At a minimum you’ll

need to provide an application name, which is displayed to the user. For this guide, we’ll name our application My Test
Application.

You can also select a support email address, enter an authorized domain name and links to privacy and policy pages on
your website. For our purposes, this won’t be required.

Scopes for Google APls

Scopes allow your application 1o access your user's private data. Learn more

If vou add a sensitive scope, such as scopes that give yvou full access to Calendar or Drive
Google will verify vour consent screen before it's published.
ema
nrofile
openid
Add scope

One additional piece of information you’ll need to configure is the scope. Click the Add scope button and a list of
available scopes will be displayed.

Add scope

Scopes are used to grant an application different levels of access on behalf of the end user. Learn more about OAuth 2.0
Only scopes for enabled APIs are listed

o Gmail AP auth/gmail.readon ew your email messages and settings -
ﬂ Gmail API Jauth/gmail maodify View and modify but not delete yvour emai
ﬂ Gmail API auth/gmail.insert sert mail into your mailbox

v B Gmail API https:/fmail_google.com Read, compose, send, and permanently

delete all your email from Gma

o nail AP auth/gmail.sen Send email on your behalf

o nail AP auth/gmail.addons.current. message.readon ew your email messages when the add
1is running

8 Gmailap Jauth/gmail.compose Janage drafts and send emails

Scroll down to the scope https://mail.google.com/ and select it. Then click Add and you’ll see a warning on the
consent screen that you’ve added a scope which requires verification. Then click on Save to complete the process.

https://sockettools.com/

API APIs & Services Credentials (+ CREATE CREDENTIALS) W DELETE

¢+ Dashboard Create credentials to access your enabled APIs. Learn more

M Library

A Toprotect you and your users, your consent screen and application need to be verified by Google. Learn more CONFIGURE CONSENT SCREEN
O Credentials
2 OAuth consent screen
7 APl Keys
Domain verification O Name Creation date Restrictions Key Usage with all services (last 30 days) @

Sy Page usage agreements Mo AP keys to display

OAuth 2.0 Client IDs

D Name Creation date Type Client ID

Mo OAuth clients to display

Service Accounts Manage service accounts

O Email Name T Usage with all services (last 30 days) @

No service accounts to display

The next step is to create your credentials. Select Credentials on the Developers Console and then click on Create
Credentials. Select OAuth client ID from the list.

& Create OAuth client ID

A client 1D is used to identify a single app to Google's OAuth servers. If your app runs on
multiple platforms, each will need its own client ID. See Setting up OAuth 2.0 for more

information.

Application type *
Desktop app -

Learn more about OAuth client types

Mame *
Test Mail Client

The name of your OAuth 2.0 client. This name is only used to identify the client in the
console and will not be shown to end users.

Select Desktop app as the application type, and you can assign it whatever name you wish. As noted on the form, this is
not what is shown to end users. This is for your own internal use in the console. Click on Create.

https://sockettools.com/

You will be presented with your client ID and client secret and given the option to copy them to the clipboard. You can
do that now, but don’t worry, you can always go back to the console to obtain those values again.

OAuth client created

The client ID and secret can always be accessed from Credentials in APls &
Services

o DAuth is limited to 100 sensitive scope logins until the OAuth

consent screen is verified. This may require a verification process
that can take several days.

Your Client ID
u
Your Client Secret
n|
oK

With Google, the client IDs look like long domain names which end in apps.googleusercontent.com and the client secret

is a random string of letters and numbers. Both values are required to obtain the bearer token for the Gmail account you
want to access.

Now that we’ve registered our application and have the client ID, the next step is to use Postman to create the queries
we will send to Google’s servers to obtain the authorization code. And with that authorization code, we can request the
bearer (access) token and refresh token which are used to access the Gmail account.

https://sockettools.com/

Open Postman and create a new collection by selecting New Collection and give it a name. For this example, we will
name the collection "Google Test App". You can also add a description of it if you wish, then press Create.

@ Postman

File Edit View Help

®) New Import Runner B 88 My Workspace - & Invite
o} . No Environment v ® =
() e
History Collections APIs
® New Collection Trash

s 9 Google Test App

equests

ﬂ Open Launchpad

O, Find and Replace] Conscle = Bootcamp Build Browse [als]

These collections are where you will store the requests we will send to Google’s servers. We will create the requests
first, and then we’ll begin the process of obtaining the tokens we need.

The three requests we’ll create in Postman are:

Authorization

This request is used to obtain the authorization code and is the first step towards getting the bearer token. This request
is sent with GET to https://accounts.google.com/o/oauth2/v2/auth and the query parameter will provide your client ID
and other required information.

Request Token

This request is used to obtain the bearer and refresh tokens needed to access the user’s account. This is done using a
POST to https://www.googleapis.com/oauth2/v4/token and the post data will contain the authorization code provided
in the previous step.

Refresh Token

This request is used to refresh the bearer token after it has expired. Bearer tokens have a short lifespan, typically an
hour, and will expire. Refresh the token is also done using a POST to https://www.googleapis.com/oauth2/v4/token with
the refresh token provided in the post data.

https://sockettools.com/
https://accounts.google.com/o/oauth2/v2/auth
https://www.googleapis.com/oauth2/v4/token
https://www.googleapis.com/oauth2/v4/token

Postman

File Edit View Help

oo

oo My Workspace A Invite

Q . No Environment v ® =
History Collections APIs
® MNew Collection Trash
= 1=
3 o
> Google Test App ¥
0 requests
A Share Collection
Al Rename
& Edit
L-E Create a fork
(IEI Add Request]
EF Add Folder n Open Launchpad
[0 Duplicate
o Export o
. J@: Learn how to debug requests and perform manual testing Start X

[*%] Monitor Collection
= Mock Collection
'ﬁ' Publish Docs
. Remove from workspace
Tw_ Delete

Q, Find and Replace E Console T Bootcamp Build Browse IE‘ '/f\'

Create the first request, which is Authorization. Select Add Request from the menu on the left side of the display, and
name it. You can also add a description if you wish.

https://sockettools.com/

@ Postman

File Edit View Help

() New Import Run 88 My Workspace v
Q — No Environment - ® =
GET Authorization X (&) eoo
istary o
History Collections APIs b Authorization Examples 0 v 4
#) New Collection Trash
GET v https:/faccounts.google.com/o/oauth2/va/auth?client_id= Send - Save ¥
v 9 Google Test App
equest Params @ Authorization Headers () Body Pre-request Script Tests Settings Cockies Code
GET Authorization Query Params
KEY VALUE DESCRIPTION e Bulk Edit
client_id
scope https://mail.google.com/
response_type code
access_type offline
redirect_uri http://127.0.0.1/testApp/
Hit Send to get a response
1
J@®: Learn how to debug requests and perform manual testing Start X
Q, Find and Replace E Conscle =" Bootcamp Build Browse E

Name the request Authorization and it will default to using GET and enter the URL to Google’s authorization server
https:// accounts.google.com/o/oauth2/v2/auth

Populate the query parameters with five values which comprise the request.

client_id

scope

response_type

access_type

redirect_uri

The client ID you obtained when you registered your application with Google.

This informs Google what kind of access you want to the user’s mail account. In this guide,

we will use https://mail.google.com/ because this is the required scope for IMAP and
SMTP access.

The response type should always be code for our purposes. This tells Google we want an
authorization code.

The access type should always be offline so Google will provide us with refresh tokens
which can be used to obtain new bearer tokens after they expire.

This is the redirect URI we will use with the application.

You should be sure to use a unique address for the redirect URI. We recommend following it with an abbreviated name

for your application. It needs to be a valid URI and you should keep it short and concise. For this guide, we will use the
redirect URI http://127.0.0.1/testApp/

https://sockettools.com/

@ Postman

File Edit View Help

@ New Import Runner v

B8 My Workspace ¥ A Invite @ Upgrade
Q . No Environment v @ =
GET Authorization Request Token x (+) eoo
storv i
History Collections APIs » Request Token Examples 0 v 4
® MNew ction Trash
POST v https:/fwww.googleapis.com/oauth2fv4ftoken “ save -
v [Google Test App
< requests Params Authorization Headers (8) Body @ Pre-request Script Tests Settings Cookies Code
GET Authorization h
none form-data @ x-www-form-urlencoded raw binary GraphQL
Request Token
KEY VALUE DESCRIPTION *** Bulk Edit
client_id
client_secret
code
redirect_uri hrep:/127.0.0.1/testApp/
grant_type authorization_code
Hit Send to get a response
*
@ Learn how to debug requests and perform manual testing Start X
Q, Find and Replace E Conscle T Bootcamp Build Browse B

You may wonder if using a non-secure connection is safe. Because 127.0.0.1 is the local loopback IP address for your
device, a connection will never be attempted beyond your desktop system. To prevent possible conflicts with
misconfigured firewalls, we recommend using the IP address and not http://localhost/testApp

Next, create the Request Token request which uses POST. Select Body from the menu, and the encoding type x-www-
form-urlencoded as shown above. The URL is https://www.googleapis.com/oauth2/v4/token

Populate the parameters with five values which comprise the request.

client_id The client ID you obtained when you registered your application with Google.

client_secret The client secret you obtained when you registered your application with Google.

code This is the authorization code which will be obtained using the previous request. We don’t

have the code yet, so leave this blank.

redirect_uri This is the same redirect URI we provided when we requested authorization.

grant_type This value should be authorization_code which tells Google we want the bearer and

refresh tokens.

https://sockettools.com/

@ Postman

File Edit View Help

) New Import Runner (R B8 My Workspace ~ A Invite
Q = No Environment v ® =
GET Authorization Request Token Refresh Token x (+) oo
storv i
History Collections APIs » Refresh Token Examples 0 v 4
® MNew Collection Trash
POST v htps://fwww.googleapis.com/oauth2fvdftoken
v [Google Test App
- requests Params Authorization Headers (8) Body @ Pre-request Script Tests Settings
GET Authorization R
none form-data @ x-www-form-urlencoded raw binary GraphQL
KEY VALUE DESCRIPTION *** | Bulk Edit
Refresh Token

client_id
client_secret
refresh_token

Erant_type refresh_token

Hit Send to get a response
P

@ Learn how to debug requests and perform manual testing Start X

Q, Find and Replace EJ Console

T Bootcamp Build Browse E‘

The final request type will be Refresh Token which is used to refresh an expired bearer token. This will also use a POST
to https://www.googleapis.com/oauth2/v4/token

There are four values which comprise the request.

client_id The client ID you obtained when you registered your application with Google.

client_secret The client secret you obtained when you registered your application with Google.

refresh_token The refresh token you obtained when the initial authorization was granted. This token has
a long validity period and is required to get a new bearer token after it has expired. We

don’t have the refresh token yet, so leave this blank.

grant_type This value should be refresh_token which tells Google we want a new bearer token.

https://sockettools.com/

Postman

File Edit View Help

@ New rt Runner B8 My Workspace ¥ & Invite
Q No Environment vy ® =
GET Authorization x Request Token Refresh Token oo
History Collections APIs } Authorization Examples 0 ¥ Z
@ MNew Collection Trash
GET v E‘rtps:r;'a:ccunts.gocgle.:omf'o.-’cau:ﬁ2.-’v2fau:h?cl|en:,|d=
v [f?;i%iiest App
S Params @ Authorization Headers (6) Body Pre-request Script Tests Settings
GET Authorizatien Query Params
Request Token KEY VALUE DESCRIPTION *** Bulk Edit
Refresh Token client_id
scope https://mail.google.com/
response_type code
access_type offline
redirect_uri hrrp:/127.0.0.1/testApp/
Hit Send to get a response
4 . , Learn how to debug requests and perform manual testing Start X
Q, Find and Replace E Conscle T Bootcamp Build Browse IE‘ (E)

Now that we have created all three request types and saved them in Postman, copy the URL from the Authorization

request and paste it into a browser address bar. This step requires you to login with your Gmail account and must be
done interactively in a browser.

G Sign in - Google Accounts x

&« c @ accounts.google.com/o/oauth2/v2/auth/identifier?client_id= .apps.googleusercontent.com@scope=https%3A%2F%2Fmailgoogle.. ¥ e

G signin with Google

Signin

to continue to My Test Application

[Email or phone

Forgot email?

Create account m

https://sockettools.com/

If you have two-factor authentication enabled with your Gmail account, you will need to confirm the login attempt. After
you’ve logged in, you will be asked to confirm you want My Test Application to have access to your account.

' G Sign in - Google Accounts b +

&« c @ accounts.google.com/signin/oauth/danger?authuser=08tpart= - o= e

A

This app isn't verified

This app hasn't been verified by Google yet. Only proceed if you know and trust the
developer.

If you're the developer, submit a verification request to remove this screen. Learn more

Hide Advanced BACK TO SAFETY

Google hasn't reviewed this app yet and can't confirm it's authentic. Unverified apps may
pose a threat to your personal data. Learn more

[Go to My Test Application (unsafe)]

Because your application hasn’t been verified, you will get a warning from Google about your test application accessing
your account. This is normal during the development and testing period for your application. However, when it’s time
for you to release your application to the public, you will need to go through the verification process.

You can learn more about unverified apps on Google’s website.

After you have completed the login process and confirmed you want your test application to have access to your Gmail
account, the browser will redirect back to the URI you’ve specified. Because there won’t be any web server able to
respond, an error will be displayed. However, the information we need is returned in the address bar.

You will notice the address bar now has a value which looks like your return URI:

http://127.0.0.1/testApp/?code=[your_authorization_code]&scope=https://mail.google.com/

@ 127001 x

& c @ 12?.0.0.1,’testApp/’?code:l 'S'scope:https:,’fmail.gnngIe‘com,v‘

What follows the request URI between the ?code= and &scope= portion is the authorization code we’re interested in.
This is going to be a string of letters, numbers, and symbols which you should copy and paste into Request Token
request we’ve created in Postman.

With the authorization code pasted into the code field, press Send to send the request.

https://sockettools.com/
https://support.google.com/cloud/answer/7454865

Postman

File Edit View Help

) New mport - B8 My Workspace ~ & Invite
Q = No Environment v ® =
GET Authorization Request Token L] Refresh Token Lo L
| .
History Collections APIs » Request Token Examples 0 v 4
® MNew Collection Trash
POST v https:/fwww.googleapis.com/oauth2fv4ftoken “ save -
v [Google Test App
N = Params Authorization Headers (8) Body @ Pre-request Script Tests Settings Cookies Code
GET Authorization .
none form-data @ x-www-form-urlencoded raw binary GraphQL
(Request Token)
KEY VALUE DESCRIPTION *** Bulk Edit
client_id
client_secret
code
redirect_uri hrep:/127.0.0.1/testApp/
grant_type authorization_code
Body Cookies Headers (13) TestResults €h Status: 2000K Time: 260 ms Size: 953 B Save Response v
Pretty Raw Preview Visualize JSON 5 mQ
1 i I
2
3
5 /mail.google.com/",
6 "token_type": "Bearer"
7 |
Q, Find and Replace [Console = Bootcamp Bul Browse lE‘ ':E:‘

If all has gone well, the server will return a JSON response which contains your bearer token (named access_token) and
the refresh token. You will note the expires_in value is 3599 seconds, which is just under one hour. This is how long
the token can be used to access the account you logged in with. After the token expires, you’ll need to refresh it.

https://sockettools.com/

@ Postman

File Edit View Help

() New Import Runner v 88 My Workspace v A+ Invite
Q, . No Environment - & =
GET Authorization Request Token L] Refresh Token 8 (F)| oo
istary o
History Collections APIs b Refresh Token Examples 0 v 4
(® New Callection Trash
POST v https:/fwww.googleapis.com/oauth2/vd/token Send - Save -
v 9 Google Test App
3 requests Params Authorization Headers (8) Body @ Pre-request Script Tests Settings Cockies Code
GET Authorization .
none form-data ® x-www-form-urlencoded raw binary GraphQL
KEY VALUE DESCRIPTION *** BulkE
Refresh Token
client_id
client_secret
refresh_token
Erant_type refresh_token
Body Cockies Headers (13) TestResuls (= & 2000 ime: 164 ms Size: 327B Save Response v
Pretty Raw Preview Visualize JSON 5 f_. Q
1k |
2
3 B
4 "scope": "https://mail.google.com/™,
S "token_type": "Bearer"
e
Q Find and Replace E] Conscle =" Bootcamp Build Browse [

To obtain a new, fresh bearer token you will need to send another request to the server. Copy the refresh_token value

into the Refresh Token request we created earlier and click Send. The server will return a new bearer token which is
valid for another hour.

This completes the guide of how to register your application with Google and use that to obtain the bearer and refresh
tokens for a Gmail account. By performing this manually using Postman, it should help clarify the process of how the
tokens are obtained and how an expired bearer token is refreshed.

If you are using SocketTools .NET or the SocketTools ActiveX controls, the mail components have a new property called
BearerToken which you can use to specify the OAuth 2.0 bearer token in lieu of a password. For the SocketTools Library
Edition, the various APIs have been extended to support bearer tokens as a valid authentication method. Refer to the

technical reference documentation for more specific information about how to update your application to use OAuth
2.0 authorization.

https://sockettools.com/

